WorldWideScience

Sample records for minimal motor behavior

  1. Low-Back Pain Patients Learn to Adapt Motor Behavior with Adverse Secondary Consequences

    NARCIS (Netherlands)

    van Dieën, Jaap H.; Flor, Herta; Hodges, Paul W.

    2017-01-01

    ABSTRACT: We hypothesize that changes in motor behavior in individuals with low-back pain are adaptations aimed at minimizing the real or perceived risk of further pain. Through reinforcement learning, pain and subsequent adaptions result in less dynamic motor behavior, leading to increased loading

  2. A framework to describe, analyze and generate interactive motor behaviors.

    Directory of Open Access Journals (Sweden)

    Nathanaël Jarrassé

    Full Text Available While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  3. Optimum geometry for torque ripple minimization of switched reluctance motors

    NARCIS (Netherlands)

    Sahin, F.; Ertan, H.B.; Leblebicioglu, K.

    2000-01-01

    For switched reluctance motors, one of the major problems is torque ripple which causes increased undesirable acoustic noise and possibly speed ripple. This paper describes an approach to determine optimum magnetic circuit parameters to minimize low speed torque ripple for such motors. The

  4. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  5. Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study.

    Science.gov (United States)

    Takiyama, Ken

    2015-01-01

    Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimization trained with a certain movement are partially available in other non-trained movements, and this transfer of the learning effect can be reproduced by certain theoretical frameworks. Although most theoretical frameworks have assumed that a motor memory trained with a certain movement decays at the same speed during performing the trained movement as non-trained movements, a recent study reported that the motor memory decays faster during performing the trained movement than non-trained movements, i.e., the decay rate of motor memory is movement or context dependent. Although motor learning has been successfully modeled based on an optimization framework, e.g., movement error minimization, the type of optimization that can lead to context-dependent memory decay is unclear. Thus, context-dependent memory decay raises the question of what is optimized in motor learning. To reproduce context-dependent memory decay, I extend a motor primitive framework. Specifically, I introduce motor effort optimization into the framework because some previous studies have reported the existence of effort optimization in motor learning processes and no conventional motor primitive model has yet considered the optimization. Here, I analytically and numerically revealed that context-dependent decay is a result of motor effort optimization. My analyses suggest that context-dependent decay is not merely memory decay but is evidence of motor effort optimization in motor learning.

  6. Context-dependent memory decay is evidence of effort minimization in motor learning: A computational study

    Directory of Open Access Journals (Sweden)

    Ken eTakiyama

    2015-02-01

    Full Text Available Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimization trained with a certain movement are partially available in other non-trained movements, and this transfer of the learning effect can be reproduced by certain theoretical frameworks. Although most theoretical frameworks have assumed that a motor memory trained with a certain movement decays at the same speed during performing the trained movement as non-trained movements, a recent study reported that the motor memory decays faster during performing the trained movement than non-trained movements, i.e., the decay rate of motor memory is movement or context dependent. Although motor learning has been successfully modeled based on an optimization framework, e.g., movement error minimization, the type of optimization that can lead to context-dependent memory decay is unclear. Thus, context-dependent memory decay raises the question of what is optimized in motor learning. To reproduce context-dependent memory decay, I extend a motor primitive framework. Specifically, I introduce motor effort optimization into the framework because some previous studies have reported the existence of effort optimization in motor learning processes and no conventional motor primitive model has yet considered the optimization. Here, I analytically and numerically revealed that context-dependent decay is a result of motor effort optimization. My analyses suggest that context-dependent decay is not merely memory decay but is evidence of motor effort optimization in motor learning.

  7. An Online Observer for Minimization of Pulsating Torque in SMPM Motors

    Science.gov (United States)

    Roșca, Lucian

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  8. Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study

    OpenAIRE

    Takiyama, Ken

    2015-01-01

    Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimization trained with a certain movement are partially available in other non-trained movements, and this t...

  9. Torque Ripple Minimization and Performance Investigation of an In-Wheel Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    A. Mansouri

    2016-06-01

    Full Text Available Recently, electric vehicle motoring has become a topic of interest, due to the several problems caused by thermal engines such as pollution and high oil prices. Thus, electric motors are increasingly applied in vehicle’ applications and relevant research about these motors and their applications has been performed. Of particular interest are the improvements regarding torque production capability, the minimization of torque ripple and iron losses. The present work deals with the optimum design and the performance investigation of an outer rotor permanent magnet motor for in-wheel electric vehicle application. At first, and in order to find the optimum motor design, a new based particle-swarm multi-objective optimization procedure is applied. Three objective functions are used: efficiency maximization, weight and ripple torque minimization. Secondly, the effects of the permanent magnets segmentation, the stator slots opening, and the separation of adjacent magnets by air are outlined. The aim of the paper is the design of a topology with smooth output torque, low ripple torque, low iron losses and mechanical robustness.

  10. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  11. Minimal clinically important difference on the Motor Examination part of MDS-UPDRS.

    Science.gov (United States)

    Horváth, Krisztina; Aschermann, Zsuzsanna; Ács, Péter; Deli, Gabriella; Janszky, József; Komoly, Sámuel; Balázs, Éva; Takács, Katalin; Karádi, Kázmér; Kovács, Norbert

    2015-12-01

    Recent studies increasingly utilize the Movement Disorders Society Sponsored Unified Parkinson's Disease Rating Scale (MDS-UPDRS). However, the minimal clinically important difference (MCID) has not been fully established for MDS-UPDRS yet. To assess the MCID thresholds for MDS-UPDRS Motor Examination (Part III). 728 paired investigations of 260 patients were included. At each visit both MDS-UPDRS and Clinician-reported Global Impression-Improvement (CGI-I) scales were assessed. MDS-UPDRS Motor Examination (ME) score changes associated with CGI-I score 4 (no change) were compared with MDS-UPDRS ME score changes associated with CGI-I score 3 (minimal improvement) and CGI-I score 5 (minimal worsening). Both anchor- and distribution-based techniques were utilized to determine the magnitude of MCID. The MCID estimates for MDS-UPDRS ME were asymmetric: -3.25 points for detecting minimal, but clinically pertinent, improvement and 4.63 points for observing minimal, but clinically pertinent, worsening. MCID is the smallest change of scores that are clinically meaningful to patients. These MCID estimates may allow the judgement of a numeric change in MDS-UPDRS ME on its clinical importance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Loss Minimization Sliding Mode Control of IPM Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Mehran Zamanifar

    2010-01-01

    Full Text Available In this paper, a nonlinear loss minimization control strategy for an interior permanent magnet synchronous motor (IPMSM based on a newly developed sliding mode approach is presented. This control method sets force the speed control of the IPMSM drives and simultaneously ensures the minimization of the losses besides the uncertainties exist in the system such as parameter variations which have undesirable effects on the controller performance except at near nominal conditions. Simulation results are presented to show the effectiveness of the proposed controller.

  13. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  14. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  15. A novel solid-state control system for the minimization of re-switching transient currents of induction motor

    International Nuclear Information System (INIS)

    Abro, M.R.; Larik, A.S.; Mahar, M.A.

    2005-01-01

    This work is an investigation into the minimizing re-closure transient currents of induction motors by activating NOVEL solid state control system switching at a matched condition. This emphasis is placed upon-circuit transition starting of cage motors, particularly star-delta switching. The initial study is carried out on single-phase induction motion. This system is capable of effective sensing re-closure of a switched off running single-phase induction motor. Further this scheme could be developed to give sequential delta closure of a switched off running three-phase induction motor during 1st cycles following the opening of the star mode. Consideration is also given to the possibility of using sensed re-closure to minimize transient whenever the supply to a running induction motor is briefly interrupted, irrespective of whether the interruption is by accident design. A brief study is made into the type of transient currents generated by opening the circuit of a running induction motor. The importance of the switching pattern for star-delta starting is explained and emphasized. (author)

  16. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study.

    Science.gov (United States)

    Furlan, Leonardo; Sterr, Annette

    2018-01-01

    Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed

  17. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effect of the home environment on motor and cognitive behavior of infants.

    Science.gov (United States)

    Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl

    2012-06-01

    Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Trained, generalized, and collateral behavior changes of preschool children receiving gross-motor skills training.

    OpenAIRE

    Kirby, K C; Holborn, S W

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Ten target behaviors were measured in the training setting to assess direct effects of the program. Generalization probes for two gross-motor behaviors, one fine-motor skill, and two social behaviors were conducted in other settings. Results indicated that the training program improved the gross-motor skills trained and that improvements sometimes generalized to other settings. Contrary...

  20. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  1. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    to motoneurons during rhythmic motor behaviors, and specifically the hypothesis that motoneurons receive concurrent excitatory and inhibitory (E/I) inputs. Berg et al. (2007) presented the concurrent hypothesis, which goes against the classical feed forward reciprocal model for spinal motor networks that has...... gained widespread acceptance. We developed an adult turtle preparation where the spinal motor network was intact, which also allowed us to perform intracellular recordings from motoneurons during rhythmic motor activity. We estimated the synaptic excitatory and inhibitory conductances by two individual...... (Buzsáki and Mizuseki, 2014). Roxin et al. (2011) detailed the firing rate distribution in networks in the balanced regime, and found it to be similar to a lognormal distribution and describing the data from the population studies very well. Our experimental observations and analysis are in agreement...

  2. MicroRNA-128 governs neuronal excitability and motor behavior in mice

    DEFF Research Database (Denmark)

    Tan, Chan Lek; Plotkin, Joshua L.; Venø, Morten Trillingsgaard

    2013-01-01

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excita...

  3. Analysis of the motor behavior of a patient submitted to radical mastectomy - doi:10.5020/18061230.2009.p61

    Directory of Open Access Journals (Sweden)

    Lucas Flocke Hack

    2012-01-01

    Full Text Available Objective: To analyze the motor behavior of a patient in late postoperative of radical mastectomy during the accomplishment of some daily life activities, her gait and her body posture. Methods: This was an observational and descriptive case report study developed in an academic institution at Novo Hamburgo/RS, Brazil. By means of video recording, the accomplishment of daily life activities, the gait and body posture of a mastectomy patient were evaluated. Results: The most important alterations found were: increased base of support, torso swinging on gait, “S” shape scoliosis, accentuation of the spine physiologic curves and compensatory attitudes for reaching greater amplitudes of arm elevation at the same side of the surgery. Conclusion: We conclude that motor behavior alterations after surgery of radical mastectomy can be reasonably minimized, remaining a small reduction of movement amplitude and of muscular strength on upper limb and torso.

  4. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Science.gov (United States)

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Neuromodulation during motor development and behavior.

    Science.gov (United States)

    Pflüger, H J

    1999-12-01

    Important recent advances have been made in understanding the role of aminergic modulation during the maturation of Xenopus larvae swimming rhythms, including effects on particular ion channel types of component neurons, and the role of peptidergic modulation during development of adult central patterns generators in the stomatogastric ganglion of crustaceans. By recording from octopaminergic neuromodulatory neurons during ongoing motor behavior in the locust, new insights into the role of this peripheral neuromodulatory mechanism have been gained. In particular, it is now clear that the octopaminergic neuromodulatory system is automatically activated in parallel to the motor systems, and that both excitation and inhibition play important functional roles.

  6. Adult-onset stereotypical motor behaviors.

    Science.gov (United States)

    Maltête, D

    Stereotypies have been defined as non-goal-directed movement patterns repeated continuously for a period of time in the same form and on multiple occasions, and which are typically distractible. Stereotypical motor behaviors are a common clinical feature of a variety of neurological conditions that affect cortical and subcortical functions, including autism, tardive dyskinesia, excessive dopaminergic treatment of Parkinson's disease and frontotemporal dementia. The main differential diagnosis of stereotypies includes tic disorders, motor mannerisms, compulsion and habit. The pathophysiology of stereotypies may involve the corticostriatal pathways, especially the orbitofrontal and anterior cingulated cortices. Because antipsychotics have long been used to manage stereotypical behaviours in mental retardation, stereotypies that present in isolation tend not to warrant pharmacological intervention, as the benefit-to-risk ratio is not great enough. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Trained, Generalized, and Collateral Behavior Changes of Preschool Children Receiving Gross-Motor Skills Training.

    Science.gov (United States)

    Kirby, Kimberly C.; Holborn, Stephen W.

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…

  8. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  9. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  10. Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping

    Science.gov (United States)

    Thomas, Jerry R.

    2006-01-01

    Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…

  11. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  12. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  13. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    OpenAIRE

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  14. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    Science.gov (United States)

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Directory of Open Access Journals (Sweden)

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  16. Opportunity Loss Minimization and Newsvendor Behavior

    Directory of Open Access Journals (Sweden)

    Xinsheng Xu

    2017-01-01

    Full Text Available To study the decision bias in newsvendor behavior, this paper introduces an opportunity loss minimization criterion into the newsvendor model with backordering. We apply the Conditional Value-at-Risk (CVaR measure to hedge against the potential risks from newsvendor’s order decision. We obtain the optimal order quantities for a newsvendor to minimize the expected opportunity loss and CVaR of opportunity loss. It is proven that the newsvendor’s optimal order quantity is related to the density function of market demand when the newsvendor exhibits risk-averse preference, which is inconsistent with the results in Schweitzer and Cachon (2000. The numerical example shows that the optimal order quantity that minimizes CVaR of opportunity loss is bigger than expected profit maximization (EPM order quantity for high-profit products and smaller than EPM order quantity for low-profit products, which is different from the experimental results in Schweitzer and Cachon (2000. A sensitivity analysis of changing the operation parameters of the two optimal order quantities is discussed. Our results confirm that high return implies high risk, while low risk comes with low return. Based on the results, some managerial insights are suggested for the risk management of the newsvendor model with backordering.

  17. Fast social-like learning of complex behaviors based on motor motifs

    Science.gov (United States)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  18. Development and Construct Validation of an Inventory for Assessing the Home Environment for Motor Development

    Science.gov (United States)

    Rodrigues, Luis Paulo; Saraiva, Linda; Gabbard, Carl

    2005-01-01

    A contemporary view of early childhood motor development considers environmental influences as critical factors in optimal growth and behavior, with the home being the primary agent. However, there has been minimal research examining the relationship between motor development and the home. The present study addresses this gap with the goal of…

  19. The relationship between the behavior problems and motor skills of students with intellectual disability.

    Science.gov (United States)

    Lee, Yangchool; Jeoung, Bogja

    2016-12-01

    The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.

  20. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Science.gov (United States)

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    Science.gov (United States)

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGAmotor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Science.gov (United States)

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  3. Microswitch- and VOCA-Assisted Programs for Two Post-Coma Persons with Minimally Conscious State and Pervasive Motor Disabilities

    Science.gov (United States)

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Oliva, Doretta; Signorino, Mario; Megna, Gianfranco

    2009-01-01

    Intervention programs, based on learning principles and assistive technology, were assessed in two studies with two post-coma men with minimally conscious state and pervasive motor disabilities. Study I assessed a program that included (a) an optic microswitch, activated via double blinking, which allowed a man direct access to brief music…

  4. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  5. The role of pre-school children motor behavior in developing their self-concept

    Directory of Open Access Journals (Sweden)

    Perić Dušan

    2014-01-01

    Full Text Available The assessment of motor behavior and general intellectual abilities were performed on a sample of 42 pre-school children (22 boys and 20 girls aged 6 (±3 months; moreover, the self-concept of those children was analysed. For the assessment of their motor behavior six movement tasks were chosen and the Mary Gutrich scale was applied for the analysis of the results. The children's intellectual abilities were assessed by the means of Raven's colored progressive matrices so as to enable the groups to homogenise, as well as to eliminate potential parasite factors when drawing conclusions. The self-concept analysis was performed using the pshychological interview during the course of which the children described their impression of their own abilities with regard to the past, present and future. The data related to the self-concept were complemented with the analysis of the children's drawings. The statistical analysis of the data gathered showed that motor behavior plays a significant role in developing one's self-concept, which is especially true of boys. Even though there is no significant statistical difference between boys and girls with respect to the quality of their motor behavior, there are significant differences between them pertaining to the vocabulary they use when describing their own selves, i.e. their self-concept, especially with respect to the present and future. Boys seem to use more extensive motor-related vocabulary when describing themselves, especially those with greater motor skills. Both boys and girls show a tendency to describe themselves as incapable in the past. When describing their present moment capabilities, girls tend to use vocabulary related to play and independence, whereas they mostly use vocabulary related to professions and sex roles when referring to the future. These findings indicate that social factors are of immense importance from a very early age, especially among girls. Moreover, the results show that

  6. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Directory of Open Access Journals (Sweden)

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  7. Associations of Gross Motor Delay, Behavior, and Quality of Life in Young Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry

    2018-04-01

    Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross

  8. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Science.gov (United States)

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  9. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  10. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  11. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    Science.gov (United States)

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  12. Force and complexity of tongue task training influences behavioral measures of motor learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Huo, Xueliang

    2012-01-01

    Relearning of motor skills is important in neurorehabilitation. We investigated the improvement of training success during simple tongue protrusion (two force levels) and a more complex tongue-training paradigm using the Tongue Drive System (TDS). We also compared subject-based reports of fun, pain...... training influences behavioral aspects of tongue motor learning....

  13. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    Science.gov (United States)

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  14. Feeding behaviors and other motor development in healthy children (2-24 months).

    Science.gov (United States)

    Carruth, Betty Ruth; Skinner, Jean D

    2002-04-01

    To monitor infant's gross, fine and oral motor development patterns related to feeding. An incomplete block design was used with 57 to 60 (sample = 98) mothers interviewed when their children were 2, 3, 4, 6, 8, 10, 12, 16 and 24 months (within +/- 5 days of birth date). Each mother had 5 to 6 interviews. Selected developmental feeding behaviors were monitored using in-home interviews conducted by trained interviewers (n = 2). At each interview, mothers reported the child's age when behaviors first occurred, and anthropometric measurements were performed. Subjects were healthy white children who lived mostly in homes with educated two-parent families of upper socioeconomic status. Mean behavioral ages were within normal ranges reported in the literature, whereas individuals exhibited a wide diversity in reported ages. Examples of gross motor skills (age in months, +/- SD) included sitting without help (5.50+/-2.08) and crawling (8.00+/-1.55). Mean ages for self-feeding fine motor skills showed children reaching for a spoon when hungry (5.47+/-1.44), using fingers to rake food toward self (8.87+/-2.58) and using fingers to self-feed soft foods (13.52+/-2.83). Oral behaviors included children opening their mouth when food approached (4.46+/-1.37), eating food with tiny lumps (8.70+/-2.03) and chewing and swallowing firmer foods without choking (12.17+/-2.28). Mean ages for feeding behaviors occurred within expected age ranges associated with normal development. However, mothers reported that individual children exhibited a wide age range for achieving these behaviors. Our results should be considered in counseling mothers about infant feeding practices.

  15. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Science.gov (United States)

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Science.gov (United States)

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  17. Is there an association among actual motor competence, perceived motor competence, physical activity, and sedentary behavior in preschool children?

    OpenAIRE

    Lopes, Vítor P.; Barnett, L.M.; Rodrigues, Luis Paulo

    2016-01-01

    The purpose is to explore relationships among moderate to vigorous physical activity (MVPA), sedentary behavior (SB), and actual gross motor competence (MC) and perceived motor competence (PMC) in young children. Data were collected in 101 children (M age = 4.9 ± 0.93 years). MVPA was measured with accelerometry. Gross MC was assessed with the Portuguese version of the Movement Assessment Battery for Children. PMC was evaluated with the Pictorial Scale of Perceived Competence and Social Accep...

  18. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Science.gov (United States)

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  19. Bureaucratic Minimal Squawk Behavior: Theory and Evidence from Regulatory Agencies

    OpenAIRE

    Clare Leaver

    2009-01-01

    This paper argues that bureaucrats are susceptible to `minimal squawk` behavior. I develop a simple model in which a desire to avoid criticism can prompt, otherwise public-spirited, bureaucrats to behave inefficiently. Decisions are taken to keep interest groups quiet and mistakes out of the public eye. The policy implications of this behavior are at odds with the received view that agencies should be structured to minimise the threat of `capture`. I test between theories of bureaucratic beha...

  20. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  1. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Science.gov (United States)

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  2. Investigation of the Association Between Motor Stereotypy Behavior With Fundamental Movement Skills, Adaptive Functioning, and Autistic Spectrum Disorder Symptomology in Children With Intellectual Disabilities.

    Science.gov (United States)

    Powell, Joanne L; Pringle, Lydia; Greig, Matt

    2017-02-01

    Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.

  3. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Institute of Scientific and Technical Information of China (English)

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  4. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

    Directory of Open Access Journals (Sweden)

    Svenja Diekhoff-Krebs

    2017-01-01

    Full Text Available Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1 excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14 and healthy controls (n = 12 were scanned with functional magnetic resonance imaging (fMRI while performing a simple hand motor task. Dynamic causal modeling (DCM was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that

  5. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    Science.gov (United States)

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  6. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    Science.gov (United States)

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  7. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  8. Monoaminergic orchestration of motor programs in a complex C. elegans behavior.

    Directory of Open Access Journals (Sweden)

    Jamie L Donnelly

    Full Text Available Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.

  9. REM Sleep Behavior and Motor Findings in Parkinson's Disease: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Abhimanyu Mahajan

    2014-06-01

    Full Text Available Background: Parkinson's disease (PD represents a major public health challenge that will only grow in our aging population. Understanding the connection between PD and associated prodromal conditions, such as rapid eye movement sleep behavioral disorder (RBD, is critical to identifying prevention strategies. However, the relationship between RBD and severity of motor findings in early PD is unknown. This study aims to examine this relationship. Methods: The study population consisted of 418 PD patients who completed the Movement Disorders Society‐United Parkinson's Disease Rating Scale (MDS‐UPDRS and rapid eye movement sleep (REM disorder questionnaires at the baseline visit of the Michael J. Fox's Parkinson's Progression Markers Initiative (PPMI. Cross‐sectional analysis was carried out to assess the association between REM Sleep Behavior Screening Questionnaire score and MDS UPDRS‐3 (motor score categories. Correlation with a higher score category was described as “worse motor findings”. A score of 5 on the REM disorder questionnaire was defined as predictive of RBD.Results: Out of the 418 PD patients, 113 (27.0% had RBD. With univariate logistic regression analysis, individuals with scores predictive of RBD were 1.66 times more likely to have worse motor findings (p = 0.028. Even with age, gender, and Geriatric Depression Scale scores taken into account, individuals with scores predictive of RBD were 1.69 times more likely to have worse motor findings (p = 0.025.Discussion: PD patients with RBD symptoms had worse motor findings than those unlikely to have RBD. This association provides further evidence for the relationship between RBD and PD.

  10. Developmental profile and diagnoses in children presenting with motor stereotypies

    Directory of Open Access Journals (Sweden)

    Francesco Cardona

    2016-11-01

    Full Text Available Introduction: Motor stereotypies represent a typical example of the difficulty in distinguishing non-clinical behaviors (physiological and transient from symptoms or among different disorders (primary stereotypies, associated with Autistic Spectrum Disorder (ASD, Intellectual Disabilities, genetic syndromes, sensory impairment. The aim of this study was to obtain an accurate assessment on the relationship between stereotypies and neurodevelopmental disorders.Methods: We studied 23 children (3 girls aged 36 to 95 months, who requested a consultation due to the persistence or increased severity of motor stereotypies. None of patients had a previous diagnosis of ASD. The assessment included the Motor Severity Stereotypy Scale (MSSS, the Repetitive Behavior Scale-Revised (RBS-R, the Raven’s Colored Progressive Matrices (CPM, the Child Behavior Checklist for ages 1 ½ -5 or 4-18 (CBCL, the Social Responsiveness Scale (SRS and the Autism Diagnostic Observation Schedule- Second edition (ADOS 2. Results: All patients were showing motor stereotypies for periods of time varying from 6 to 77 months. The MSSS showed each child had a limited number of stereotypies; their frequency and intensity were mild. The interference of stereotypies was variable; the impairment in daily life was mild. The RBS-R scores were positive for the subscale of Stereotypic behaviors in all children. Moreover, several children presented other repetitive behaviors, mainly Ritualistic behavior and Sameness behavior. All patients showed a normal cognitive level. The CBCL evidenced behavioral problems in 22% of the children: Internalizing problems, Attention and Withdrawn were the main complaints. On the SRS, all but one of the tested patients obtained clinical scores in the clinical range for at least one area. On the ADOS 2, four patients obtained scores indicating a moderate level of ASD symptoms, four had a mild level and fifteen showed no or minimal signs of ASD

  11. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  12. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    Science.gov (United States)

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  13. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Asha eKishore

    2014-05-01

    Full Text Available Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration and normal functioning of these net works. Strong topography-specific connections among the basal ganglia, cerebellum and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.

  14. Multiple systems for motor skill learning.

    Science.gov (United States)

    Clark, Dav; Ivry, Richard B

    2010-07-01

    Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.

  15. REM sleep behavior disorder: association with motor complications and impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Kim, Young Eun; Jeon, Beom S; Yang, Hui-Jun; Ehm, Gwanhee; Yun, Ji Young; Kim, Han-Joon; Kim, Jong-Min

    2014-10-01

    Clinical phenotypes such as old age, longer disease duration, motor disability, akineto-rigid type, dementia and hallucinations are known to be associated with REM sleep behavior disorder (RBD) in Parkinson's disease (PD). However, the relationship between motor fluctuations/impulse control and related behaviors (ICRB) and RBD is not clear. We designed this study to elucidate the clinical manifestations associated with RBD to determine the implications of RBD in PD. In a cross-sectional study, a total of 994 patients with PD were interviewed to determine the presence of RBD and their associated clinical features including motor complications and ICRB. Of the 944 patients, 578 (61.2%) had clinical RBD. When comparing the clinical features between patients with RBD (RBD group) and without RBD (non-RBD group), older age, longer disease duration, higher Hoehn and Yahr stage (H&Y stage), higher levodopa equivalent daily dose (LEDD), and the existence of wearing off, dyskinesia, freezing, and ICRB, especially punding, were associated with the RBD group compared to the non-RBD group (P < .05 in all). Multivariate analysis showed that motor complications including wearing off, peak dose dyskinesia, and diphasic dyskinesia were the only relevant factors for RBD after adjusting for age and disease duration. Motor complications and ICRB are more frequent in patients with RBD than in patients without RBD. In addition, motor complications are related to RBD even after adjusting for age and disease duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Minimizing deviant behavior in healthcare organizations: the effects of supportive leadership and job design.

    Science.gov (United States)

    Chullen, C Logan; Dunford, Benjamin B; Angermeier, Ingo; Boss, R Wayne; Boss, Alan D

    2010-01-01

    In an era when healthcare organizations are beset by intense competition, lawsuits, and increased administrative costs, it is essential that employees perform their jobs efficiently and without distraction. Deviant workplace behavior among healthcare employees is especially threatening to organizational effectiveness, and healthcare managers must understand the antecedents of such behavior to minimize its prevalence. Deviant employee behavior has been categorized into two major types, individual and organizational, according to the intended target of the behavior. Behavior directed at the individual includes such acts as harassment and aggression, whereas behavior directed at the organization includes such acts as theft, sabotage, and voluntary absenteeism, to name a few (Robinson and Bennett 1995). Drawing on theory from organizational behavior, we examined two important features of supportive leadership, leader-member exchange (LMX) and perceived organizational support (POS), and two important features of job design, intrinsic motivation and depersonalization, as predictors of subsequent deviant behavior in a sample of over 1,900 employees within a large US healthcare organization. Employees who reported weaker perceptions of LMX and greater perceptions of depersonalization were more likely to engage in deviant behavior directed at the individual, whereas employees who reported weaker perceptions of POS and intrinsic motivation were more likely to engage in deviant behavior directed at the organization. These findings give rise to specific prescriptions for healthcare managers to prevent or minimize the frequency of deviant behavior in the workplace.

  17. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    Science.gov (United States)

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  18. Minimization of cogging torque in permanent magnet motors by teeth pairing and magnet arc design using genetic algorithm

    International Nuclear Information System (INIS)

    Eom, J.-B.; Hwang, S.-M.; Kim, T.-J.; Jeong, W.-B.; Kang, B.-S.

    2001-01-01

    Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method with Fourier series expansion. It shows that cogging torque is effectively minimized by controlling airgap permeance function with teeth pairing design, and by controlling flux density function with magnet arc design. For an optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively

  19. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    Science.gov (United States)

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  20. A Neo-Piagetian Theory of Constructive Operators: Applications to Perceptual-Motor Development and Learning.

    Science.gov (United States)

    Todor, John I.

    The author presents an overview of Pascual-Leone's Theory of Constructive Operators, a process-structural theory based upon Piagetian constructs which has evolved to both explain and predict the temporal unfolding of behavior. An application is made of the theory to the demands of a discrete motor task and prediction of (a) the minimal age…

  1. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  2. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  3. Simplified current minimization control of vector controlled Interior ...

    Indian Academy of Sciences (India)

    Thakur Sumeet Singh

    2018-04-12

    Apr 12, 2018 ... looked into loss-minimization control of PM motors by use of polynomial .... the chosen motor (''Appendix'') falls outside of its range. Figure 1. ..... command, mmf balance along q-axis should be maintained: (Lq being ...

  4. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor.

    Science.gov (United States)

    Tsai, Meng-Li; Kozłowska, Anna; Li, Yu-Sheng; Shen, Wen-Ling; Huang, Andrew Chih Wei

    2017-08-01

    The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  6. Graphonomics and its contribution to the field of motor behavior: A position statement.

    Science.gov (United States)

    Van Gemmert, Arend W A; Contreras-Vidal, Jose L

    2015-10-01

    The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.

  7. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  8. Limit behavior of mass critical Hartree minimization problems with steep potential wells

    Science.gov (United States)

    Guo, Yujin; Luo, Yong; Wang, Zhi-Qiang

    2018-06-01

    We consider minimizers of the following mass critical Hartree minimization problem: eλ(N ) ≔inf {u ∈H1(Rd ) , ‖u‖2 2=N } Eλ(u ) , where d ≥ 3, λ > 0, and the Hartree energy functional Eλ(u) is defined by Eλ(u ) ≔∫Rd|∇u (x ) |2d x +λ ∫Rdg (x ) u2(x ) d x -1/2 ∫Rd∫Rdu/2(x ) u2(y ) |x -y |2 d x d y . Here the steep potential g(x) satisfies 0 =g (0 ) =infRdg (x ) ≤g (x ) ≤1 and 1 -g (x ) ∈Ld/2(Rd ) . We prove that there exists a constant N* > 0, independent of λg(x), such that if N ≥ N*, then eλ(N) does not admit minimizers for any λ > 0; if 0 N N*, then there exists a constant λ*(N) > 0 such that eλ(N) admits minimizers for any λ > λ*(N) and eλ(N) does not admit minimizers for 0 N). For any given 0 N N*, the limit behavior of positive minimizers for eλ(N) is also studied as λ → ∞, where the mass concentrates at the bottom of g(x).

  9. Real time implementation of viable torque and flux controllers and torque ripple minimization algorithm for induction motor drive

    International Nuclear Information System (INIS)

    Vasudevan, M.; Arumugam, R.; Paramasivam, S.

    2006-01-01

    Field oriented control (FOC) and direct torque control (DTC) are becoming the industrial standards for induction motors torque and flux control. This paper aims to give a contribution for a detailed comparison between these two control techniques, emphasizing their advantages and disadvantages. The performance of these two control schemes is evaluated in terms of torque and flux ripple and their transient response to step variations of the torque command. Moreover, a new torque and flux ripple minimization technique is also proposed to improve the performance of the DTC drive. Based on the experimental results, the analysis has been presented

  10. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  11. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    Science.gov (United States)

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  12. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors

    NARCIS (Netherlands)

    Claassen, D.O.; van den Wildenberg, W.P.; Harrison, M.B.; van Wouwe, N.C.; Kanoff, K.; Neimat, J.S.; Wylie, S.A.

    2015-01-01

    BACKGROUND: Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. METHODS: We used the stop-signal task in a cohort

  13. A structured assessment of motor function, behavior, and communication in patients with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Nag, Heidi E; Bergsaker, David K; Hunn, Bente S; Schmidt, Susanne; Hoxmark, Lise B

    2017-11-01

    The present study aimed to increase the knowledge about Wolf-Hirschhorn syndrome (WHS), especially concerning motor function, autism spectrum disorders (ASD), and adapted behavior, but also regarding clinical symptoms in general. Motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ), and the Child Behavior Checklist (CBCL) or Adult Behavior Checklist (ABCL) were used for the behavioral assessment. In total, two males and eight females between one and 48 years of age with a genetically confirmed diagnosis of WHS and their parents participated in this study. Deletion sizes were known for seven of the ten patients and varied between 55 Kb and 20 Mb. The chromosome coordinates were known for six of them, and none of those had the same break points in their deletion. The main finding in this study was that patients with WHS may have a better outcome regarding motor skills and expressive communication than previously described. We could confirm the main medical findings described earlier, but found also a population with a less severe dysmorphology, fewer congenital malformations, and fewer medical challenges than expected. Sleep problems may persist into adulthood and need a more thorough investigation. Research on possible indications of ASD is strongly needed for targeted interventions. In conclusion, a more thorough assessment of communication, possible ASD, and sleep in larger groups of patients with WHS are needed to confirm and further investigate the findings from this study and to provide more targeted interventions for WHS patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Co-occurring motor, language and emotional-behavioral problems in children 3-6 years of age.

    Science.gov (United States)

    King-Dowling, Sara; Missiuna, Cheryl; Rodriguez, M Christine; Greenway, Matt; Cairney, John

    2015-02-01

    Developmental Coordination Disorder (DCD) has been shown to co-occur with behavioral and language problems in school-aged children, but little is known as to when these problems begin to emerge, or if they are inherent in children with DCD. The purpose of this study was to determine if deficits in language and emotional-behavioral problems are apparent in preschool-aged children with movement difficulties. Two hundred and fourteen children (mean age 4years 11months, SD 9.8months, 103 male) performed the Movement Assessment Battery for Children 2nd Edition (MABC-2). Children falling at or below the 16th percentile were classified as being at risk for movement difficulties (MD risk). Auditory comprehension and expressive communication were examined using the Preschool Language Scales 4th Edition (PLS-4). Parent-reported emotional and behavioral problems were assessed using the Child Behavior Checklist (CBCL). Preschool children with diminished motor coordination (n=37) were found to have lower language scores, higher externalizing behaviors in the form of increased aggression, as well as increased withdrawn and other behavior symptoms compared with their typically developing peers. Motor coordination, language and emotional-behavioral difficulties tend to co-occur in young children aged 3-6years. These results highlight the need for early intervention. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    Science.gov (United States)

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  16. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  17. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-04-01

    Full Text Available OBJECTIVES: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school-age children. SOURCES: This was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target-population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. SUMMARY OF FINDINGS: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. CONCLUSION: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  18. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Science.gov (United States)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  19. Differentiating children with attention-deficit/hyperactivity disorder, conduct disorder, learning disabilities and autistic spectrum disorders by means of their motor behavior characteristics.

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N=22), Conduct Disorder (CD; N=17), Learning Disabilities (LD; N=24) and Autistic Spectrum Disorders (ASD; N=20). Physical education teachers used the MBC for children to rate their pupils based on their motor related behaviors. A multivariate analysis revealed significant differences among the groups on different problem scales. The results indicated that the MBC for children may be effective in discriminating children with similar disruptive behaviors (e.g., ADHD, CD) and autistic disorders, based on their motor behavior characteristics, but not children with Learning Disabilities (LD), when used by physical education teachers in school settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Progress and perspectives of the Brazilian scientific production in international journals in the field of motor behavior

    Directory of Open Access Journals (Sweden)

    Ana Paula Kogake Claudio

    2009-09-01

    Full Text Available In view of the fact that one of the key indicators of scientific production is the number of papers published in international journals, and of the apparent growing interest in the area of motor behavior, we conducted a survey of articles published by Brazilian researchers in this area over the last 10 years (1999-2008 in international journals rated “Qualis International-A” and “Qualis International-B” by CAPES. This quantification was performed to provide a qualified viewpoint regarding the profile of Brazilian scientific production of international repercussion in the area of motor behavior. Articles were identified using the Google Scholar, Pubmed, Science Direct, and Scopus search systems, with the search being restricted to characteristic terms involving motor behavior and to researchers associated with Brazilian universities. The results showed an increase in production over the last 5 years of the period studied, with the peak in 2006. In addition, Brazilian scientific production was concentrated in four public universities. These results suggest that in order to keep growing, the new groups should work in collaboration with productive laboratories, decentralizing the scientific production.

  1. How Do Price Minimizing Behaviors Impact Smoking Cessation? Findings from the International Tobacco Control (ITC Four Country Survey

    Directory of Open Access Journals (Sweden)

    Nigar Nargis

    2011-05-01

    Full Text Available This paper examines how price minimizing behaviors impact efforts to stop smoking. Data on 4,988 participants from the International Tobacco Control Policy Evaluation (ITC Four-Country Survey who were smokers at baseline (wave 5 and interviewed at a 1 year follow-up were used. We examined whether price minimizing behaviors at baseline predicted: (1 cessation, (2 quit attempts, and (3 successful quit attempts at one year follow up using multivariate logistic regression modeling. A subset analysis included 3,387 participants who were current smokers at waves 5 and 6 and were followed through wave 7 to explore effects of changing purchase patterns on cessation. Statistical tests for interaction were performed to examine the joint effect of SES and price/tax avoidance behaviors on cessation outcomes. Smokers who engaged in any price/tax avoidance behaviors were 28% less likely to report cessation. Persons using low/untaxed sources were less likely to quit at follow up, those purchasing cartons were less likely to make quit attempts and quit, and those using discount cigarettes were less likely to succeed, conditional on making attempts. Respondents who utilized multiple behaviors simultaneously were less likely to make quit attempts and to succeed. SES did not modify the effects of price minimizing behaviors on cessation outcomes. The data from this paper indicate that the availability of lower priced cigarette alternatives may attenuate public health efforts aimed at to reduce reducing smoking prevalence through price and tax increases among all SES groups. This paper examines how price minimizing behaviors impact efforts to stop smoking. Data on 4,988 participants from the International Tobacco Control Policy Evaluation (ITC Four-Country Survey who were smokers at baseline (wave 5 and interviewed at a 1 year follow-up were used. We examined whether price minimizing behaviors at baseline predicted: (1 cessation, (2 quit attempts, and (3 successful

  2. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM

    Directory of Open Access Journals (Sweden)

    Gilberto Herrera-Ruíz

    2013-03-01

    Full Text Available A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component’s harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  3. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    Science.gov (United States)

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  4. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems.

    Science.gov (United States)

    Thompson, Karen J; Jones, Alaine D; Miller, Sandra A

    2014-01-01

    In female grasshoppers, oviposition is a highly specialized behavior involving a rhythm-generating neural circuit, the oviposition central pattern generator, unusual abdominal appendages, and dedicated muscles. This study of Schistocerca americana (Drury) grasshoppers was undertaken to determine whether the simpler pregenital abdominal segments, which do not contain ovipositor appendages, share common features with the genital segment, suggesting a roadmap for the genesis of oviposition behavior. Our study revealed that although 5 of the standard pregenital body wall muscles were missing in the female genital segment, homologous lateral nerves were, indeed, present and served 4 ovipositor muscles. Retrograde labeling of the corresponding pregenital nerve branches in male and female grasshoppers revealed motor neurons, dorsal unpaired median neurons, and common inhibitor neurons which appear to be structural homologues of those filled from ovipositor muscles. Some pregenital motor neurons displayed pronounced contralateral neurites; in contrast, some ovipositor motor neurons were exclusively ipsilateral. Strong evidence of structural homology was also obtained for pregenital and ovipositor skeletal muscles supplied by the identified neurons and of the pregenital and ovipositor skeletons. For example, transient embryonic segmental appendages were maintained in the female genital segments, giving rise to ovipositor valves, but were lost in pregenital abdominal segments. Significant proportional differences in sternal apodemes and plates were observed, which partially obscure the similarities between the pregenital and genital skeletons. Other changes in reorganization included genital muscles that displayed adult hypertrophy, 1 genital muscle that appeared to represent 2 fused pregenital muscles, and the insertion points of 2 ovipositor muscles that appeared to have been relocated. Together, the comparisons support the idea that the oviposition behavior of genital

  5. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    Science.gov (United States)

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  6. How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Directory of Open Access Journals (Sweden)

    Volker R Zschorlich

    Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before

  7. How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits

    Science.gov (United States)

    Zschorlich, Volker R.; Köhling, Rüdiger

    2013-01-01

    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor

  8. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    Science.gov (United States)

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  9. Motor control is decision-making.

    Science.gov (United States)

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  11. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Science.gov (United States)

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  12. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  13. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    NARCIS (Netherlands)

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  14. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Science.gov (United States)

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. How do price minimizing behaviors impact smoking cessation? Findings from the International Tobacco Control (ITC) Four Country Survey.

    Science.gov (United States)

    Licht, Andrea S; Hyland, Andrew J; O'Connor, Richard J; Chaloupka, Frank J; Borland, Ron; Fong, Geoffrey T; Nargis, Nigar; Cummings, K Michael

    2011-05-01

    This paper examines how price minimizing behaviors impact efforts to stop smoking. Data on 4,988 participants from the International Tobacco Control Policy Evaluation (ITC) Four-Country Survey who were smokers at baseline (wave 5) and interviewed at a 1 year follow-up were used. We examined whether price minimizing behaviors at baseline predicted: (1) cessation, (2) quit attempts, and (3) successful quit attempts at one year follow up using multivariate logistic regression modeling. A subset analysis included 3,387 participants who were current smokers at waves 5 and 6 and were followed through wave 7 to explore effects of changing purchase patterns on cessation. Statistical tests for interaction were performed to examine the joint effect of SES and price/tax avoidance behaviors on cessation outcomes. Smokers who engaged in any price/tax avoidance behaviors were 28% less likely to report cessation. Persons using low/untaxed sources were less likely to quit at follow up, those purchasing cartons were less likely to make quit attempts and quit, and those using discount cigarettes were less likely to succeed, conditional on making attempts. Respondents who utilized multiple behaviors simultaneously were less likely to make quit attempts and to succeed. SES did not modify the effects of price minimizing behaviors on cessation outcomes. The data from this paper indicate that the availability of lower priced cigarette alternatives may attenuate public health efforts aimed at to reduce reducing smoking prevalence through price and tax increases among all SES groups.

  16. How Do Price Minimizing Behaviors Impact Smoking Cessation? Findings from the International Tobacco Control (ITC) Four Country Survey

    Science.gov (United States)

    Licht, Andrea S.; Hyland, Andrew J.; O’Connor, Richard J.; Chaloupka, Frank J.; Borland, Ron; Fong, Geoffrey T.; Nargis, Nigar; Cummings, K. Michael

    2011-01-01

    This paper examines how price minimizing behaviors impact efforts to stop smoking. Data on 4,988 participants from the International Tobacco Control Policy Evaluation (ITC) Four-Country Survey who were smokers at baseline (wave 5) and interviewed at a 1 year follow-up were used. We examined whether price minimizing behaviors at baseline predicted: (1) cessation, (2) quit attempts, and (3) successful quit attempts at one year follow up using multivariate logistic regression modeling. A subset analysis included 3,387 participants who were current smokers at waves 5 and 6 and were followed through wave 7 to explore effects of changing purchase patterns on cessation. Statistical tests for interaction were performed to examine the joint effect of SES and price/tax avoidance behaviors on cessation outcomes. Smokers who engaged in any price/tax avoidance behaviors were 28% less likely to report cessation. Persons using low/untaxed sources were less likely to quit at follow up, those purchasing cartons were less likely to make quit attempts and quit, and those using discount cigarettes were less likely to succeed, conditional on making attempts. Respondents who utilized multiple behaviors simultaneously were less likely to make quit attempts and to succeed. SES did not modify the effects of price minimizing behaviors on cessation outcomes. The data from this paper indicate that the availability of lower priced cigarette alternatives may attenuate public health efforts aimed at to reduce reducing smoking prevalence through price and tax increases among all SES groups. PMID:21655144

  17. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl

    Directory of Open Access Journals (Sweden)

    Mariam Alaverdashvili

    2017-05-01

    Full Text Available Manganese-enhanced magnetic resonance imaging (MEMRI has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg. The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are

  18. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task

    DEFF Research Database (Denmark)

    Kumar, Abhishek; Grigoriadis, Joannis; Trulsson, Mats

    2015-01-01

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor...... movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with ten 10 trials) of the task before and after a short-term (approximately 30min) training. The accuracy of the split and vertical jaw...... task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights on into how humans learn oral motor behaviors or the kind of adaptation...

  19. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.

    Science.gov (United States)

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2015-04-01

    Circumvention around an obstacle entails a dynamic interaction with the obstacle to maintain a safe clearance. We used a novel mathematical interpolation method based on the modified Shepard's method of Inverse Distance Weighting to compute dynamic clearance that reflected this interaction as well as minimal clearance. This proof-of-principle study included seven young healthy, four post-stroke and four healthy age-matched individuals. A virtual environment designed to assess obstacle circumvention was used to administer a locomotor (walking) and a perceptuo-motor (navigation with a joystick) task. In both tasks, participants were asked to navigate towards a target while avoiding collision with a moving obstacle that approached from either head-on, or 30° left or right. Among young individuals, dynamic clearance did not differ significantly between obstacle approach directions in both tasks. Post-stroke individuals maintained larger and smaller dynamic clearance during the locomotor and the perceptuo-motor task respectively as compared to age-matched controls. Dynamic clearance was larger than minimal distance from the obstacle irrespective of the group, task and obstacle approach direction. Also, in contrast to minimal distance, dynamic clearance can respond differently to different avoidance behaviors. Such a measure can be beneficial in contrasting obstacle avoidance behaviors in different populations with mobility problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of sensorless control of brushless DC motor using unknown input observer with different gains

    Science.gov (United States)

    Astik, Mitesh B.; Bhatt, Praghnesh; Bhalja, Bhavesh R.

    2017-03-01

    A sensorless control scheme based on an unknown input observer is presented in this paper in which back EMF of the Brushless DC Motor (BLDC) is continuously estimated from available line voltages and currents. During negative rotation of motor, actual and estimated speed fail to track the reference speed and if the corrective action is not taken by the observer, the motor goes into saturation. To overcome this problem, the speed estimation algorithm has been implemented in this paper to control the dynamic behavior of the motor during negative rotation. The Ackermans method was used to calculate the gains of an unknown input observer which is based on the appropriate choice of the eigenvalues in advance. The criteria to choose eigenvalue is to obtain a balance between faster convergence rate and the least noise level. Simulations have been carried out for different disturbances such as step changes in motor reference speed and load torque. The comparative simulation results clearly depict that the disturbance effects in actual and estimated responses minimizes as observer gain setting increases.

  1. Mortality-minimizing sandpipers vary stopover behavior dependent on age and geographic proximity to migrating predators

    NARCIS (Netherlands)

    Hope, D.D.; Lank, D.B.; Ydenberg, R.C.

    2014-01-01

    Ecological theory for long-distance avian migration considers time-, energy-, and mortality-minimizing tactics, but predictions about the latter have proven elusive. Migrants must make behavioral decisions that can favor either migratory speed or safety from predators, but often not both. We compare

  2. Linking brain, mind and behavior.

    Science.gov (United States)

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  3. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  4. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  5. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  6. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    OpenAIRE

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  7. The effects of yoga practice in school physical education on children's motor abilities and social behavior.

    Science.gov (United States)

    Folleto, Júlia C; Pereira, Keila Rg; Valentini, Nadia Cristina

    2016-01-01

    In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6-8-year-old children. The study included 16 children from the 1(st) grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each session. To assess children's performance, we used the Bruininks-Oseretsky Test of Motor Proficiency - Second Edition, the flexibility test (sit and reach - Eurofit, 1988), the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children and semi-structured interviews with children, parents, and classroom' teacher. Data were analyzed with Wilcoxon test and level of significance was 5%. The yoga program was well accepted by children, children also demonstrated significant and positive changes in overall motor abilities scores (balance, strength, and flexibility). In addition, the interviews reported changing in social behavior and the use of the knowledge learned in the program in contexts outside of school. These findings suggest that the implementation of yoga practice in physical education lessons contributed to children's development.

  8. Impact of fluorescent protein fusions on the bacterial flagellar motor.

    Science.gov (United States)

    Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F

    2017-10-03

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.

  9. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  10. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. RE-EDUCATIVE METHOD IN THE PROCESS OF MINIMIZING OF AUTOAGRESIVE WAYS OF BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Nenad GLUMBIC

    1999-05-01

    Full Text Available Autoagressive behavior is a relatively frequent symptom of mental disturbances and behavior disturbances which are the subject of professional engagement of clinically oriented defectologists. In the process of rehabilitation numerous methods are used, from behavioral to psychopharmacological ones by which the above mentioned problems are eliminated of softened.The paper deals with four children with different diagnosis (autism, disintegrative psychosis, Patau syndrome and amaurosis that have the same common denominator-mental retardation and autoagression.We have tried to point out-by the description of a study case as well as the ways od work with these children-an application possibly of the particular methods of general and special re-education of psychomotorics in the process of autoagressive ways of behavior minimizing.The paper gives the autor’s notion of indications for re-educative method application with in the multihandicapped children population. Defectological treatment discovers new forms of existence in the existential field, not only to the retarded child but also to the very therapist. Epistemological consequences of the mentioned transfer are given in details in the paper.

  13. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  14. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors.

    Science.gov (United States)

    Claassen, Daniel O; van den Wildenberg, Wery P M; Harrison, Madaline B; van Wouwe, Nelleke C; Kanoff, Kristen; Neimat, Joseph S; Wylie, Scott A

    2015-02-01

    Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. We used the stop-signal task in a cohort of patients with and without active symptoms of ICD to evaluate motor-impulsivity. Of those with PD, 12 were diagnosed with ICD symptoms (PD-ICD) and were assessed before clinical reduction of dopamine agonist medication; 12 were without symptoms of ICD [PD-control] and taking equivalent dosages of dopamine agonist. Levodopa, if present, was maintained in both settings. Groups were similar in age, duration, and severity of motor symptoms, levodopa co-therapy, and total levodopa daily dose. All were tested in the dopamine agonist medicated and acutely withdrawn (24 h) state, in a counterbalanced manner. Primary outcome measures were mean reaction time to correct go trials (go reaction time), and mean stop-signal reaction time (SSRT). ICD patients produce faster SSRT than both Healthy Controls, and PD-Controls. Faster SSRT in ICD patients is apparent in both dopamine agonist medication states. Also, we show unique dopamine medication effects on Go Reaction time (GoRT). In dopamine agonist monotherapy patients, dopamine agonist administration speeds GoRT. Conversely, in those with levodopa co-therapy, dopamine agonist administration slows. PD patients with active ICD symptoms are significantly faster at stopping initiated motor actions, and this is not altered by acute dopamine agonist withdrawal. In addition, the effect of dopamine agonist on GoRT is strongly influenced by the presence or absence of levodopa, even though levodopa co-therapy does not appear to influence SSRT. We discuss these findings as they pertain to the multifaceted definition of 'impulsivity,' the lack of evidence for motor-impulsivity in PD-ICD, and dopamine effects on motor-control in PD. Copyright © 2014 Elsevier Inc

  15. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    NARCIS (Netherlands)

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N. J. A.; Sauer, Pieter J. J.; Bos, Arend F.

    2009-01-01

    BACKGROUND: Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE: We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age.

  16. Effect of hippotherapy on motor control, adaptive behaviors, and participation in children with autism spectrum disorder: a pilot study.

    Science.gov (United States)

    Ajzenman, Heather F; Standeven, John W; Shurtleff, Tim L

    2013-01-01

    The purpose of this investigation was to determine whether hippotherapy increased function and participation in children with autism spectrum disorder (ASD). We hypothesized improvements in motor control, which might increase adaptive behaviors and participation in daily activities. Six children with ASD ages 5-12 participated in 12 weekly 45-min hippotherapy sessions. Measures pre- and post-hippotherapy included the Vineland Adaptive Behavior Scales-II and the Child Activity Card Sort. Motor control was measured preintervention and postintervention using a video motion capture system and force plates. Postural sway significantly decreased postintervention. Significant increases were observed in overall adaptive behaviors (receptive communication and coping) and in participation in self-care, low-demand leisure, and social interactions. These results suggest that hippotherapy has a positive influence on children with ASD and can be a useful treatment tool for this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  17. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States); Lansdell, Theresa A., E-mail: lansdel1@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Lookingland, Keith J., E-mail: lookingl@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Baker, Lisa E., E-mail: lisa.baker@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States)

    2015-12-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  18. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2015-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  19. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  20. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  1. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  2. The Effects of Minimal Group Membership on Young Preschoolers’ Social Preferences, Estimates of Similarity, and Behavioral Attribution

    Directory of Open Access Journals (Sweden)

    Nadja Richter

    2016-07-01

    Full Text Available We investigate young children’s sensitivity to minimal group membership. Previous research has suggested that children do not show sensitivity to minimal cues to group membership until the age of five to six, contributing to claims that this is an important transition in the development of intergroup cognition and behavior. In this study, we investigated whether even younger children are sensitive to minimal cues to group membership. Random assignment to one of either of two color groups created a temporary, visually salient minimal group membership in 3 and 4-year-old study participants. Using explicit measures, we tested whether children preferred minimal group members when making social judgments. We find that, in the absence of any knowledge regarding the two groups, children expressed greater liking for ingroup than outgroup targets. Moreover, children estimated that ingroup members would share their preferences. Our findings demonstrate that from early in development, humans assess unknown others on the basis of minimal cues to social similarity and that the perception of group boundaries potentially underlies social assortment in strangers.

  3. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    Science.gov (United States)

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  4. The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction.

    Science.gov (United States)

    Casartelli, Luca; Chiamulera, Cristiano

    2016-04-01

    To understand others' minds is crucial for survival; however, it is quite puzzling how access to others' minds can be--to some extent--direct and not necessarily mediated by conceptual reasoning. Recent advances in neuroscience have led to hypothesize a role for motor circuits not only in controlling the elementary physical features of movement (e.g., force, direction, and amplitude), but also in understanding and shaping human behavior. The concept of "motor cognition" refers to these aspects, and neurophysiological, neuroimaging, and behavioral studies in human and nonhuman primates support this view. From a clinical perspective, motor cognition represents a challenge in several domains. A thorough investigation of the neural mechanisms mediating motor action/intention understanding and automatized/compulsive behaviors seems to be a promising way to tackle a range of neurodevelopmental and drug-related disorders. On the one hand, anomalies in motor cognition may have cascade effects on social functioning in individuals with autism spectrum disorder (ASD); on the other, motor cognition may help explain the pathophysiology of drug-seeking and drug-taking behaviors in the most severe phase of drug addiction (i.e., see drug dependence, motor low-order cue reactivity). This may represent a promising approach that could improve the efficacy of rehabilitative interventions. The only way to shed light on multifactorial disorders such as ASD and drug addiction is through the investigation of their multiple factors. This motor way can promote new theoretical and experimental perspectives that would help bridge the gap between the basic neuroscience approach and clinical practice.

  5. A Synergetic Approach to Describe the Stability and Variability of Motor Behavior

    Science.gov (United States)

    Witte, Kersttn; Bock, Holger; Storb, Ulrich; Blaser, Peter

    At the beginning of the 20th century, the Russian physiologist and biomechanist Bernstein developed his cyclograms, in which he showed in the non-repetition of the same movement under constant conditions. We can also observe this phenomenon when we analyze several cyclic sports movements. For example, we investigated the trajectories of single joints and segments of the body in breaststroke, walking, and running. The problem of the stability and variability of movement, and the relation between the two, cannot be satisfactorily tackled by means of linear methods. Thus, several authors (Turvey, 1977; Kugler et al., 1980; Haken et al., 1985; Schöner et al., 1986; Mitra et al., 1997; Kay et al., 1991; Ganz et al., 1996; Schöllhorn, 1999) use nonlinear models to describe human movement. These models and approaches have shown that nonlinear theories of complex systems provide a new understanding of the stability and variability of motor control. The purpose of this chapter is a presentation of a common synergetic model of motor behavior and its application to foot tapping, walking, and running.

  6. Effect of preterm birth on motor development, behavior, and school performance of school‐age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Full Text Available Objectives: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school‐age children. Sources: this was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target‐population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. Summary of findings: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions. Resumo: Objetivos: examinar e sintetizar o conhecimento da literatura sobre os efeitos do nascimento prematuro no desenvolvimento de crianças em idade escolar. Fontes de dados: revisão sistemática de estudos dos últimos 10 anos indexados nas bases de dados Medline/Pubmed; Medline/BVS; Lilacs/BVS; IBECS/BVS; Cochrane/BVS; Cinahl

  7. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  8. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  9. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    Science.gov (United States)

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  10. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  11. Time-varying motor control of autotomized leopard gecko tails: multiple inputs and behavioral modulation.

    Science.gov (United States)

    Higham, Timothy E; Russell, Anthony P

    2012-02-01

    Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.

  12. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  13. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  15. Prospective associations between measures of gross and fine motor coordination in infants and objectively measured physical activity and sedentary behavior in childhood.

    Science.gov (United States)

    Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justin; Smith, Lee

    2017-11-01

    One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B -5.0 95% confidence interval [CI] -6.8, -3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood.

  16. Studies in Motor Behavior: 75 Years of Research in Motor Development, Learning, and Control

    Science.gov (United States)

    Ulrich, Beverly D.; Reeve, T. Gilmour

    2005-01-01

    Research focused on human motor development, learning, and control has been a prominent feature in the Research Quarterly for Exercise and Sport (RQES) since it was first published in 1930. The purpose of this article is to provide an overview of the papers in the RQES that demonstrate the journal's contributions to the study of motor development,…

  17. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    Science.gov (United States)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  19. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  20. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

    Science.gov (United States)

    LaBan, Myron M; Nabity, Thomas S

    2010-07-01

    This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

  1. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  2. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  3. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    Science.gov (United States)

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  5. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  6. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  7. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  8. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  9. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    OpenAIRE

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has ...

  10. Comparison of Behavioral Problems and Skills of 7-12-Year-Old Students With a Physical/Motor Disability at Mainstream aewnd Special Schools

    Directory of Open Access Journals (Sweden)

    Tahereh Hendi

    2018-03-01

    Discussion: Our data demonstrate that behavioral problems of students with a physical/motor disability are fewer in mainstream schools indicating stronger behavior skills than their peers in special schools. In view of our data, we recommend the possibility of integrating the education of special needs students at regular schools.

  11. Relationships between Fine-Motor, Visual-Motor, and Visual Perception Scores and Handwriting Legibility and Speed

    Science.gov (United States)

    Klein, Sheryl; Guiltner, Val; Sollereder, Patti; Cui, Ying

    2011-01-01

    Occupational therapists assess fine motor, visual motor, visual perception, and visual skill development, but knowledge of the relationships between scores on sensorimotor performance measures and handwriting legibility and speed is limited. Ninety-nine students in grades three to six with learning and/or behavior problems completed the Upper-Limb…

  12. A System of Movement and Motor Skill Challenges for Children

    Science.gov (United States)

    Hill, Grant M.; Turner, Bud

    2012-01-01

    Given increasing childhood inactivity and obesity, and minimal time for quality physical education in elementary and secondary schools, it is essential that children are motivated and held accountable for independent motor and movement skill practice. The Movement and Motor Skill Challenge System provides a comprehensive set of stimulating,…

  13. Improvement of the thermal behavior of linear motors through insulation layer

    International Nuclear Information System (INIS)

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  14. Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

    OpenAIRE

    Kheldoun Aissa; Khodja Djalal Eddine

    2009-01-01

    The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model ...

  15. Two is better than one: Physical interactions improve motor performance in humans

    OpenAIRE

    G. Ganesh; A. Takagi; R. Osu; T. Yoshioka; M. Kawato; E. Burdet

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor...

  16. Behavioral phenotyping of mice in pharmacological and toxicological research.

    Science.gov (United States)

    Karl, Tim; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    The evaluation of behavioral effects is an important component for the in vivo screening of drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of monitoring general health, sensory functions, and motor abilities, right before specific behavioral domains are tested. A rational strategy in the design and procedure of testing as well as an effective composition of different well-established and reproducible behavioral tests can minimize the risk of false positive and false negative results in drug screening. In the present review we describe such basic considerations in planning experiments, selecting strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of differences in specific behavioral domains in mice. Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, wire hang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-guided testing in the behavioral domains of learning and memory (water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus maze, and object exploration), nociception (tail flick, hot plate), psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) are described in further detail. This review is designed to describe a general approach, which increases reliability of behavioral screening. Furthermore, it provides an overview on a selection of specific procedures suitable for but not limited to behavioral screening in pharmacology and toxicology.

  17. A Perceptual Motor Intervention Improves Play Behavior In Children With Moderate To Severe Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Brigette Oliver Ryalls

    2016-05-01

    Full Text Available For children with moderate or severe cerebral palsy (CP, a foundational early goal is independent sitting. Sitting offers additional opportunities for object exploration, play and social engagement. The achievement of sitting coincides with important milestones in other developmental areas, such as social engagement with others, understanding of spatial relationships, and the use of both hands to explore objects. These milestones are essential skills necessary for play behavior. However, little is known about how sitting and play behavior might be affected by a physical therapy intervention in children with moderate or severe CP. Therefore, our overall purpose in this study was to determine if sitting skill could be advanced in children with moderate to severe CP using a perceptual motor intervention, and if play skills would change significantly as sitting advanced. Thirty children between the ages of 18 months and 6 years who were able to hold prop sitting for at least 10 seconds were recruited for this study. Outcome measures were the sitting subsection of the Gross Motor Function Measure (GMFM, and the Play Assessment of Children with Motor Impairment (PACMI play assessment scale, which is a modified version of the Play in Early Childhood Evaluation System (PIECES. Significant improvements in GMFM sitting scores (p<0.001 and marginally significant improvement in play assessment scores (p=0.067 were found from pre- to post-intervention. Sitting change explained a significant portion of the variance in play change for children over the age of 3 years, who were more severely affected by CP. The results of this study indicate that advances in sitting skill may be a factor in supporting improvements in functional play, along with age and severity of physical impairment.

  18. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.

    Science.gov (United States)

    Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S

    2017-07-01

    The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document

  19. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  20. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    Science.gov (United States)

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  1. Minimally invasive surgery for esophageal achalasia

    OpenAIRE

    Bonavina, Luigi

    2006-01-01

    Esophageal achalasia is the most commonly diagnosed primary esophageal motor disorder and the second most common functional esophageal disorder. Current therapy of achalasia is directed toward elimination of the outflow resistance caused by failure of the lower esophageal sphincter to relax completely upon swallowing. The advent of minimally invasive surgery has nearly replaced endoscopic pneumatic dilation as the first-line therapeutic approach. In this editorial, the rationale and the evide...

  2. KONSTRUKSI SOSIAL ANGGOTA GENG MOTOR DI KOTA BANDUNG

    Directory of Open Access Journals (Sweden)

    Purwanti Hadisiwi

    2013-06-01

    Full Text Available Tujuan penelitian ini adalah untuk mengidentifikasi makna diri anggota geng motor, pengharapan anggota geng motor akan diri yang ideal, dan dinamika pembentukan makna diri geng motor yang meliputi latar belakang komunikasi dengan keluarga, sesama anggota geng motor, dan lingkungan sekitar mereka. Kejahatan geng motor selalu meresahkan masyarakat karena kebrutalannya dalam merusak dan membunuh korban tanpa alasan yang jelas. Pola kejahatannya sama, yaitu dengan mengendarai sepeda motor, mereka merusak dan merampok mini market atau mengejar korban yang tidak bersalah, melukai atau bahkan membunuhnya. Melalui wawancara mendalam terhadap sembilan informan, penelitian ini mencoba membangun realitas geng motor di Kota Bandung. Hasil Penelitian menunjukkan bahwa sebelum bergabung dengan geng motor, mereka melihat dirinya biasa saja, namun setelah bergabung dengan geng motor mereka merasa diri “pang aingna”. Anggota geng motor secara kognitif sebenarnya menyadari kalau diri yang ideal adalah menjadi “pemuda baik-baik” seperti yang diharapkan masyarakat. Namun, interaksi dengan teman-teman dalam geng motornya membuat mereka berperilaku “ideal” versi kelompok itu. Selain itu, tidak sepenuhnya benar anggapan tentang anggota geng motor berasal dari keluarga “broken home” namun, komunikasi dalam keluarga memang sangat minim.

  3. Human motor unit recordings: origins and insight into the integrated motor system.

    Science.gov (United States)

    Duchateau, Jacques; Enoka, Roger M

    2011-08-29

    Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements. 2011 Elsevier B.V. All rights reserved.

  4. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  5. A contribution to the study of the thermal behavior and of the electric performance of squirrel-cage induction motors; Uma contribuicao ao estudo do comportamento termico e do desempenho eletrico de motores de inducao com rotor em gaiola

    Energy Technology Data Exchange (ETDEWEB)

    Avolio, Edwin

    1992-03-01

    A thermal-electric mathematical model for a squirrel cage induction motors which permits to specify the best motor for specific drive, under thermal and electric aspects based, only on manufacturer technical bulletins and technical information is presented. Changes of rotor parameters due Skin Effect and changes of winding resistances (both stator and rotor) with the temperature are considered. The accuracy of this model is appraised using experimental results. The thermal behavior and electric performance for some motors are obtained for continuos and intermittent duties with sinusoidal and non-sinusoidal voltages. (author)

  6. Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle

    Science.gov (United States)

    Stephenson, Jennifer L.; Maluf, Katrina S.

    2011-01-01

    The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; Precruitment of the reference and test motor units (r2=0.229, Pmotor unit activity (r2=0.110, Precruitment threshold of the test motor unit (r2=0.237, Pmotor unit analysis. PMID:21459110

  7. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  8. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    Science.gov (United States)

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    Science.gov (United States)

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  11. GENETIC ALGORITHM IN OPTIMIZATION DESIGN OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    Phuong Le Ngo

    2017-01-01

    Full Text Available Classical method of designing electric motors help to achieve functional motor, but doesn’t ensure minimal cost in manufacturing and operating. Recently optimization is becoming an important part in modern electric motor design process. The objective of the optimization process is usually to minimize cost, energy loss, mass, or maximize torque and efficiency. Most of the requirements for electrical machine design are in contradiction to each other (reduction in volume or mass, improvement in efficiency etc.. Optimization in design permanent magnet synchronous motor (PMSM is a multi-objective optimization problem. There are two approaches for solving this problem, one of them is evolution algorithms, which gain a lot of attentions recently. For designing PMSM, evolution algorithms are more attractive approach. Genetic algorithm is one of the most common. This paper presents components and procedures of genetic algorithms, and its implementation on computer. In optimization process, analytical and finite element method are used together for better performance and precision. Result from optimization process is a set of solutions, from which engineer will choose one. This method was used to design a permanent magnet synchronous motor based on an asynchronous motor type АИР112МВ8.

  12. Electric motor predictive and preventive maintenance guide

    International Nuclear Information System (INIS)

    Oliver, J.A.

    1992-07-01

    Electric motor performance is vital to the reliable and efficient operation of power plants. The failure of one or more critical motors could cause lost capacity and excessive repair and maintenance cost. However, existing maintenance recommendations proposed by vendors for electric motors have sometimes encouraged many overly conservative maintenance practices. These practices have lead to excessive maintenance activities and costs which have provided no extra margin of operability. EPRI has sponsored RP2814-35 to develop a guide which provides power plants with information and guidance for establishing an effective maintenance program which will aid in preventing unexpected motor failures and assist in planning motor maintenance efforts. The guide includes a technical description which summarizes technical data relative to the four basic types of motors and their components in general use in power plants. The significant causes of motor failures are investigated and described in detail and methods to optimize service life and minimize maintenance cost through appropriate preventive maintenance and conditioning program are presented. This guide provides a foundation for an effective electric motor maintenance program and simplifies the selection of predictive and preventive maintenance tasks. Its use will enable maintenance personnel in nuclear and fossil plants to plan motor repairs during scheduled outages and avoid costly unexpected failures

  13. Efficiency Optimization Control of IPM Synchronous Motor Drives with Online Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Sadegh Vaez-Zadeh

    2011-04-01

    Full Text Available This paper describes an efficiency optimization control method for high performance interior permanent magnet synchronous motor drives with online estimation of motor parameters. The control system is based on an input-output feedback linearization method which provides high performance control and simultaneously ensures the minimization of the motor losses. The controllable electrical loss can be minimized by the optimal control of the armature current vector. It is shown that parameter variations except at near the nominal conditions have undesirable effect on the controller performance. Therefore, a parameter estimation method based on the second method of Lyapunov is presented which guarantees the stability and convergence of the estimation. The extensive simulation results show the feasibility of the proposed controller and observer and their desirable performances.

  14. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  15. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  16. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    Full Text Available Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities, but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicate an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation there is nearly no evidence about enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap movement sonification is used here in applied research on motor learning in sports.Based on the current knowledge on the multimodal organization of the perceptual system we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error feedback in motor learning settings we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting participants were asked to

  17. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  18. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    Science.gov (United States)

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike

  19. Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097

    Directory of Open Access Journals (Sweden)

    Kalaivani Lakshmanan

    2014-01-01

    Full Text Available In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC and Adaptive Neuro Fuzzy Inference System (ANFIS-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.

  20. A Principle and Winding Design of Consequent-Pole Bearingless Motors

    Science.gov (United States)

    Takenaga, Tomohiro; Kubota, Yutaka; Chiba, Akira; Fukao, Tadashi

    Recently, bearingless motors have been developed to enhance motor drive systems with magnetic suspension. Several types of motors have been proposed as bearingless motors, such as induction, surface mounted permanent magnet, inset permanent magnet, interior permanent magnet, buried permanent magnet, homopolar, hybrid, and switched reluctance bearingless motors. Permanent magnet bearingless motors have been attracting more interests in these years because of the high efficiency. In this paper, a consequent-pole bearingless motor is proposed. A rotor has buried permanent magnets, of which polarities are like. The radial force of a consequent-pole bearingless motor is generated by dc current. Thus, rotational angular position is not needed in a magnetic suspension controller. Radial force variations caused by a rotor rotation are minimized by improving arrangement of stator suspension conductors. A prototype bearingless motor and its controller are built. In experiment, principles of magnetic suspension in the proposed consequent-pole bearingless drive are confirmed.

  1. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  2. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis.

    Science.gov (United States)

    Latash, Mark L

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time.

  3. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  4. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance.

    Science.gov (United States)

    Heise, Kirstin-F; Zimerman, Maximo; Hoppe, Julia; Gerloff, Christian; Wegscheider, Karl; Hummel, Friedhelm C

    2013-05-22

    Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.

  5. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  6. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  7. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development.

    Science.gov (United States)

    Rodriguez, Carlos I; Magcalas, Christy M; Barto, Daniel; Fink, Brandi C; Rice, James P; Bird, Clark W; Davies, Suzy; Pentkowski, Nathan S; Savage, Daniel D; Hamilton, Derek A

    2016-10-15

    Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Relationship between motor abilities and severity of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Cvijetić Marija

    2017-01-01

    Full Text Available According to the findings in literature, motor skills of children with autism spectrum disorders generally differ from age expectations and are increasingly being associated with speech and language and social development, and adaptive behavior. The aim of the research was to determine the relationship between the development level of fine and gross motor skills and autism severity of children with autism spectrum disorder. The sample included 30 children with autism spectrum disorder and associated intellectual disability, seven to 19 years of age (M=11.97; SD=3.70. The assessment was conducted using the Peabody Motor Development Scale, the Vineland Adaptive Behavior Scale, and the criteria for describing the level of severity of autism spectrum disorder (APA, 2013. The results have shown that participants' motor skills significantly correlate with social communication (Peabody fine motor skills r=-0.452; p=0.012; Vineland fine motor skills r=-0.511; p=0.004; Vineland total r=-0.391; p=0.032 and restricted, repetitive behaviors (Peabody fine motor skills r=-0.383; p=0.037; Vineland fine motor skills r=-0.433; p=0.017; Vineland total r=-0.371; p=0.044. Lower level of autistic symptomatology is associated with higher motor achievements. It is necessary to pay more attention to the assessment and treatment of motor skills in children with autism spectrum disorder, given the established delay in the development of these skills, and bearing in mind their relationship with the severity of the symptoms of autism spectrum disorder. Timely identification of motor disorders would allow the use of early treatment and potentially lead to better results, compared to later inclusion in intervention programs.

  9. Motor heuristics and embodied choices: how to choose and act.

    Science.gov (United States)

    Raab, Markus

    2017-08-01

    Human performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions, to complex sport behavior coining the term embodied choices. Thus both motor heuristics and embodied choices explain complex behavior such as studied in sport and exercise psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    Science.gov (United States)

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors.

  11. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  12. Optimal design of an IPM motor using Taguchi and Rosenbrock's methods

    International Nuclear Information System (INIS)

    Hwang, C C; Li, P L; Chang, C M; Liu, C T

    2011-01-01

    Techniques for the design optimization for cogging torque minimization and average torque maximization of a high-speed 2-pole interior permanent magnet (IPM) synchronous motor are presented. It is shown by the finite element method (FEM) and measurement, that combined the Taguchi and Rosenbrock's methods is a very efficient and effective approach in robust design a high performance motor.

  13. Fetal behavioral teratology.

    Science.gov (United States)

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  14. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  15. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  16. Intrinsic and extrinsic neuromodulation of motor circuits.

    Science.gov (United States)

    Katz, P S

    1995-12-01

    Neuromodulation of motor circuits by extrinsic inputs provides enormous flexibility in the production of behavior. Recent work has shown that neurons intrinsic to central pattern-generating circuits can evoke neuromodulatory effects in addition to their neurotransmitting actions. Modulatory neurons often elicit a multitude of different effects attributable to actions at different receptors and/or through the release of co-transmitters. Differences in neuromodulation between species can account for differences in behavior. Modulation of neuromodulation may provide an additional level of flexibility to motor circuits.

  17. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior

    Directory of Open Access Journals (Sweden)

    Matz Lennart Larsson

    2015-07-01

    Full Text Available Ipsilateral retinal projections (IRP in the optic chiasm (OC vary considerably. Most animal groups possess laterally situated eyes and no or few IRP, but, e.g. cats and primates have frontal eyes and high proportions of IRP. The traditional hypothesis that bifocal vision developed to enable predation or to increase perception in restricted light conditions applies mainly to mammals. The eye-forelimb (EF hypothesis presented here suggests that the reception of visual feedback of limb movements in the limb steering cerebral hemisphere was the fundamental mechanism behind the OC evolution. In other words, that evolutionary change in the OC was necessary to preserve hemispheric autonomy. In the majority of vertebrates, motor processing, tactile, proprioceptive, and visual information involved in steering the hand (limb, paw, fin is primarily received only in the contralateral hemisphere, while multisensory information from the ipsilateral limb is minimal. Since the involved motor nuclei, somatosensory areas, and vision neurons are situated in same hemisphere, the neuronal pathways involved will be relatively short, optimizing the size of the brain. That would not have been possible without, evolutionary modifications of IRP. Multiple axon-guidance genes, which determine whether axons will cross the midline or not, have shaped the OC anatomy. Evolutionary change in the OC seems to be key to preserving hemispheric autonomy when the body and eye evolve to fit new ecological niches. The EF hypothesis may explain the low proportion of IRP in birds, reptiles, and most fishes; the relatively high proportions of IRP in limbless vertebrates; high proportions of IRP in arboreal, in contrast to ground-dwelling, marsupials; the lack of IRP in dolphins; abundant IRP in primates and most predatory mammals, and why IRP emanate exclusively from the temporal retina. The EF hypothesis seams applicable to vertebrates in general and hence more parsimonious than

  18. The effects of yoga practice in school physical education on children's motor abilities and social behavior

    OpenAIRE

    Folleto, J?lia C; Pereira, Keila RG; Valentini, Nadia Cristina

    2016-01-01

    Background: In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. Aim: To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6–8-year-old children. Methods: The study included 16 children from the 1st grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each sessi...

  19. Minimalism through intraoperative functional mapping.

    Science.gov (United States)

    Berger, M S

    1996-01-01

    Intraoperative stimulation mapping may be used to avoid unnecessary risk to functional regions subserving language and sensori-motor pathways. Based on the data presented here, language localization is variable in the entire population, with only certainty existing for the inferior frontal region responsible for motor speech. Anatomical landmarks such as the anterior temporal tip for temporal lobe language sites and the posterior aspect of the lateral sphenoid wing for the frontal lobe language zones are unreliable in avoiding postoperative aphasias. Thus, individual mapping to identify essential language sites has the greatest likelihood of avoiding permanent deficits in naming, reading, and motor speech. In a similar approach, motor and sensory pathways from the cortex and underlying white matter may be reliably stimulated and mapped in both awake and asleep patients. Although these techniques require an additional operative time and equipment nominally priced, the result is often gratifying, as postoperative morbidity has been greatly reduced in the process of incorporating these surgical strategies. The patients quality of life is improved in terms of seizure control, with or without antiepileptic drugs. This avoids having to perform a second costly operative procedure, which is routinely done when extraoperative stimulation and recording is done via subdural grids. In addition, an aggressive tumor resection at the initial operation lengthens the time to tumor recurrence and often obviates the need for a subsequent reoperation. Thus, intraoperative functional mapping may be best alluded to as a surgical technique that results in "minimalism in the long term".

  20. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis

    OpenAIRE

    Latash, Mark L.

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of m...

  1. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  2. An electric motor with magnetic bearings: A concept

    Science.gov (United States)

    Studer, P. A.

    1973-01-01

    Because same magnetic flux is used to control rotor as to drive it, size, weight, and power required are minimized. Constant total current keeps motor torque invarient, and absence of mechanical bearings eliminates wear and reduces frictional power loss.

  3. The effects of load-sensitive behavior on the operability margins of motor-operated gate valves

    International Nuclear Information System (INIS)

    Steele, R. Jr.; Russell, M.J.; DeWall, K.G.; Watkins, J.C.

    1993-01-01

    Testing of motor-operated gate valves at various loads has produced a phenomenon we call load-sensitive behavior. This phenomenon has a significant effect on the accuracy of the methods used (and proposed) in the nuclear industry for determining that these valves can perform their design basis function. A valve subjected to tests with low flow and pressure loadings may achieve a stem thrust (at seating) analytically determined to be adequate for design basis flows and pressures, but this is no guarantee that the valve will achieve the same stem thrust when actually subjected to those design basis loads. This is because the friction at the interface between the stem and the stem nut is higher in tests with higher flow and pressure loadings, and this loss to friction is outside the control of the motor-operator's torque switch. This paper identifies a tentative method for determining, a stable, useful value for the stem/stem-nut coefficient of friction, one that can possibly be extrapolated and used in calculations to accurately estimate the design basis thrust requirements of these valves

  4. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  5. Implementation of a Non-Metallic Barrier in an Electric Motor

    Science.gov (United States)

    M'Sadoques, George A. (Inventor); Carra, Michael R. (Inventor); Beringer, Durwood M. (Inventor)

    2013-01-01

    A motor for use in a volatile environment includes a rotor exposed to the volatile environment, electronics for rotating the rotor, an impervious ceramic barrier separating the electronics and the rotor, and a flexible seal for preventing the volatile environment from contacting the electronics and for minimizing vibratory and twisting loads upon the barrier to minimize damage to the barrier.

  6. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters.

    Science.gov (United States)

    Abboud, R; Noronha, C; Diwadkar, V A

    2017-07-01

    Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Science.gov (United States)

    Bai, Fan; Lo, Chien-Jung; Berry, Richard M.; Xing, Jianhua

    2009-01-01

    Abstract The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification. PMID:19383460

  8. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Energy Technology Data Exchange (ETDEWEB)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  9. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.

    Science.gov (United States)

    Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario

    2017-10-18

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

  10. Two is better than one: Physical interactions improve motor performance in humans

    Science.gov (United States)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  11. Voltage directive drive with claw pole motor and control without rotor position indicator

    Science.gov (United States)

    Stroenisch, Volker Ewald

    Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.

  12. A Minimization of Speed Ripple of Sensorless DTC for controlled Induction Motors used in Electric Vehicles

    OpenAIRE

    Khoucha , Farid; Marouani , Khoudir; Kheloui , Abdelaziz; Benbouzid , Mohamed

    2006-01-01

    International audience; The main theme of this paper is to present different switching techniques in DTC induction motor drives for electric vehicle applications, witch insert zero-voltage vector and/or more non zero-voltage vectors to the conventional switching table associated to full adaptive flux and speed observer. Those techniques are quite effective in reducing the torque pulsation and the speed ripples of the motors, as demonstrated in experimental results.

  13. MOTOR FUEL TAXES AND THE ENVIRONMENTAL PROTECTION

    OpenAIRE

    Michal Ptak

    2011-01-01

    Motor fuel taxes are primarily revenue-raising taxes. However, due to high fuel consumption these taxes can be quite an efficient source of general budget revenue in many countries. It seems that the taxes on motor fuels may also be useful instruments for environmental policy or climate change policy. Environmental objectives can be achieved through change of behavior of drivers. The paper presents theoretical basis for taxes levied on motor fuels. Attention is paid to the problem of external...

  14. Minimization In Digital Design As A Meta-Planning Problem

    Science.gov (United States)

    Ho, William P. C.; Wu, Jung-Gen

    1987-05-01

    In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.

  15. Improving motor reliability in nuclear power plants: Volume 3, Failure analysis and diagnostic tests on a naturally aged large electric motor

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.; Sheets, M.W.

    1987-11-01

    Stator coils of a naturally failed 400 hp motor from the Brookhaven National Laboratory test reactor facility were tested for their dielectric integrities. The motor was used to drive the primary reactor coolant pump for the last 20 years. Maintenance activities on this motor during its entire service life were minimal, with the exception of meggering it periodically. The stator consisted of ninety individual coils which were separated for testing. Seven different dielectric tests were performed on the coils. Each set of data from the tested coils indicated a spectrum of variation depending on their aging conditions and characteristics. By comparing the test data to baseline data, the test methods were assessed for application to motor maintenance programs in nuclear power plants. Also included in this study are results of an investigation to determine the cause of this motor failure. Recommendations are provided on the aged condition of a second identical primary pump motor which is the same age and presently in operation. Recommendations are also presented relating to each of the dielectric test methods applicability to motor maintenance programs. 6 refs., 11 figs., 5 tabs

  16. Motor learning and working memory in children born preterm: a systematic review.

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  17. Motor learning and working memory in children born preterm: A systematic review

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  18. Identifying Motor, Emotional-Behavioral, and Cognitive Deficits that Comprise the Triad of HD Symptoms from Patient, Caregiver, and Provider Perspectives

    Directory of Open Access Journals (Sweden)

    David Victorson

    2014-04-01

    Full Text Available Background: The objective of this study was to identify important attributes associated with the triad of symptoms (cognition, emotional–behavioral, and motor of Huntington's disease (HD from patient, caregiver, and medical provider perspectives to facilitate development of a new disease‐specific, health‐related quality of life (HRQOL instrument. Methods: We conducted a targeted literature review of HD and HRQOL instruments, expert surveys, and patient and caregiver phone‐based interviews to extract information on the symptoms and issues most relevant to the HD symptom triad (HD triad. The data collected from these sources were used to generate themes and subdomains and to develop an integrated schema that highlights the key dimensions of the triad. Results: The search identified the following areas: emotional functioning/behavioral changes (e.g., positive emotions, sadness/depression; cognitive functioning (e.g., memory/learning, attention/comprehension; physical functioning (e.g., motor functioning, medication; social functioning (e.g., leisure, interpersonal relationships; end‐of‐life concerns/planning; and gene testing. Fifteen individuals diagnosed with HD and 16 HD caregivers, recruited from several Huntington's Disease Society of America support group networks, completed phone interviews. Nineteen US medical providers who specialize in HD completed the online survey. Twenty‐six subdomains of the HD symptom triad (seven cognition, 12 emotional–behavioral, and seven motor emerged relatively consistently across patient, caregiver, and provider samples. These included movements/chorea, memory impairment, depression, and anxiety. Discussion: Based on an integrated, mixed‐methods approach, important HD triad symptom were identified and organized into a guiding schema. These patient‐, caregiver‐, and provider‐triangulated data served as the basis for development of a HD‐specific HRQOL instrument, the HD‐PRO‐TRIAD™.

  19. Odd sensation induced by moving-phantom which triggers subconscious motor program.

    Science.gov (United States)

    Fukui, Takao; Kimura, Toshitaka; Kadota, Koji; Shimojo, Shinsuke; Gomi, Hiroaki

    2009-06-03

    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a "phantom" of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable

  20. Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior.

    Science.gov (United States)

    Kam, Julia W Y; Dao, Elizabeth; Blinn, Patricia; Krigolson, Olav E; Boyd, Lara A; Handy, Todd C

    2012-01-01

    Mind wandering episodes have been construed as periods of "stimulus-independent" thought, where our minds are decoupled from the external sensory environment. In two experiments, we used behavioral and event-related potential (ERP) measures to determine whether mind wandering episodes can also be considered as periods of "response-independent" thought, with our minds disengaged from adjusting our behavioral outputs. In the first experiment, participants performed a motor tracking task and were occasionally prompted to report whether their attention was "on-task" or "mind wandering." We found greater tracking error in periods prior to mind wandering vs. on-task reports. To ascertain whether this finding was due to attenuation in visual perception per se vs. a disruptive effect of mind wandering on performance monitoring, we conducted a second experiment in which participants completed a time-estimation task. They were given feedback on the accuracy of their estimations while we recorded their EEG, and were also occasionally asked to report their attention state. We found that the sensitivity of behavior and the P3 ERP component to feedback signals were significantly reduced just prior to mind wandering vs. on-task attentional reports. Moreover, these effects co-occurred with decreases in the error-related negativity elicited by feedback signals (fERN), a direct measure of behavioral feedback assessment in cortex. Our findings suggest that the functional consequences of mind wandering are not limited to just the processing of incoming stimulation per se, but extend as well to the control and adjustment of behavior.

  1. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Science.gov (United States)

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  2. A Hybrid Model of a Brushless DC Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose

    2007-01-01

    in this work consists of a general automaton with discrete states, combined with a set of continuous dynamic equations describing the electro-mechanical behavior of the motor. One of the significant benefits of this strategy is that the model describes the motor under all possible operating conditions...

  3. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  4. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice.

    Science.gov (United States)

    Fortuna, Juliana T S; Gralle, Matthias; Beckman, Danielle; Neves, Fernanda S; Diniz, Luan P; Frost, Paula S; Barros-Aragão, Fernanda; Santos, Luís E; Gonçalves, Rafaella A; Romão, Luciana; Zamberlan, Daniele C; Soares, Felix A A; Braga, Carolina; Foguel, Debora; Gomes, Flávia C A; De Felice, Fernanda G; Ferreira, Sergio T; Clarke, Julia R; Figueiredo, Cláudia P

    2017-08-30

    Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening. Copyright © 2017 Elsevier B.V. All

  5. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    International Nuclear Information System (INIS)

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-01-01

    At date the major neuroreceptors i.e. γ-aminobutyric acid A (GABA A R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA A R agonist (muscimol, MUS; 0,1 μg/g body weight) and/or its antagonist bicuculline (BIC; 1 μg/g body weight) have corroborated a GABA A ergic role on motor behaviors. In particular, MUS induced moderate (p A R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA A R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  6. Modeling an electric motor in 1-D

    Science.gov (United States)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  7. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    Science.gov (United States)

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Psychiatric Symptoms in Children with Gross Motor Problems

    Science.gov (United States)

    Emck, Claudia; Bosscher, Ruud J.; van Wieringen, Piet C. W.; Doreleijers, Theo; Beek, Peter J.

    2012-01-01

    Children with psychiatric disorders often demonstrate gross motor problems. This study investigates if the reverse also holds true by assessing psychiatric symptoms present in children with gross motor problems. Emotional, behavioral, and autism spectrum disorders (ASD), as well as psychosocial problems, were assessed in a sample of 40 children…

  9. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Directory of Open Access Journals (Sweden)

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  10. Analysis and Stabilization of Chaos in Permanent Magnet DC Motor Driver

    Science.gov (United States)

    Tahir, Fadhil Rahma; Abdul-Hassan, Khalid M.; Abdullah, Mohammed Abbas; Pham, Viet-Thanh; Hoang, Thang Manh; Wang, Xiong

    In this paper, the nonlinear dynamics of permanent magnet (PM) DC motor drive with proportional (P) controller have been investigated. The drive system shows different dynamical behaviors; periodic, quasi-periodic, and chaotic behaviors, and those are characterized by using bifurcation diagram, phase portrait, and time series. The stability analysis of period-1 behavior is studied by using Filippov’s method, the analytic results show good agreement with simulation ones. Then, the stabilization of chaos to fixed point is carried out by using the sliding mode control (SMC). In addition, experimentally the nonlinear dynamics and the proposed stabilization method to PM DC motor drive system have been achieved by using a microcontroller. For the first time, it is noted that when the system is in chaotic dynamics, the vibration of the motor is increased approximately 400% compared with the system in periodic dynamical behavior.

  11. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  12. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

  13. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach

  14. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    Science.gov (United States)

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  15. The Case for Motor Involvement in Perceiving Conspecifics

    Science.gov (United States)

    Wilson, Margaret; Knoblich, Gunther

    2005-01-01

    Perceiving other people's behaviors activates imitative motor plans in the perceiver, but there is disagreement as to the function of this activation. In contrast to other recent proposals (e.g., that it subserves overt imitation, identification and understanding of actions, or working memory), here it is argued that imitative motor activation…

  16. The Control of Switched Reluctance Motor in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2014-05-01

    Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

  17. Differentiating Children with Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Learning Disabilities and Autistic Spectrum Disorders by Means of Their Motor Behavior Characteristics

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N = 22), Conduct Disorder (CD; N = 17), Learning Disabilities (LD; N = 24) and Autistic Spectrum Disorders (ASD; N = 20).…

  18. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control.

    Directory of Open Access Journals (Sweden)

    Pierre Morel

    2017-06-01

    Full Text Available When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves. Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles.

  19. Online maintenance of sensory and motor representations: effects on corticospinal excitability.

    NARCIS (Netherlands)

    Hurk, P. van den; Mars, R.B.; Elswijk, G.A.F. van; Hegeman, J.; Pasman, J.W.; Bloem, B.R.; Toni, I.

    2007-01-01

    Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by

  20. Online maintenance of sensory and motor representations: Effects on corticospinal excitability

    NARCIS (Netherlands)

    Hurk, P.A.M. van den; Mars, R.B.; Elswijk, G.A.F. van; Hegeman, J.; Pasman, J.W.; Bloem, B.R.; Toni, I.

    2007-01-01

    Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by

  1. The frames of reference of the motor-visual aftereffect.

    Directory of Open Access Journals (Sweden)

    Guido Barchiesi

    Full Text Available Repeatedly performing similar motor acts produces short-term adaptive changes in the agent's motor system. One striking use-dependent effect is the motor-to-visual aftereffect (MVA, a short-lasting negative bias in the conceptual categorization of visually-presented training-related motor behavior. The MVA is considered the behavioral counterpart of the adaptation of visuomotor neurons that code for congruent executed and observed motor acts. Here we characterize which features of the motor training generate the MVA, along 3 main dimensions: a the relative role of motor acts vs. the semantics of the task-set; b the role of muscular-specific vs. goal-specific training and c the spatial frame of reference with respect to the whole body. Participants were asked to repeatedly push or pull some small objects in a bowl as we varied different components of adapting actions across three experiments. The results show that a the semantic value of the instructions given to the participant have no role in generating the MVA, which depends only on the motor meaning of the training act; b both intrinsic body movements and extrinsic action goals contribute simultaneously to the genesis of the MVA and c changes in the relative position of the acting hand compared to the observed hand, when they do not involve changes to the movement performed or to the action meaning, do not have an effect on the MVA. In these series of experiments we confirm that recent motor experiences produce measurable changes in how humans see each others' actions. The MVA is an exquisite motor effect generated by two distinct motor sub-systems, one operating in an intrinsic, muscular specific, frame of reference and the other operating in an extrinsic motor space.

  2. Comparing alertness and injury severity following motor vehicular ...

    African Journals Online (AJOL)

    Background: From casual observation of injury patterns in Motor Vehicular Accidents (MVAs), it was sometimes observed that if the victim had been more alert and reacts protectively, injury severity might be reduced. Protective response is often expected to minimize the severity of injuries. Objective: To determine the ...

  3. Research on combustion instability and application to solid propellant rocket motors. II.

    Science.gov (United States)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  4. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  5. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  6. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  7. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  8. Efficiency improvement and torque ripple minimization of Switched Reluctance Motor using FEM and Seeker Optimization Algorithm

    International Nuclear Information System (INIS)

    Navardi, Mohammad Javad; Babaghorbani, Behnaz; Ketabi, Abbas

    2014-01-01

    Highlights: • This paper proposes a new method to optimize a Switched Reluctance Motor (SRM). • A combination of SOA and GA with Finite Element Method (FEM) analysis is employed to solve the SRM design optimization. • The results show that optimized SRM obtains higher average torque and higher efficiency. - Abstract: In this paper, performance optimization of Switched Reluctance Motor (SRM) was determined using Seeker Optimization Algorithm (SOA). The most efficient aim of the algorithm was found for maximum torque value at a minimum mass of the entire construction, following changing the geometric parameters. The optimization process was carried out using a combination of Seeker Optimization Algorithm and Finite Element Method (FEM). Fitness value was calculated by FEM analysis using COMSOL3.4, and the SOA was realized by MATLAB. The proposed method has been applied for a case study and it has been also compared with Genetic Algorithm (GA). The results show that the optimized motor using SOA had higher torque value and efficiency with lower mass and torque ripple, exhibiting the validity of this methodology for SRM design

  9. A Direct Comparison of Self-Injurious and Stereotyped Motor Behavior Between Preschool-Aged Children With and Without Developmental Delays.

    Science.gov (United States)

    Hoch, John; Spofford, Lisa; Dimian, Adele; Tervo, Raymond; MacLean, William E; Symons, Frank J

    2016-06-01

    To compare the prevalence of self-injurious behavior (SIB) and stereotyped motor behavior (STY) of preschool-aged children with developmental delays (DD group) and their peers without developmental delays (TD group) using a standardized caregiver report scale. The Repetitive Behavior Scale-Revised was completed by caregivers of children with developmental delays and their peers without developmental delays. Frequency of occurrence and severity ratings for SIB and STY were compared between groups. SIB and STY were reported more often and at a greater level of severity in the DD group. Older chronological age was associated with more severe STY in the DD group but not the TD group. Gender was not related to STY or SIB for either group. Differences in STY and SIB were evident between preschoolers with and without DD. Findings are discussed from developmental and behavioral psychology perspectives regarding the expression of repetitive behavior in developmentally at-risk pediatric populations. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  11. Improving the performance of minimizers and winnowing schemes.

    Science.gov (United States)

    Marçais, Guillaume; Pellow, David; Bork, Daniel; Orenstein, Yaron; Shamir, Ron; Kingsford, Carl

    2017-07-15

    The minimizers scheme is a method for selecting k -mers from sequences. It is used in many bioinformatics software tools to bin comparable sequences or to sample a sequence in a deterministic fashion at approximately regular intervals, in order to reduce memory consumption and processing time. Although very useful, the minimizers selection procedure has undesirable behaviors (e.g. too many k -mers are selected when processing certain sequences). Some of these problems were already known to the authors of the minimizers technique, and the natural lexicographic ordering of k -mers used by minimizers was recognized as their origin. Many software tools using minimizers employ ad hoc variations of the lexicographic order to alleviate those issues. We provide an in-depth analysis of the effect of k -mer ordering on the performance of the minimizers technique. By using small universal hitting sets (a recently defined concept), we show how to significantly improve the performance of minimizers and avoid some of its worse behaviors. Based on these results, we encourage bioinformatics software developers to use an ordering based on a universal hitting set or, if not possible, a randomized ordering, rather than the lexicographic order. This analysis also settles negatively a conjecture (by Schleimer et al. ) on the expected density of minimizers in a random sequence. The software used for this analysis is available on GitHub: https://github.com/gmarcais/minimizers.git . gmarcais@cs.cmu.edu or carlk@cs.cmu.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. A parameter estimation for DC servo motor by using optimization process

    International Nuclear Information System (INIS)

    Arjoni Amir

    2010-01-01

    Modeling and simulation parameters of DC servo motor using Matlab Simulink software have been done. The objective to define the DC servo motor parameter estimation is to get DC servo motor parameter values (B, La, Ra, Km, J) which are significant value that can be used for actuation process of control systems. In the analysis of control systems DC the servo motor expressed by transfer function equation to make faster to be analyzed as a component of the actuator. To obtain the data model parameters and initial conditions of the DC servo motors is then carried out the processor modeling and simulation in which the DC servo motor combined with other components. To obtain preliminary data of the DC servo motor parameters as estimated venue, it is obtained from the data factory of the DC servo motor. The initial data parameters of the DC servo motor are applied for the optimization process by using nonlinear least square algorithm and minimize the cost function value so that the DC servo motors parameter values are obtained significantly. The result of the optimization process of the DC servo motor parameter values are B = 0.039881, J= 1.2608e-007, Km = 0.069648, La = 2.3242e-006 and Ra = 1.8837. (author)

  13. Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors

    Science.gov (United States)

    Liu, Kuang-Chen; Friend, James; Yeo, Leslie

    2009-10-01

    Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough’s airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system’s bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.

  14. The Elementary Nature of Purposive Behavior: Evolving Minimal Neural Structures that Display Intrinsic Intentionality

    Directory of Open Access Journals (Sweden)

    John S. Watson

    2005-01-01

    Full Text Available A study of the evolution of agency in artificial life was designed to access the potential emergence of purposiveness and intentionality as these attributes of behavior have been defined in psychology and philosophy. The study involved Darwinian evolution of mobile neural nets (autonomous agents in terms of their adaptive weight patterning and structure (number of sensory, hidden, and memory units that controlled movement. An agent was embedded in a 10 × 10 toroidal matrix along with “containers” that held benefit or harm if entered. Sensory exposure to content of a container was only briefly available at a distance so that adaptive response to a nearby container required use of relevant memory. The best 20% of each generation of agents, based on net benefit consumed during limited lifetime, were selected to parent the following generation. Purposiveness emerged for all selected agents by 300 generations. By 4000 generations, 90% passed a test of purposive intentionality based on Piaget's criteria for Stage IV object permanence in human infants. An additional test of these agents confirmed that the behavior of 67% of them was consistent with the philosophical criterion of intention being “about” the container's contents. Given that the evolved neural structure of more than half of the successful agents had only 1 hidden and 1 memory node, it is argued that, contrary to common assumption, purposive and intentional aspects of adaptive behavior require an evolution of minimal complexity of supportive neural structure.

  15. Generalized motor abilities and timing behavior in children with specific language impairment.

    Science.gov (United States)

    Zelaznik, Howard N; Goffman, Lisa

    2010-04-01

    To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing tasks, including tapping and drawing circles in time with a metronome or a visual target. Fourteen children with SLI (age 6 to 8 years) and 14 age-matched peers who were typically developing participated. As expected, children with SLI showed poorer performance on a standardized test of gross and fine motor skill than did their normally developing peers. However, timing skill in the manual domain was equivalent to that seen in typically developing children. Consistent with earlier findings, relatively poor gross and fine motor performance is observed in children with SLI. Surprisingly, rhythmic timing is spared.

  16. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  17. Operation Characteristics Optimization of Low Power Three-Phase Asynchronous Motors

    Directory of Open Access Journals (Sweden)

    VLAD, I.

    2014-02-01

    Full Text Available Most published papers on low power asynchronous motors were aimed to achieve better operational performances in different operating conditions. The optimal design of the general-purpose motors requires searching and selecting an electric machine to meet minimum operating costs criterion and certain customer imposed restrictive conditions. In this paper, there are many significant simulations providing qualitative and quantitative information on reducing active and reactive energy losses in motors, and on parameters and constructive solution. The optimization study applied the minimal operating costs criterion, and it took into account the starting restrictive conditions. Thirteen variables regarding electromagnetic stresses and main constructive dimensions were considered. The operating costs of the optimized motor decreased with 25.6%, as compared to the existing solution. This paper can be a practical and theoretical support for the development and implementation of modern design methods, based on theoretical and experimental study of stationary and transient processes in low power motors, to increase efficiency and power factor.

  18. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  19. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Science.gov (United States)

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  20. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  2. Inverse modelling and pulsating torque minimization of salient pole non-sinusoidal synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Ait-gougam, Y.; Ibtiouen, R.; Touhami, O. [Laboratoire de Recherche en Electrotechnique, Ecole Nationale Polytechnique, BP 182, El-Harrach 16200 (Algeria); Louis, J.-P.; Gabsi, M. [Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), CNRS UMR 8029, Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)

    2008-01-15

    Sinusoidal motor's mathematical models are usually obtained using classical d-q transformation in the case of salient pole synchronous motors having sinusoidal field distribution. In this paper, a new inverse modelling for synchronous motors is presented. This modelling is derived from the properties of constant torque curves in the Concordia's reference frame. It takes into account the non-sinusoidal field distribution; EMF, self and mutual inductances having non-sinusoidal variations with respect to the angular rotor position. Both copper losses and torque ripples are minimized by adapted currents waveforms calculated from this model. Experimental evaluation was carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed method in reducing torque ripple. (author)

  3. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  4. Discharge patterns of human tensor palatini motor units during sleep onset.

    Science.gov (United States)

    Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John

    2012-05-01

    Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.

  5. DNA-assisted swarm control in a biomolecular motor system.

    Science.gov (United States)

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  6. Porters versus rowers: a unified stochastic model of motor proteins.

    Science.gov (United States)

    Leibler, S; Huse, D A

    1993-06-01

    We present a general phenomenological theory for chemical to mechanical energy transduction by motor enzymes which is based on the classical "tight-coupling" mechanism. The associated minimal stochastic model takes explicitly into account both ATP hydrolysis and thermal noise effects. It provides expressions for the hydrolysis rate and the sliding velocity, as functions of the ATP concentration and the number of motor enzymes. It explains in a unified way many results of recent in vitro motility assays. More importantly, the theory provides a natural classification scheme for the motors: it correlates the biochemical and mechanical differences between "porters" such as cellular kinesins or dyneins, and "rowers" such as muscular myosins or flagellar dyneins.

  7. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Directory of Open Access Journals (Sweden)

    Volker Kast

    Full Text Available Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers and untrained individuals (novices in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  8. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Science.gov (United States)

    Kast, Volker; Leukel, Christian

    2016-01-01

    Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  9. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  10. Compromised Motor Dexterity Confounds Processing Speed Task Outcomes in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Essie Low

    2017-09-01

    Full Text Available Most conventional measures of information processing speed require motor responses to facilitate performance. However, although not often addressed clinically, motor impairment, whether due to age or acquired brain injury, would be expected to confound the outcome measure of such tasks. The current study recruited 29 patients (20 stroke and 9 transient ischemic attack with documented reduction in dexterity of the dominant hand, and 29 controls, to investigate the extent to which 3 commonly used processing speed measures with varying motor demands (a Visuo-Motor Reaction Time task, and the Wechsler Adult Intelligence Scale-IV Symbol Search and Coding subtests may be measuring motor-related speed more so than cognitive speed. Analyses include correlations between indices of cognitive and motor speed obtained from two other tasks (Inspection Time and Pegboard task, respectively with the three speed measures, followed by hierarchical regressions to determine the relative contribution of cognitive and motor speed indices toward task performance. Results revealed that speed outcomes on tasks with relatively high motor demands, such as Coding, were largely reflecting motor speed in individuals with reduced dominant hand dexterity. Thus, findings indicate the importance of employing measures with minimal motor requirements, especially when the assessment of speed is aimed at understanding cognitive rather than physical function.

  11. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  12. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  13. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  14. Individualized behavioral assessments and maternal ratings of mastery motivation in mental age-matched toddlers with and without motor delay.

    Science.gov (United States)

    Wang, Pei-Jung; Morgan, George A; Hwang, Ai-Wen; Liao, Hua-Fang

    2013-01-01

    Mastery motivation is a precursor of future developmental outcomes. Evidence about whether toddlers with motor delay have lower mastery motivation is inconclusive. The purpose of this study was to examine differences between mental age-matched toddlers with and without motor delay on various mastery motivation indicators. A mental age- and sex-matched case-control study was performed. Twenty-two children with motor delay, aged 23 to 47 months, and 22 children who were developing typically, aged 15 to 29 months, were recruited. Persistence and mastery pleasure were measured with behavioral tasks that were moderately challenging for each child and with maternal ratings using the Dimensions of Mastery Questionnaire (DMQ). The DMQ was rated by each child's mother based on her perception of her child's motivation. Two types of structured tasks (a puzzle and a cause-effect toy selected to be moderately challenging for each child) were administered in a laboratory setting and recorded on videos. Paired t tests or Wilcoxon signed rank tests were used to examine group differences in persistence and mastery pleasure (α=.007, 2-tailed). Children with motor delay were rated lower on DMQ persistence than the typically developing group, but they did not show significantly lower persistence on the structured tasks. There were no significant differences in mastery pleasure between the 2 groups on either measure. Large within-sample variability on the tasks and small sample size makes subgroup analysis (eg, different severities) difficult. Toddlers with motor delay did not show lower persistence and pleasure when given tasks that were moderately challenging; however, their mothers tended to view them as having lower motivation. Clinicians and parents should provide appropriately challenging tasks to increase children's success and motivation.

  15. Sub-processes of motor learning revealed by a robotic manipulandum for rodents.

    Science.gov (United States)

    Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A

    2015-02-01

    Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Optimal Rotor Design of Line Start Permanent Magnet Synchronous Motor by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Bui Minh Dinh

    2017-07-01

    Full Text Available Line start permanent magnet synchronous motor (LSPMSM is one of the highest efficiency motors due to no rotor copper loss at synchronous speed and self-starting. LSPMSM has torque characteristics of both induction motor IM and Permanent Magnet Synchronous Motor-PMSM. Using Genetic Algorithm (GA for balancing magnetic cost and for copper loss minimization, the magnetic sizes and geometry parameter of stator and rotor are found and manufactured for industrial evaluation. This article is also taking account practical manufacturing factors to minimize mass production cost. In order to maximize efficiency, an optimal design method of cage-bars and magnet shape has to be considered. The geometry parameters of stator and rotor can be obtained by an analytical model method and validated by FEM simulation. This paper presents the optimal rotor design of a three-phase line-start permanent magnet motor (LSPM considering the starting torque and efficiency. To consider nonlinear characteristics, the design process is comprised of the FEM and analytical method. During this study, permanent-magnets and cage bars were designed using the magnetic equivalent circuit method and the barriers that control all magnetic flux were designed using the FEM, and the tradeoff of starting torque and efficiency is controlled by weight function in Taguchi method simulation. Finally, some practical results have been obtained and analyzed based on a LSPMSM test bench.

  17. Generalized Motor Abilities and Timing Behavior in Children with Specific Language Impairment

    Science.gov (United States)

    Zelaznik, Howard N.; Goffman, Lisa

    2010-01-01

    Purpose: To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Method: Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing…

  18. Motor synergies and the equilibrium-point hypothesis.

    Science.gov (United States)

    Latash, Mark L

    2010-07-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.

  19. Effects of Camera Arrangement on Perceptual-Motor Performance in Minimally Invasive Surgery

    Science.gov (United States)

    Delucia, Patricia R.; Griswold, John A.

    2011-01-01

    Minimally invasive surgery (MIS) is performed for a growing number of treatments. Whereas open surgery requires large incisions, MIS relies on small incisions through which instruments are inserted and tissues are visualized with a camera. MIS results in benefits for patients compared with open surgery, but degrades the surgeon's perceptual-motor…

  20. The Effect of Voice Ambulatory Biofeedback on the Daily Performance and Retention of a Modified Vocal Motor Behavior in Participants with Normal Voices

    Science.gov (United States)

    Van Stan, Jarrad H.; Mehta, Daryush D.; Hillman, Robert E.

    2015-01-01

    Purpose: Ambulatory biofeedback has potential to improve carryover of newly established vocal motor behaviors into daily life outside of the clinic and warrants systematic research that is lacking in the literature. This proof-of-concept study was designed to establish an empirical basis for future work in this area by formally assessing whether…

  1. Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off.

    Directory of Open Access Journals (Sweden)

    Matteo Bertucco

    Full Text Available Fitts' Law describes the speed-accuracy trade-off of human movements, and it is an elegant strategy that compensates for random and uncontrollable noise in the motor system. The control strategy during targeted movements may also take into account the rewards or costs of any outcomes that may occur. The aim of this study was to test the hypothesis that movement time in Fitts' Law emerges not only from the accuracy constraints of the task, but also depends on the perceived cost of error for missing the targets. Subjects were asked to touch targets on an iPad® screen with different costs for missed targets. We manipulated the probability of error by comparing children with dystonia (who are characterized by increased intrinsic motor variability to typically developing children. The results show a strong effect of the cost of error on the Fitts' Law relationship characterized by an increase in movement time as cost increased. In addition, we observed a greater sensitivity to increased cost for children with dystonia, and this behavior appears to minimize the average cost. The findings support a proposed mathematical model that explains how movement time in a Fitts-like task is related to perceived risk.

  2. Fetal Origin of Sensorimotor Behavior

    Directory of Open Access Journals (Sweden)

    Jaqueline Fagard

    2018-05-01

    Full Text Available The aim of this article is to track the fetal origin of infants’ sensorimotor behavior. We consider development as the self-organizing emergence of complex forms from spontaneously generated activity, governed by the innate capacity to detect and memorize the consequences of spontaneous activity (contingencies, and constrained by the sensory and motor maturation of the body. In support of this view, we show how observations on fetuses and also several fetal experiments suggest that the fetus’s first motor activity allows it to feel the space around it and to feel its body and the consequences of its movements on its body. This primitive motor babbling gives way progressively to sensorimotor behavior which already possesses most of the characteristics of infants’ later behavior: repetition of actions leading to sensations, intentionality, some motor control and oriented reactions to sensory stimulation. In this way the fetus can start developing a body map and acquiring knowledge of its limited physical and social environment.

  3. A short history of ideo-motor action.

    Science.gov (United States)

    Stock, Armin; Stock, Claudia

    2004-04-01

    The ideo-motor theory, which is currently receiving heightened interest in cognitive psychology, looks back on a long history. Essentially two historical roots can be presented. A British one, initiated by Laycock (1845) and Carpenter (1852), which was developed in order to explain ideo-motor phenomena by means of cerebral reflex actions. A second and older root is the German one by Herbart (1816, 1825), Lotze (1852), and Harless (1861), which considered the ideo-motor principle a fundamental mechanism of all intentional human behaviour. Both roots converged in James' (1890) Principles of Psychology before they fell into oblivion due to the dominance of behaviorism in the first half of the 20th century. The few empirical ideo-motor studies of the early 20th century are briefly described. Finally, similarities and differences in the history of the ideo-motor theory are delineated and a perspective is given covering research questions that could be examined in the future. Copyright 2003 Springer-Verlag

  4. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  5. May functional imaging be helpful for behavioral assessment in children? Regions of motor and associative cortico-subcortical circuits can be differentiated by laterality and rostrality

    Directory of Open Access Journals (Sweden)

    Julia M. August

    2015-06-01

    Full Text Available Background: Cortico-subcortical circuits are organized into the sensorimotor, associative and limbic loop. These neuronal preconditions play an important role regarding the understanding and treatment of behavioral problems in children. Differencing evidence argues for a lateralized organization of the sensorimotor loop and a bilateral (i.e. non-lateralized organization of the associative loop. However, a firm behavioral-neurobiological distinction of these circuits has been difficult, specifically in children. Objectives: Thus, the aim was a comprehensive functional visualization and differentiation of the sensorimotor and the associative circuit during childhood. As a new approach, laterality and rostrality features were used to distinguish between the two circuits within one single motor task. Methods: 24 healthy boys performed self-paced index finger tapping with each hand separately during functional magnetic resonance imaging at 3 Tesla. Results: A contrast analysis for left against right hand movement revealed lateralized activation in typical sensorimotor regions such as primary sensorimotor cortex, caudal supplementary motor area (SMA, caudal putamen and thalamus. A conjunction analysis confirmed bilateral involvement of known associative regions including pre-SMA, rostral SMA and rostral putamen. Conclusion: A functional visualization of two distinct corticostriatal circuits is provided in childhood. Both, the sensorimotor and associative circuit may be discriminated by their laterality characteristics already in minors. Additionally, the results support the concept of a modified functional subdivision of the SMA in a rostral (associative and caudal (motor part. A further development of this approach might help to nurture behavioral assessment and neurofeedback training in child mental health.

  6. Mosaic Evolution of Brainstem Motor Nuclei in Catarrhine Primates

    Directory of Open Access Journals (Sweden)

    Seth D. Dobson

    2011-01-01

    Full Text Available Facial motor nucleus volume coevolves with both social group size and primary visual cortex volume in catarrhine primates as part of a specialized neuroethological system for communication using facial expressions. Here, we examine whether facial nucleus volume also coevolves with functionally unrelated brainstem motor nuclei (trigeminal motor and hypoglossal due to developmental constraints. Using phylogenetically informed multiple regression analyses of previously published brain component data, we demonstrate that facial nucleus volume is not correlated with the volume of other motor nuclei after controlling for medulla volume. Our results show that brainstem motor nuclei can evolve independently of other developmentally linked structures in association with specific behavioral ecological conditions. This finding provides additional support for the mosaic view of brain evolution.

  7. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    Science.gov (United States)

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. On the Metric-based Approximate Minimization of Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giovanni; Bacci, Giorgio; Larsen, Kim Guldstrand

    2018-01-01

    In this paper we address the approximate minimization problem of Markov Chains (MCs) from a behavioral metric-based perspective. Specifically, given a finite MC and a positive integer k, we are looking for an MC with at most k states having minimal distance to the original. The metric considered...

  9. Evaluating rodent motor functions: Which tests to choose?

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven

    2017-12-01

    Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The possible benefits of reduced errors in the motor skills acquisition of children

    Directory of Open Access Journals (Sweden)

    Capio Catherine M

    2012-01-01

    Full Text Available Abstract An implicit approach to motor learning suggests that relatively complex movement skills may be better acquired in environments that constrain errors during the initial stages of practice. This current concept paper proposes that reducing the number of errors committed during motor learning leads to stable performance when attention demands are increased by concurrent cognitive tasks. While it appears that this approach to practice may be beneficial for motor learning, further studies are needed to both confirm this advantage and better understand the underlying mechanisms. An approach involving error minimization during early learning may have important applications in paediatric rehabilitation.

  11. Performance analysis of samarium cobalt P.M. synchronous motor fed from PWM inverters

    International Nuclear Information System (INIS)

    Rahman, M.A.; Choudhury, M.A.

    1985-01-01

    This paper presents an analysis and performance of samarium cobalt permanent magnet (P.M.) synchronous motors fed from two types of voltage source pulse width modulated (PWM) inverters. The analysis and test results on the steady state performance of a P.M. motor fed from PWM inverters are presented. PWM inverters are used in variable voltage variable frequency applications to avoid a double conversion process of ordinary inverters. In drives, they are used for voltage and speed regulation of motors. Use of modulation technique in inverters also allow to eliminate or minimize selected harmonics from the inverter output voltage

  12. Driver License, Permit, and State ID, Division of Motor Vehicles,

    Science.gov (United States)

    Skills) Tests Road Test Information Schedule a Road Test Online Business Partners Driving Schools Classes Administration DivisIon of Motor Vehicles Search Minimize Menu DMV Home DMV Home Page Online Services Forms Public Notices Offices DMV Office Locations and Hours DMV Office Wait Times Business Partners Driving

  13. On the Metric-Based Approximate Minimization of Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giovanni; Bacci, Giorgio; Larsen, Kim Guldstrand

    2017-01-01

    We address the behavioral metric-based approximate minimization problem of Markov Chains (MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state MC of minimal distance to the original. By considering as metric the bisimilarity distance of Desharnais at al...

  14. Deficient inhibition in alcohol-dependence: let's consider the role of the motor system!

    Science.gov (United States)

    Quoilin, Caroline; Wilhelm, Emmanuelle; Maurage, Pierre; de Timary, Philippe; Duque, Julie

    2018-04-26

    Impaired inhibitory control contributes to the development, maintenance, and relapse of alcohol-dependence, but the neural correlates of this deficit are still unclear. Because inhibitory control has been labeled as an executive function, most studies have focused on prefrontal areas, overlooking the contribution of more "primary" structures, such as the motor system. Yet, appropriate neural inhibition of the motor output pathway has emerged as a central aspect of healthy behavior. Here, we tested the hypothesis that this motor inhibition is altered in alcohol-dependence. Neural inhibitory measures of motor activity were obtained in 20 detoxified alcohol-dependent (AD) patients and 20 matched healthy subjects, using a standard transcranial magnetic stimulation procedure whereby motor-evoked potentials (MEPs) are elicited in a choice reaction time task. Moreover, behavioral inhibition and trait impulsivity were evaluated in all participants. Finally, the relapse status of patients was assessed 1 year after the experiment. As expected, AD patients displayed poorer behavioral inhibition and higher trait impulsivity than controls. More importantly, the MEP data revealed a considerable shortage of neural motor inhibition in AD patients. Interestingly, this neural defect was strongest in the patients who ended up relapsing during the year following the experiment. Our data suggest a strong motor component in the neural correlates of altered inhibitory control in AD patients. They also highlight an intriguing relationship with relapse and the perspective of a new biomarker to follow strategies aiming at reducing relapse in AD patients.

  15. Design and construction of a novel rotary magnetostrictive motor

    Science.gov (United States)

    Zhou, Nanjia; Blatchley, Charles C.; Ibeh, Christopher C.

    2009-04-01

    Magnetostriction can be used to induce linear incremental motion, which is effective in giant magnetostrictive inchworm motors. Such motors possess the advantage of combining small step incremental motion with large force. However, continuous rotation may be preferred in practical applications. This paper describes a novel magnetostrictive rotary motor using terfenol-D (Tb0.3Dy0.7Fe1.9) material as the driving element. The motor is constructed of two giant magnetostrictive actuators with shell structured flexure-hinge and leaf springs. These two actuators are placed in a perpendicular position to minimize the coupling displacement of the two actuators. The principal design parameters of the actuators and strain amplifiers are optimally determined, and its static analysis is undertaken through finite element analysis software. The small movements of the magnetostrictive actuators are magnified by about three times using oval shell structured amplifiers. When two sinusoidal wave currents with 90° phase shift are applied to the magnetostrictive actuators, purely rotational movement can be produced as in the orbit of a Lissajous diagram in an oscillograph, and this movement is used to drive the rotor of the motor. A prototype has been constructed and tested.

  16. Relations of Early Motor Skills on Age and Socialization, Communication, and Daily Living in Young Children With Developmental Disabilities.

    Science.gov (United States)

    MacDonald, Megan; Ross, Samantha; McIntyre, Laura Lee; Tepfer, Amanda

    2017-04-01

    Young children with developmental disabilities experience known deficits in salient child behaviors, such as social behaviors, communication, and aspects of daily living, behaviors that generally improve with chronological age. The purpose of this study was to examine the mediating effects of motor skills on relations of age and salient child behaviors in a group of young children with developmental disabilities, thus tapping into the potential influences of motor skills in the development of salient child behaviors. One hundred thirteen young children with developmental disabilities participated in this study. Independent mediation analysis, with gender as a moderator between the mediating and outcome variable, indicated that motor skills meditated relations between age and socialization, communication, and daily living skills in young male children with developmental disabilities, but not female participants. Findings suggest motor skill content needs to be considered in combination with other child behaviors commonly focused on in early intervention.

  17. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  18. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    Science.gov (United States)

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  19. Voice-controlled Internet Browsing for Motor-handicapped Users

    DEFF Research Database (Denmark)

    Brøndsted, Tom; Aaskoven, Erik

    2006-01-01

    The public-funded project "Indtal" ("Speak-it") has succeeded in developing a Danish voice-controlled utility for internet browsing targeting motor-handicapped users having difficulties using a standard keyboard and/or a standard mouse. The system has been designed and implemented in collaboration...... with an advisory board of motor-handicapped (potential) end-users and underlies a number of a priori defined design criteria: learnability and memorability rather than naturalness, minimal need for maintenance after release, support for "all" web standards (not just HTML conforming to certain "recommendations......"), independency of the language on the websites being browsed, etc. These criteria have lead to a primarily message-driven system interacting with an existing browser on the end users' systems...

  20. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status.

    Science.gov (United States)

    Hilpert, Martin; Brockmeier, Konrad; Dordel, Sigrid; Koch, Benjamin; Weiß, Verena; Ferrari, Nina; Tokarski, Walter; Graf, Christine

    2017-01-01

    Juvenile overweight is increasing, and effective preventive measures are needed. After years of arbitrarily assigning these measures disregarding socioeconomic and/or cultural differences, it has become necessary to tailor interventions more specific to these target groups. Providing data for such an intervention is the objective of this study. Influencing variables on children's weight status, motor skills and lifestyle have been analyzed among 997 first graders (53.2% male) involved in the Children's Health InterventionaL Trial (CHILT). Median age was 6.9 years; 7.3% were obese, 8.8% were overweight. Children with low socioeconomic status (SES) were more likely to be obese (p = 0.029). Low SES (p ˂ 0.001), migration background (p = 0.001) and low sports activity levels (p = 0.007) contributed most to an increased consumption of television. Migration background (p = 0.003) and male gender (p motor tests. Children with a low SES and migration background were more likely to exhibit unfavorable health behavior patterns, higher BMI scores, and poorer motor skills. Interventions should integrate motivational and targeting strategies and consider cultural and educational differences to address these vulnerable groups. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  1. Effects of interactive games on motor performance in children with spastic cerebral palsy

    OpenAIRE

    AlSaif, Amer A.; Alsenany, Samira

    2015-01-01

    [Purpose] Motor control and muscle strength impairments are the prime reasons for motor behavior disorders in children with spastic cerebral palsy. These impairments lead to histological changes in muscle growth and the learning of motor skills. Therefore, such children experience reduced muscle force generation and decreased muscle flexibility. We investigated the effect of training with Nintendo Wii Fit games on motor performance in children with spastic cerebral palsy. [Subjects and Method...

  2. Motor vehicle stocks, scrappage, and sales

    OpenAIRE

    Alan Greenspan; Darrel Cohen

    1996-01-01

    This paper offers a framework for forecasting aggregate sales of new motor vehicles; this framework incorporates separate models for the change in the vehicle stock and for the rate of vehicle scrappage. Because this approach requires only a minimal set of assumptions about demographic trends, the state of the economy, consumer ''preferences,'' new vehicle prices and repair costs, and vehicle retirements, it is shown to be especially useful as a macroeconomic forecasting tool. In addition, th...

  3. Dynamics of the line-start reluctance motor with rotor made of SMC material

    Directory of Open Access Journals (Sweden)

    Smółka Krzysztof

    2017-12-01

    Full Text Available Design and control of electric motors in such a way as to ensure the expected motor dynamics, are the problems studied for many years. Many researchers tried to solve this problem, for example by the design optimization or by the use of special control algorithms in electronic systems. In the case of low-power and fractional power motors, the manufacture cost of the final product is many times less than cost of electronic system powering them. The authors of this paper attempt to improve the dynamic of 120 W line-start synchronous reluctance motor, energized by 50 Hz mains (without any electronic systems. The authors seek a road enabling improvement of dynamics of the analyzed motor, by changing the shape and material of the rotor, in such a way to minimize the modification cost of the tools necessary for the motor production. After the initial selection, the analysis of four rotors having different tooth shapes, was conducted.

  4. Consolidating the effects of waking and sleep on motor-sequence learning.

    Science.gov (United States)

    Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel

    2010-10-20

    Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.

  5. Controlling Precision Stepper Motors in Flight Using (Almost) No Parts

    Science.gov (United States)

    Randall, David

    2010-01-01

    This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.

  6. Relationships between non-pathological dream-enactment and mirror behaviors.

    Science.gov (United States)

    Nielsen, Tore; Kuiken, Don

    2013-09-01

    Dream-enacting behaviors (DEBs) are behavioral expressions of forceful dream images often occurring during sleep-to-wakefulness transitions. We propose that DEBs reflect brain activity underlying social cognition, in particular, motor-affective resonance generated by the mirror neuron system. We developed a Mirror Behavior Questionnaire (MBQ) to assess some dimensions of mirror behaviors and investigated relationships between MBQ scores and DEBs in a large of university undergraduate cohort. MBQ scores were normally distributed and described by a four-factor structure (Empathy/Emotional Contagion, Behavioral Imitation, Sleepiness/Anger Contagion, Motor Skill Imitation). DEB scores correlated positively with MBQ total and factor scores even with social desirability, somnambulism and somniloquy controlled. Emotion-specific DEB items correlated with corresponding emotion-specific MBQ items, especially crying and smiling. Results provide preliminary evidence for cross-state relationships between propensities for dream-enacting and mirror behaviors--especially behaviors involving motor-affective resonance--and our suggestion that motor-affective resonance mediates dream-enactment imagery during sleep and emotional empathy during waking. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Mirror neurons and motor intentionality.

    Science.gov (United States)

    Rizzolatti, Giacomo; Sinigaglia, Corrado

    2007-01-01

    Our social life rests to a large extent on our ability to understand the intentions of others. What are the bases of this ability? A very influential view is that we understand the intentions of others because we are able to represent them as having mental states. Without this meta-representational (mind-reading) ability their behavior would be meaningless to us. Over the past few years this view has been challenged by neurophysiological findings and, in particular, by the discovery of mirror neurons. The functional properties of these neurons indicate that intentional understanding is based primarily on a mechanism that directly matches the sensory representation of the observed actions with one's own motor representation of those same actions. These findings reveal how deeply motor and intentional components of action are intertwined, suggesting that both can be fully comprehended only starting from a motor approach to intentionality.

  8. Robotic set-up to quantify hand-eye behavior in motor execution and learning of children with autism spectrum disorder.

    Science.gov (United States)

    Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra

    2017-07-01

    Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.

  9. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    Science.gov (United States)

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Quantitative assessment of finger motor performance: Normative data.

    Directory of Open Access Journals (Sweden)

    Alessio Signori

    Full Text Available Finger opposition movements are the basis of many daily living activities and are essential in general for manipulating objects; an engineered glove quantitatively assessing motor performance during sequences of finger opposition movements has been shown to be useful to provide reliable measures of finger motor impairment, even subtle, in subjects affected by neurological diseases. However, the obtained behavioral parameters lack published reference values.To determine mean values for different motor behavioral parameters describing the strategy adopted by healthy people in performing repeated sequences of finger opposition movements, examining associations with gender and age.Normative values for finger motor performance parameters were obtained on a sample of 255 healthy volunteers executing sequences of finger-to-thumb opposition movements, stratified by gender and over a wide range of ages. Touch duration, inter-tapping interval, movement rate, correct sequences (%, movements in advance compared with a metronome (% and inter-hand interval were assessed.Increasing age resulted in decreased movement speed, advance movements with respect to a cue, correctness of sequences, and bimanual coordination. No significant performance differences were found between male and female subjects except for the duration of the finger touch, the interval between two successive touches and their ratio.We report age- and gender-specific normal mean values and ranges for different parameters objectively describing the performance of finger opposition movement sequences, which may serve as useful references for clinicians to identify possible deficits in subjects affected by diseases altering fine hand motor skills.

  11. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  12. Divergence of fine and gross motor skills in prelingually deaf children: implications for cochlear implantation.

    Science.gov (United States)

    Horn, David L; Pisoni, David B; Miyamoto, Richard T

    2006-08-01

    The objective of this study was to assess relations between fine and gross motor development and spoken language processing skills in pediatric cochlear implant users. The authors conducted a retrospective analysis of longitudinal data. Prelingually deaf children who received a cochlear implant before age 5 and had no known developmental delay or cognitive impairment were included in the study. Fine and gross motor development were assessed before implantation using the Vineland Adaptive Behavioral Scales, a standardized parental report of adaptive behavior. Fine and gross motor scores reflected a given child's motor functioning with respect to a normative sample of typically developing, normal-hearing children. Relations between these preimplant scores and postimplant spoken language outcomes were assessed. In general, gross motor scores were found to be positively related to chronologic age, whereas the opposite trend was observed for fine motor scores. Fine motor scores were more strongly correlated with postimplant expressive and receptive language scores than gross motor scores. Our findings suggest a disassociation between fine and gross motor development in prelingually deaf children: fine motor skills, in contrast to gross motor skills, tend to be delayed as the prelingually deaf children get older. These findings provide new knowledge about the links between motor and spoken language development and suggest that auditory deprivation may lead to atypical development of certain motor and language skills that share common cortical processing resources.

  13. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  14. Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty.

    Directory of Open Access Journals (Sweden)

    Arne J Nagengast

    2010-07-01

    Full Text Available Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller or as an added value (risk-seeking controller to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.

  15. Infant motor and cognitive abilities and subsequent executive function.

    Science.gov (United States)

    Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan

    2017-11-01

    Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Early uneven ear input induces long-lasting differences in left-right motor function.

    Science.gov (United States)

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  17. Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict

    Science.gov (United States)

    Duque, Julie; Petitjean, Charlotte; Swinnen, Stephan P.

    2016-01-01

    Motor behaviors often require refraining from selecting options that may be part of the repertoire of natural response tendencies but that are in conflict with ongoing goals. The presence of sensory conflict has a behavioral cost but the latter can be attenuated in contexts where control processes are recruited because conflict is expected in advance, producing a behavioral gain compared to contexts where conflict occurs in a less predictable way. In the present study, we investigated the corticospinal correlates of these behavioral effects (both conflict-driven cost and context-related gain). To do so, we measured motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) of young and healthy older adults performing the Eriksen Flanker Task. Subjects performed button-presses according to a central arrow, flanked by irrelevant arrows pointing in the same (congruent trial) or opposite direction (incongruent trial). Conflict expectation was manipulated by changing the probability of congruent and incongruent trials in a given block. It was either high (mostly incongruent blocks, MIB, 80% incongruent trials) or low (mostly congruent blocks, MCB, 80% congruent). The MEP data indicate that the conflict-driven behavioral cost is associated with a strong increase in inappropriate motor activity regardless of the age of individuals, as revealed by larger MEPs in the non-responding muscle in incongruent than in congruent trials. However, this aberrant facilitation disappeared in both groups of subjects when conflict could be anticipated (i.e., in the MIBs) compared to when it occurred in a less predictably way (MCBs), probably allowing the behavioral gain observed in both the young and the older individuals. Hence, the ability to overcome and anticipate conflict was surprisingly preserved in the older adults. Nevertheless, some control processes are likely to evolve with age because the behavioral gain observed in

  18. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.

  19. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  20. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  1. Sibling Relationships of Preschool-Aged Children in Gross Motor Environments.

    Science.gov (United States)

    Erbaugh, Sarah J.; Clifton, Marguerite A.

    1984-01-01

    The behaviors and interactions of preschool-aged siblings in object-oriented and body-oriented conditions were observed to discover if the child's siblings significantly influenced motor skill development. This study focused on categories of sibling behaviors and interactions. (Author/DF)

  2. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia

    Directory of Open Access Journals (Sweden)

    Stefano Cinque

    2018-02-01

    Full Text Available Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD and obsessive-compulsive disorder (OCD. Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT knockout (KO and heterozygous (HET mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1. Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT–HET dams bred with DAT–HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats’ sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT. During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH and RO-5203648, a trace amine-associated receptor 1 (TAAR1 partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2, serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.

  3. Oral, physical, and behavioral aspects of patient with chromosome 47, XYY syndrome.

    Science.gov (United States)

    Scheidt, Lisa; Sanabe, Mariane Emi; Diniz, Michele Baffi

    2015-01-01

    Chromosome 47, XYY syndrome is usually diagnosed late. Some of the clinical characteristics of XYY syndrome may be perceptible in dental care. The slow development of cognitive and motor activities and tall stature is common in XYY patients. The aim of this article was to relate the oral, physical, and behavioral aspects of a 6-year-old patient with the chromosome 47, XYY syndrome, diagnosed by means of karyotyping. The patient presented motor difficulty, which led to a fall and traumatism in the anterior region. In the radiography, agenesia of the permanent maxillary lateral incisors, presence of taurodontism in the primary molars, and macrodontia of the maxillary central incisors and permanent molars could be observed. Once the diagnosis was made, it was possible to understand his difficulty at school, and make available appropriate monitoring by a suitable multidisciplinary team to stimulate, control, and minimize the day-to-day difficulties found by patients with this syndrome.

  4. Oral, physical, and behavioral aspects of patient with chromosome 47, XYY syndrome

    Directory of Open Access Journals (Sweden)

    Lisa Scheidt

    2015-01-01

    Full Text Available Chromosome 47, XYY syndrome is usually diagnosed late. Some of the clinical characteristics of XYY syndrome may be perceptible in dental care. The slow development of cognitive and motor activities and tall stature is common in XYY patients. The aim of this article was to relate the oral, physical, and behavioral aspects of a 6-year-old patient with the chromosome 47, XYY syndrome, diagnosed by means of karyotyping. The patient presented motor difficulty, which led to a fall and traumatism in the anterior region. In the radiography, agenesia of the permanent maxillary lateral incisors, presence of taurodontism in the primary molars, and macrodontia of the maxillary central incisors and permanent molars could be observed. Once the diagnosis was made, it was possible to understand his difficulty at school, and make available appropriate monitoring by a suitable multidisciplinary team to stimulate, control, and minimize the day-to-day difficulties found by patients with this syndrome.

  5. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    Science.gov (United States)

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  6. Controlling chaos in the permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Zribi, Mohamed; Oteafy, Ahmed; Smaoui, Nejib

    2009-01-01

    The Permanent Magnet Synchronous Motor (PMSM) is known to exhibit chaotic behavior under certain conditions. This paper proposes to use an instantaneous Lyapunov exponent control algorithm to control the PMSM. One of the objectives of the control approach is to bring order to the PMSM and to drive it to any user-defined desired state. Simulation results under different operating conditions indicate that the proposed control scheme works well. Moreover, the proposed Lyapunov exponent control scheme is able to induce chaos on the permanent magnet synchronous motor. Simulation results show the effectiveness of the proposed control scheme in chaotifing the response of the motor.

  7. Acquisition and improvement of human motor skills: Learning through observation and practice

    Science.gov (United States)

    Iba, Wayne

    1991-01-01

    Skilled movement is an integral part of the human existence. A better understanding of motor skills and their development is a prerequisite to the construction of truly flexible intelligent agents. We present MAEANDER, a computational model of human motor behavior, that uniformly addresses both the acquisition of skills through observation and the improvement of skills through practice. MAEANDER consists of a sensory-effector interface, a memory of movements, and a set of performance and learning mechanisms that let it recognize and generate motor skills. The system initially acquires such skills by observing movements performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory, MAEANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We evaluated MAEANDER empirically with respect to how well it acquires and improves both artificial movement types and handwritten script letters from the alphabet. We also evaluate MAEANDER as a psychological model by comparing its behavior to robust phenomena in humans and by considering the richness of the predictions it makes.

  8. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  9. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    International Nuclear Information System (INIS)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping; Deng, Juan

    2017-01-01

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well

  10. A Novel Approach for Brushless DC Motors Characterization in Drones Based on Chaos

    Directory of Open Access Journals (Sweden)

    Ramon L. V. Medeiros

    2018-04-01

    Full Text Available A novel technique named Signal Analysis based on Chaos using Density of Maxima (SAC-DM is presented to analyze Brushless Direct Current (BLDC motors behavior. These motors are vastly used in electric vehicles, especially in Drones. The proposed approach is compared with the traditional Fast-Fourier Transform (FFT and the experiments analyzing a BLDC motor of a drone demonstrates similar results but computationally simpler than that. The main contribution of this technique is the possibility to analyze signals in time domain, instead of the frequency domain. It is possible to identify working and faulty behavior with less computational resources than the traditional approach.

  11. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Directory of Open Access Journals (Sweden)

    Chia-Shan Wu

    Full Text Available The G-protein coupled receptor 55 (GPR55 is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  12. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Science.gov (United States)

    Wu, Chia-Shan; Chen, Hongmei; Sun, Hao; Zhu, Jie; Jew, Chris P; Wager-Miller, James; Straiker, Alex; Spencer, Corinne; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2013-01-01

    The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  13. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  14. Generation of novel motor sequences: the neural correlates of musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  15. Motor Gasoline Market Model documentation report

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level

  16. Torque ripple minimization in a doubly salient permanent magnet motors by skewing the rotor teeth

    International Nuclear Information System (INIS)

    Sheth, N.K.; Sekharbabu, A.R.C.; Rajagopal, K.R.

    2006-01-01

    This paper presents the effects of skewing the rotor teeth on the performance of an 8/6 doubly salient permanent magnet motor using a simple method, which utilizes the results obtained from the 2-D FE analysis. The optimum skewing angle is obtained as 12-15 o for the least ripple torque without much reduction in the back-emf

  17. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Eric W Fish

    Full Text Available Fragile X syndrome (FXS is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y mice with intracranial self-stimulation (ICSS and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynylpyridine (MPEP, was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  18. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Fish, Eric W; Krouse, Michael C; Stringfield, Sierra J; Diberto, Jeffrey F; Robinson, J Elliott; Malanga, C J

    2013-01-01

    Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y)) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y) mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y) mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y) than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y) mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y) mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y) mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  19. Motor ability and adaptive function in children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Hui-Yi Wang

    2011-10-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a common neuropsychiatric disorder. Previous studies have reported that children with ADHD exhibit deficits of adaptive function and insufficient motor ability. The objective of this study was to investigate the association between adaptive function and motor ability in children with ADHD compared with a group of normal children. The study group included 25 children with ADHD (19 boys and 6 girls, aged from 4.6 years to 8.6 years (mean±standard deviation, 6.5±1.2. A group of 24 children without ADHD (normal children were selected to match the children with ADHD on age and gender. The Movement Assessment Battery for Children, which includes three subtests, was used to assess the motor ability of the children of both groups. The Chinese version of Adaptive Behavior Scales, which consists of 12 life domains, was used to assess adaptive function of the children with ADHD. Compared with the normal children, children with ADHD exhibited poorer motor ability on all the three subtests of motor assessment. In the ADHD group, nine (36% children had significant motor impairments and seven (28% were borderline cases. A total of 10 (40% children with ADHD had definite adaptive problems in one or more adaptive domains. With statistically controlling of IQ for the ADHD group, those children with impaired motor ability had significantly poorer behaviors in the adaptive domain of home living (p=0.035. Moreover, children with ADHD who had severely impaired manual dexterity performed worse than the control group in the adaptive domains of home living (r=−0.47, p=0.018, socialization (r=−0.49, p=0.013, and self-direction (r=−0.41, p=0.040. In addition, children with poorer ball skills had worse home living behavior (r=−0.56, p=0.003. Children who had more impaired balance exhibited poorer performance in social behavior (r=−0.41, p=0.040. This study found significant correlation between motor ability and

  20. Examination of muscle composition and motor unit behavior of the first dorsal interosseous of normal and overweight children.

    Science.gov (United States)

    Miller, Jonathan D; Sterczala, Adam J; Trevino, Michael A; Herda, Trent J

    2018-05-01

    We examined differences between normal weight (NW) and overweight (OW) children aged 8-10 yr in strength, muscle composition, and motor unit (MU) behavior of the first dorsal interosseous. Ultrasonography was used to determine muscle cross-sectional area (CSA), subcutaneous fat (sFAT), and echo intensity (EI). MU behavior was assessed during isometric muscle actions at 20% and 50% of maximal voluntary contraction (MVC) by analyzing electromyography amplitude (EMG RMS ) and relationships between mean firing rates (MFR), recruitment thresholds (RT), and MU action potential amplitudes (MUAP size ) and durations (MUAP time ). The OW group had significantly greater EI than the NW group ( P = 0.002; NW, 47.99 ± 6.01 AU; OW, 58.90 ± 10.63 AU, where AU is arbitrary units) with no differences between groups for CSA ( P = 0.688) or MVC force ( P = 0.790). MUAP size was larger for NW than OW in relation to RT ( P = 0.002) and for MUs expressing similar MFRs ( P = 0.011). There were no significant differences ( P = 0.279-0.969) between groups for slopes or y-intercepts from the MFR vs. RT relationships. MUAP time was larger in OW ( P = 0.015) and EMG RMS was attenuated in OW compared with NW ( P = 0.034); however, there were no significant correlations ( P = 0.133-0.164, r = 0.270-0.291) between sFAT and EMG RMS . In a muscle that does not support body mass, the OW children had smaller MUAP size as well as greater EI, although anatomical CSA was similar. This contradicts previous studies examining larger limb muscles. Despite evidence of smaller MUs, the OW children had similar isometric strength compared with NW children. NEW & NOTEWORTHY Ultrasound data and motor unit action potential sizes suggest that overweight children have poorer muscle composition and smaller motor units in the first dorsal interosseous than normal weight children. Evidence is presented that suggests differences in action potential size cannot be explained

  1. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.

    Science.gov (United States)

    Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco

    2011-03-23

    Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.

  2. Context-dependent decay of motor memories during skill acquisition.

    Science.gov (United States)

    Ingram, James N; Flanagan, J Randall; Wolpert, Daniel M

    2013-06-17

    Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both object manipulation and force-field adaptation, contrary to previous models, memory decay is highly context dependent. We show that the decay of memory associated with a given context is greatest for movements made in that context, with more distant contexts showing markedly reduced decay. Thus, both memory formation and decay are strongest for the current context. We propose that this apparently paradoxical organization provides a mechanism for optimizing performance. While memory decay tends to reduce force output, memory formation can correct for any errors that arise, allowing the motor system to regulate force output so as to both minimize errors and avoid unnecessary energy expenditure. The motor commands for any given context thus result from a balance between memory formation and decay, while memories for other contexts are preserved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  4. Implementation of Permanent Magnet Motors in Electric Vehicles

    OpenAIRE

    Elvestad, Eirik

    2008-01-01

    This thesis has studied permanent magnet motors in electric vehicles (EVs) under the assumption that they are tractable due to a low weight and high compactness. The implementation has been investigated through a case study, which resulted in an EV simulation model. The model contains a maximal torque per ampere and a closed-loop field weakening controller. Abstract Faults are a special concern in permanent magnet motors. Fault sources and faulted behavior are addressed separately. The EV mo...

  5. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (pmotor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism.

    Science.gov (United States)

    Lee, Mina; Kim, Song E; Kim, Won Sup; Lee, Jungyeun; Yoo, Hye Kyung; Park, Kee-Duk; Choi, Kyoung-Gyu; Jeong, Seon-Yong; Kim, Byung Gon; Lee, Hyang Woon

    2013-01-01

    Cortical physiology in human motor cortex is influenced by behavioral motor training (MT) as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS). This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.

  7. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  8. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Pan, Yang; Zhang, Libin; Lin, Chenggang; Sun, Jiamin; Kan, Rentao; Yang, Hongsheng

    2015-05-15

    The influence of flow velocity on the motor behavior of the sea cucumber, Apostichopus japonicus was investigated in the laboratory. Cameras were used to record sea cucumber movements and behavior analysis software was used to measure the distance traveled, time spent, upstream or downstream of the start position and the speed of movements. In general, the mean velocity of A. japonicus was below 0.7mms(-1). The maximum velocity recorded for all the sea cucumbers tested was for a large individual (89.25±17.11g), at a flow rate of 4.6±0.5cms(-1). Medium sized (19.68±5.53g) and large individuals moved significantly faster than small individuals (2.65±1.24g) at the same flow rate. A. japonicus moved significantly faster when there was a moderate current (4.6±0.5cms(-1) and 14.7±0.3cms(-1)), compared with the fast flow rate (29.3±3.7cms(-1)) and when there was no flow (0cms(-1)). Sea cucumbers did not show positive rheotaxis in general, but did move in a downstream direction at faster current speeds. Large, medium and small sized individuals moved downstream at the fastest current speed tested, 29.3±3.7cms(-1). When there was no water flow, sea cucumbers tended to move in an irregular pattern. The movement patterns show that the sea cucumber, A. japonicus can move across the direction of flow, and can move both upstream and downstream along the direction of flow. Copyright © 2015. Published by Elsevier Inc.

  10. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status

    Science.gov (United States)

    Hilpert, Martin; Brockmeier, Konrad; Dordel, Sigrid; Koch, Benjamin; Weiß, Verena; Ferrari, Nina; Tokarski, Walter; Graf, Christine

    2017-01-01

    Background Juvenile overweight is increasing, and effective preventive measures are needed. After years of arbitrarily assigning these measures disregarding socioeconomic and/or cultural differences, it has become necessary to tailor interventions more specific to these target groups. Providing data for such an intervention is the objective of this study. Methods Influencing variables on children's weight status, motor skills and lifestyle have been analyzed among 997 first graders (53.2% male) involved in the Children's Health InterventionaL Trial (CHILT). Results Median age was 6.9 years; 7.3% were obese, 8.8% were overweight. Children with low socioeconomic status (SES) were more likely to be obese (p = 0.029). Low SES (p ˂ 0.001), migration background (p = 0.001) and low sports activity levels (p = 0.007) contributed most to an increased consumption of television. Migration background (p = 0.003) and male gender (p games. Children with higher SES (p = 0.02), lower BMI (p = 0.035), and males (p = 0.001) performed better in motor tests. Conclusion Children with a low SES and migration background were more likely to exhibit unfavorable health behavior patterns, higher BMI scores, and poorer motor skills. Interventions should integrate motivational and targeting strategies and consider cultural and educational differences to address these vulnerable groups. PMID:28528341

  11. Visual strategies underpinning the development of visual-motor expertise when hitting a ball.

    Science.gov (United States)

    Sarpeshkar, Vishnu; Abernethy, Bruce; Mann, David L

    2017-10-01

    It is well known that skilled batters in fast-ball sports do not align their gaze with the ball throughout ball-flight, but instead adopt a unique sequence of eye and head movements that contribute toward their skill. However, much of what we know about visual-motor behavior in hitting is based on studies that have employed case study designs, and/or used simplified tasks that fall short of replicating the spatiotemporal demands experienced in the natural environment. The aim of this study was to provide a comprehensive examination of the eye and head movement strategies that underpin the development of visual-motor expertise when intercepting a fast-moving target. Eye and head movements were examined in situ for 4 groups of cricket batters, who were crossed for playing level (elite or club) and age (U19 or adult), when hitting balls that followed either straight or curving ('swinging') trajectories. The results provide support for some widely cited markers of expertise in batting, while questioning the legitimacy of others. Swinging trajectories alter the visual-motor behavior of all batters, though in large part because of the uncertainty generated by the possibility of a variation in trajectory rather than any actual change in trajectory per se. Moreover, curving trajectories influence visual-motor behavior in a nonlinear fashion, with targets that curve away from the observer influencing behavior more than those that curve inward. The findings provide a more comprehensive understanding of the development of visual-motor expertise in interception. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  13. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    International Nuclear Information System (INIS)

    Athale, Chaitanya A; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-01-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions. (paper)

  14. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  15. THE ANALISYS OF RAILWAY MULTI MOTORS ELECTRICAL DRIVE DYNAMIC

    Directory of Open Access Journals (Sweden)

    V. I. Khilmon

    2015-01-01

    Full Text Available The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motor’s parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The  slippage  of  the  traction  drives  is  difficult  to  reproduce  in  laboratory;  therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability.

  16. Control of octopus arm extension by a peripheral motor program.

    Science.gov (United States)

    Sumbre, G; Gutfreund, Y; Fiorito, G; Flash, T; Hochner, B

    2001-09-07

    For goal-directed arm movements, the nervous system generates a sequence of motor commands that bring the arm toward the target. Control of the octopus arm is especially complex because the arm can be moved in any direction, with a virtually infinite number of degrees of freedom. Here we show that arm extensions can be evoked mechanically or electrically in arms whose connection with the brain has been severed. These extensions show kinematic features that are almost identical to normal behavior, suggesting that the basic motor program for voluntary movement is embedded within the neural circuitry of the arm itself. Such peripheral motor programs represent considerable simplification in the motor control of this highly redundant appendage.

  17. Caracterization of the motor profile of students with autistic disorder

    Directory of Open Access Journals (Sweden)

    Paola Matiko Okuda

    2010-12-01

    Full Text Available Thematic focus: The motor abnormalities may be part of so-called comorbidities that can coexist with autistic disorder. Objective: To characterize the motor profile of students with autistic disorder. Method: the study included six children with autistic disorder in elementary school, male, aged 5 years and 5 months and 10 years and 9 months. After signing the consent form by parents or guardians, the students were submitted to the Motor Development Scale for assessment of fine motor, gross motor performance, balance, body scheme, spatial organization, temporal organization and laterality. Results: The results revealed a significant difference between the motor age and chronological age. According to the classification of the Scale of Motor Development, students in this study showed motor development lower than expected for age. Conclusion: The students with autistic disorder in this study presented a profile of Developmental Coordination Disorder in comorbidity, showing that participants of this research presented difficulties in activities that required skills such as handwriting. Thus, motor and psychomotor needs of these students were focused on educational and clinical environment to reduce the impact of behavioral and social manifestations.

  18. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    Science.gov (United States)

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  19. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  20. Subcortical Contributions to Motor Speech: Phylogenetic, Developmental, Clinical.

    Science.gov (United States)

    Ziegler, W; Ackermann, H

    2017-08-01

    Vocal learning is an exclusively human trait among primates. However, songbirds demonstrate behavioral features resembling human speech learning. Two circuits have a preeminent role in this human behavior; namely, the corticostriatal and the cerebrocerebellar motor loops. While the striatal contribution can be traced back to the avian anterior forebrain pathway (AFP), the sensorimotor adaptation functions of the cerebellum appear to be human specific in acoustic communication. This review contributes to an ongoing discussion on how birdsong translates into human speech. While earlier approaches were focused on higher linguistic functions, we place the motor aspects of speaking at center stage. Genetic data are brought together with clinical and developmental evidence to outline the role of cerebrocerebellar and corticostriatal interactions in human speech. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  2. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.

  3. The Effects of an Early Motor Skill Intervention on Motor Skills, Levels of Physical Activity, and Socialization in Young Children with Autism Spectrum Disorder: A Pilot Study

    Science.gov (United States)

    Ketcheson, Leah; Hauck, Janet; Ulrich, Dale

    2017-01-01

    Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor…

  4. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear...

  5. Understanding Self-Controlled Motor Learning Protocols through the Self-Determination Theory.

    Science.gov (United States)

    Sanli, Elizabeth A; Patterson, Jae T; Bray, Steven R; Lee, Timothy D

    2012-01-01

    The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT). Three micro-theories within the macro-theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory, and Organismic Integration Theory) are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  6. Understanding self-controlled motor learning protocols through the self determination theory

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Sanli

    2013-01-01

    Full Text Available The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT. Three micro theories within the macro theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory & Organismic Integration Theory are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  7. Application of artificial intelligence to motor operated valve testing

    International Nuclear Information System (INIS)

    Bogard, T.; Bednar, F.; Matty, T.; Kent, R.

    1989-01-01

    Improper valve maintenance can be a significant roadblock to successful power plant operation. There have been events during which motor operated valves failed on demand due to improper switch settings. For nuclear electric generating stations, these events have led to regulatory requirements such as NRC Bulletin 85-03 and NRC Bulletin 89-10 Safety Related Motor Operated Valve Testing and Surveillance which imposes strict testing and programmatic requirements on motor operated valves (MOV). Part of the requirements include performing diagnostic testing to verify stem thrust loads and switch settings. Diagnostic equipment must be non-intrusive, minimize valve disassembly, and reduce plant refueling critical path time for testing. In this paper an on-line diagnostic system using sensors to measure stem forces, motor current, and valve position, and a portable system employing these same sensor inputs in addition to torque, limit and torque bypass switch inputs is described. Sophisticated graphic software is employed to display data or trace information. A rule based artificial intelligence (AI) system is used to analyze sensor outputs. Objectives for valve diagnostics, sample AI rules, results of actual field testing, and system software/hardware architecture are presented

  8. Modeling speech imitation and ecological learning of auditory-motor maps

    Directory of Open Access Journals (Sweden)

    Claudia eCanevari

    2013-06-01

    Full Text Available Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers’ peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to recover motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy almost always outperforms all other strategies where only acoustics is taken into account.

  9. A Model of Motor Inhibition for a Complex Skill: Baseball Batting

    Science.gov (United States)

    Gray, Rob

    2009-01-01

    The ability to inhibit an ongoing action in response to a signal from the environment is important for many perceptual-motor actions. This paper examines a particular example of this behavior: attempting to inhibit or "check" a swing in baseball batting. A model of motor inhibition in batting is proposed. In the model there are three different…

  10. Rethinking Energy in Parkinsonian Motor Symptoms: A Potential Role for Neural Metabolic Deficits

    Directory of Open Access Journals (Sweden)

    Shinichi eAmano

    2015-01-01

    Full Text Available Parkinson’s disease (PD is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1 neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD, (2 motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state, and (3 improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD.

  11. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    Science.gov (United States)

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  12. Non-viral gene therapy that targets motor neurons in vivo

    Directory of Open Access Journals (Sweden)

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  13. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism.

    Directory of Open Access Journals (Sweden)

    Mina Lee

    Full Text Available Cortical physiology in human motor cortex is influenced by behavioral motor training (MT as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS. This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.

  14. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    Science.gov (United States)

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Neurofeedback training of alpha-band coherence enhances motor performance.

    Science.gov (United States)

    Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G

    2015-09-01

    Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Determination of minimal clinically important change in early and advanced Parkinson's disease.

    Science.gov (United States)

    Hauser, Robert A; Auinger, Peggy

    2011-04-01

    Two common primary efficacy outcome measures in Parkinson's disease (PD) are change in Unified Parkinson's Disease Rating Scale (UPDRS) scores in early PD and change in "off" time in patients with motor fluctuations. Defining the minimal clinically important change (MCIC) in these outcome measures is important to interpret the clinical relevance of changes observed in clinical trials and other situations. We analyzed data from 2 multicenter, placebo-controlled, randomized clinical trials of rasagiline; TEMPO studied 404 early PD subjects, and PRESTO studied 472 levodopa-treated subjects with motor fluctuations. An anchor-based approach using clinical global impression of improvement (CGI-I) was used to determine MCIC for UPDRS scores and daily "off" time. MCIC was defined as mean change in actively treated subjects rated minimally improved on CGI-I. Receiver operating characteristic (ROC) curves defined optimal cutoffs discriminating between changed and unchanged subjects. MCIC for improvement in total UPDRS score (parts I-III) in early PD was determined to be -3.5 points based on mean scores and -3.0 points based on ROC curves. In addition, we found an MCIC for reduction in "off" time of 1.0 hours as defined by mean reduction in "off" time in active treated subjects self-rated as minimally improved on CGI-I minus mean reduction in "off" time in placebo-treated subjects self-rated as unchanged (1.9-0.9 hours). We hypothesize that many methodological factors can influence determination of the MCIC, and a range of values is likely to emerge from multiple studies. Copyright © 2011 Movement Disorder Society.

  17. SOCIAL BEHAVIORAL CHANGES IN MPTP-TREATED MONKEY MODEL OF PARKINSON’S DISEASE.

    Directory of Open Access Journals (Sweden)

    Elodie eDURAND

    2015-02-01

    Full Text Available Parkinsonian patients experience not only the physical discomfort of motor disorders but also the considerable psychological distress caused by cognitive deficits and behavioral disorders. These two factors can result in a disruption of social relationships during the symptomatic and even the presymptomatic motor states of the disease. However, it remains difficult, if not impossible, to evaluate social relationships in presymptomatic patients. The present study focused on the evaluation of social relationships within a group of female long-tailed macaques during presymptomatic and symptomatic motor states induced by Chronic Low-Dose (CLD and then Chronic High-Dose (CHD systemic administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP. Dopaminergic denervation within basal ganglia and cortical areas was evaluated using Positron Emission Tomography (PET scans with 18F-DOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine radiotracer.Interestingly, social behavioral changes could be identified in the presymptomatic motor state before any motor and/or cognitive impairment occurred. Stronger effects were observed in subordinate animals compared to dominant animals. From baseline state to CLD-presymptomatic motor state, the frequency of emitted affiliative and aggressive behaviors increased. From CLD-presymptomatic to CHD-presymptomatic motor states, the frequency of the three categories of social behaviors (aggressive, submissive and affiliative decreased. At this time, quantitative data analysis in PET scans highlighted a dopaminergic denervation in the insula and the posterior caudate nucleus. Finally, the frequency of the three categories of social behaviors decreased during the stable-symptomatic motor state compared to baseline and presymptomatic motor states; this was also associated with motor and cognitive disorders and a dopaminergic denervation in all the evaluated cortical and subcortical structures.

  18. Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator

    Science.gov (United States)

    Xu, Meimei; Liu, Guohai; Zhao, Wenxiang; Aamir, Nazir

    2018-05-01

    Torque ripple is one of the important issues for ferrite assisted synchronous reluctance motors (FASRMs). In this paper, an asymmetrical stator is proposed for the FASRM to reduce its torque ripple. In the proposed FASRM, an asymmetrical stator is designed by appropriately choosing the angle of the slot-opening shift. Meanwhile, its analytical torque expressions are derived. The results show that the proposed FASRM has an effective reduction in the cogging torque, reluctance torque ripple and total torque ripple. Moreover, it is easy to implement while the average torque is not sacrificed.

  19. Motor behavior during the first chewing cycle in subjects with fixed tooth- or implant-supported prostheses.

    Science.gov (United States)

    Grigoriadis, Joannis; Trulsson, Mats; Svensson, Krister G

    2016-04-01

    Appropriate sensory information from periodontal mechanoreceptors (PMRs) is important for optimizing the positioning of food and adjustment of force vectors during precision biting. This study was designed to describe motor behavior during the first cycle of a natural chewing task and to evaluate the role of such sensory input in this behavior. While 10 subjects with natural dentition, 11 with bimaxillary fixed tooth-supported prostheses (TSP) and 10 with bimaxillary fixed implant-supported prostheses (ISP) (mean age 69 [range 61-83]) chewed a total of five hazelnuts, their vertical and lateral jaw movements were recorded. Data obtained during the first chewing cycle of each hazelnut were analyzed. The amplitude of vertical and lateral mandibular movement and duration of jaw opening did not differ between the groups, indicating similar behavior during this part of the chewing cycle. However, only 30% of the subjects in the natural dentate group, but 82% of those in the TSP and 70% in the ISP group exhibited slippage of the hazelnut during jaw closure in at least one of five trials. The TSP and ISP groups also exhibited more irregular and narrower patterns of motion (total lateral/vertical movement = 0.15 and 0.19, respectively, compared to 0.27 for the natural group). Subjects with fixed tooth- or implant-supported prostheses in both jaws show altered behavior, including inadequate control of the hazelnut, during the first chewing cycle. We propose that these differences are due to impairment or absence of sensory signaling from PMRs in these individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  1. [Minimal emotional dysfunction and first impression formation in personality disorders].

    Science.gov (United States)

    Linden, M; Vilain, M

    2011-01-01

    "Minimal cerebral dysfunctions" are isolated impairments of basic mental functions, which are elements of complex functions like speech. The best described are cognitive dysfunctions such as reading and writing problems, dyscalculia, attention deficits, but also motor dysfunctions such as problems with articulation, hyperactivity or impulsivity. Personality disorders can be characterized by isolated emotional dysfunctions in relation to emotional adequacy, intensity and responsivity. For example, paranoid personality disorders can be characterized by continuous and inadequate distrust, as a disorder of emotional adequacy. Schizoid personality disorders can be characterized by low expressive emotionality, as a disorder of effect intensity, or dissocial personality disorders can be characterized by emotional non-responsivity. Minimal emotional dysfunctions cause interactional misunderstandings because of the psychology of "first impression formation". Studies have shown that in 100 ms persons build up complex and lasting emotional judgements about other persons. Therefore, minimal emotional dysfunctions result in interactional problems and adjustment disorders and in corresponding cognitive schemata.From the concept of minimal emotional dysfunctions specific psychotherapeutic interventions in respect to the patient-therapist relationship, the diagnostic process, the clarification of emotions and reality testing, and especially an understanding of personality disorders as impairment and "selection, optimization, and compensation" as a way of coping can be derived.

  2. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  3. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  4. Normal motor milestone development for use to promote child care

    Directory of Open Access Journals (Sweden)

    Mahdin A. Husaini

    2016-10-01

    Full Text Available Background Motor behavior is an essential aspect of child development, and usually assessed in terms of age of achievement of motor milestone. The early detection of infants experiencing subtle delays in motor maturation can allow early intervention in developmental problems. Intervention can be more effective if delays are identified early. In order to facilitate the identification of early delays, the Center of Nutrition and Foods Research and Development in Bogor has designed a simple tool to monitor the child (aged 3 to 18 months motor development. Objective To develop an observable of normal gross motor maturation for use to detect deviance or motor delay. Methods A total of 2100 healthy children, aged 3-18 months, from high socio-economic group, in urban and suburban areas, were studied. Body length, weight and motor development were measured on all children. Gross motor development was measured 17 pre selected milestones: lie, sit, crawl, creep, stand Mth assistance, walk with assistance, stand alone, walk alone, and run. Results There were no differences between males and females in the comparison of attainment motor maturation therefore a sex combined curve was developed. Conclusion The curve of normal motor milestone development can be used as a tool to evaluate motor development over time, and/or as a child development card for use in primary health care.

  5. The role of ECoG magnitude and phase in decoding position, velocity and acceleration during continuous motor behavior

    Directory of Open Access Journals (Sweden)

    Jiri eHammer

    2013-11-01

    Full Text Available In neuronal population signals, including the electroencephalogram (EEG and electrocorticogram (ECoG, the low-frequency component (LFC is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy copy of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative low-frequency component of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

  6. Toward an Effective Long-Term Strategy for Preventing Motor Vehicle Crashes and Injuries

    Directory of Open Access Journals (Sweden)

    Anthony R. Mawson

    2014-08-01

    Full Text Available Casualties due to motor vehicle crashes (MVCs include some 40,000 deaths each year in the United States and one million deaths worldwide. One strategy that has been recommended for improving automobile safety is to lower speed limits and enforce them with speed cameras. However, motor vehicles can be hazardous even at low speeds whereas properly protected human beings can survive high-speed crashes without injury. Emphasis on changing driver behavior as the focus for road safety improvements has been largely unsuccessful; moreover, drivers today are increasingly distracted by secondary tasks such as cell phone use and texting. Indeed, the true limiting factor in vehicular safety is the capacity of human beings to sense and process information and to make rapid decisions. Given that dramatic reductions in injuries and deaths from MVCs have occurred over the past century due to improvements in safety technology, despite increases in the number of vehicles on the road and miles driven per vehicle, we propose that an effective long-term strategy for reducing MVC-related injury would be continued technological innovation in vehicle design, aimed at progressively removing the driver from routine operational decision-making. Once this is achieved, high rates of speed could be achieved on open highways, with minimal risk of crashes and injury to occupants and pedestrians.

  7. Toward an effective long-term strategy for preventing motor vehicle crashes and injuries.

    Science.gov (United States)

    Mawson, Anthony R; Walley, E Kenneth

    2014-08-11

    Casualties due to motor vehicle crashes (MVCs) include some 40,000 deaths each year in the United States and one million deaths worldwide. One strategy that has been recommended for improving automobile safety is to lower speed limits and enforce them with speed cameras. However, motor vehicles can be hazardous even at low speeds whereas properly protected human beings can survive high-speed crashes without injury. Emphasis on changing driver behavior as the focus for road safety improvements has been largely unsuccessful; moreover, drivers today are increasingly distracted by secondary tasks such as cell phone use and texting. Indeed, the true limiting factor in vehicular safety is the capacity of human beings to sense and process information and to make rapid decisions. Given that dramatic reductions in injuries and deaths from MVCs have occurred over the past century due to improvements in safety technology, despite increases in the number of vehicles on the road and miles driven per vehicle, we propose that an effective long-term strategy for reducing MVC-related injury would be continued technological innovation in vehicle design, aimed at progressively removing the driver from routine operational decision-making. Once this is achieved, high rates of speed could be achieved on open highways, with minimal risk of crashes and injury to occupants and pedestrians.

  8. Motor learning and working memory in children born preterm: a systematic review.

    Science.gov (United States)

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    Science.gov (United States)

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  10. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  11. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    Science.gov (United States)

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children's learning-related skills and physical development and subsequently to their academic success.

  12. DIAGNOSIS AND THERAPY OF MOTOR DISTURBANCES IN CHILDREN WITH AUTISM

    Directory of Open Access Journals (Sweden)

    Neli VASILEVA

    2012-09-01

    Full Text Available The paper reveals uncommonly examined aspects concerning the specifics of the motor de­velopment in the children with autistic spectrum disorders and the problems regarding their diagnostics and the­ra­py. An analytical theory of the autistic disorders is des­cribed, connecting autism with disorders in the ba­sic levels of affective behavioral regulation. The re­port in­cludes a classification of the groups of autis­tic children, each of which demonstrates spe­ci­fic motor dysfunctions. Furthermore, the paper ana­ly­zes and recommends methodo­lo­gi­cal approaches to motor therapy which will help improve the de­ve­lop­ment of different motor skills.

  13. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  14. The neural optimal control hierarchy for motor control

    Science.gov (United States)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  15. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE

    Directory of Open Access Journals (Sweden)

    David ePerruchoud

    2014-06-01

    Full Text Available Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE. Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  16. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE).

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  17. Random intermittent search and the tug-of-war model of motor-driven transport

    International Nuclear Information System (INIS)

    Newby, Jay; Bressloff, Paul C

    2010-01-01

    We formulate the 'tug-of-war' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman–Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron's dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model)

  18. Random intermittent search and the tug-of-war model of motor-driven transport

    Science.gov (United States)

    Newby, Jay; Bressloff, Paul C.

    2010-04-01

    We formulate the 'tug-of-war' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman-Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron's dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model).

  19. Random intermittent search and the tug-of-war model of motor-driven transport

    KAUST Repository

    Newby, Jay

    2010-04-16

    We formulate the \\'tug-of-war\\' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman-Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron\\'s dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model). © 2010 IOP Publishing Ltd.

  20. Random intermittent search and the tug-of-war model of motor-driven transport

    KAUST Repository

    Newby, Jay; Bressloff, Paul C

    2010-01-01

    We formulate the 'tug-of-war' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman-Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron's dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model). © 2010 IOP Publishing Ltd.

  1. Motor ability and inhibitory processes in children with ADHD: a neuroelectric study.

    Science.gov (United States)

    Hung, Chiao-Ling; Chang, Yu-Kai; Chan, Yuan-Shuo; Shih, Chia-Hao; Huang, Chung-Ju; Hung, Tsung-Min

    2013-06-01

    The purpose of the current study was to examine the relationship between motor ability and response inhibition using behavioral and electrophysiological indices in children with ADHD. A total of 32 participants were recruited and underwent a motor ability assessment by administering the Basic Motor Ability Test-Revised (BMAT) as well as the Go/No-Go task and event-related potential (ERP) measurements at the same time. The results indicated that the BMAT scores were positively associated with the behavioral and ERP measures. Specifically, the BMAT average score was associated with a faster reaction time and higher accuracy, whereas higher BMAT subset scores predicted a shorter P3 latency in the Go condition. Although the association between the BMAT average score and the No-Go accuracy was limited, higher BMAT average and subset scores predicted a shorter N2 and P3 latency and a larger P3 amplitude in the No-Go condition. These findings suggest that motor abilities may play roles that benefit the cognitive performance of ADHD children.

  2. Effect of Tactile-Kinesthetic Stimulation on Motor Development of Low Birth Weight Neonates

    Directory of Open Access Journals (Sweden)

    Reihaneh Askary Kachoosangy

    2011-04-01

    Full Text Available Objectives: Low Birth Weight neonates need complementary interventions (e.g. tactile kinesthetic stimulation to promote their development. This study was conducted to determine the effect of Tactile- Kinesthetic Stimulation (TKS on motor development of Low Birth Weight neonates. Methods: In this clinical trial study, sample was made out of 40 inborn LBW neonates who were divided into two groups randomly. TKS was provided for three 15-minute periods per day for 10 consecutive days to the test group, with the massages consisting of moderate of pressure strokes in prone position and kinesthetic exercises consisting of flexion and extension of limbs in supine position. All measurements were taken before and after completion of the study with the same equipment and by the same person. Results: Results indicated that motor behavior in the intervention group was significantly higher than the control group after the 10 days TKS (P-Value≤0.0001. Discussion: TKS could be an effective intervention in development of motor behavior of LBW neonates. Because very little is known about neonate's behavior, it seems to need more studies in other aspects of behavior in LBW neonates.

  3. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    Science.gov (United States)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  4. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging.

    Science.gov (United States)

    Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig

    2017-05-17

    We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Directory of Open Access Journals (Sweden)

    Dominique Derjean

    2010-12-01

    Full Text Available It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  6. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  7. A simple theory of motor protein kinetics and energetics. II.

    Science.gov (United States)

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  8. Induction Motor Parameter Identification Using a Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Avalos

    2016-04-01

    Full Text Available The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA. Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.

  9. Development of a hermetically sealed brushless DC motor for a J-T cryocooler

    Science.gov (United States)

    Joscelyn, Edwin; Hochler, Irwin; Ferri, Andrew; Rott, Heinz; Soukaris, Ted

    1996-01-01

    This development was sponsored by Ball Aerospace for the Cryogenic On-Orbit LongLife Active Refrigerator (COOLLAR) program. The cryocooler is designed to cool objects to 65 K and operate in space for at least 7 years. The system also imports minimal impact to the spacecraft in terms of vibration and heat. The basic Joule-Thompson cycle involves compressing a working fluid, nitrogen in this case, at near-constant temperature from 17.2 KPa to 6.89 MPa. The nitrogen is then expanded through a Joule-Thompson valve. The pure nitrogen gas must be kept clean; therefore, any contamination from motor organic materials must be eliminated. This requirement drove the design towards sealing of the motor within a titanium housing without sacrificing motor performance. It is estimated that an unsealed motor would have contributed 1.65 g of contaminants, due to the organic insulation and potting materials, over the 7-year life. This paper describes the motor electrical and mechanical design, as well as the sealing difficulties encountered, along with their solutions.

  10. Development of motors and drives for main coolant pump and CEDM

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Hyun; Ha, Hoi Doo; Park, Jung Woo; Koo, Dae Hyun; Chang, Ki Chan; Kim, Jong Moo; Kim, Won Ho; Rim, Geun Hie; Baek, Ju Won; Park, Doh Young; Hwang, Don Ha; Jeon, Jeong Woo [Korea Electrotechnology Research Institute, Changwon (Korea)

    1999-03-01

    A canned type 170kW induction motor for the main coolant pump (MCP) of the integral reactor SMART was designed to minimize the eddy current loss in the can and the volume of motor. In order to verify the design and analysis methodology, a canned type 30kW induction motor and an inverter were developed and tested. The motor was designed to have two poles with squirrel cage solid rotor and open slot stator. The motor driver was designed as VVVF inverter to operate both at 900(r.p.m) and at 3600(r.p.m). The calculated design values showed a good agreement with the experimental results. The measured efficiencies of the canned motor and the inverter were 70(%) and 96(%), respectively. A variable reluctance type linear pulse motor (LPM) with double air-gaps for the Control Element Drive Mechanism (CEDM) to lift 100kg was designed, analyzed, manufactured and tested. A converter and a test facility were manufactured to verity the dynamic performance of the LPM. The mover of the LPM was welded with magnetic material(SUS430) and non-magnetic material(SUS304) to get flux path between inner stator and outer stator. The measured thrust force was about 20(%) less than the designed thrust force. As for the rotary stepping motors for CEDM-II, which have transverse flux pattern, three design options were proposed with thrust force density of 8kN/m{sup 2}, 14kN/m{sup 2} and 52kN/m{sup 2} respectively. (author). 31 refs., 219 figs., 60 tabs.

  11. Finding minimal action sequences with a simple evaluation of actions

    Science.gov (United States)

    Shah, Ashvin; Gurney, Kevin N.

    2014-01-01

    Animals are able to discover the minimal number of actions that achieves an outcome (the minimal action sequence). In most accounts of this, actions are associated with a measure of behavior that is higher for actions that lead to the outcome with a shorter action sequence, and learning mechanisms find the actions associated with the highest measure. In this sense, previous accounts focus on more than the simple binary signal of “was the outcome achieved?”; they focus on “how well was the outcome achieved?” However, such mechanisms may not govern all types of behavioral development. In particular, in the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if they simply lead to a salient outcome because biological reinforcement signals occur too quickly to evaluate the consequences of an action beyond an indication of the outcome's occurrence. Thus, action discovery mechanisms focus on the simple evaluation of “was the outcome achieved?” and not “how well was the outcome achieved?” Notwithstanding this impoverishment of information, can the process of action discovery find the minimal action sequence? We address this question by implementing computational mechanisms, referred to in this paper as no-cost learning rules, in which each action that leads to the outcome is associated with the same measure of behavior. No-cost rules focus on “was the outcome achieved?” and are consistent with action discovery. No-cost rules discover the minimal action sequence in simulated tasks and execute it for a substantial amount of time. Extensive training, however, results in extraneous actions, suggesting that a separate process (which has been proposed in action discovery) must attenuate learning if no-cost rules participate in behavioral development. We describe how no-cost rules develop behavior, what happens when attenuation is disrupted, and relate the new mechanisms to wider computational and biological context. PMID:25506326

  12. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  13. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  14. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  15. Penggunaan VCD dan Leaflet untuk Peningkatan Pengetahuan, Sikap, dan Perilaku Siswa dalam Pencegahan Kecelakaan Sepeda Motor

    Directory of Open Access Journals (Sweden)

    Mulyono Notosiswoyo

    2014-04-01

    Full Text Available Indonesia belum mempunyai kebijakan penyuluhan pencegahan kecelakaan sepeda motor yang efektif. Tujuan penelitian ini adalah menilai efektivitas penggunaan visual compact disk (VCD dan leaflet terhadap peningkatan pengetahuan, sikap dan perilaku siswa SLTA dalam pencegahan kecelakaan sepeda motor di Kota Bekasi pada tahun 2010. Desain penelitian yang digunakan quasi experiment dengan rancangan equivalent pretest and post-test with control group, dengan intervensi pemutaran VCD dan pemberian leaflet. Sampel dihitung berdasarkan uji 2 proporsi, diperoleh sampel minimal 211 untuk yang di intervensi dan 211 untuk kontrol. Mereka diambil dari siswa SLTA kelas I dan kelas II yang sering mengendarai sepeda motor. Evaluasi hasil intervensi dilakukan setelah tiga bulan. Alat pengumpul data adalah kuesioner yang telah diuji coba. Analisis data menggunakan uji Kolmogorov-Smirnov, uji-t berpasangan dan uji-t independen. Hasil penelitian menunjukan uji-t berpasangan pada kelompok yang di intervensi meningkatkan rerata skor pengetahuan, sikap, dan perilaku siswa SLTA sebelum dibandingkan sesudah pemutaran VCD dan pemberian leaflet bermakna (nilai p < 0,05, tetapi pada kelompok kontrol hanya terjadi peningkatan rerata skor perilaku sebelum dibandingkan sesudah adanya perlakukan. Sedangkan, hasil uji-t independen menunjukan hanya pada rerata skor variabel pengetahuan terdapat perbedaan peningkatan skor antara kelompok intervensi dan kelompok kontrol yang bermakna (nilai p < 0,05. Kesimpulannya, penyuluhan menggunakan VCD dan leaflet dapat meningkatkan pengetahuan siswa SLTA dalam pencegahan kecelakaan sepeda motor. Indonesia does not have a policy of promotion motorcycle accident prevention. The purpose of this study was to assess the effectiveness of the Visual Compact Disks and leaflets to increase in knowledge, attitudes and behavior of the motorcycle accident prevention on high school students in Bekasi City. The method used a non-randomized quasi

  16. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and

  17. Perceptual-cognitive changes during motor learning: The influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action

    Directory of Open Access Journals (Sweden)

    Cornelia eFrank

    2016-01-01

    Full Text Available Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior, little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one’s mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45 were assigned to one of three conditions: physical practice, physical practice plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of three days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning.

  18. Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor

    Science.gov (United States)

    Duong, Khanh A.; Garcia, Ephrahim

    1997-01-01

    This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.

  19. Complications of Minimally Invasive, Tubular Access Surgery for Cervical, Thoracic, and Lumbar Surgery

    Directory of Open Access Journals (Sweden)

    Donald A. Ross

    2014-01-01

    Full Text Available The object of the study was to review the author’s large series of minimally invasive spine surgeries for complication rates. The author reviewed a personal operative database for minimally access spine surgeries done through nonexpandable tubular retractors for extradural, nonfusion procedures. Consecutive cases (n=1231 were reviewed for complications. There were no wound infections. Durotomy occurred in 33 cases (2.7% overall or 3.4% of lumbar cases. There were no external or symptomatic internal cerebrospinal fluid leaks or pseudomeningoceles requiring additional treatment. The only motor injuries were 3 C5 root palsies, 2 of which resolved. Minimally invasive spine surgery performed through tubular retractors can result in a low wound infection rate when compared to open surgery. Durotomy is no more common than open procedures and does not often result in the need for secondary procedures. New neurologic deficits are uncommon, with most observed at the C5 root. Minimally invasive spine surgery, even without benefits such as less pain or shorter hospital stays, can result in considerably lower complication rates than open surgery.

  20. IMITATION MODEL OF A HIGH-SPEED INDUCTION MOTOR WITH FREQUENCY CONTROL

    Directory of Open Access Journals (Sweden)

    V. E. Pliugin

    2017-12-01

    Full Text Available Purpose. To develop the imitation model of the frequency converter controlled high-speed induction motor with a squirrel-cage rotor in order to determine reasons causes electric motor vibrations and noises in starting modes. Methodology. We have applied the mathematical simulation of electromagnetic field in transient mode and imported obtained field model as an independent object in frequency converter circuit. We have correlated the simulated result with the experimental data obtained by means of the PID regulator factors. Results. We have made the simulation model of the high-speed induction motor with a squirrel-cage rotor speed control in AnsysRMxprt, Ansys Maxwell and Ansys Simplorer, approximated to their physical prototype. We have made models modifications allows to provide high-performance computing (HPC in dedicated server and computer cluster to reduce the simulation time. We have obtained motor characteristics in starting and rated modes. This allows to make recommendations on determination of high-speed electric motor optimal deign, having minimum indexes of vibrations and noises. Originality. For the first time, we have carried out the integrated research of induction motor using simultaneously simulation models both in Ansys Maxwell (2D field model and in Ansys Simplorer (transient circuit model with the control low realization for the motor soft start. For the first time the correlation between stator and rotor slots, allows to obtain minimal vibrations and noises, was defined. Practical value. We have tested manufactured high-speed motor based on the performed calculation. The experimental studies have confirmed the adequacy of the model, which allows designing such motors for new high-speed construction, and upgrade the existing ones.

  1. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Science.gov (United States)

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children’s learning-related skills and physical development and subsequently to their academic success. PMID:27660751

  2. Multimodal Therapy Involving High-Intensity Interval Training Improves the Physical Fitness, Motor Skills, Social Behavior, and Quality of Life of Boys With ADHD: A Randomized Controlled Study.

    Science.gov (United States)

    Meßler, Carolin Friederike; Holmberg, Hans-Christer; Sperlich, Billy

    2018-06-01

    To compare the effects of multimodal therapy including supervised high-intensity interval training (HIIT) with those of standard multimodal therapy (TRAD) concerning key variables of physical fitness (peak power and oxygen uptake), motor skills, social behavior, and quality of life in boys with ADHD. A single-center, two-arm randomized, controlled design was used, with 28 boys (8-13 years of age, IQ = 83-136) being randomly assigned to multimodal HIIT (three sessions/week, 4 × 4-min intervals at 95% of peak heart rate) or TRAD. The Movement Assessment Battery for Children II evaluated motor skills and the German version of the hyperkinetic disorder questionnaire for external evaluation by the guardians (FBB-HKS) or German version of the hyperkinetic disorder questionnaire for self-assessment by the children (SBB-HKS) and the KINDL-R questionnaires mental health and health-related quality of life. Both interventions enhanced peak power, and HIIT also reduced submaximal oxygen uptake. HIIT was more effective than TRAD in improving the total score for motor skills (including manual dexterity and ball skills; p HIIT improved physical fitness, motor skills, certain aspects of quality of life, competence, and attention in boys with ADHD.

  3. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    Science.gov (United States)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  4. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  5. Effects of symmetrical voltage sags on squirrel-cage induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain)

    2007-10-15

    This paper analyzes the symmetrical voltage sag consequences on the induction motor behavior when single- and double-cage models are considered, namely current and torque peaks, and speed loss. These effects depend on several variables like sag type, duration and depth. Voltage sag effects are studied by using single- and double-cage models for three motors of different rated power. The double-cage model always predicts torque and current peaks higher than those of the single-cage model. The single-cage model predicts that voltage sags can produce motor instability, whereas the double-cage model is always stable. Therefore, the double-cage model must be used for the simulation of the squirrel-cage induction motor, because the single-cage model can give erroneous results in some situations. (author)

  6. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    Science.gov (United States)

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  7. Manipulating motor performance and memory through real-time fMRI neurofeedback

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  8. Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part I: Local Behavior

    International Nuclear Information System (INIS)

    Durand, S.; Nikolova, M.

    2006-01-01

    Many estimation problems amount to minimizing a piecewise C m objective function, with m ≥ 2, composed of a quadratic data-fidelity term and a general regularization term. It is widely accepted that the minimizers obtained using non-convex and possibly non-smooth regularization terms are frequently good estimates. However, few facts are known on the ways to control properties of these minimizers. This work is dedicated to the stability of the minimizers of such objective functions with respect to variations of the data. It consists of two parts: first we consider all local minimizers, whereas in a second part we derive results on global minimizers. In this part we focus on data points such that every local minimizer is isolated and results from a C m-1 local minimizer function, defined on some neighborhood. We demonstrate that all data points for which this fails form a set whose closure is negligible

  9. Testing the Motor Simulation Account of Source Errors for Actions in Recall

    Directory of Open Access Journals (Sweden)

    Nicholas Lange

    2017-09-01

    Full Text Available Observing someone else perform an action can lead to false memories of self-performance – the observation inflation effect. One explanation is that action simulation via mirror neuron activation during action observation is responsible for observation inflation by enriching memories of observed actions with motor representations. In three experiments we investigated this account of source memory failures, using a novel paradigm that minimized influences of verbalization and prior object knowledge. Participants worked in pairs to take turns acting out geometric shapes and letters. The next day, participants recalled either actions they had performed or those they had observed. Experiment 1 showed that participants falsely retrieved observed actions as self-performed, but also retrieved self-performed actions as observed. Experiment 2 showed that preventing participants from encoding observed actions motorically by taxing their motor system with a concurrent motor task did not lead to the predicted decrease in false claims of self-performance. Indeed, Experiment 3 showed that this was the case even if participants were asked to carefully monitor their recall. Because our data provide no evidence for a motor activation account, we also discussed our results in light of a source monitoring account.

  10. Driver electronics design and control for a total artificial heart linear motor.

    Science.gov (United States)

    Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich

    2018-01-27

    For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.

  11. Correlations and symmetry of interactions influence collective dynamics of molecular motors

    International Nuclear Information System (INIS)

    Celis-Garza, Daniel; Teimouri, Hamid; Kolomeisky, Anatoly B

    2015-01-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations. (paper)

  12. Adolescents, Peers, and Motor Vehicles The Perfect Storm?

    OpenAIRE

    Allen, Joseph P.; Brown, B. Bradford

    2008-01-01

    Motor-vehicle crashes are a leading cause of death among teenagers and in many instances appear linked to negative peer influences on adolescent driving behavior. This article examines a range of developmental and structural factors that potentially increase the risks associated with adolescent driving. Developmental risk factors for adolescents include a propensity toward engaging in deviant and risky behavior, a desire to please peers, and the potential cost to an adolescent of alienating p...

  13. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Crowley; Prem N. Bansal

    2004-10-01

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow

  14. The effects of an early motor skill intervention on motor skills, levels of physical activity, and socialization in young children with autism spectrum disorder: A pilot study.

    Science.gov (United States)

    Ketcheson, Leah; Hauck, Janet; Ulrich, Dale

    2017-05-01

    Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor skill intervention on motor skills (Test of Gross Motor Development-2), physical activity (accelerometers), and socialization (Playground Observation of Peer Engagement) in young children with autism spectrum disorder. A total of 20 children with autism spectrum disorder aged 4-6 years participated. The experimental group ( n = 11) participated in an 8-week intervention consisting of motor skill instruction for 4 h/day, 5 days/week. The control group ( n = 9) did not receive the intervention. A repeated-measures analysis of covariance revealed statistically significant differences between groups in all three motor outcomes, locomotor ( F(1, 14) = 10.07, p intervention services delivered to young children with autism spectrum disorder.

  15. A neural network-based optimal spatial filter design method for motor imagery classification.

    Directory of Open Access Journals (Sweden)

    Ayhan Yuksel

    Full Text Available In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  16. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    International Nuclear Information System (INIS)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-01-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials. (paper)

  17. Early and late changes in the distal forelimb representation of the supplementary motor area after injury to frontal motor areas in the squirrel monkey.

    Science.gov (United States)

    Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J

    2008-09-01

    Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.

  18. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    Science.gov (United States)

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  19. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    Energy Technology Data Exchange (ETDEWEB)

    Farfán-García, E.D.; Pérez-Rodríguez, M. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); Espinosa-García, C. [Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México (Mexico); Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); and others

    2016-09-15

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  20. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    International Nuclear Information System (INIS)

    Farfán-García, E.D.; Pérez-Rodríguez, M.; Espinosa-García, C.; Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G.

    2016-01-01

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  1. Impairments of Motor Function While Multitasking in HIV.

    Science.gov (United States)

    Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  2. Thermodynamics and kinetics of molecular motors.

    Science.gov (United States)

    Astumian, R Dean

    2010-06-02

    Molecular motors are first and foremost molecules, governed by the laws of chemistry rather than of mechanics. The dynamical behavior of motors based on chemical principles can be described as a random walk on a network of states. A key insight is that any molecular motor in solution explores all possible motions and configurations at thermodynamic equilibrium. By using input energy and chemical design to prevent motion that is not wanted, what is left behind is the motion that is desired. This review is focused on two-headed motors such as kinesin and Myosin V that move on a polymeric track. By use of microscopic reversibility, it is shown that the ratio between the number of forward steps and the number of backward steps in any sufficiently long time period does not directly depend on the mechanical properties of the linker between the two heads. Instead, this ratio is governed by the relative chemical specificity of the heads in the front-versus-rear position for the fuel, adenosine triphosphate and its products, adenosine diphosphate and inorganic phosphate. These insights have been key factors in the design of biologically inspired synthetic molecular walkers constructed out of DNA or out of small organic molecules. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. [Behavioral impairments in Parkinson's disease].

    Science.gov (United States)

    Kashihara, Kenichi

    2004-09-01

    Behavioral impairments in parkinsonian patients include agitation, hypersexuality, stereotypic movement, pathological gambling, abuse of antiparkinsonian drugs, REM sleep behavioral disorder, and restless legs syndrome. Dementia, psychoses, and emotional disorders, such as depression and anxiety/panic disorder, also impair behavior. Symptoms may be produced by dysfunction of the central nervous system, medication, and/or the psychosocial problems associated with Parkinson's disease. Treatment therefore should be based on the cause of the symptoms seen. In some cases, the reduction or change of antiparkinsonian drugs, or both, may be effective. Treatment of the motor symptoms of Parkinson's disease, including motor fluctuations, may reduce the risk of panic attacks being evoked in the 'off' period. Use of antidepressants, sedatives, and neuroleptics may often be effective. Physicians should identify the causes of the symptoms of behavioral impairment and select appropriate treatments.

  4. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  5. The roles of physical activity and sedentary behavior on Hispanic children's mental health: a motor skill perspective.

    Science.gov (United States)

    Gu, Xiangli; Keller, M Jean; Weiller-Abels, Karen H; Zhang, Tao

    2018-01-01

    Motor competence (MC) has been recognized as the foundation for life-time moderate-to-vigorous physical activity (MVPA) as well as an influential factor in reducing sedentary behavior during childhood. Guided by Blair et al.'s health model, the purpose of this study was to examine the behavioral mechanism of mental health including physical, psychosocial, and cognitive health among Hispanic children related to MC and MVPA. A prospective research design was used with two-wave assessments across one academic year. A total of 141 Hispanic kindergarteners (Mean age  = 5.37, SD = 0.48) were recruited in Texas. Nearly all (94.3%) of the participants were from low-income families based on the Income Eligibility Guidelines. The study was approved by the University Research Review Board, and informed consent was obtained from parents/guardians prior to starting the study. Multiple regressions indicated that manipulative skill was a significant predictor of physical and psychosocial health (β = 0.21, β = 0.26, p health (β = 0.22, p mental health outcomes through MVPA (95% CI [0.031, 0.119]) and sedentary behavior (95% CI [0.054, 0.235]), respectively. The results suggest that skill-based activities/games, with instructions, should be encouraged during school-based physical activity and health promotion programs in childhood education. Better understanding of the early effects of MC may contribute to designing strategies to promote Hispanic children's well-being.

  6. Assessment of Event-Related EEG Power After Single-Pulse TMS in Unresponsive Wakefulness Syndrome and Minimally Conscious State Patients.

    Science.gov (United States)

    Formaggio, Emanuela; Cavinato, Marianna; Storti, Silvia Francesca; Tonin, Paolo; Piccione, Francesco; Manganotti, Paolo

    2016-03-01

    In patients without a behavioral response, non-invasive techniques and new methods of data analysis can complement existing diagnostic tools by providing a method for detecting covert signs of residual cognitive function and awareness. The aim of this study was to investigate the brain oscillatory activities synchronized by single-pulse transcranial magnetic stimulation (TMS) delivered over the primary motor area in the time-frequency domain in patients with the unresponsive wakefulness syndrome or in a minimally conscious state as compared to healthy controls. A time-frequency analysis based on the wavelet transform was used to characterize rapid modifications of oscillatory EEG rhythms induced by TMS in patients as compared to healthy controls. The pattern of EEG changes in the patients differed from that of healthy controls. In the controls there was an early synchronization of slow waves immediately followed by a desynchronization of alpha and beta frequency bands over the frontal and centro-parietal electrodes, whereas an opposite early synchronization, particularly over motor areas for alpha and beta and over the frontal and parietal electrodes for beta power, was seen in the patients. In addition, no relevant modification in slow rhythms (delta and theta) after TMS was noted in patients. The clinical impact of these findings could be relevant in neurorehabilitation settings for increasing the awareness of these patients and defining new treatment procedures.

  7. A flight sensory-motor to olfactory processing circuit in the moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Samual P Bradley

    2016-02-01

    Full Text Available Neural circuits projecting information from motor pathways to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL glomeruli. Furthermore, within the AL we show that the Manduca sexta histamine B receptor (MsHisClB is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center (LAC indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  8. Creative accomplishment of continuous TIP motor torque monitoring system in BWR plant

    International Nuclear Information System (INIS)

    Sun, C.H.; Li, I.N.; Liu, C.S.

    1986-01-01

    The Traveling In-core Probe (TIP) system is designed so delicate that the routine preventive maintenance - torque measurement is required to keep system operating properly. Normally, the torque measurement is performed by manually rotating torque wrench on the local TIP drive mechanism or using wattmeter during automatic operation. Whenever, either torque wrench or wattmeter measurement is performed, the high radiation exposure to maintenance personnel and mass manpower is expected. Because of this reason Taipower has developed a continuous TIP motor torque monitoring system to save manpower and minimize radiation exposure to maintenance personnel. This methods of TIP motor torque measurement will also predict TIP guide tube deterioration. (author)

  9. Social interaction enhances motor resonance for observed human actions.

    Science.gov (United States)

    Hogeveen, Jeremy; Obhi, Sukhvinder S

    2012-04-25

    Understanding the neural basis of social behavior has become an important goal for cognitive neuroscience and a key aim is to link neural processes observed in the laboratory to more naturalistic social behaviors in real-world contexts. Although it is accepted that mirror mechanisms contribute to the occurrence of motor resonance (MR) and are common to action execution, observation, and imitation, questions remain about mirror (and MR) involvement in real social behavior and in processing nonhuman actions. To determine whether social interaction primes the MR system, groups of participants engaged or did not engage in a social interaction before observing human or robotic actions. During observation, MR was assessed via motor-evoked potentials elicited with transcranial magnetic stimulation. Compared with participants who did not engage in a prior social interaction, participants who engaged in the social interaction showed a significant increase in MR for human actions. In contrast, social interaction did not increase MR for robot actions. Thus, naturalistic social interaction and laboratory action observation tasks appear to involve common MR mechanisms, and recent experience tunes the system to particular agent types.

  10. Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds.

    Directory of Open Access Journals (Sweden)

    Haruhito Horita

    Full Text Available Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1 was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

  11. Motor contagion during human-human and human-robot interaction.

    Directory of Open Access Journals (Sweden)

    Ambra Bisio

    Full Text Available Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot. After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  12. Motor contagion during human-human and human-robot interaction.

    Science.gov (United States)

    Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry

    2014-01-01

    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  13. The use of a special software for induction motor diagnostics in the diamond industry

    Directory of Open Access Journals (Sweden)

    Shevchuk Vladislav A.

    2017-01-01

    Full Text Available The field of induction motor application in the diamond industry has considerably increased due to the transition to the underground mining method. This article is devoted to the research the induction motor diagnostic technique in the diamond industry using special software. The practice shows that unreliability of induction motors causes some serious economic losses related to the expenses on premature maintenance and idle time. This article is devoted to the research of diagnostic technique of induction motors in the diamond industry using a special software. The article presents some data obtained in the course of the research conducted at an industrial site of the diamond company “ALROSA” in Mirny using the vibration-based diagnostics. Thus, based on the analysis of the findings some recommendations concerning the improvement of maintenance and servicing system have been given. The use of these recommendations allows assessing the operational reliability of induction motors in the diamond industry, minimizing the risk of sudden failures and reducing the maintenance and repair expenses.

  14. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  15. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  16. Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.

    Science.gov (United States)

    Latash, Mark L

    2010-10-01

    This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s) and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable ("good variability"). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the "good variability". Experimental support for the suggested scheme is reviewed. Copyright © 2009 Elsevier B.V. All rights reserved.

  17. Early Speech Motor Development: Cognitive and Linguistic Considerations

    Science.gov (United States)

    Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.

    2009-01-01

    This longitudinal investigation examines developmental changes in orofacial movements occurring during the early stages of communication development. The goals were to identify developmental trends in early speech motor performance and to determine how these trends differ across orofacial behaviors thought to vary in cognitive and linguistic…

  18. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  19. Motor planning in children with cerebral palsy: A longitudinal perspective.

    Science.gov (United States)

    Lust, Jessica Mireille; Spruijt, Steffie; Wilson, Peter H; Steenbergen, Bert

    2018-08-01

    Motor planning is important for daily functioning. Deficits in motor planning can result in slow, inefficient, and clumsy motor behavior and are linked to disruptions in performance of activities of daily living in children with cerebral palsy (CP). However, the evidence in CP is primarily based on cross-sectional data. Data are presented on the development of motor planning in children with CP using a longitudinal design with three measurement occasions, each separated by 1 year. Twenty-two children with CP (9 boys, 13 girls; age in years;months, M = 7;1, SD = 1;2) and 22 age-matched controls (10 boys, 12 girls, M  = 7;1, SD = 1;3) participated. Children performed a bar transport task in which some conditions ("critical angles") required participants to sacrifice initial posture comfort in order to achieve end-state comfort. Performance on critical trials was analyzed using linear growth curve modeling. In general, children with CP showed poor end-state planning for critical angles. Importantly, unlike in controls, motor planning ability did not improve across the three measurement occasions in children with CP. These longitudinal results show that motor planning issues in CP do not resolve with development over childhood. Strategies to enhance motor planning are suggested for intervention.

  20. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  1. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  2. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  3. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  4. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  5. The influence of errors during practice on motor learning in young individuals with cerebral palsy

    NARCIS (Netherlands)

    Abswoude, F. van; Santos-Vieira, B.; Kamp, J. van der; Steenbergen, B.

    2015-01-01

    The aim of this study was to investigate the effect of errors during practice on motor skill learning in young individuals with cerebral palsy (CP). Minimizing errors has been validated in typically developing children and children with intellectual disabilities as a method for implicit learning,

  6. A strategy for minimizing common mode human error in executing critical functions and tasks

    International Nuclear Information System (INIS)

    Beltracchi, L.; Lindsay, R.W.

    1992-01-01

    Human error in execution of critical functions and tasks can be costly. The Three Mile Island and the Chernobyl Accidents are examples of results from human error in the nuclear industry. There are similar errors that could no doubt be cited from other industries. This paper discusses a strategy to minimize common mode human error in the execution of critical functions and tasks. The strategy consists of the use of human redundancy, and also diversity in human cognitive behavior: skill-, rule-, and knowledge-based behavior. The authors contend that the use of diversity in human cognitive behavior is possible, and it minimizes common mode error

  7. Impairments of Motor Function While Multitasking in HIV

    Directory of Open Access Journals (Sweden)

    Cherie L. Marvel

    2017-04-01

    Full Text Available Human immunodeficiency virus (HIV became a treatable illness with the introduction of combination antiretroviral therapy (CART. As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND. The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing. Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  8. Costly myths. An analysis of idling beliefs and behavior in personal motor vehicles

    International Nuclear Information System (INIS)

    Carrico, Amanda R.; Padgett, Paul; Vandenbergh, Michael P.; Gilligan, Jonathan; Wallston, Kenneth A.

    2009-01-01

    Despite the large contribution of individuals and households to climate change, little has been done in the US to reduce the CO 2 emissions attributable to this sector. Motor vehicle idling among individual private citizens is one behavior that may be amenable to large-scale policy interventions. Currently, little data are available to quantify the potential reductions in emissions that could be realized by successful policy interventions. In addition, little is known about the motivations and beliefs that underlie idling. In the fall of 2007, 1300 drivers in the US were surveyed to assess typical idling practices, beliefs and motivations. Results indicate that the average individual idled for over 16 min a day and believed that a vehicle can be idled for at least 3.6 min before it is better to turn it off. Those who held inaccurate beliefs idled, on average, over 1 min longer than the remainder of the sample. These data suggest that idling accounts for over 93 MMt of CO 2 and 10.6 billion gallons (40.1 billion liters) of gasoline a year, equaling 1.6% of all US emissions. Much of this idling is unnecessary and economically disadvantageous to drivers. The policy implications of these findings are discussed. (author)

  9. Motor speech signature of behavioral variant frontotemporal dementia: Refining the phenotype.

    Science.gov (United States)

    Vogel, Adam P; Poole, Matthew L; Pemberton, Hugh; Caverlé, Marja W J; Boonstra, Frederique M C; Low, Essie; Darby, David; Brodtmann, Amy

    2017-08-22

    To provide a comprehensive description of motor speech function in behavioral variant frontotemporal dementia (bvFTD). Forty-eight individuals (24 bvFTD and 24 age- and sex-matched healthy controls) provided speech samples. These varied in complexity and thus cognitive demand. Their language was assessed using the Progressive Aphasia Language Scale and verbal fluency tasks. Speech was analyzed perceptually to describe the nature of deficits and acoustically to quantify differences between patients with bvFTD and healthy controls. Cortical thickness and subcortical volume derived from MRI scans were correlated with speech outcomes in patients with bvFTD. Speech of affected individuals was significantly different from that of healthy controls. The speech signature of patients with bvFTD is characterized by a reduced rate (75%) and accuracy (65%) on alternating syllable production tasks, and prosodic deficits including reduced speech rate (45%), prolonged intervals (54%), and use of short phrases (41%). Groups differed on acoustic measures derived from the reading, unprepared monologue, and diadochokinetic tasks but not the days of the week or sustained vowel tasks. Variability of silence length was associated with cortical thickness of the inferior frontal gyrus and insula and speech rate with the precentral gyrus. One in 8 patients presented with moderate speech timing deficits with a further two-thirds rated as mild or subclinical. Subtle but measurable deficits in prosody are common in bvFTD and should be considered during disease management. Language function correlated with speech timing measures derived from the unprepared monologue only. © 2017 American Academy of Neurology.

  10. Motor rehabilitation after traumatic brain injury and stroke - Advances in assessment and therapy.

    Science.gov (United States)

    Platz, Thomas; Hesse, S.; Mauritz, K.-H.

    1999-01-01

    A long-term goal in motor rehabilitation is that treatment is not selected on the basis of 'schools of thought', but rather, based on knowledge about efficacy and effectiveness of specific interventions for specific situations (e.g. functional syndromes). Motor dysfunction after stroke or TBI can be caused by many different functional syndromes such as paresis, ataxia, deafferentaion, visuo-perceptual deficits, or apraxia. Examples are provided showing that theory-based analysis of motor behavior makes it possible to describe 'syndrome-specific motor deficits'. Its potential implications for motor rehabilitation are that our understanding of altered motor behavior as well as specific therapeutic approaches might be promoted. A methodological prerequisite for clinical trials in rehabilitation is knowledge about test properties of assessment tools in follow-up situations such as test-retest reliability and responsiveness to change. Test-retest reliability assesses whether a test can produce stable measures with test repetition, while sensitivity to change reflects whether a test detects changes that occur over time. Exemplifying these considerations, a reliability and validity study of a kinematic arm movement analysis is summarized. In terms of new therapeutic developments, two examples of clinical therapeutic studies are provided assessing the efficacy of specific inter-ventions for specific situations in arm and gait rehabilitation: the Arm Ability Training for high functioning hemiparetic stroke and TBI patients, and the treadmill training for non-ambulatory hemiparetic patients. In addition, a new technical development, a machine-controlled gait trainer ist introduced.

  11. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  12. Short- and Long-Term Effects of Conscious, Minimally Conscious and Unconscious Brand Logos

    Science.gov (United States)

    Gordts, Sarah; Soetens, Eric; Van den Bussche, Eva

    2013-01-01

    Unconsciously presented information can influence our behavior in an experimental context. However, whether these effects can be translated to a daily life context, such as advertising, is strongly debated. What hampers this translation is the widely accepted notion of the short-livedness of unconscious representations. The effect of unconscious information on behavior is assumed to rapidly vanish within a few hundreds of milliseconds. Using highly familiar brand logos (e.g., the logo of McDonald's) as subliminal and supraliminal primes in two priming experiments, we assessed whether these logos were able to elicit behavioral effects after a short (e.g., 350 ms), a medium (e.g., 1000 ms), and a long (e.g., 5000 ms) interval. Our results demonstrate that when real-life information is presented minimally consciously or even unconsciously, it can influence our subsequent behavior, even when more than five seconds pass between the presentation of the minimally conscious or unconscious information and the behavior on which it exerts its influence. PMID:23658681

  13. Short- and long-term effects of conscious, minimally conscious and unconscious brand logos.

    Science.gov (United States)

    Muscarella, Charlotte; Brintazzoli, Gigliola; Gordts, Sarah; Soetens, Eric; Van den Bussche, Eva

    2013-01-01

    Unconsciously presented information can influence our behavior in an experimental context. However, whether these effects can be translated to a daily life context, such as advertising, is strongly debated. What hampers this translation is the widely accepted notion of the short-livedness of unconscious representations. The effect of unconscious information on behavior is assumed to rapidly vanish within a few hundreds of milliseconds. Using highly familiar brand logos (e.g., the logo of McDonald's) as subliminal and supraliminal primes in two priming experiments, we assessed whether these logos were able to elicit behavioral effects after a short (e.g., 350 ms), a medium (e.g., 1000 ms), and a long (e.g., 5000 ms) interval. Our results demonstrate that when real-life information is presented minimally consciously or even unconsciously, it can influence our subsequent behavior, even when more than five seconds pass between the presentation of the minimally conscious or unconscious information and the behavior on which it exerts its influence.

  14. Short- and long-term effects of conscious, minimally conscious and unconscious brand logos.

    Directory of Open Access Journals (Sweden)

    Charlotte Muscarella

    Full Text Available Unconsciously presented information can influence our behavior in an experimental context. However, whether these effects can be translated to a daily life context, such as advertising, is strongly debated. What hampers this translation is the widely accepted notion of the short-livedness of unconscious representations. The effect of unconscious information on behavior is assumed to rapidly vanish within a few hundreds of milliseconds. Using highly familiar brand logos (e.g., the logo of McDonald's as subliminal and supraliminal primes in two priming experiments, we assessed whether these logos were able to elicit behavioral effects after a short (e.g., 350 ms, a medium (e.g., 1000 ms, and a long (e.g., 5000 ms interval. Our results demonstrate that when real-life information is presented minimally consciously or even unconsciously, it can influence our subsequent behavior, even when more than five seconds pass between the presentation of the minimally conscious or unconscious information and the behavior on which it exerts its influence.

  15. Early motor skill competence as a mediator of child and adult physical activity

    Directory of Open Access Journals (Sweden)

    Paul D. Loprinzi

    2015-01-01

    Full Text Available Objective: In order to effectively promote physical activity (PA during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA.

  16. The stochastic chemomechanics of the F(1)-ATPase molecular motor.

    Science.gov (United States)

    Gaspard, P; Gerritsma, E

    2007-08-21

    We report a theoretical study of the F(1)-ATPase molecular rotary motor experimentally studied by R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr., H. Itoh [Nature 410 (2001) 898]. The motor is modeled as a stochastic process for the angle of its shaft and the chemical state of its catalytic sites. The stochastic process is ruled by six coupled Fokker-Planck equations for the biased diffusion of the angle and the random jumps between the chemical states. The model reproduces the experimental observations that the motor proceeds by substeps and the rotation rate saturates at high concentrations of adenosine triphosphate or at low values of the friction coefficient. Moreover, predictions are made about the dependence of the rotation rate on temperature, and about the behavior of the F(1) motor under the effect of an external torque, especially, in the regime of synthesis of adenosine triphosphate.

  17. Manipulating motor performance and memory through real-time fMRI neurofeedback.

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-05-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Effect of motor limitations on the expression of aggressiveness among adolescents.

    Science.gov (United States)

    Tripković, Mara; Matijević, Valentina; Marković, Hrvoje; Ercegovi, Nela

    2015-03-01

    This study examined how motor limitations in terms of reduced possibilities to move influence aggression, starting from the fact that motor skills and movement have an important place in the expression of aggression, as well as the tendency of adolescents to "body language". Adolescent with motor deficit is hindered in gaining experience of one's own body, which is reflected in the formation of complete experience of himself, or constitution of the self. In many of the functions of motor skills and movement aggression has a significant place that we wanted to determine without deeper analysis of whether the origin of aggression is instinctive or it is always just the result of frustration. The sample on which testing was performed consisted of 100 randomly selected subjects of both genders aged 16-18 years. Fifty subjects had motor limitations due to illness or injury, and another fifty subjects had intact motor functions. The study used three instruments: 1) A-87 questionnaire for aggressiveness examination; 2) structured interview; and 3) protocol for observation under natural conditions. Results of the analysis of data obtained in total score, as well as in all five subscales of the A-87 questionnaire for aggressiveness examination showed that the two groups were not significantly different. The results obtained by structured interview showed the adolescents with motor limitations to demonstrate greater verbal aggressiveness, then latent physical aggressiveness. A statistically significant between-group difference was obtained on the factor of self-destructiveness, which implies that adolescents with motor limitations are somewhat more self-destructive compared to those in control group. From the results obtained by the protocol for systematic observation in natural conditions, it was evident that there were significant differences on most of perceptual conducts between control and experimental group, whereby adolescents with motor limitations were more

  19. Age-related changes in oscillatory power affect motor action.

    Directory of Open Access Journals (Sweden)

    Liqing Liu

    Full Text Available With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC. This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.

  20. Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins.

    Science.gov (United States)

    Takshak, Anjneya; Kunwar, Ambarish

    2016-05-01

    Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team. © 2016 The Protein Society.