WorldWideScience

Sample records for miniature science instruments

  1. Miniaturized Environmental Monitoring Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  2. Advances in Miniaturized Instruments for Genomics

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2014-01-01

    Full Text Available In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices.

  3. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  4. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  5. Flight experience with lightweight, low-power miniaturized instrumentation systems

    Science.gov (United States)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  6. Miniature Photonic Spectrometers and Filters for Astrophysics and Space Science

    Science.gov (United States)

    Veilleux, Sylvain

    This project seeks to apply our recent breakthroughs in astrophotonics - photonics applied to astronomical instrumentation - to replace the large lenses, mirrors, and gratings of conventional astronomical spectrographs with optoelectronic components borrowed from the multi-billion dollar telecommunication industry. This will reduce the mass and volume of these instruments by two to three orders of magnitudes, shorten delivery times, lower the risk, and cut the cost proportionally. Photonic instruments are also more amenable to complex light manipulation and massive multiplexing, cheaper to mass produce, easier to control, much less susceptible to vibrations and flexures, and have higher throughput. The proposed effort directly addresses one of the technology gaps identified in the 2016 Cosmic Origins Technology Report, namely the need to develop "high-performance spectral dispersion components / devices." Using private funding, we have developed photonic near-infrared (1.4 - 1.6 microns) spectrometers where the dispersing optics are replaced by miniature ( 1 cubiccentimeter) arrayed waveguide gratings imprinted using buried silicon nitride (``nanocore'') technology, the leading solution for low-loss waveguides. We have also developed highly sophisticated photonics filters using complex waveguide Bragg gratings, produced on the same platform technology as the photonic spectrometers and equally small. These prototypes have been fabricated and tested using the state-of-the-art facilities of the Maryland NanoCenter and AstroPhotonics Lab, and the results of these tests have been published in refereed publications and conference proceedings. APRA funding is now needed to develop the next generation of photonics spectrometers and filters for astrophysics and space science applications. We will (1) broaden the wavelength range to 1 - 1.7 microns, (2) increase the spectral resolving power of our photonic spectrometers from R 1500 to 3000, (3) experiment with the aspect

  7. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  8. INSTRUMENTAL MINIATURES BY THE COMPOSER GHEORGHE NEAGA: BETWEEN THE OLD AND THE NEW

    Directory of Open Access Journals (Sweden)

    CHICIUC NATALIA

    2016-12-01

    Full Text Available The miniature occupies an important place in Gheorghe Neaga’s instrumental chamber repertoire. Th e number of his small creations is impressive, being found both in the teaching repertoire of artistic education institutions and in the artistsinstrumentalists’ concert repertoire. Dedicated to piano, violin and piano or other instruments, the pieces refl ect in a perfect measure the author’s artistic predilections, more or less infl uenced by the evolution of compositional techniques. On this line, the proposed objective in this article is to examine some unelucidated miniatures through the old-new binomial spectrum.

  9. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview.

    Science.gov (United States)

    Nazario, Carlos E D; Silva, Meire R; Franco, Maraíssa S; Lanças, Fernando M

    2015-11-20

    The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Construction of a Chemical Sensor/Instrumentation Package Using Fiber Optic and Miniaturization Technology

    Science.gov (United States)

    Newton, R. L.

    1999-01-01

    The objective of this research was to construct a chemical sensor/instrumentation package that was smaller in weight and volume than conventional instrumentation. This reduction in weight and volume is needed to assist in further reducing the cost of launching payloads into space. To accomplish this, fiber optic sensors, miniaturized spectrometers, and wireless modems were employed. The system was evaluated using iodine as a calibration analyte.

  11. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  12. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  13. Algorithms for a hand-held miniature x-ray fluorescence analytical instrument

    International Nuclear Information System (INIS)

    Elam, W.T.; Newman, D.; Ziemba, F.

    1998-01-01

    The purpose of this joint program was to provide technical assistance with the development of a Miniature X-ray Fluorescence (XRF) Analytical Instrument. This new XRF instrument is designed to overcome the weaknesses of spectrometers commercially available at the present time. Currently available XRF spectrometers (for a complete list see reference 1) convert spectral information to sample composition using the influence coefficients technique or the fundamental parameters method. They require either a standard sample with composition relatively close to the unknown or a detailed knowledge of the sample matrix. They also require a highly-trained operator and the results often depend on the capabilities of the operator. In addition, almost all existing field-portable, hand-held instruments use radioactive sources for excitation. Regulatory limits on such sources restrict them such that they can only provide relatively weak excitation. This limits all current hand-held XRF instruments to poor detection limits and/or long data collection times, in addition to the licensing requirements and disposal problems for radioactive sources. The new XRF instrument was developed jointly by Quantrad Sensor, Inc., the Naval Research Laboratory (NRL), and the Department of Energy (DOE). This report describes the analysis algorithms developed by NRL for the new instrument and the software which embodies them

  14. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  15. The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats

    Science.gov (United States)

    Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.

    2018-02-01

    The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

  16. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  17. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.

    2018-04-04

    Flexible electronics is an emerging field in many applications ranging from in vivo biomedical devices to wearable smart systems. The capability of conforming to curved surfaces opens the door to add electronic components to miniaturized instruments, where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first choice, due to their high sensitivity, low power consumption etc. MTJs are also promising candidates for non-volatile next-generation data storage media and, hence, could become central components of wearable electronic devices. In this work, a generic low-cost regenerative batch fabrication process is utilized to transform rigid MTJs on a 500 {\\\\mu}m silicon wafer substrate into 5 {\\\\mu}m thin, mechanically flexible silicon devices, and ensuring optimal utilization of the whole substrate. This method maintains the outstanding magnetic properties, which are only obtained by deposition of the MTJ on smooth high-quality silicon wafers. The flexible MTJs are highly reliable and resistive to mechanical stress. Bending of the MTJ stacks with a diameter as small as 500 {\\\\mu}m is possible without compromising their performance and an endurance of over 1000 cycles without fatigue has been demonstrated. The flexible MTJs were mounted onto the tip of a cardiac catheter with 2 mm in diameter without compromising their performance. This enables the detection of magnetic fields and the angle which they are applied at with a high sensitivity of 4.93 %/Oe and a low power consumption of 0.15 {\\\\mu}W, while adding only 8 {\\\\mu}g and 15 {\\\\mu}m to the weight and diameter of the catheter, respectively.

  18. INSTRUMENTALISM IN SCIENCE: COMMENTS AND CRITICISMS

    African Journals Online (AJOL)

    Admin

    that guide the scientist in making his decisions or a perceived system of procedural rules. ... to science, information and theories than an ... instrumentalists try to provide the foundation of ..... instrumentalism, which are practical rather than.

  19. Data Science and Some Instruments

    Directory of Open Access Journals (Sweden)

    Corina SBUGHEA

    2017-12-01

    Full Text Available This paper is addressed to beginners, who want to form an overview on the field of Data Science, on the skills needed to access available IT tools, for obtaining meaningful and valuable analyzes in developing new strategies.

  20. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  1. Astrbiology Science and Technology for Instrument Development (ASTID)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Astrobiology Science and Technology for Instrument Development (ASTID) develops instrumentation capabilities to help meet Astrobiology science requirements on...

  2. Novel instrumentation for real-time monitoring using miniaturized flow systems with integrated biosensors

    NARCIS (Netherlands)

    Freaney, R.; McShane, A.; Keaveny, T.V.; McKenna, M.; Rabenstein, K.; Scheller, F.W.; Pfeiffer, D.; Urban, G.; Moser, I.; Jobst, G.; Manz, A.; Verpoorte, E.; Widmer, M.W.; Diamond, D.; Dempsey, E.; Saez De Viteri, F.J.; Smyth, M.

    1997-01-01

    A prototype miniaturized Total Chemical Analysis System (μTAS) has been developed and applied to on-line monitoring of glucose and lactate in the core blood of anaesthetized dogs. The system consists of a highly efficient microdialysis sampling interface sited in a small-scale extracorporeal shunt

  3. Developing the TRYAD Science Instrument

    Science.gov (United States)

    Van Eck, K. T.; Jenke, P.; Briggs, M. S.; Fuchs, J.; Capps, L.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are brief MeV gamma-ray flashes that are associated with thunderstorms, around 12km in altitude, and are viewed by orbiting satellites. These bright flashes of high energy photons were discovered in 1994. The two major models for TGFs that originate in thunderstorms are the Lightning Leader and Relativistic Feedback Discharge (RFD) model. Both depend on energetic electrons radiating via bremsstrahlung emission. The Lightning Leader model theorizes that lightning step leaders can accelerate electrons to relativistic speeds. The RFD model states that an energetic seed particle can be accelerated to relativistic speeds by strong electric fields inside of a thunderstorm. The main difference in the results of the two models is as follows; the Lightning Leader model results in a wider beam of gamma-rays than the RFD model because the electric field of a thunderstorm is more structured than that of lightning. The TRYAD mission will be the first to fly two detectors, inside CubeSats, in formation to detect TGFs from multiple points in the sky. The data from the CubeSats and the World Wide Lightning Location Network (WWLLN) will likely provide enough insight to constrain or eliminate some of the existing models for TGFs.This summer was spent testing components and constructing the engineering model of the scientific instrument that will be used to detect TGFs. The detector is made up of four lead-doped plastic scintillators which are coupled to arrays of Silicon Photomultipliers (SiPM). The signal from the SiPM array is then fed into a discriminator where a lower energy estimate can be determined and photon counts are recorded. I will present the progress made over the summer constructing the engineering model.

  4. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  5. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  6. Instrumentation between science, state and industry

    CERN Document Server

    Shinn, Terry

    2001-01-01

    these. In this book, we appropriate their conception of research-technology, and ex­ tend it to many other phenomena which are less stable and less localized in time and space than the Zeeman/Cotton situation. In the following pages, we use the concept for instances where research activities are orientated primarily toward technologies which facilitate both the production of scientific knowledge and the production of other goods. In particular, we use the tenn for instances where instruments and meth­ ods· traverse numerous geographic and institutional boundaries; that is, fields dis­ tinctly different and distant from the instruments' and methods' initial focus. We suggest that instruments such as the ultra-centrifuge, and the trajectories of the men who devise such artefacts, diverge in an interesting way from other fonns of artefacts and careers in science, metrology and engineering with which students of science and technology are more familiar. The instrument systems developed by re­ search-technolo...

  7. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  8. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  9. Integration of a Miniaturized Conductivity Sensor into an Animal-Borne Instrument

    Science.gov (United States)

    2015-09-30

    an Animal -Borne Instrument Lars Boehme Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews St Andrews, KY16 8LB United... Kingdom phone: +44 1334-462677 fax: +44 1334-463443 email: lb284@st-andrews.ac.uk Robin Pascal Sensors Development Group National...Oceanography Centre Southampton, SO14 3ZY United Kingdom phone: +44 2380-596138 fax: +44 2380-593029 email: rwp@nerc.ac.uk Phil Lovell

  10. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    Science.gov (United States)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  11. Compact and Light-Weight Solar Spaceflight Instrument Designs Utilizing Newly Developed Miniature Free-Standing Zone Plates: EUV Radiometer and Limb-Scanning Monochromator

    Science.gov (United States)

    Seely, J. F.; McMullin, D. R.; Bremer, J.; Chang, C.; Sakdinawat, A.; Jones, A. R.; Vest, R.

    2014-12-01

    Two solar instrument designs are presented that utilize newly developed miniature free-standing zone plates having interconnected Au opaque bars and no support membrane resulting in excellent long-term stability in space. Both instruments are based on a zone plate having 4 mm outer diameter and 1 to 2 degree field of view. The zone plate collects EUV radiation and focuses a narrow bandpass through a pinhole aperture and onto a silicon photodiode detector. As a miniature radiometer, EUV irradiance is accurately determined from the zone plate efficiency and the photodiode responsivity that are calibrated at the NIST SURF synchrotron facility. The EUV radiometer is pointed to the Sun and measures the absolute solar EUV irradiance in high time cadence suitable for solar physics and space weather applications. As a limb-scanning instrument in low earth orbit, a miniature zone-plate monochromator measures the extinction of solar EUV radiation by scattering through the upper atmosphere which is a measure of the variability of the ionosphere. Both instruments are compact and light-weight and are attractive for CubeSats and other missions where resources are extremely limited.

  12. Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission

    Science.gov (United States)

    Guerrero, Hector

    2010-05-01

    In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.

  13. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  14. Dynamic On-Chip micro Temperature and Flow Sensor for miniaturized lab-on-a-chip instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to design, fabricate, and characterize a Dynamic On-Chip Flow and Temperature Sensor (DOCFlaTS) to mature and enable miniaturized...

  15. Miniature Integrated-Optic Trace-Gas Sensors for Off-World Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As miniaturized satellite platforms such as CubeSat increase in capability, they will eventually be deployed to other planetary bodies (e.g., JPL INSPIRE). An...

  16. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  17. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  18. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  19. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    Science.gov (United States)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  20. Low-T, Low-Q Cryocoolers for Science Instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the planned research is to advance the current space science instruments through the development of light weight and low power cryocoolers. Currently,...

  1. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  2. Data, instruments, and theory a dialectical approach to understanding science

    CERN Document Server

    Ackermann, Robert John

    1985-01-01

    Robert John Ackermann deals decisively with the problem of relativism that has plagued post-empiricist philosophy of science. Recognizing that theory and data are mediated by data domains (bordered data sets produced by scientific instruments), he argues that the use of instruments breaks the dependency of observation on theory and thus creates a reasoned basis for scientific objectivity.

  3. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  4. Remote Instrumentation for eScience and Related Aspects

    CERN Document Server

    Lawenda, Marcin; Meyer, Norbert; Pugliese, Roberto; Węglarz, Jan; Zappatore, Sandro

    2012-01-01

    Making scientific instruments a manageable resource over distributed computing infrastructures such as the grid has been a key focal point of e-science research in recent years. It is now known by the generic term ‘remote instrumentation’, and is the subject of this useful volume that covers a range of perspectives on the topic reflected by the contributions to the 2010 workshop on remote instrumentation held in Poznań, Poland. E-science itself is a complex set of disciplines requiring computationally intensive distributed operations, high-speed networking, and collaborative working tools. As such, it is most often (and correctly) associated with grid- and cloud-computing infrastructures and middleware. The contributions to this publication consider broader aspects of the theme of remote instrumentation applied to e-science, as well as exploring related technologies that enable the implementation of truly distributed and coordinated laboratories. Among the topics discussed are remote instrumentation and ...

  5. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  6. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  7. Science Driven Instrumentation for LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bergmann, Uwe [SLAC National Accelerator Lab., Menlo Park, CA (United States); Brunger, Axel [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bostedt, Christoph [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bozek, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cocco, Daniele [SLAC National Accelerator Lab., Menlo Park, CA (United States); Devereaux, Tom [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Yuantao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, Hermann [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, Kelly [SLAC National Accelerator Lab., Menlo Park, CA (United States); Galayda, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Goldstein, Julia [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guhr, Markus [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, Jerome [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, Philip [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hodgson, Keith [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Zirong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kelez, Nicholas [SLAC National Accelerator Lab., Menlo Park, CA (United States); Montanez, Paul [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-24

    The world’s first x-ray free electron laser (XFEL), LCLS, has now been operating for more than three years and all six experimental stations are supporting user science and producing high impact scientific results. Other countries are rapidly catching up and a second XFEL, SACLA, is already operating in Japan with others coming on line in Germany, Korea and Switzerland within the next three to five years. In order to increase capability and capacity of LCLS, the Department of Energy has funded LCLS-II.

  8. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  9. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  10. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  11. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  12. Remote Access to Instrumental Analysis for Distance Education in Science

    Directory of Open Access Journals (Sweden)

    Dietmar Kennepohl

    2005-11-01

    Full Text Available Remote access to experiments offers distance educators another tool to integrate a strong laboratory component within a science course. Since virtually all modern chemical instrumental analysis in industry now use devices operated by a computer interface, remote control of instrumentation is not only relatively facile, it enhances students’ opportunity to learn the subject matter and be exposed to “real world” contents. Northern Alberta Institute of Technology (NAIT and Athabasca University are developing teaching laboratories based on the control of analytical instruments in real-time via an Internet connection. Students perform real-time analysis using equipment, methods, and skills that are common to modern analytical laboratories (or sophisticated teaching laboratories. Students obtain real results using real substances to arrive at real conclusions, just as they would if they were in a physical laboratory with the equipment; this approach allows students to access to conduct instrumental science experiments, thus providing them with an advantageous route to upgrade their laboratory skills while learning at a distance.

  13. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  14. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    Science.gov (United States)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  15. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  16. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  17. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  18. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  19. Measuring primary teachers' attitudes toward teaching science: development of the dimensions of attitude toward science (DAS) instrument

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is

  20. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    Science.gov (United States)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  1. Miniature JPL Universal Instrument Bus

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a Universal Digital Processor Bus architecture using state of the art commercial packaging technologies. This work will transition commercial advanced- yet...

  2. Miniature GC: Minicell ion mobility spectrometer (IMS) for astrobiology planetary missions

    Science.gov (United States)

    Kojiro, Daniel R.; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or longer mission life for stationary landers/laboratories. We describe here the development of a miniature GC - Minicell Ion Mobility Spectrometer (IMS) under development through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA's Small Business Innovative Research (SBIR) Program.

  3. Production of cloned NIBS (Nippon Institute for Biological Science) and α-1, 3-galactosyltransferase knockout MGH miniature pigs by somatic cell nuclear transfer using the NIBS breed as surrogates

    Science.gov (United States)

    Shimatsu, Yoshiki; Yamada, Kazuhiko; Horii, Wataru; Hirakata, Atsushi; Sakamoto, Yuji; Waki, Shiori; Sano, Junichi; Saitoh, Toshiki; Sahara, Hisashi; Shimizu, Akira; Yazawa, Hajime; Sachs, David H.; Nunoya, Tetsuo

    2013-01-01

    Background Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. Method and Results In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). Conclusions These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice. PMID:23581451

  4. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  5. What Are They Thinking? The Development and Use of an Instrument that Identifies Common Science Misconceptions

    Science.gov (United States)

    Stein, Mary; Barman, Charles R.; Larrabee, Timothy

    2007-01-01

    This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…

  6. Development of perceived instrumentality for mathematics, reading and science curricula

    Science.gov (United States)

    Garcia, Steve L.

    Perceptions of instrumentality (PI) are the connections one sees between a current activity and a future goal. With high PI, one is motivated to persist with quality effort because the current activity, even when difficult, is perceived as aligned with, and progress toward, the goal. Conversely, with low PI, one is motivated to relinquish effort in pursuit of other, more meaningful goals. In view of the alarming dropout rates in this country, it appears that PI research has much to offer in understanding students' motivations to stay in school and hence to become employed in their field of choice. Because academic achievement motivation can be affected by gender and ethnicity, particularly for specific components of the curriculum, and because curricular content varies across grade levels and school settings, this line of research offers significant potential for understanding and improving student outcomes. This research examined the development of PI among suburban 6th, 8th, 10th and 12th graders from a school district in the southwestern United States. Twelve hundred students completed a one-time paper and pencil survey measuring the perceived instrumentality of mathematics, literacy and science courses in terms of the students' occupational choices. MANOVA was used to determine factors that may affect students' overall PI and individual subject PI. Grade, gender, ethnicity, occupational choice, expectancy and value were the independent variables. A school setting variable was examined for effects on 12th graders. For the 8th through 12th grade sample, significant main effects were observed for grade, gender, minority status, occupational choice and expectancy on PI. Results show that PI is highest in the 6 th grade. Males reported higher Math PI than females. Females reported higher Reading PI and Science PI than males. Minority students reported lower overall PI and Science PI than non-minority students. Students who aspire to professional careers report the

  7. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  8. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    Science.gov (United States)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  9. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  10. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  11. Unveiling the Mysteries of Mars with a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM)

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Doloboff, I. J.; Jerman, G.

    2017-01-01

    Development of a miniaturized scanning electron microscope that will utilize the martian atmosphere to dissipate charge during analysis continues. This instrument is expected to be used on a future rover or lander to answer fundamental Mars science questions. To identify the most important questions, a survey was taken at the 47th Lunar and Planetary Science Conference (LPSC). From the gathered information initial topics were identified for a SEM on the martian surface. These priorities are identified and discussed below. Additionally, a concept of operations is provided with the goal of maximizing the science obtained with the minimum amount of communication with the instrument.

  12. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  13. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  14. SOFIA science instruments: commissioning, upgrades and future opportunities

    Science.gov (United States)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  15. Cycle for Science: An informal outreach program connecting K-12 students with renewable energy and physics through miniature 3D-printed, solar-powered bicycles

    Science.gov (United States)

    Woods-Robinson, R.; Case, E.

    2017-12-01

    Engaging communities with renewable energy is key to fighting climate change. Cycle for Science, an innovative STEM outreach organization, has reached more than 3,000 K-12 students across the United States by bringing early-career female scientists into classrooms to teach basic physics and solar energy engineering through hands-on, DIY science activities. We designed a fleet of miniature, 3D-printed, solar-powered bicycles called "Sol Cycles" to use as teaching tools. Traveling by bicycle, Cycle for Science has brought them to rural and urban communities across the U.S. in two major efforts so far: one traversing the country (2015), and one through central California (2017). The program involves (1) introducing the scientists and why they value science, (2) running a skit to demonstrate how electrons and photons interact inside the solar panel, (3) assembling the Sol Cycles, (4) taking students outdoors to test the effects of variables (e.g. light intensity) on the Sol Cycles' movement, (5) and debriefing about the importance of renewable energy. In addition to physics and solar energy, the lessons teach the scientific process, provide tactile engagement with science, and introduce a platform to engage students with climate change impacts. By cycling to classrooms, we provide positive examples of low-impact transportation and a unique avenue for discussing climate action. It was important that this program extend beyond the trips, so the lesson and Sol Cycle design are open source to encourage teachers and students to play, change and improve the design, as well as incorporate new exercises (e.g. could you power the bicycle by wind?). Additionally, it has been permanently added to the XRaise Lending Library at Cornell University, so teachers across the world can implement the lesson. By sharing our project at AGU, we aim to connect with other scientists, educators, and concerned citizens about how to continue to bring renewable energy lessons into classrooms.

  16. Instruments of Science and Citizenship: Science Education for Dutch Orphans During the Late Eighteenth Century

    Science.gov (United States)

    Roberts, Lissa L.

    2012-01-01

    One of the two most extensive instrument collections in the Netherlands during the second half of the eighteenth century—rivaling the much better known collection at the University of Leiden—belonged to an orphanage in The Hague that was specially established to mold hand-picked orphans into productive citizens. (The other was housed at the Mennonite Seminary in Amsterdam, for use in the education of its students.) The educational program at this orphanage, one of three established by the Fundatie van Renswoude, grew out of a marriage between the socially-oriented generosity of the wealthy Baroness van Renswoude and the pedagogical vision of the institute's director and head teacher—a vision that fit with the larger movement of oeconomic patriotism. Oeconomic patriotism, similar to `improvement' and oeconomic movements in other European countries and their colonies, sought to tie the investigation of nature to an improvement of society's material and moral well-being. Indeed, it was argued that these two facets of society should be viewed as inseparable from each other, distinguishing the movement from more modern conceptions of economics. While a number of the key figures in this Dutch movement also became prominent Patriots during the revolutionary period at the end of the century, fighting against the House of Orange, they did not have a monopoly on oeconomic ideas of societal improvement. This is demonstrated by the fact that an explicitly pro-Orangist society, Mathesis Scientiarum Genitrix, was organized in 1785 to teach science and mathematics to poor boys and orphans for very similar reasons: to turn them into productive and useful citizens. As was the case with the Fundatie van Renswoude, a collection of instruments was assembled to help make this possible. This story is of interest because it discusses a hitherto under-examined use to which science education was put during this period, by revealing the link between such programs and the highly

  17. History of Computer Science as an Instrument of Enlightenment

    OpenAIRE

    Fet , Yakov

    2013-01-01

    Part 6: Putting the History of Computing into Different Contexts; International audience; This report focuses on the dangerous problems that are currently facing the society – the negative phenomena in development of education and science. The most important way to solve this problem seems to be education and enlightenment. It is assumed that in the history of Computer Science, the intellectual and moral heritage of this history contains a wealth of material that can be used for the dissemina...

  18. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  19. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  20. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  1. Instrument development for materials science research at WNR

    International Nuclear Information System (INIS)

    Eckert, J.; Silver, R.N.; Soper, A.; Vergamini, P.J.; Goldstone, J.; Larson, A.; Seeger, P.A.; Yarnell, J.

    1980-01-01

    The neutron scattering program at the Los Alamos spallation neutron source is based on the operational WNR facility which provides up to 11 μA of 800 MeV protons to a target in pulse widths up to 8 μs at 120 Hz. The immediate goals of the program are: to gain experience with neutron instrumentation at spallation neutron sources; and to explore the scientific potential for condensed matter research at these sources. The proton storage ring (PSR) funded for construction will provide 100 μA in 0.27 μs pulses at 12 Hz, therefore greatly improving intensity, time-of-flight (TOF) resolution, and repetition rate. The initial emphasis, given limited manpower and resources, has been placed on developing a set of prototype instruments which are relatively easy to implement and which take advantage of the unique characteristics of the present WNR when compared with reactor neutron sources

  2. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  3. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  4. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  5. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  6. The Preschool Rating Instrument for Science and Mathematics (PRISM)

    Science.gov (United States)

    Brenneman, Kimberly; Stevenson-Garcia, Judi; Jung, Kwanghee; Frede, Ellen

    2011-01-01

    Until recently, few valid and reliable assessments were available to measure young children's mathematics and science learning in a "comprehensive" way. Now, a number of mathematics assessments have been developed and subjected to testing (Klein, Starkey, & Wakeley, 2000; Ginsburg, 2008; Clements & Sarama, 2008), and progress has…

  7. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  8. Review of decametric radio astronomy - instruments and science

    International Nuclear Information System (INIS)

    Erickson, W.C.; Cane, H.V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources. 38 references

  9. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  10. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  11. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  12. Integrating Instrumental Data Provides the Full Science in 3D

    Science.gov (United States)

    Turrin, M.; Boghosian, A.; Bell, R. E.; Frearson, N.

    2017-12-01

    Looking at data sparks questions, discussion and insights. By integrating multiple data sets we deepen our understanding of how cryosphere processes operate. Field collected data provide measurements from multiple instruments supporting rapid insights. Icepod provides a platform focused on the integration of multiple instruments. Over the last three seasons, the ROSETTA-Ice project has deployed Icepod to comprehensively map the Ross Ice Shelf, Antarctica. This integrative data collection along with new methods of data visualization allows us to answer questions about ice shelf structure and evolution that arise during data processing and review. While data are vetted and archived in the field to confirm instruments are operating, upon return to the lab data are again reviewed for accuracy before full analysis. Recent review of shallow ice radar data from the Beardmore Glacier, an outlet glacier into the Ross Ice Shelf, presented an abrupt discontinuity in the ice surface. This sharp 8m surface elevation drop was originally interpreted as a processing error. Data were reexamined, integrating the simultaneously collected shallow and deep ice radar with lidar data. All the data sources showed the surface discontinuity, confirming the abrupt 8m drop in surface elevation. Examining high resolution WorldView satellite imagery revealed a persistent source for these elevation drops. The satellite imagery showed that this tear in the ice surface was only one piece of a larger pattern of "chatter marks" in ice that flows at a rate of 300 m/yr. The markings are buried over a distance of 30 km or after 100 years of travel down Beardmore Glacier towards the front of the Ross Ice Shelf. Using Icepod's lidar and cameras we map this chatter mark feature in 3D to reveal its full structure. We use digital elevation models from WorldView to map the other along flow chatter marks. In order to investigate the relationship between these surface features and basal crevasses, the deep ice

  13. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  14. Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    le Gac, S.; le Gac, Severine; van den Berg, Albert; van den Berg, A.; Unknown, [Unknown

    2009-01-01

    With this book we want to illustrate how two quickly growing fields of instrumentation and technology, both applied to life sciences, mass spectrometry and microfluidics (or microfabrication) naturally came to meet at the end of the last century and how this marriage impacts on several types of

  15. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  16. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  17. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  18. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  19. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  20. Examining the Teaching of Science, and Technology and Engineering Content and Practices: An Instrument Modification Study

    Science.gov (United States)

    Love, Tyler S.; Wells, John G.; Parkes, Kelly A.

    2017-01-01

    A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…

  1. Development and Validation of Nature of Science Instrument for Elementary School Students

    Science.gov (United States)

    Hacieminoglu, Esme; Yilmaz-Tüzün, Özgül; Ertepinar, Hamide

    2014-01-01

    The purposes of this study were to develop and validate an instrument for assessing elementary students' nature of science (NOS) views and to explain the elementary school students' NOS views, in terms of varying grade levels and gender. The sample included 782 students enrolled in sixth, seventh, and eighth grades. Exploratory factor analysis…

  2. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  3. Miniature Optical Isolator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for miniature optical isolators in atom interferometry applications, Physical Optics Corporation (POC) proposes to develop a miniature optical...

  4. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  5. The Astronomy and Space Science Concept Inventory: Assessment Instruments Aligned with the K-12 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    We report on the development of an item test bank and associated instruments based on those K-12 national standards which involve astronomy and space science. Utilizing hundreds of studies in the science education research literature on student misconceptions, we have constructed 211 unique items that measure the degree to which students abandon such ideas for accepted scientific views. Piloted nationally with 7599 students and their 88 teachers spanning grades 5-12, the items reveal a range of interesting results, particularly student difficulties in mastering the NRC Standards and AAAS Benchmarks. Teachers generally perform well on items covering the standards of the grade level at which they teach, exhibiting few misconceptions of their own. Teachers dramatically overestimate their students’ performance, perhaps because they are unaware of their students’ misconceptions. Examples are given showing how the developed instruments can be used to assess the effectiveness of instruction and to evaluate the impact of professional development activities for teachers.

  6. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  7. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  8. Developing instruments concerning scientific epistemic beliefs and goal orientations in learning science: a validation study

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.

  9. The Use of Cronbach's Alpha When Developing and Reporting Research Instruments in Science Education

    Science.gov (United States)

    Taber, Keith S.

    2017-06-01

    Cronbach's alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose. Cronbach's alpha is regularly adopted in studies in science education: it was referred to in 69 different papers published in 4 leading science education journals in a single year (2015)—usually as a measure of reliability. This article explores how this statistic is used in reporting science education research and what it represents. Authors often cite alpha values with little commentary to explain why they feel this statistic is relevant and seldom interpret the result for readers beyond citing an arbitrary threshold for an acceptable value. Those authors who do offer readers qualitative descriptors interpreting alpha values adopt a diverse and seemingly arbitrary terminology. More seriously, illustrative examples from the science education literature demonstrate that alpha may be acceptable even when there are recognised problems with the scales concerned. Alpha is also sometimes inappropriately used to claim an instrument is unidimensional. It is argued that a high value of alpha offers limited evidence of the reliability of a research instrument, and that indeed a very high value may actually be undesirable when developing a test of scientific knowledge or understanding. Guidance is offered to authors reporting, and readers evaluating, studies that present Cronbach's alpha statistic as evidence of instrument quality.

  10. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    Science.gov (United States)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  11. Miniature radioactive light source

    International Nuclear Information System (INIS)

    Caffarella, T.E.; Radda, G.J.; Dooley, H.H.

    1980-01-01

    A miniature radioactive light source for illuminating digital watches is described consisting of a glass tube with improved laser sealing and strength containing tritium gas and a transducer responsive to the gas. (U.K.)

  12. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  13. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  14. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  15. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  16. Optical instrumentation for science and formation flying with a starshade observatory

    Science.gov (United States)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  17. Evolution and validation of a personal form of an instrument for assessing science laboratory classroom environments

    Science.gov (United States)

    Fraser, Barry J.; Giddings, Geoffrey J.; McRobbie, Campbell J.

    The research reported in this article makes two distinctive contributions to the field of classroom environment research. First, because existing instruments are unsuitable for science laboratory classes, the Science Laboratory Environment Inventory (SLEI) was developed and validated. Second, a new Personal form of the SLEI (involving a student's perceptions of his or her own role within the class) was developed and validated in conjunction with the conventional Class form (involving a student's perceptions of the class as a whole), and its usefulness was investigated. The instrument was cross-nationally fieldtested with 5,447 students in 269 senior high school and university classes in six countries, and cross-validated with 1,594 senior high school students in 92 classes in Australia. Each SLEI scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. A variety of applications with the new instrument furnished evidence about its usefulness and revealed that science laboratory classes are dominated by closed-ended activities; mean scores obtained on the Class form were consistently somewhat more favorable than on the corresponding Personal form; females generally held more favorable perceptions than males, but these differences were somewhat larger for the Personal form than the Class form; associations existed between attitudinal outcomes and laboratory environment dimensions; and the Class and Personal forms of the SLEI each accounted for unique variance in student outcomes which was independent of that accounted for by the other form.

  18. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  19. The Instrument Implementation of Two-tier Multiple Choice to Analyze Students’ Science Process Skill Profile

    Directory of Open Access Journals (Sweden)

    Sukarmin Sukarmin

    2018-01-01

    Full Text Available This research is aimed to analyze the profile of students’ science process skill (SPS by using instrument two-tier multiple choice. This is a descriptive research that describes the profile of students’ SPS. Subjects of the research were 10th-grade students from high, medium and low categorized school. Instrument two-tier multiple choice consists of 30 question that contains an indicator of SPS. The indicator of SPS namely formulating a hypothesis, designing experiment, analyzing data, applying the concept, communicating, making a conclusion. Based on the result of the research and analysis, it shows that: 1 the average of indicator achievement of science process skill at high categorized school on formulating hypothesis is 74,55%, designing experiment is 74,89%, analyzing data is 67,89%, applying concept is 52,89%, communicating is 80,22%, making conclusion is 76%, 2. the average of indicator achievement of science process skill at medium categorized school on formulating hypothesis is 53,47%, designing experiment is 59,86%, analyzing data is 42,22%, applying concept is 33,19%, communicating is 76,25%, making conclusion is 61,53%, 3 the average of indicator achievement of science process skill at low categorized school on formulating hypothesis is 51%, designing experiment is 55,17%, analyzing data is 39,17%, applying concept is 35,83%, communicating is 58,83%, making conclusion is 58%.

  20. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  1. Deep UV Semiconductor Sourcess for Advanced Planetary Science Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for miniature deep UV light sources that operate at very low ambient temperatures without heating or temperature regulation for use...

  2. Deep UV Semiconductor Sources for Advanced Planetary Science Instruments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for miniature, narrow-linewidth, deep UV optical sources that operate at very low ambient temperatures for use in advanced in situ...

  3. The Nature of Science Instrument-Elementary (NOSI-E): the end of the road?

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M

    2014-01-01

    This research continues prior work published in this journal (Peoples, O'Dwyer, Shields and Wang, 2013). The first paper described the scale development, psychometric analyses and part-validation of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). In the first paper, evidence was provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. The research described in this paper examines two additional validity aspects (structural and external). The purpose of this study was to determine which of three competing internal models provides reliable, interpretable, and responsive measures of students' understanding of NOS. One postulate is that the NOS construct is unidimensional;. alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. The vast body of evidence supported the claim that the NOS construct is multidimensional. Measures from the multidimensional model were positively related to student science achievement and students' perceptions of their classroom environment; this provided supporting evidence for the external validity aspect of the NOS construct. As US science education moves toward students learning science through engaging in authentic scientific practices and building learning progressions (NRC, 2012), it will be important to assess whether this new approach to teaching science is effective, and the NOSI-E may be used as a measure of the impact of this reform.

  4. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  5. Development and validation of an instrument to evaluate science teachers' assessment beliefs and practices

    Science.gov (United States)

    Genc, Evrim

    The primary purpose of this study was to develop a valid and reliable instrument to examine science teachers' assessment beliefs and practices in science classrooms. The present study also investigated the relationship between teachers' beliefs and practices in terms of assessment issues in science, their perceptions of the factors that influenced their assessment practices and their feelings towards high-stakes testing. The participants of the study were 408 science teachers teaching at middle and high school levels in the State of Florida. Data were collected through two modes of administration of the instrument as a paper-and-pencil and a web-based form. The response rate for paper-and-pencil administration was estimated as 68% whereas the response for the web administration was found to be 27%. Results from the various dimensions of validity and reliability analyses revealed that the 24 item-four-factor belief and practice measures were psychometrically sound and conceptually anchored measures of science teachers' assessment beliefs and self-reported practices. Reliability estimates for the belief measure ranged from .83 to .91 whereas alpha values for the practice measure ranged from .56 to .90. Results from the multigroup analysis supported that the instrument has the same theoretical structure across both administration groups. Therefore, future researchers may use either a paper-and-pencil or web-based format of the instrument. This study underscored a discrepancy between what teachers believe and how they act in classroom settings. It was emphasized that certain factors were mediating the dynamics between the belief and the practice. The majority of teachers reported that instruction time, class size, professional development activities, availability of school funding, and state testing mandates impact their assessment routines. Teachers reported that both the preparation process and the results of the test created unbelievable tension both on students and

  6. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year's summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer's summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs

  7. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  8. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    Science.gov (United States)

    Ice, G. E.; Larson, B. C.; Liu, W.; Barabash, R. I.; Specht, E. D.; Pang, J. W. L.; Budai, J. D.; Tischler, J. Z.; Khounsary, A.; Liu, C.; Macrander, A. T.; Assoufid, L.

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  9. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    International Nuclear Information System (INIS)

    Ice, G.E.; Larson, Ben C.; Liu, Wenjun; Barabash, Rozaliya; Specht, Eliot D; Pang, Judy; Budai, John D.; Tischler, Jonathan Zachary; Khounsary, Ali; Liu, Chian; Macrander, Albert T.; Assoufid, Lahsen

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization

  10. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  11. INSTRUMENTS OF SUPPORT FOR RESEARCH AND DEVELOPMENT FUNDED BY LEADING DOMESTIC AND INTERNATIONAL SCIENCE FOUNDATIONS

    Directory of Open Access Journals (Sweden)

    Irina E. Ilina

    2017-06-01

    Full Text Available Introduction: one of the key aspects of the knowledge economy development is the growing significance of the results of research and development. The education and basic research play a key role in this process. Funding for education and fundamental science is carried out mainly at the expense of the state resources, including a system of foundations for scientific, engineering and innovation activities in Russia. The purpose of this article is to present recommendations for improving the tools of domestic foundations in funding fundamental research and development, including education and training. The propositions are made with a comparative analysis of the domestic and foreign science foun dations’ activities. Materials and Methods: the authors used analysis, comparison, induction, deduction, graphical analysis, generalisation and other scientific methods during the study. Results: the lack of comparability between domestic and foreign scientific funds in the volume of funding allocated for basic research and development is revealed. This situation affects the scientific research. The foreign foundations have a wide range of instruments to support research projects at all stages of the life cycle of grants for education and training prior to release of an innovative product to market (the use of “innovation elevator” system. The Russian national scientific foundations have no such possibilities. The authors guess that the Russian organisations ignore some of the instruments for supporting research and development. Use of these tools could enhance the effectiveness of research projects. According to the study of domestic and foreign experience in supporting research and development, the authors proposed a matrix composed of instruments for support in the fields of basic scientific researches and education with such phases of the project life cycle as “research” and “development”. Discussion and Conclusions: the foreign science

  12. Miniature UAVs : An overview

    NARCIS (Netherlands)

    Weimar, P.W.L.; Kerkkamp, J.S.F.; Wiel, R.A.N.; Meiller, P.P.; Bos, J.G.H.

    2014-01-01

    With this book TNO provides an overview of topics related to Miniature Unmanned Aerial Vehicles (MUAVs). Both novices and experts may find this publication valuable. The Netherlands Organisation for Applied Scientific Research TNO conducts research on UAVs and MUAVs, see for example [1], on the

  13. A Miniature Recording Cardiotachometer

    DEFF Research Database (Denmark)

    Zsombor-Murray, Paul J; Vroomen, Louis J.; Hendriksen, Nils Thedin

    1981-01-01

    The design of a miniature, recording cardiotachometer is described. It is simple and can store digital data. Bench and field tests, using a hand-held display, are presented. Construction and principles of operation are discussed. Applications, with performing athlete subjects, are outlined....

  14. Miniature Centrifugal Compressor

    Science.gov (United States)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  15. The Impact of Crosstalk in the X-IFU Instrument on Athena Science Cases

    Science.gov (United States)

    Hartog, R. Den; Peille, P.; Dauser, T.; Jackson, B.; Bandler, S.; Barret, D.; Brand, T.; Herder, J-W Den; Kiviranta, M.; Kuur, J. Van Der; hide

    2016-01-01

    In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-count-rate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture. The Athena X-ray mission was selected as the second L-class mission in ESA's Cosmic Vision 2015–25 plan, with alaunch foreseen in 2028, to address the theme ''Hot and Energetic Universe"1. One of the two instruments on boardAthena is the X-ray Integral Field Unit2 (X-IFU) which is based on an array of 3800 Transition Edge Sensors (TES's)operated at a temperature of 90 mK. The science cases pose an interesting challenge for this instrument, as they requirea combination of high energy resolution (2.5 eV FWHM or better), high spatial resolution (5 arcsec or better) and highcount rate capability (several tens of counts per second per detector for point sources as bright as 10 mCrab).The performance at the single sensor level has been demonstrated3, but the operation of such detectors in an array, usingmultiplexed readout, brings additional challenges, both for the design of the array in which the sensors are placed and forthe readout of the sensors. The readout of the detector array will be based on Frequency Domain Multiplexing (FDM)4.In this system of detectors and readout, crosstalk can arise through various mechanisms: on the TES array, neighboringsensors can couple through thermal crosstalk. Detectors adjacent in carrier frequency may suffer from electrical crosstalkdue to the finite width of the bandpass filters, and shared sources of impedance in their signal lines. The signals from theindividual

  16. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  17. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  18. Miniaturization in Biocatalysis

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research.

  19. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  20. Miniaturized nuclear battery

    International Nuclear Information System (INIS)

    Adler, K.; Ducommun, G.

    1976-01-01

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a β-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case

  1. Miniaturizing RFID for magnamosis.

    Science.gov (United States)

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag.

  2. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  3. Miniature Scroll Pumps Fabricated by LIGA

    Science.gov (United States)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  4. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  5. Development and Large-Scale Validation of an Instrument to Assess Arabic-Speaking Students' Attitudes Toward Science

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael

    2015-11-01

    This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.

  6. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  7. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    Science.gov (United States)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14

  8. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  9. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    Science.gov (United States)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  10. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  11. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  12. Science and the Large Hadron Collider: a probe into instrumentation, periodization and classification

    CERN Document Server

    Roy, Arpita

    2012-01-01

    On September 19, 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began the world’s highest energy experiments as a probe into the structure of matter and forces of nature. Just nine days after the gala start-up, an explosion occurred in the LHC tunnel that brought the epic collider to a complete standstill. In light of the catastrophic incident that disrupted the operation of the LHC, the paper investigates the relation of temporality to the cycle of work in science, and raises the question: What kind of methodological value should we ascribe to events such as crises or breakdowns? Drawing upon and integrating classical anthropological themes with two and a half years of fieldwork at the LHC particle accelerator complex, the paper explores how the incident in September, which affected the instrument, acquaints us with the distribution of work in the laboratory. The incident discloses that the organization of science is not a homogenous ensemble, but marked by an enormous diversity of tasks and p...

  13. View of Nature of Science (VNOS Form B: An Instrument for Assessing Preservice Teachers View of Nature of Science at Borneo University Tarakan

    Directory of Open Access Journals (Sweden)

    Listiani Listiani

    2017-03-01

    Full Text Available NOS form B is an instrument that has been developed and revised to assess the view of nature of science of preservice science teachers through nature of science aspects.Indeed, students and teachers have to have the view of nature of science to avoid misconceptions of science concepts. Unfortunately, research on the view of Nature of Science is less conducted in Indonesia. This is a qualitative research that was conducted in Borneo University Tarakan. Respondents are preservice biology teachers in the sixth semester. The first step of this research is translating and adapting the VNOS form B into Bahasa Indonesia to make sure that the instrument is culturally fit to Indonesian and the transadapted instrument then given to the respondents. The result shows that the VNOS form B can be applied to assess the view of nature of science of preservice biology teachers. However, the result also shows that most of preservice biology teachers have few understanding on aspects of nature of scince.

  14. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  15. The Student Actions Coding Sheet (SACS): An instrument for illuminating the shifts toward student-centered science classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Hashidah Abd-Hamid, Nor

    2011-07-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3) refinement of the item pool based on reviewer comments, (4) pilot testing of the instrument, and (5) statistical reliability and item analysis leading to additional refinement and finalization of the instrument. In the field test, the instrument consisted of 26 items separated into four categories originally derived from student-centered instruction literature and used by the authors to sort student actions in previous research. The SACS was administered across 22 Grade 6-8 classrooms by 22 groups of observers, with a total of 67 SACS ratings completed. The finalized instrument was found to be internally consistent, with acceptable estimates from inter-rater intraclass correlation reliability coefficients at the p Observation Protocol. Based on the analyses completed, the SACS appears to be a useful instrument for inclusion in comprehensive assessment packages for illuminating the extent to which student-centered actions are occurring in science classrooms.

  16. Miniaturized radiation chirper

    International Nuclear Information System (INIS)

    Umbarger, C.J.; Wolf, M.A.

    1980-01-01

    A miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts is described. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers

  17. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    Science.gov (United States)

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  18. Investigating the Quality of Project-Based Science and Technology Learning Environments in Elementary School: A Critical Review of Instruments

    Science.gov (United States)

    Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre

    2016-01-01

    This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…

  19. Improving Student Perceptions of Science through the Use of State-of-the-Art Instrumentation in General Chemistry Laboratory

    Science.gov (United States)

    Aurentz, David J.; Kerns, Stefanie L.; Shibley, Lisa R.

    2011-01-01

    Access to state-of-the-art instrumentation, namely nuclear magnetic resonance (NMR) spectroscopy, early in the college curriculum was provided to undergraduate students in an effort to improve student perceptions of science. Proton NMR spectroscopy was introduced as part of an aspirin synthesis in a guided-inquiry approach to spectral…

  20. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  1. Intellectual property as an instrument of interaction between government, business, science and society

    Science.gov (United States)

    Nikitenko, S. M.; Mesyats, M. A.; Rozhkova, O. V.

    2017-09-01

    This article is devoted to research the characteristics associated with pledge of intellectual property in foreign and domestic practice. Holding intellectual property objects’ pledge transactions accelerates the pace of creating innovative systems in the economy. In present paper the modern scheme for bank loan, financing secured with patented intellectual property is researched. The authors give the brief description of features of pledge security registration for loans in some Europe countries. The Europe Union experience shows that as collateral for monetary loans can be used trademarks, patents on the intellectual property, as well as their registration requests. Russian experience of the pledge operations of the intellectual property is too small. This way of bank lending is at an early stage of development. The main constraint is the difficulty of assessing the value of the pledged intellectual property as intangible assets. However, taking into account world and domestic practice this direction for Russian market is estimated by the authors as promising one. Pledge transactions take place within the framework of the Quadruple-Helix Model concept that involves four participants: “science”, “business”, “government” and “society”. Intellectual property are estimates by the authors as an instrument of interaction between government, business, science and society.

  2. A miniature turbocompressor system

    Energy Technology Data Exchange (ETDEWEB)

    Zwyssig, C.; Kraehenbuehl, D.; Kolar, J. W. [Swiss Federal Institute of Technology, Power Electronic Systems Laboratory, Zuerich (Switzerland); Weser, H. [High Speed Turbomaschinen GmbH, Wolfsburg (Germany)

    2008-07-01

    The trend in compressors for fuel cells, heat pumps, aerospace and automotive air pressurization, heating, ventilation and air conditioning systems, is towards ultra-compact size and high efficiency. This can be achieved by increasing the rotational speed and employing new electrical drive system technology and materials. This paper presents a miniature, electrically driven turbocompressor system running at a speed of 500,000 rpm. The design includes the thermodynamics, the electric motor, the inverter, the control and the system integration with rotor dynamics and thermal considerations. In the experimental setup, the specified pressure ratio of 1.6 is achieved at a speed of 550,000 rpm, which is slightly higher than the design speed. (author)

  3. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  4. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  5. Miniature linear cooler development

    International Nuclear Information System (INIS)

    Pruitt, G.R.

    1993-01-01

    An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results

  6. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    Science.gov (United States)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  7. EU Science Diplomacy and Framework Programs as Instruments of STI Cooperation

    Directory of Open Access Journals (Sweden)

    К. А. Ibragimova

    2017-01-01

    Full Text Available This article examines the tools that the EU in interactions with third countries in the field of STI uses. The EU is a pioneer in the use of science and technology in the international arena, the creation of strategic bilateral agreements on science and technology and the conduct of political dialogues at the highest political level (at the country and regional levels. The EU actively uses its foreign policy instruments of influence, including the provision of access to its framework programs to researchers from third countries, as well as scientific diplomacy. The success of these programs and scientific diplomacy shows the effectiveness of the EU as a global actor. In its foreign policy global innovation strategy, the EU proceeds from the premise that no state in the world today can cope independently with modern global challenges such as climate change, migration, terrorism, etc. Therefore, the solution of these issues requires both an expert evaluation from an independent world scientific community, and the perseverance of diplomats and officials of branch ministries of national states capable of conveying the views of their government in international negotiations and defending national interests of the country to find a solution that suits everyone. The EU has the resources to create a "cumulative effect" by developing and applying common norms on the territory of theUnion, analyzing the innovation policies of member states and the possibility of sharing best practices. At the same time, the EU shares its vision of problems, values and priorities with partners and uses the tools of "soft power" (including its smart and normative force and scientific diplomacy in the field of STI. The soft power of the EU in the field of STI lies in the attractiveness of the EU as a research area in which it is possible to conduct modern high-quality international research with the involvement of scientific teams from different countries in both physical

  8. Central Hypothyroidism in Miniature Schnauzers

    NARCIS (Netherlands)

    Voorbij, Annemarie M W Y; Leegwater, Peter A J; Buijtels, Jenny J C W M; Daminet, Sylvie; Kooistra, Hans S

    2016-01-01

    BACKGROUND: Primary hypothyroidism is a common endocrinopathy in dogs. In contrast, central hypothyroidism is rare in this species. OBJECTIVES: The objective of this article is to describe the occurrence and clinical presentation of central hypothyroidism in Miniature Schnauzers. Additionally, the

  9. Miniature Optical Isolator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for compact optical isolators, Physical Optics Corporation (POC) proposes to continue the development of a new Miniature Optical Isolator...

  10. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Science.gov (United States)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  11. Miniature Raman spectrometer development

    Science.gov (United States)

    Bonvallet, Joseph; Auz, Bryan; Rodriguez, John; Olmstead, Ty

    2018-02-01

    The development of techniques to rapidly identify samples ranging from, molecule and particle imaging to detection of high explosive materials, has surged in recent years. Due to this growing want, Raman spectroscopy gives a molecular fingerprint, with no sample preparation, and can be done remotely. These systems can be small, compact, lightweight, and with a user interface that allows for easy use and sample identification. Ocean Optics Inc. has developed several systems that would meet all these end user requirements. This talk will describe the development of different Ocean Optics Inc miniature Raman spectrometers. The spectrometer on a phone (SOAP) system was designed using commercial off the shelf (COTS) components, in a rapid product development cycle. The footprint of the system measures 40x40x14 mm (LxWxH) and was coupled directly to the cell phone detector camera optics. However, it gets roughly only 40 cm-1 resolution. The Accuman system is the largest (290x220X100 mm) of the three, but uses our QEPro spectrometer and get 7-11 cm-1 resolution. Finally, the HRS-30 measuring 165x85x40 mm is a combination of the other two systems. This system uses a modified EMBED spectrometer and gets 7-12 cm-1 resolution. Each of these units uses a peak matching algorithm that then correlates the results to the pre-loaded and customizable spectral libraries.

  12. The road to miniaturization

    International Nuclear Information System (INIS)

    Iwai, Hiroshi; Hei Wong

    2006-01-01

    Silicon microelectronics has revolutionized the way we live, but how long can the relentless down sizing of devices continue? Hei Wong and Hiroshi Iwai describe the challenges facing the semiconductor industry today. For the last four decades the miniaturization of the microchip has been the driving force behind developments in all kinds of technology, from home entertainment to space exploration. At the heart of this revolution lies the metal-oxide-semiconductor (MOS) transistor, which has evolved in two ways. First, it has become smaller, with the latest devices measuring a thousandth of their original size. Second, the number of transistors that can be interconnected on a single chip has risen from a few tens to hundreds of millions. The density of microchips has followed an exponential trend that was famously identified by Gordon Moore of Intel in 1965. Moore predicted that the number of components that could be crammed into an integrated circuit would double every two years for the foreseeable future. In fact, he slightly underestimated the trend, because the average number has actually doubled every 18 months. The question keeping chip manufacturers awake in 2005 is how long this exponential growth can continue. (U.K.)

  13. The Whole new world of miniature technology

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-07-01

    In the past ten years, miniaturization of both electrical and mechanical parts has significantly increased. Documentation of the design and production capabilities of miniaturization in the electronics industry is well-defined. Literature on the subject of miniaturization of metal piece parts, however, is hard to find. Some of the current capabilities in the manufacture of miniature metal piece parts or miniature features in larger piece parts are discussed.

  14. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  15. Miniature digital radiacmeter

    International Nuclear Information System (INIS)

    Raymond, D.; Nirschl, J.

    1978-01-01

    A prototype instrument for monitoring radiation levels has been developed under contract to U.S. Army Electronics Research and Development Command, Fort Monmouth, N.J., for technical evaluation. This instrument measures gamma dose-rates from 10 mrad/h to 1000 rad/h using a small pressurized ion chamber, which contains a hybrid integrated circuit current-to-frequency converter. The autoranging digital readout uses a liquid crystal display. Audible and visual alarm are incorporated, to alert the operator when a preset level of dose-rate has been exceeded. A non-volatile total dose memory can be read on command. Control of the instrument is via a sealed front panel keyboard. Battery life exceeds 100 hours continuous operation between recharging. The instrument also includes provisions for a plug-in Geiger-Mueller probe that extends the sensitivity to .01 mrad/h for use as a frisking probe. Both detectors are designed to be sensitive to beta radiation as well as gamma. Data is presented on the evaluation to date of the performance of the prototype instrument over a wide range of temperature and dose-rate

  16. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  17. German activities in optical space instrumentation

    Science.gov (United States)

    Hartmann, G.

    2018-04-01

    In the years of space exploration since the mid-sixties, a wide experience in optical space instrumentation has developed in Germany. This experience ranges from large telescopes in the 1 m and larger category with the accompanying focal plane detectors and spectrometers for all regimes of the electromagnetic spectrum (infrared, visible, ultraviolet, x-rays), to miniature cameras for cometary and planetary explorations. The technologies originally developed for space science. are now also utilized in the fields of earth observation and even optical telecommunication. The presentation will cover all these areas, with examples for specific technological or scientific highlights. Special emphasis will be given to the current state-of-the-art instrumentation technologies in scientific institutions and industry, and to the future perspective in approved and planned projects.

  18. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    Science.gov (United States)

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  19. Quantitative x-ray microanalysis in an AEM: instrumental considerations and applications to materials science

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-01-01

    There are a wide variety of instrumental problems which are present to some degree in all AEM instruments. The nature and magnitude of these artifacts can in some instances preclude the simple quantitative interpretation of the recorded x-ray emission spectrum using a thin-film electron excitation model; however, by judicious modifications to the instrument these complications can be effectively eliminated. The specific operating conditions of the microscope necessarily vary from one analysis to another depending on the type of specimen and experiment being performed. In general, however, the overall performance of the AEM system during x-ray analysis is optimized using the highest attainable incident electron energy; selecting the maximum probe diameter and probe current consistent with experimental limitations; and positioning the x-ray detector in a geometry such that it records information from the electron entrance surface of the specimen

  20. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  1. Miniaturization of high-energy physics detectors. Vol. 14

    International Nuclear Information System (INIS)

    Stefanini, A.

    1983-01-01

    Continued experimental research in high-energy physics requires the reduction in size and cost of the advanced technical equipment involved. A new technology is rapidly evolving that promises to replace today's massive high-energy physics instruments--which may be composed of several thousand tons of sensitive parts--with miniaturized equivalents. Smaller, less expensive apparatus would create more opportunities for research worldwide, and many types of experiments now considered impractical could then be carried out. Scientists and engineers from many countries have contributed to this volume to provide a broad panorama of the new miniaturization technology in high-energy physics. They describe a wide range of new instruments and their applications, discuss limitations and technological problems, and explore the connections between technology and progress in the field of high-energy physics

  2. Miniature neutron-alpha activation spectrometer

    International Nuclear Information System (INIS)

    Rhodes, Edgar; Goldsten, John; Holloway, James Paul; He, Zhong

    2002-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband

  3. "Designing Instrument for Science Classroom Learning Environment in Francophone Minority Settings: Accounting for Voiced Concerns among Teachers and Immigrant/Refugee Students"

    Science.gov (United States)

    Bolivar, Bathélemy

    2015-01-01

    The three-phase process "-Instrument for Minority Immigrant Science Learning Environment," an 8-scale, 32-item see Appendix I- (I_MISLE) instrument when completed by teachers provides an accurate description of existing conditions in classrooms in which immigrant and refugee students are situated. Through the completion of the instrument…

  4. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  5. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  6. Visual thread quality for precision miniature mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1981-04-01

    Threaded features have eight visual appearance factors which can affect their function in precision miniature mechanisms. The Bendix practice in deburring, finishing, and accepting these conditions on miniature threads is described as is their impact in assemblies of precision miniature electromechanical assemblies.

  7. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  8. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  9. Miniature, Single Channel, Memory-Based, High-G Acceleration Recorder (Millipen)

    International Nuclear Information System (INIS)

    Rohwer, Tedd A.

    1999-01-01

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been instrumenting earth penetrators for over thirty years. Recorded acceleration data is used to quantify penetrator performance. Penetrator testing has become more difficult as desired impact velocities have increased. This results in the need for small-scale test vehicles and miniature instrumentation. A miniature recorder will allow penetrator diameters to significantly decrease, opening the window of testable parameters. Full-scale test vehicles will also benefit from miniature recorders by using a less intrusive system to instrument internal arming, fusing, and firing components. This single channel concept is the latest design in an ongoing effort to miniaturize the size and reduce the power requirement of acceleration instrumentation. A micro-controller/memory based system provides the data acquisition, signal conditioning, power regulation, and data storage. This architecture allows the recorder, including both sensor and electronics, to occupy a volume of less than 1.5 cubic inches, draw less than 200mW of power, and record 15kHz data up to 40,000 gs. This paper will describe the development and operation of this miniature acceleration recorder

  10. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

    Czech Academy of Sciences Publication Activity Database

    Kletzing, C. A.; Kurth, W. S.; Acuna, M.; MacDowall, R. J.; Torbert, R. B.; Averkamp, T.; Bodet, D.; Bounds, S. R.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J. S.; Dvorsky, R.; Hospodarsky, G. B.; Howard, J.; Jordanova, V.; Johnson, R. A.; Kirchner, D. L.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff Jr, R.; Phillips, J. R.; Piker, C. V.; Remington, S. L.; Rowland, D.; Santolík, Ondřej; Schnurr, R.; Sheppard, D.; Smith, C. W.; Thorne, R. M.; Tyler, J.

    2013-01-01

    Roč. 179, 1-4 (2013), s. 127-181 ISSN 0038-6308 Grant - others: NASA (US) 921647 Institutional support: RVO:68378289 Keywords : radiation belt physics * wave measurements * magnetometer measurements * space flight instruments * RBSP * radiation belt storm probes * Van Allen probes * whistler waves * geomagnetic storms * space weather Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.874, year: 2013 http://link.springer.com/article/10.1007%2Fs11214-013-9993-6#page-1

  11. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    Science.gov (United States)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  12. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    Science.gov (United States)

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Novel Miniature Spectrometer For Remote Chemical Detection

    International Nuclear Information System (INIS)

    Pipino, Andrew C.R.

    2000-01-01

    New chemical sensing technologies are critically important for addressing many of EM's priority needs as discussed in detail at http://emsp.em.doe.gov/needs. Many technology needs were addressed by this research. For example, improved detection strategies are needed for non-aqueous phase liquids (NAPL's), such as PCE (Cl2C=CCl2) and TCE (HClC=CCl2), which persist in the environment due their highly stable structures. By developing a miniature, ultra-sensitive, selective, and field-deployable detector for NAPL's, the approximate source location could be determined with minimal investigative expense. Contaminant plumes could also be characterized in detail. The miniature spectrometer developed under Project No.60231 could also permit accurate rate measurements in less time, either in the field or the laboratory, which are critically important in the development, testing, and ultimate utilization of models for describing contaminant transport. The technology could also be used for long-term groundwater monitoring or long-term stewardship in general. Many science needs are also addressed by the Project 60231, since the effort significantly advances the measurement science of chemical detection. Developed under Project No.60231, evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a novel form of CRDS, which is an the emerging optical absorption technique. Several review articles on CRDS, which has been generally applied only to gas-phase diagnostics, have been published1-3. EW-CRDS4-10 forms the basis for a new class of chemical sensors that extends CRDS to other states of matter and leads to a miniaturized version of the concept. EW-CRDS uses miniature solid-state optical resonators that incorporate one or more total internal reflection (TIR) surfaces, which create evanescent waves. The evanescent waves emanate from the TIR surfaces, sampling the surrounding medium. The utility of evanescent waves in chemical analysis forms the basis for the field of attenuated

  14. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  15. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  16. Las Ciencias instrumentales en la Investigación Biomédica Instrumental Sciences in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Josep Roma Millán

    2004-03-01

    Full Text Available Hay una serie de ciencias que se hacen imprescindibles para poder investigar e interpretar los resultados científicos, son la ciencias que llamamos instrumentales o auxiliares. Entre ellas se encuentran la Demografía, la Epidemiología y la Bioestadística. Además, hay que tomar en consideración las técnicas de investigación cualitativa, el conjunto de estrategias e instrumentos de búsqueda de información bibliográfica y, también las metodologías de presentación de resultados. Finalmente, no puede olvidarse la ética, en sus dos componentes de bioética y de ética del trabajo científico, si queremos desarrollar un trabajo siguiendo el método científico. Este capítulo explica cuál es la función de estas disciplinas en el seno de la investigación científica y del desarrollo de proyectos.Some scientific disciplines are essential for research and scientific results interpretation. Instrumental or auxiliary sciences include Demography, Epidemiology, and Biostatistics. Also, it is necessary to take into account the techniques for qualitative research, the strategies and instruments for bibliographic information and the methodology for scientific results presentation. Finally, to develop a project according to the scientific method, it is necessary to consider ethics, in its two components: bioethics and the ethics of scientific method. This report explains which is the function of these instrumental and auxiliary sciences in the context of the scientific research and the development of scientific projects.

  17. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  18. Employing the Five-Factor Mentoring Instrument: Analysing Mentoring Practices for Teaching Primary Science

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Savran-Gencer, Ayse

    2009-01-01

    Primary science education is a concern around the world and quality mentoring within schools can develop pre-service teachers' practices. A five-factor model for mentoring has been identified, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback. Final-year pre-service teachers (mentees, n = 211) from…

  19. Instruments for radiation measurement in life sciences (5). Development of imaging technology in life science. 4. Real-time bioradiography

    International Nuclear Information System (INIS)

    Sasaki, Toru; Iwamoto, Akinori; Tsuboi, Hisashi; Katoh, Toru; Kudo, Hiroyuki; Kazawa, Erito; Watanabe, Yasuyoshi

    2006-01-01

    Real-time bioradiography, new bioradiography method, can collect and produce image of metabolism and function of cell in real-time. The principles of instrumentation, development process and the application examples of neuroscience and biomedical gerontology are stated. The bioradiography method, the gas-tissue live-cell autoradiography method and the real-time bioradiography method are explained. As the application examples, the molecular mechanism of oxidative stress at brain ischemia and the analysis of SOD gene knockout animals are reported. Comparison between FDG-PET of epileptic brain and FDG- bioradiography image of live-cell of brain tissue, the real-time bioradiography system, improvement of image by surface treatment, the detection limit of β + ray from F 18 , image of living-slices of brain tissue by FDG-real-time bioradiography and radioluminography, continuous FDG image of living-slices of rat brain tissue, and analysis of carbohydrate metabolism of living-slices of brain tissue of mouse lacking SOD gene during aerophobia and reoxygenation process are reported. (S.Y.)

  20. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    International Nuclear Information System (INIS)

    Wiens, Roger C.; Barraclough, Bruce; Barkley, Walter C.; Bender, Steve; Bernardin, John; Bultman, Nathan; Clanton, Robert C.; Clegg, Samuel; Delapp, Dorothea; Dingler, Robert; Enemark, Don; Flores, Mike; Hale, Thomas; Lanza, Nina; Lasue, Jeremie; Latino, Joseph; Little, Cynthia; Morrison, Leland; Nelson, Tony; Romero, Frank; Salazar, Steven; Stiglich, Ralph; Storms, Steven; Trujillo, Tanner; Ulibarri, Mike; Vaniman, David; Whitaker, Robert; Witt, James; Maurice, Sylvestre; Bouye, Marc; Cousin, Agnes; Cros, Alain; D'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Kouach, Driss; Lasue, Jeremie; Pares, Laurent; Poitrasson, Franck; Striebig, Nicolas; Thocaven, Jean-Jacques; Saccoccio, Muriel; Perez, Rene; Bell, James F. III; Hays, Charles; Blaney, Diana; DeFlores, Lauren; Elliott, Tom; Kan, Ed; Limonadi, Daniel; Lindensmith, Chris; Miller, Ed; Reiter, Joseph W.; Roberts, Tom; Simmonds, John J.; Warner, Noah; Blank, Jennifer; Bridges, Nathan; Cais, Phillippe; Clark, Benton; Cremers, David; Dyar, M. Darby; Fabre, Cecile; Herkenhoff, Ken; Kirkland, Laurel; Landis, David; Langevin, Yves; Lanza, Nina; Newsom, Horton; Ollila, Ann; LaRocca, Frank; Ott, Melanie; Mangold, Nicolas; Manhes, Gerard; Mauchien, Patrick; Blank, Jennifer; McKay, Christopher; Mooney, Joe; Provost, Cheryl; Morris, Richard V.; Sautter, Violaine; Sautter, Violaine; Waterbury, Rob; Wong-Swanson, Belinda; Barraclough, Bruce; Bender, Steve; Vaniman, David

    2012-01-01

    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical de-multiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch. (authors)

  1. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  2. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    Science.gov (United States)

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  3. A brief history of science as seen through the development of scientific instruments

    CERN Document Server

    Crump, Thomas

    2002-01-01

    From earliest pre-history, with the dawning understanding of fire and its many uses, up to the astonishing advances of the twenty-first century, Thomas Crump traces the ever more sophisticated means employed in our attempts to understand the universe. The result is a vigorous and readable account of how our curious nature has continually pushed forward the frontiers of science and, as a consequence, human civilization.

  4. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  5. Enhnacing the science of the WFIRST coronagraph instrument with post-processing.

    Science.gov (United States)

    Pueyo, Laurent; WFIRST CGI data analysis and post-processing WG

    2018-01-01

    We summarize the results of a three years effort investigating how to apply to the WFIRST coronagraph instrument (CGI) modern image analysis methods, now routinely used with ground-based coronagraphs. In this post we quantify the gain associated post-processing for WFIRST-CGI observing scenarios simulated between 2013 and 2017. We also show based one simulations that spectrum of planet can be confidently retrieved using these processing tools with and Integral Field Spectrograph. We then discuss our work using CGI experimental data and quantify coronagraph post-processing testbed gains. We finally introduce stability metrics that are simple to define and measure, and place useful lower bound and upper bounds on the achievable RDI post-processing contrast gain. We show that our bounds hold in the case of the testbed data.

  6. The Goldstone solar system radar: A science instrument for planetary research

    Science.gov (United States)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  7. Bend testing for miniature disks

    International Nuclear Information System (INIS)

    Huang, F.H.; Hamilton, M.L.; Wire, G.L.

    1982-01-01

    A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes

  8. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  9. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  10. OCEANUS: A high science return Uranus orbiter with a low-cost instrument suite

    Science.gov (United States)

    Elder, C. M.; Bramson, A. M.; Blum, L. W.; Chilton, H. T.; Chopra, A.; Chu, C.; Das, A.; Davis, A. B.; Delgado, A.; Fulton, J.; Jozwiak, L. M.; Khayat, A.; Landis, M. E.; Molaro, J. L.; Slipski, M.; Valencia, S.; Watkins, J.; Young, C. L.; Budney, C. J.; Mitchell, K. L.

    2018-07-01

    Ice-giant-sized planets are the most common type of observed exoplanet, yet the two ice giants in our own solar system (Uranus and Neptune) are the least explored class of planet, having only been observed through ground-based observations and a single flyby each by Voyager 2 approximately 30 years ago. These single flybys were unable to characterize the spatial and temporal variability in ice giant magnetospheres, some of the most odd and intriguing magnetospheres in the solar system. They also offered only limited constraints on the internal structure of ice giants; understanding the internal structure of a planet is important for understanding its formation and evolution. The most recent planetary science Decadal Survey by the U.S. National Academy of Sciences, "Vision and Voyages for Planetary Science in the Decade 2013-2022," identified the ice giant Uranus as the third highest priority for a Flagship mission in the decade 2013-2022. However, in the event that NASA or another space agency is unable to fly a Flagship-class mission to an ice giant in the next decade, this paper presents a mission concept for a focused, lower cost Uranus orbiter called OCEANUS (Origins and Composition of the Exoplanet Analog Uranus System). OCEANUS would increase our understanding of the interior structure of Uranus, its magnetosphere, and how its magnetic field is generated. These goals could be achieved with just a magnetometer and the spacecraft's radio system. This study shows that several of the objectives outlined by the Decadal Survey, including one of the two identified as highest priority, are within reach for a New-Frontiers-class mission.

  11. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  12. Miniature Neutron-Alpha Activation Spectrometer

    Science.gov (United States)

    Rhodes, E.; Goldsten, J.

    2001-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.

  13. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  14. New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey

    Science.gov (United States)

    Adams, W. K.; Perkins, K. K.; Podolefsky, N. S.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.

    2006-06-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures the following: that most teaching practices cause substantial drops in student scores; that a student’s likelihood of becoming a physics major correlates with their “Personal Interest” score; and that, for a majority of student populations, women’s scores in some categories, including “Personal Interest” and “Real World Connections,” are significantly different from men’s scores.

  15. The MIDAS Instrument Design and Characterization

    Science.gov (United States)

    Honniball, C. I.; Wright, R.; Lucey, P. G.

    2016-10-01

    The Miniaturized Infrared detector of Atmospheric Species (MIDAS) utilizes an uncooled microbolometer coupled with a Sagnac interferometer. MIDAS will be used to detect and quantify atmospheric constituents for a variety of science applications.

  16. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    Science.gov (United States)

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  17. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  18. Evaluation of a miniature electromagnetic position tracker

    International Nuclear Information System (INIS)

    Hummel, Johann; Figl, Michael; Kollmann, Christian; Bergmann, Helmar; Birkfellner, Wolfgang

    2002-01-01

    The advent of miniaturized electromagnetic digitizers opens a variety of potential clinical applications for computer aided interventions using flexible instruments; endoscopes or catheters can easily be tracked within the body. With respect to the new applications, the systematic distortions induced by various materials such as closed metallic loops, wire guides, catheters, and ultrasound scan heads were systematically evaluated in this paper for a new commercial tracking system. We employed the electromagnetic tracking system Aurora trade mark sign (Mednetix/CH, NDI/Can); data were acquired using the serial port of a PC running SuSE Linux 7.1 (SuSE, Gmbh, Nuernberg). Objects introduced into the digitizer volume included wire loops of different diameters, wire guides, optical tracking tools, an ultrasonic (US) scan head, an endoscope with radial ultrasound scan head and various other objects used in operating rooms and interventional suites. Beyond this, we determined the influence of a C-arm fluoroscopy unit. To quantify the reliability of the system, the miniaturized sensor was mounted on a nonmetallic measurement rack while the transmitter was fixed at three different distances within the digitizer range. The tracker was shown to be more sensitive to distortions caused by materials close to the emitter (average distortion error 13.6 mm±16.6 mm for wire loops positioned at a distance between 100 mm and 200 mm from the emitter). Distortions caused by materials near the sensor (distances smaller than 100 mm) are small (typical error 2.2 mm±1.9 mm). The C-arm fluoroscopy unit caused considerable distortions and limits the reliability of the tracker (distortion error 18.6 mm±24.9 mm). Distortions resulting from the US scan head are high at distances smaller than about 100 mm from the emitter. The distortions also increase when the scan head is positioned horizontally and close to the sensor (average error 4.1 mm±1.5 mm when the scan head is positioned within a

  19. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  20. Dr.Johnson's Dictionary in Miniature

    OpenAIRE

    Imazato, Chiaki

    1988-01-01

    More than hundred 'Johnson's' dictionaries have so far been published not only in English but in other countries, and there are numerous books and articles on Johnson's Dictionary. But few have referred to Johnson's Dictionary in Miniature; nor were there any books or articles on it. Fortunately, however, I've got one copy of Johnson's Dictionary in Miniature, which was published in 1806. Johnson's Dictionary (1755) has 41,677 entries, whereas Johnson's Dictionary in Miniature 23,439 entr...

  1. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    Science.gov (United States)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to

  2. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  3. Miniature Ground Mapping LADAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — System & Processes Engineering Corporation (SPEC) proposes a miniature solid state surface imaging LADAR, for imaging the landing areas providing precision...

  4. Hodoscope module with miniature photomultipliers

    International Nuclear Information System (INIS)

    Bel'zer, L.I.; Gribushin, A.M.; Zhil'tsov, L.Ya.; Matveeva, E.N.; Philipenko, T.D.; Sinev, N.B.

    1987-01-01

    The experimental Scintillation Magnetic Spectrometer (SMS) installation, whose main element is an extended hodoscope system, is being built for the accelerator of the High Energy Laboratory of the Joint Institute for Nuclear Research. The authors describe the scintillation hodoscope of the SMS installation and present the applicable amplitude and time characteristics of several types of miniature photomultipliers (FEU-58, FEU-60, FEU-114-1, FEU-147-1, and R-1635 (Hamamatsu, Japan)), which were obtained with a 106 Ru radioactive source and standard plastic scintillators of two types, based on oxazoles in polystyrene and in polymethylmethacrylate

  5. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  6. MWIR hyperspectral imaging with the MIDAS instrument

    Science.gov (United States)

    Honniball, Casey I.; Wright, Rob; Lucey, Paul G.

    2017-02-01

    Hyperspectral imaging (HSI) in the Mid-Wave InfraRed (MWIR, 3-5 microns) can provide information on a variety of science applications from determining the chemical composition of lava lakes on Jupiter's moon Io, to investigating the amount of carbon liberated into the Earth's atmosphere during a wildfire. The limited signal available in the MWIR presents technical challenges to achieving high signal-to-noise ratios, and therefore it is typically necessary to cryogenically cool MWIR instruments. With recent improvements in microbolometer technology and emerging interferometric techniques, we have shown that uncooled microbolometers coupled with a Sagnac interferometer can achieve high signal-to-noise ratios for long-wave infrared HSI. To explore if this technique can be applied to the MWIR, this project, with funding from NASA, has built the Miniaturized Infrared Detector of Atmospheric Species (MIDAS). Standard characterization tests are used to compare MIDAS against a cryogenically cooled photon detector to evaluate the MIDAS instruments' ability to quantify gas concentrations. Atmospheric radiative transfer codes are in development to explore the limitations of MIDAS and identify the range of science objectives that MIDAS will most likely excel at. We will simulate science applications with gas cells filled with varying gas concentrations and varying source temperatures to verify our results from lab characterization and our atmospheric modeling code.

  7. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  8. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  9. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  10. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for In-Situ Mars Surface Sample Analysis

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.

  11. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  12. A miniature inductive temperature sensor to monitor temperature noise in the coolant of an LMFBR

    International Nuclear Information System (INIS)

    Dean, S.A.; Sandham, C.W.

    1980-01-01

    A description is given of the design and performance of miniature inductive sensors developed to monitor fast temperature fluctuations in the sodium coolant above the core of a LMFBR. These instruments, designed to be installed within existing thermocouple containment thimbles, also provide a steady-state temperature indication for reactor control purposes. (author)

  13. With hiccups and bumps: the development of a Rasch-based instrument to measure elementary students' understanding of the nature of science.

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M; Shields, Katherine A; Wang, Yang

    2013-01-01

    This research describes the development process, psychometric analyses and part validation study of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). Evidence is provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. A future article will examine the structural and external validity aspects. Rasch modeling proved especially productive in scale improvement efforts. The instrument, designed for large-scale assessment use, is conceptualized using five construct domains. Data from 741 elementary students were used to pilot the Rasch scale, with continuous improvements made over three successive administrations. The psychometric properties of the NOSI-E instrument are consistent with the basic assumptions of Rasch measurement, namely that the items are well-fitting and invariant. Items from each of the five domains (Empirical, Theory-Laden, Certainty, Inventive, and Socially and Culturally Embedded) are spread along the scale's continuum and appear to overlap well. Most importantly, the scale seems appropriately calibrated and responsive for elementary school-aged children, the target age group. As a result, the NOSI-E should prove beneficial for science education research. As the United States' science education reform efforts move toward students' learning science through engaging in authentic scientific practices (NRC, 2011), it will be important to assess whether this new approach to teaching science is effective. The NOSI-E can be used as one measure of whether this reform effort has an impact.

  14. Study on a conceptual design of a data acquisition and instrument control system for experimental suites at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Nakatani, Takeshi; Torii, Shuki; Higemoto, Wataru; Otomo, Toshiya

    2006-02-01

    The JAEA (Japan Atomic Energy Agency)-KEK (High Energy Accelerator Research Organization) joint project, Japan Proton Accelerator Research Complex (J-PARC), is now under construction. Materials and Life Science Facility (MLF) is one of planned facilities in this research complex. The neutron and muon sources will be installed at MLF and world's highest class intensive beam, which is utilized for variety of scientific research subject, will be delivered. To discuss the necessary computing environments for neutron and muon instruments at J-PARC, the MLF computing environment group (MLF-CEG) has been organized. We, members of the DAQ subgroup (DAQ-SG) are responsible for considering data acquisition and instrument control systems for the experimental suites at MLF. In the framework of the MLF-CEG, we are surveying the computer resources which is required for data acquisition and instrument control at future instruments, current situation of existing facilities and possible solutions those we can achieve. We are discussing the most suitable system that can bring out full performance of our instruments. This is the first interim report of the DAQ-SG, in which our activity of 2003-2004 is summarized. In this report, a conceptual design of the software, the related a data acquisition and instrument control system for experimental instruments at MLF are proposed. (author)

  15. Miniature mechanical transfer optical coupler

    Science.gov (United States)

    Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  16. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-02-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During the quantitative data collection phase, a new instrument—the Social Constructivist Learning Environment Survey (SCLES)—was developed and used to collect data from 1,955 grade 9 science students from 52 classes in 50 schools in the Western Cape province, South Africa. The data were analysed to evaluate the reliability and validity of the new instrument, which assessed six dimensions of the classroom learning environment, namely, Working with Ideas, Personal Relevance, Collaboration, Critical Voice, Uncertainty in Science and Respect for Difference. Two dimensions were developed specifically for the present study in order to contextualise the questionnaire to the requirements of the new South African curriculum (namely, Metacognition and Respect for Difference). In the qualitative data collection phase, two case studies were used to investigate whether profiles of class mean scores on the new instrument could provide an accurate and "trustworthy" description of the learning environment of individual science classes. The study makes significant contributions to the field of learning environments in that it is one of the first major studies of its kind in South Africa with a focus on social constructivism and because the instrument developed captures important aspects of the learning environment associated with social constructivism.

  17. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    Science.gov (United States)

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The development and validation of the Self-Efficacy Beliefs about Equitable Science Teaching and learning instrument for prospective elementary teachers

    Science.gov (United States)

    Ritter, Jennifer M.

    1999-12-01

    The purpose of this study was to develop, validate and establish the reliability of an instrument to assess the self-efficacy beliefs of prospective elementary teachers with regards to science teaching and learning for diverse learners. The study used Bandura's theoretical framework, in that the instrument would use the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to science teaching and learning to diverse learners: specifically the two dimensions of self-efficacy beliefs defined by Bandura (1977): personal self-efficacy and outcome expectancy. A seven step plan was designed and followed in the process of developing the instrument, which was titled the Self-Efficacy Beliefs about Equitable Science Teaching or SEBEST. Diverse learners as recognized by Science for All Americans (1989) are "those who in the past who have largely been bypassed in science and mathematics education: ethnic and language minorities and girls" (p. xviii). That definition was extended by this researcher to include children from low socioeconomic backgrounds based on the research by Gomez and Tabachnick (1992). The SEBEST was administered to 226 prospective elementary teachers at The Pennsylvania State University. Using the results from factor analyses, Coefficient Alpha, and Chi-Square a 34 item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the content matrix. The 34 item SEBEST was found to load purely on four factors across the content matrix thus providing evidence construct validity. The Coefficient Alpha reliability for the 34 item SEBEST was .90 and .82 for the PSE sub-scale and .78 for the OE sub-scale. A Chi-Square test (X2 = 2.7 1, df = 7, p > .05) was used to confirm that the 34 items were balanced across the Personal Self-Efficacy/Outcome Expectancy and Ethnicity/LanguageMinority/Gender Socioeconomic Status/dimensions of the content matrix. Based on

  19. Unified electronic unit for miniature radioactivity logging equipment

    International Nuclear Information System (INIS)

    Bragin, A.A.; Goldshtejn, L.M.; Fedorov, R.F.; Shikhman, A.S.

    1981-01-01

    Appropriateness and urgency of the unification of components of radioactivity logging equipment used for the investigation of wells at solid mineral deposits is substantiated. A two-channel electronic unit for miniature equipment for radioactivity logging is described and its basic specifications and performance are given. All functional assemblies of the unit are structurally made in the form of printed circuit boards placed in a pan-shaped chassis 28 mm in diameter. The unit's general design provides for the possibility to attach two probes with detection devices to the unit. The unit is used in the two-channel radioactivity logging instrument ''Kura-2'' and in the two-channel radiometer ''RUR-2''. The outer diameter of these instruments is 48 mm and they ensure the investigation of ore and coal wells with a combination radioactivity methods [ru

  20. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  1. Inheritance of congenital cataracts and microphthalmia in the Miniature Schnauzer.

    Science.gov (United States)

    Gelatt, K N; Samuelson, D A; Bauer, J E; Das, N D; Wolf, E D; Barrie, K P; Andresen, T L

    1983-06-01

    Congenital cataracts and microphthalmia in the Miniature Schnauzer were inherited as an autosomal recessive trait. Eighteen matings of affected X affected Miniature Schnauzers resulted in 87 offspring with congenital cataracts and microphthalmia (49 males/38 females). Two matings of congenital cataractous and microphthalmic Miniature Schnauzers (2 females) X a normal Miniature Schnauzer (1 male) yielded 11 clinically normal Miniature Schnauzers (7 males/4 females). Eighteen matings of congenital cataractous and microphthalmic Miniature Schnauzers (6 males) X carrier Miniature Schnauzers (9 females) produced 81 offspring; 39 exhibited congenital cataracts and microphthalmia (20 males/19 females) and 42 had clinically normal eyes (17 males/25 females).

  2. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  3. High Performance Miniature Bandpass Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for developing low impedance, miniature bandpass RF frequency filter via MEMS technique, in applications of SMAP, Aquarius follow-on,...

  4. Using Miniature Landforms in Teaching Geomorphology.

    Science.gov (United States)

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  5. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

  6. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  7. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  8. Goniometry and Limb Girth in Miniature Dachshunds

    OpenAIRE

    Thomovsky, Stephanie A.; Chen, Annie V.; Kiszonas, Alecia M.; Lutskas, Lori A.

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girt...

  9. A miniature electrical capacitance tomograph

    Science.gov (United States)

    York, T. A.; Phua, T. N.; Reichelt, L.; Pawlowski, A.; Kneer, R.

    2006-08-01

    The paper describes a miniature electrical capacitance tomography system. This is based on a custom CMOS silicon integrated circuit comprising eight channels of signal conditioning electronics to source drive signals and measure voltages. Electrodes are deposited around a hole that is fabricated, using ultrasonic drilling, through a ceramic substrate and has an average diameter of 0.75 mm. The custom chip is interfaced to a host computer via a bespoke data acquisition system based on a microcontroller, field programmable logic device and wide shift register. This provides fast capture of up to 750 frames of data prior to uploading to the host computer. Data capture rates of about 6000 frames per second have been achieved for the eight-electrode sensor. This rate could be increased but at the expense of signal to noise. Captured data are uploaded to a PC, via a RS232 interface, for off-line imaging. Initial tests are reported for the static case involving 200 µm diameter rods that are placed in the sensor and for the dynamic case using the dose from an inhaler.

  10. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  11. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  12. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  13. Miniature EVA Software Defined Radio

    Science.gov (United States)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  14. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  15. Liquid storage of miniature boar semen.

    Science.gov (United States)

    Shimatsu, Yoshiki; Uchida, Masaki; Niki, Rikio; Imai, Hiroshi

    2002-04-01

    The effects of liquid storage at 15 degrees C on the fertilizing ability of miniature pig semen were investigated. Characterization of ejaculated semen from 3 miniature boars was carried out. Semen volume and pH were similar among these boars. In one of the boars, sperm motility was slightly low, and sperm concentration and total number of sperm were significantly lower than in the others (P semen was substituted with various extenders (Kiev, Androhep, BTS and Modena) by centrifugation and semen was stored for 7 days at 15 degrees C. Sperm motility was estimated daily at 37 degrees C. For complete substitution of seminal plasma, Modena was significantly more efficient than the other extenders (P Semen from each of the 3 miniature boars that had been stored for 5 to 7 days at 15 degrees C in Modena was used for artificial insemination of 15 miniature sows. The farrowing rates were 100, 100 and 60%, and litter sizes were 6.4 +/- 1.5, 5.8 +/- 0.8 and 5.0 +/- 1.0 for each boar semen, respectively. The boar that sired the smallest farrowing rate was the same one that showed lower seminal quality with respect to sperm motility, sperm concentration and total number of sperm. These results suggest that miniature boar semen can be stored for at least 5 days at 15 degrees C by the substitution of seminal plasma with Modena extender.

  16. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  17. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  18. Goniometry and Limb Girth in Miniature Dachshunds.

    Science.gov (United States)

    Thomovsky, Stephanie A; Chen, Annie V; Kiszonas, Alecia M; Lutskas, Lori A

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic) (P > 0.05). When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  19. Goniometry and Limb Girth in Miniature Dachshunds

    Directory of Open Access Journals (Sweden)

    Stephanie A. Thomovsky

    2016-01-01

    Full Text Available Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic (P>0.05. When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  20. Presynaptic miniature GABAergic currents in developing interneurons.

    Science.gov (United States)

    Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain

    2010-04-29

    Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts. Copyright 2010 Elsevier Inc. All rights reserved.

  1. FY 2006 Miniature Spherical Retroreflectors Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  2. University of Houston Undergraduate Student Instrumentation Projects

    Science.gov (United States)

    Bering, E. A., III; Talbot, R. W.; Hampton, D. L.; Molders, N.; Millan, R. M.; Halford, A. J.; Dunbar, B.; Morris, G. A.; Prince, J.; Gamblin, R.; Ehteshami, A.; Lehnen, J. N.; Greer, M.; Porat, I.; Alozie, M.; Behrend, C. C.; Bias, C.; Fenton, A.; Gunawan, B.; Harrison, W.; Martinez, A.; Mathur, S.; Medillin, M.; Nguyen, T.; Nguyen, T. V.; Nowling, M.; Perez, D.; Pham, M.; Pina, M.; Thomas, G.; Velasquez, B.; Victor, L.

    2017-12-01

    The Undergraduate Student Instrumentation Project (USIP) is a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals for an array of fields. The program is student led and executed from initial ideation to research to the design and deployment of scientific payloads. The University of Houston has been selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II started in January of 2016, with funding starting at the end of May. USIP_UH I (USIP_UH II) at the University of Houston was (is) composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. These instruments will contribute to a broad range of geophysical sciences from Very Low Frequency recording and Total Electron Content to exobiology and ozone profiling. USIP_UH I had 12 successful launches with 9 recoveries from Fairbanks, AK in March 2015, and 4 piggyback flights with BARREL 3 from Esrange, Kiruna, Sweden in August, 2015. USIP_UH II had 8 successful launches with 5 recoveries from Fairbanks, AK in March 2017, 3 piggyback flights with BARREL 4 from Esrange, Kiruna, Sweden in August, 2016, and 1 flight each from CSBF and UH. The great opportunity of this program is capitalizing on the proliferation of electronics miniaturization to create new generations of scientific instruments that are smaller and lighter than ever before. This situation allows experiments to be done more cheaply which ultimately allows many more experiments to be done.

  3. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  4. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  5. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  6. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. The PESPERF Scale: An Instrument for Measuring Service Quality in the School of Physical Education and Sports Sciences (PESS)

    Science.gov (United States)

    Yildiz, Suleyman M.; Kara, Ali

    2009-01-01

    Purpose: HEdPERF (Higher Education PERFormance) is one of the most recently developed scales in the literature to measure service quality in higher education. However, HEdPERF is designed to measure service quality at a macro level (university level) and may be considered as a more generic measurement instrument. In higher education, new scales…

  8. What Do You Know about Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Johari, Marliza; Said, Hardimah; Treagust, David F.

    2015-01-01

    The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students' understanding and alternative conceptions about alternative…

  9. Construction and Validation of an Instrument to Measure Problem-Solving Skills of Suburban High School Physical Science Students

    Science.gov (United States)

    Herak, Patrick James

    2010-01-01

    The purpose of this study was to develop a problem-solving instrument that could easily be used by a classroom teacher. The research questions were (1) can the Problem-Solving Skills Assessments (PSSAs) differentiate between students with varying levels of selected problem-solving skills? (2) Can the PSSAs measure student growth due to…

  10. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  11. Miniature interferometer for refractive index measurement in microfluidic chip

    Science.gov (United States)

    Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

    2012-12-01

    The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

  12. Advances in control and instrumentation

    International Nuclear Information System (INIS)

    Surendar, Ch.

    1994-01-01

    Control and instrumentation systems have seen significant changes from pneumatic to electronic with the advent of transistors and integrated circuits. Miniaturization was realised. With the introduction of microprocessors there has been a revolutionary change in the approach in instrumentation and control systems in the areas of sensors, data acquisition/transmission, processing for control, and presentation of the information to the operator. An effort is made to give some insight into these areas, with some idea of the advantages to which these systems are being put to use in the nuclear facilities, particularly nuclear power reactors. (author)

  13. Compte rendu de : Charles T. Wolfe and Ofer Gal (eds., The body as object and instrument of knowledge. Embodied empiricism in early modern science

    Directory of Open Access Journals (Sweden)

    Bernard Joly

    2011-03-01

    Full Text Available Cet ouvrage collectif, qui résulte en partie des travaux d’un atelier sur l’empirisme incarné dans la science moderne qui s’est tenu à l’université de Sydney en février 2009, rassemble quinze communications regroupées en trois parties : « The Body as Object », « The Body as Instrument », « Embodies Minds ». L’objectif des auteurs est de corriger la conception dominante que se font les historiens des sciences et de la philosophie de l’émergence de la philosophie expérimentale, et de l’empirism...

  14. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  15. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Thomas N.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden [University of Colorado, Boulder, CO (United States); Caspi, Amir [Southwest Research Institute, Boulder, CO (United States); Chamberlin, Phillip C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Solomon, Stanley C. [National Center for Atmospheric Research, Boulder, CO (United States); Machol, Janet; Viereck, Rodney [NOAA Space Weather Prediction Center, Boulder, CO (United States)

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer ( MinXSS ) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1–10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5–30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS -1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS -1 observations are compared to the Geostationary Operational Environmental Satellite ( GOES ) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  16. Plans for miniature machining at LASL

    International Nuclear Information System (INIS)

    Rhorer, R.L.

    1979-01-01

    A special shop for making miniature or very small parts is being established within the LASL Shop Department, and one of the machine tools for this shop is a high precision lathe. The report describes a method based on scale modeling analysis which was used to define the specific requirements for this lathe

  17. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  18. Naturalism and Mannerism in Indian Miniatures

    Science.gov (United States)

    Duran, Jane

    2001-01-01

    In this essay, the author furthers the argument that critical commentary on the Rajput and Muslim miniatures of India has focused on a rather odd use of labels and categories, perhaps to an even greater extent than has been the case with much of the rest of the criticism of the art of South Asia. She first examines the use of the term…

  19. Technologies for highly miniaturized autonomous sensor networks

    NARCIS (Netherlands)

    Baert, K.; Gyselinckx, B.; Torfs, T.; Leonov, V.; Yazicioglu, F.; Brebels, S.; Donnay, S.; Vanfleteren, J.; Beyne, E.; Hoof, C. van

    2006-01-01

    Recent results of the autonomous sensor research program HUMAN++ will be summarized in this paper. The research program aims to achieve highly miniaturized and (nearly) autonomous sensor systems that assist our health and comfort. Although the application examples are dedicated to human

  20. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  1. Miniaturized measurement system for ammonia in air

    NARCIS (Netherlands)

    Timmer, B.H.; van Delft, K.M.; Otjes, R.P.; Olthuis, Wouter; van den Berg, Albert

    2004-01-01

    The development of a miniaturized ammonia sensor made using microsystem technology is described. Gas is sampled in a sampler comprising two opposite channels separated by a gas permeable, water repellent polypropylene membrane. Subsequently, the acid sample solution is pumped into a selector where

  2. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  3. A new miniaturized multiarray biosensor system for fluorescence detection

    International Nuclear Information System (INIS)

    Tibuzzi, A; Rea, G; Pezzotti, G; Esposito, D; Johanningmeier, U; Giardi, M T

    2007-01-01

    A miniaturized biosensor-based optical instrument has been designed and fabricated for multiarray fluorescence measurements of several biomediators in series, with applications in environmental monitoring and agrofood analysis. It is a multicell system featuring two arrays of five static cells (1 x 1 x 2 cm 3 ) which are sealed to avoid contamination. Every cell is made up by two modular sections: the bottom compartment with optical LED light excitations and a photodiode detector for fluorescence emission capture, and the top biocompatible compartment where the biosample is deposited. The system (0.250 kg without batteries and case, 100 x 100 x 150 mm 3 internal case dimensions) is equipped with electronic control boards, a flash memory card for automatic data storage, and internal batteries, thus being portable and versatile. The instrument allows one to perform simultaneous and multiparametric analyses and offers a large applicability in biosensor technology. The first prototype has been implemented with genetically modified oxygenic photosynthetic algae that were employed in the instrument experimental testing by monitoring pesticide pollution in water. Pesticides modify the photosystem II (PSII) activity in terms of fluorescence quenching. The PSII complex features a natural nanostructure and can be considered a sophisticated molecular device. Results from measurements employing several PSII mutants and six different pesticides at increasing concentrations and incubation times are presented and discussed

  4. Miniature robotic sample analysis lab for planetary in situ mineralogy and microbiology

    Science.gov (United States)

    Kruzelecky, Roman; Wong, Brian; Haddad, Emile; Jamroz, Wes; Cloutis, Edward; Strong, Kimberly; Ghafoor, Nadeem; Jessen, Sean

    The current Martian surface conditions are relatively inhospitable, with average diurnal temperature ranges from 170 K to 268 K, a low air pressure of about 7 to 10 mbar consisting mainly of CO2 and negligible ozone to moderate the UV portion of the incident solar radiation. The intense UV effectively sterilizes the surface, and in combination with the low air pressure, makes any unbound surface liquid water unstable. However, there is mounting evidence to support the notion that the near subsurface of Mars may differ dramatically from the uppermost surface. The Inukshuk landed Mars mission, as initially developed under a pre-Phase A study for the Canadian Space Agency, focuses on the search for hydrated mineralogy and subsurface water sites that can provide evidence of past or present life. The mission will be achieved using a miniature suite of complementary spectral instruments operating in collaboration with a robotic tethered mole drill system for the systematic in situ subsurface exploration of the planetary mineralogy, water content and microbiology. The Inukshuk mission will, for the first time, study variations in the Mars subsurface characteristics and composition in detail at different locations. These will be correlated with the current planetary boundary layer conditions using an elevating Skycam platform and surface stand-off measurement capabilities. The subsurface analysis will be provided using a miniature bore-hole probe integrated within the mole driller and interfaced to the rover-based instrument suite using an IR fiber-optic link. This will allow subsurface mapping of the stratigraphy and composition in steps of a few mm to depths beyond 1 m. During the drilling, the bore-hole probe will be shielded using a wiper/shutter system. The in situ bore-hole analysis has an advantage for detecting biomarkers for astrobiology on Mars in that the alteration of the sample by surface radiation can be minimized. The bore-hole sample analysis will employ

  5. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  6. Strange Animals and Creatures in Islamic Miniatures: Focusing on Miniatures of the Conference of the Birds

    Directory of Open Access Journals (Sweden)

    Neda Rohani

    2017-09-01

    Full Text Available Strange animals and creatures have always existed in every mythological culture. In Iran's pre-Islamic and post-Islamic miniatures and reliefs, there are many strange animals and creatures such as dragons and phoenix which were associated with the Iranian culture and civilization. Because of presence of these strange creatures, particularly human life, these creatures are first used in mythological life and then symbolically to express human ideas. However, these animals were present in both mythology and epics and, later in the Islamic era, in the mystical stories, educational stories and admonishing anecdotes like Sanai, Attar, and Rumi. This study tends to investigate genealogy of strange animals and creatures in ancient Iranian reliefs and their continued presence in miniatures of Islamic era as well as presence of these creatures in miniatures which are based on Attar’s Conference of the Birds. In fact, this study reviews elements and symbolic concepts of animals, allowing a deeper understanding of function of elements and symbolism in works of Iranian miniaturists. Contemplation of miniatures, icons and the relationship between literature and miniatures will lead to many results in recognition of mystical intellectual foundations. Therefore, this study tends to investigate mysterious and unknown aspects of Iranian miniatures and find their relationship with culture and stories.

  7. The Development and Validation of Test Instruments to Measure Observation and Comparison in Junior High School Science.

    Science.gov (United States)

    Hungerford, Harold Ralph

    This study attempted to design tests for the purpose of measuring the acquisition of the science skills of observation and comparison, to determine if these skills, as measured by these tests, could be differentially improved using differing amounts of training, and to determine the effects of race and cultural status on performance with the…

  8. Miniature surgical robots in the era of NOTES and LESS: dream or reality?

    Science.gov (United States)

    Zygomalas, Apollon; Kehagias, Ioannis; Giokas, Konstantinos; Koutsouris, Dimitrios

    2015-02-01

    Laparoscopy is an established method for the treatment of numerous surgical conditions. Natural orifice transluminal endoscopic surgery (NOTES) is a novel surgical technique that uses the natural orifices of the human body as entrances to the abdominal cavity. An alternative concept of minimally invasive approach to the abdominal cavity is to insert all the laparoscopic instruments through ports using a single small incision on the abdominal wall. A suggested name for this technique is laparoendoscopic single-site surgery (LESS). Considering the technical difficulties in NOTES and LESS and the progress in informatics and robotics, the use of robots seems ideal. The aim of this study is to investigate if there is at present, a realistic possibility of using miniature robots in NOTES or LESS in daily clinical practice. An up-to-date review on in vivo surgical miniature robots is made. A Web-based research of the English literature up to March 2013 using PubMed, Scopus, and Google Scholar as search engines was performed. The development of in vivo miniature robots for use in NOTES or LESS is a reality with great advancements, potential advantages, and possible application in minimally invasive surgery in the future. However, true totally NOTES or LESS procedures on humans using miniature robots either solely or as assistance, remain a dream at present. © The Author(s) 2014.

  9. Banque d’instruments de mesure en recherche : Une innovation au service des membres chercheurs en sciences infirmières

    Directory of Open Access Journals (Sweden)

    Sylvie Le May

    2017-04-01

    Full Text Available Résumé : Introduction : Face aux difficultés que rencontrent ses enseignants et étudiants à retrouver des instruments de mesure valides dans les bases de données, le Réseau de Recherche en Interventions en Sciences Infirmières du Québec (RRISIQ a récemment choisi de développer une banque d’instruments de mesure accessible et bien documentée utilisant le logiciel bibliographique Zotero. Cet article a pour but de décrire la Banque d’instruments du RRISIQ, d’en exposer les défis et ses perspectives de développement. Description : La Banque comprend plus de 1400 liens ou références à des instruments de mesure reliés aux interventions cliniques, à l’organisation des services infirmiers et à la formation infirmière. L’utilisateur a accès à des références bibliographiques d’articles scientifiques sur les instruments, en anglais et en français. En naviguant dans la Banque, il clique sur l'article de son choix, obtenant ainsi une description bibliographique complète, dont une adresse web lui permettant d’accéder en ligne au plein texte. Résultats : La Banque d’instruments Zotero nécessite un faible coût d’entretien technique pour effectuer des sauvegardes, résoudre les difficultés et gérer les demandes d'accès. Elle est appréciée par ses utilisateurs. Discussion : La Banque prendra de l’ampleur dans les années à venir et des démarches sont actuellement réalisées par l’équipe pour la publiciser davantage auprès de ses membres et de leurs étudiants. L’équipe envisage de la rendre disponible à d’autres équipes de recherche du Québec.

  10. International Conferences and Young Scientists Schools on Computational Information Technologies for Environmental Sciences (CITES) as a professional growth instrument

    Science.gov (United States)

    Gordov, E. P.; Lykosov, V. N.; Genina, E. Yu; Gordova, Yu E.

    2017-11-01

    The paper describes a regular events CITES consisting of young scientists school and international conference as a tool for training and professional growth. The events address the most pressing issues of application of information-computational technologies in environmental sciences and young scientists’ training, diminishing a gap between university graduates’ skill and concurrent challenges. The viability of the approach to the CITES organization is proved by the fact that single event organized in 2001 turned into a series, quite a few young participants successfully defended their PhD thesis and a number of researchers became Doctors of Science during these years. Young researchers from Russia and foreign countries show undiminishing interest to these events.

  11. The Textile Elements in Ottoman Miniatures

    Directory of Open Access Journals (Sweden)

    Kevser Gürcan Y A R D I M C I

    2015-07-01

    Full Text Available With the value given to the art and the artist, high quality works of art in many fields were produced in the Ottoman Era. The art of weaving also lived its brightest period in terms of color, design, and weaving techniques in the Ottoman Empire in XVI. Ce ntury. The weaving products shaped the lifestyles of the people in those times and received great interest in the Palace as well. Silk woven fabrics had become such a great power in those times that it became the greatest symbol showing the power of the Ot toman Empire to the foreigners, and the determiner of the social standing within the society. The Ottoman Sultans used their clothing, which they made to become flamboyant with embroideries, to distinguish themselves from the public, and make them accept t heir power. Among the presents that were presented to the Sultans, clothes, kaftans, and similar fabrics as well as other precious presents, were frequent. The miniature manuscripts that were produced in the Palace are in the quality of unique documents t hat transfer yesterday’s knowledge to the modern age. It is easy to decode the dimensions of the clothing habits, decoration elements and hierarchy concepts of the Ottoman Era, as well as the weaving activities by using the miniature manuscripts. On the ot her hand, these elements constitute a rich alphabet in transferring the emotional structure of the society in those times, the traditions and habits to our world today. The greatest share in this effort belongs to the artists who depicted the miniatures by staying loyal to the texts in the manuscripts as well as to their active participation in the events of those times and their narrating the events as the very first observers. In addition, the muralists depicting the manuscripts and their undertaking the job of drawing the designs on the original fabric helped them to reflect the richness in the design of those times to the miniatures. In this study, the weavings and the accessories

  12. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  13. SMARBot: a modular miniature mobile robot platform

    Science.gov (United States)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  14. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  15. The MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Possibilities exist for applying the MDBT approach to the determination of other mechanical properties. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly

  16. Two miniature electronic dosemeters Yperwatch - Gamcard

    International Nuclear Information System (INIS)

    Clavel, B.; Jaillon, J.

    1993-01-01

    Yperwatch and Gamcard were miniature electronic gamma personal dose and dose rate monitors. The Yperwatch is mounted in a wristwatch and the Gamcard in a case of the size of a standard credit card. The technology provides users with all the performance of a standard professional electronic dosemeter (integrated dose, dose rate, audible alarms, time in use). Yperwatch and Gamcard are based on well-proven electronic dosimetry technology, but with a greater ease of use. (author)

  17. Some characteristics of a miniature neutron spectrometer

    International Nuclear Information System (INIS)

    Sekimoto, H.; Oishi, K.; Hojo, K.; Hojo, T.

    1984-01-01

    Some characteristics of an NE213 miniature spherical spectrometer for in-assembly fast-neutron spectrometry were measured. As the bubbling time changed, the pulse-height did not change appreciably, but the n-γ discrimination characteristics changed considerably. As the count rate changed, the pulse-height did not change appreciably, and the change of the n-γ discrimination characteristics was acceptable. The neutron response function was measured to be almost isotropic except for the backward direction. (orig.)

  18. ``I Just Want The Credit!'' - Perceived Instrumentality as the Main Characteristic of Boys' Motivation in a Grade 11 Science Course

    Science.gov (United States)

    Nieswandt, Martina; Shanahan, Marie-Claire

    2008-01-01

    This case study examines the motivational structure of a group of male students ( n = 10) in a grade 11 General Science class at an independent single-sex school. We approach the concept of motivation through the integration of three different theoretical approaches: sociocultural theory, future time perspective and achievement goal theory. This framework allows us to stress the dialectical interdependence of motivation, as expressed through individual goals, and the socially and culturally influenced origins of these goals. Our results suggest that the boys internalised the administrative description of the course as meeting a diploma requirement, which they expressed in their perception of the course as being for “non-science” people who “just need a credit.” However, we also found situational changes in students’ motivational structure towards more intrinsic orientations when they were engaged in topics with personal everyday and future relevance. These situational changes in students’ goal structures illustrate that our participants did not internalise classroom and school goal messages wholly and, instead, selectively and constructively transformed these goal messages depending on their own motivational structure and beliefs. These results stress the importance of teachers scaffolding not only for conceptual learning but also for student motivation in science classes, especially those that purposefully teach towards scientific literacy.

  19. Glomerular Lesions in Proteinuric Miniature Schnauzer Dogs.

    Science.gov (United States)

    Furrow, E; Lees, G E; Brown, C A; Cianciolo, R E

    2017-05-01

    Miniature Schnauzer dogs are predisposed to idiopathic hypertriglyerceridemia, which increases risk for diseases such as pancreatitis and gallbladder mucocele. Recently, elevated triglyceride concentrations have been associated with proteinuria in this breed, although it is difficult to determine which abnormality is primary. Retrospective review of renal tissue from 27 proteinuric Miniature Schnauzers revealed that 20 dogs had ultrastructural evidence of osmophilic globules consistent with lipid in glomerular tufts. Seven of these dogs had lipid thromboemboli in glomerular capillary loops that distorted their shape and compressed circulating erythrocytes. Triglyceride concentrations were reported in 6 of these 7 dogs, and all were hypertriglyceridemic. In addition, glomerular lipidosis (defined as accumulation of foam cells within peripheral capillary loops) was identified in a single dog. The remaining 12 dogs had smaller amounts of lipid that could only be identified ultrastructurally. Neither signalment data nor clinicopathologic parameters (serum albumin, serum creatinine, urine protein-to-creatinine ratio, and blood pressure) differed among the various types of lipid lesions. During the time course of this study, all dogs diagnosed with glomerular lipid thromboemboli were Miniature Schnauzers, underscoring the importance of recognizing these clear spaces within capillary loops as lipid.

  20. Miniature field deployable terahertz source

    Science.gov (United States)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  1. Electromigration driven failures on miniature silver fuses at the Large Hadron Collider

    CERN Document Server

    Trikoupis, Nikolaos; Perez Fontenla, Ana Teresa

    2017-01-01

    Spurious faults were observed on the miniature silver fuses of electronic cards used for the cryogenics instrumentation in the LHC (Large Hadron Collider) accelerator at CERN. By applying analytical tools and techniques such as Scanning Electron Microscopy, spectrometry and Weibull reliability calculations and by the knowledge of operating temperatures and operational time of each unit, the origin of the problem has now been understood and can be attributed to electromigration. The selected fuse was operated at moderate temperature and load conditions and was considered as a “lifetime” component. However, it turned out to have a smaller than expected MTTF with failures following a Weibull distribution of $\\beta = 3.91$ and $\\eta = 2323$. The literature describes extensively the effects of electromigration, but there are only limited references referring to the impact of this phenomenon on miniature silver fuses for electronic circuits.

  2. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  3. Instruments for radiation measurement in life sciences (5), ''Development of imaging technology in life sciences'' III. Development of small animal PET scanners

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    This paper summarizes the requisites for small animal PET scanners, present state of their market and of their development in National Institute of Radiological Sciences (NIRS). Relative to the apparatus clinically used, the requisites involve the high spatial resolution of 0.8-1.5 mm and high sensitivity of the equipment itself due to low dose of the tracer to be given to animals. At present, more than 20 institutions like universities, research facilities and companies are developing the PET equipment for small animals and about 10 machines are in the market. However, their resolution and sensitivity are not fully satisfactory and for their improvement, investigators are paying attention to the gamma ray measurement by depth-of-interaction (DOI) method. NIRS has been also developing the machine jPET-D4 and has proposed to manufacture jPET-RD having 4-layer DOI detectors with the absolute central sensitivity as high as 14.7%. jPET-RD is to have the spatial resolution as high as <1mm (central view) and -1.4 mm (periphery). (T.I.)

  4. Miniaturized digital fluxgate magnetometer for small spacecraft applications

    International Nuclear Information System (INIS)

    Forslund, Åke; Ivchenko, Nickolay; Olsson, Göran; Edberg, Terry; Belyayev, Serhiy; Marusenkov, Andriy

    2008-01-01

    A novel design of an Earth field digital fluxgate magnetometer is presented, the small magnetometer in low-mass experiment (SMILE). The combination of a number of new techniques results in significant miniaturization of both sensor and electronics. The design uses a sensor with volume compensation, combining three dual rod cores in a Macor® cube with the side dimension of 20 mm. Use of volume compensation provides high geometrical stability of the axes and improved performance compared to component compensated sensors. The sensor is operated at an excitation frequency of 8 kHz. Most of the instrument functionality is combined in a digital signal processing core, implemented in a field programmable gate array (FPGA). The pick-up signal is digitized after amplification and filtering, and values of compensation currents for each of the axes are determined by a digital correlation algorithm, equivalent to a matched filter, and are fed to a hybrid pulse-width modulation/delta-sigma digital-to-analogue converter driving the currents through the compensation coils. Using digital design makes the instrument very flexible, reduces power consumption and opens possibilities for the customization of the operation modes. The current implementation of the design is based on commercial off-the-shelf components. A calibration of the SMILE instrument was carried out at the Nurmijärvi Geophysical Observatory, showing high linearity (within 6 nT on the whole ±50 µT scale), good orthogonality (22 arcmin) and very good temperature stability of the axes

  5. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    Science.gov (United States)

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  7. Fabrication of miniaturized electrostatic deflectors using LIGA

    International Nuclear Information System (INIS)

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-01-01

    Miniaturized electron beam columns (open-quotes microcolumnsclose quotes) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of open-quotes selectively scaledclose quotes micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures

  8. High power VCSELs for miniature optical sensors

    Science.gov (United States)

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  9. Newly introduced sample preparation techniques: towards miniaturization.

    Science.gov (United States)

    Costa, Rosaria

    2014-01-01

    Sampling and sample preparation are of crucial importance in an analytical procedure, representing quite often a source of errors. The technique chosen for the isolation of analytes greatly affects the success of a chemical determination. On the other hand, growing concerns about environmental and human safety, along with the introduction of international regulations for quality control, have moved the interest of scientists towards specific needs. Newly introduced sample preparation techniques are challenged to meet new criteria: (i) miniaturization, (ii) higher sensitivity and selectivity, and (iii) automation. In this survey, the most recent techniques introduced in the field of sample preparation will be described and discussed, along with many examples of applications.

  10. A miniature concentrating photovoltaic and thermal system

    International Nuclear Information System (INIS)

    Kribus, Abraham; Kaftori, Daniel; Mittelman, Gur; Hirshfeld, Amir; Flitsanov, Yuri; Dayan, Abraham

    2006-01-01

    A novel miniature concentrating PV (MCPV) system is presented and analyzed. The system is producing both electrical and thermal energy, which is supplied to a nearby consumer. In contrast to PV/thermal (PV/T) flat collectors, the heat from an MCPV collector is not limited to low-temperature applications. The work reported here refers to the evaluation and preliminary design of the MCPV approach. The heat transport system, the electric and thermal performance, the manufacturing cost, and the resulting cost of energy in case of domestic water heating have been analyzed. The results show that the new approach has promising prospects

  11. Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne

    of sensors, as the sensors are designed to provide robust and reliable measurements. That means, the sensors are designed to have repeated measurement clusters. Sensor fusion is presented for the sensor based on chemoselective compounds. An array of color changing compounds are handled and in unity they make......This Ph.D. thesis titled “Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection” is a part of the strategic research project “Miniaturized sensors for explosives detection in air” funded by the Danish Agency for Science and Technology...... emanated by explosives and drugs, similar to an electronic nose. To evaluate sensor responses a data processing and evaluation pipeline is required. The work presented herein focuses on the feature extraction, feature representation and sensor accuracy. Thus the primary aim of this thesis is twofold...

  12. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  13. "A bare outpost of learned European culture on the edge of the jungles of Java": Johan Maurits Mohr (1716-1775) and the emergence of instrumental and institutional science in Dutch colonial Indonesia.

    Science.gov (United States)

    Zuidervaart, Huib J; Van Gent, Rob H

    2004-03-01

    The transits of Venus in 1761 and 1769 appear to mark the starting point of instrumental science in the Dutch East Indies (now Indonesia). This essay examines the conditions that triggered and constituted instrumental and institutional science on Indonesian soil in the late eighteenth century. In 1765 the Reverend J. M. Mohr, whose wife had received a large inheritance, undertook to build a fully equipped private observatory in Batavia (now Jakarta). There he made several major astronomical and meteorological observations. Mohr's initiative inspired other Europeans living on Java around 1770 to start a scientific movement. Because of the lack of governmental and other support, it was not until 1778 that this offspring of the Dutch-Indonesian Enlightenment became a reality. The Bataviaasch Genootschap van Kunsten en Wetenschappen tried from the beginning to put into effect the program Mohr had outlined. The members even bought his instruments from his widow, intending to continue his measurements. For a number of reasons, however, this instrumental program was more than the society could support. Around 1790 instrumental science in the former Dutch East Indies came to a standstill, not to be resumed for several decades.

  14. Ballistic tongue projection in a miniaturized salamander.

    Science.gov (United States)

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  15. Miniature rainbow schlieren deflectometry system for quantitative measurements in microjets and flames

    International Nuclear Information System (INIS)

    Satti, Rajani P.; Kolhe, Pankaj S.; Olcmen, Semih; Agrawal, Ajay K.

    2007-01-01

    Recent interest in small-scale flow devices has created the need for miniature instruments capable of measuring scalar flow properties with high spatial resolution. We present a miniature rainbow schlieren deflectometry system to nonintrusively obtain quantitative species concentration and temperature data across the whole field. The optical layout of the miniature system is similar to that of a macroscale system, although the field of view is smaller by an order of magnitude. Employing achromatic lenses and a CCD array together with a camera lens and extension tubes, we achieved spatial resolution down to 4 μm. Quantitative measurements required a careful evaluation of the optical components. The capability of the system is demonstrated by obtaining concentration measurements in a helium microjet (diameter, d=650 μm) and temperature and concentration measurements in a hydrogen jet diffusion flame from a microinjector(d=50 μm). Further, the flow field of underexpanded nitrogen jets is visualized to reveal details of the shock structures existing downstream of the jet exit

  16. Highly charged ions: a miniature laboratory for new fundamental science

    International Nuclear Information System (INIS)

    Gillaspy, J.D.

    2002-01-01

    Full text: Highly charged ions are 10-100 times smaller than ordinary atoms, yet they present within themselves a remarkably rich arena for testing fundamental aspects of physics. These tests are based on a precise analysis of the energy distribution of the photons that are emitted as electrons hop between energy levels within the highly charged ions. With sufficiently precise analysis, it may be possible to obtain new information about the structure of the vacuum, the effect of special relativity on many-body correlation, physics beyond the Standard Model, and the fundamental nature of quantum measurements. This talk will review the current state-of-the-art in the spectroscopy of highly charged ions, and give a look towards the future

  17. Miniature Mass Spectrometer for Earth Science Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — By drastically reducing the physical footprint of a mass spectrometer to the size of a beverage can, Ceramitron could set a new performance/price standard in the...

  18. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  19. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  20. Instrumentation and control and human machine interface science and technology road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Bond, L. J.; Dudenhoeffer, D.; Hallbert, B.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2006-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology road-map being developed to address the major challenges in this technical area for the Gen IV and other U.S. Dept. of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems as well as their licensing considerations. The ICHMI road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  1. Instrumentation and control and human machine interface science and technology Road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Dudenhoeffer, D.; Hallbert, B.; Bond, L. J.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Road-map (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI Road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  2. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues

  3. Maintenance energy requirements in miniature colony dogs.

    Science.gov (United States)

    Serisier, S; Weber, M; Feugier, A; Fardet, M-O; Garnier, F; Biourge, V; German, A J

    2013-05-01

    There are numerous reports of maintenance energy requirements (MER) in dogs, but little information is available about energy requirements of miniature dog breeds. In this prospective, observational, cohort study, we aimed to determine MER in dogs from a number of miniature breeds and to determine which factors were associated with it. Forty-two dogs participated in the study. MER was calculated by determining daily energy intake (EI) during a period of 196 days (28-359 days) when body weight did not change significantly (e.g. ±2% in 12 weeks). Estimated median MER was 473 kJ/kg(0.75) /day (285-766 kJ/kg(0.75) /day), that is, median 113 kcal/kg(0.75) /day (68-183 kcal/kg(0.75) /day). In the obese dogs that lost weight, median MER after weight loss was completed was 360 kJ/kg(0.75) /day (285-515 kJ/kg(0.75) /day), that is, 86 kcal/kg(0.75) /day, (68-123 kcal/kg(0.75) /day). Simple linear regression analysis suggested that three breeds (e.g. Chihuahua, p = 0.002; Yorkshire terrier, p = 0.039; dachshund, p = 0.035) had an effect on MER. In addition to breed, simple linear regression revealed that neuter status (p = 0.079) and having previously been overweight (p = 0.002) were also of significance. However, with multiple linear regression analysis, only previous overweight status (MER less in dogs previously overweight p = 0.008) and breed (MER greater in Yorkshire terriers [p = 0.029] and less in Chihuahuas [p = 0.089]) remained in the final model. This study is the first to estimate MER in dogs of miniature breeds. Although further information from pet dogs is now needed, the current work will be useful for setting energy and nutrient requirement in such dogs for the future. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  4. Miniature reciprocating heat pumps and engines

    Science.gov (United States)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  5. Uniform LED illuminator for miniature displays

    Science.gov (United States)

    Medvedev, Vladimir; Pelka, David G.; Parkyn, William A.

    1998-10-01

    The Total Internally Reflecting (TIR) lens is a faceted structure composed of prismatic elements that collect a source's light over a much larger angular range than a conventional Fresnel lens. It has been successfully applied to the efficient collimation of light from incandescent and fluorescent lamps, and from light-emitting diodes (LEDs). A novel LED-powered collimating backlight is presented here, for uniformly illuminating 0.25'-diagonal miniature liquid- crystal displays, which are a burgeoning market for pagers, cellular phones, digital cameras, camcorders, and virtual- reality displays. The backlight lens consists of a central dual-asphere refracting section and an outer TIR section, properly curved with a curved exit face.

  6. Miniature photovoltaic energy system for lighting

    International Nuclear Information System (INIS)

    Awais, M.

    1999-01-01

    In this project a miniature photovoltaic energy system has been designed and developed, that may be used in remote areas and villages for lighting purposes. System sizing is the important part of the project because it affects the cost of the system. Therefore, first of all system sizing has been done. For conversion of dc voltage of the battery into ac voltage, an inverter has been designed. To charge the battery when the sun is not shining, a standby system has been developed using a bicycle and dynamo. To indicate the battery's state of charge and discharge, a battery monitoring circuit has also been developed. Similarly, to protect the battery from over discharging, a battery protection circuit has been designed. In order to measure how much energy is going from standby system to the battery, an efficient dc electronic energy meter has been designed and developed. The working of the overall system has been tested and found to give good performance. (author)

  7. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  8. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  9. Miniaturization of specimens for mechanical testing

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.

    1987-01-01

    The development of mechanical property tests based on bending of a 3 mm diameter by (typically) 0.25 mm thick disk is described. Slow strain rate testing of such a disk is used to obtain tensile properties. Finite element computer modelling is used to extract yield stress values with accuracies of at least +- 10% of uniaxial tensile test values for a variety of materials. Analytical estimates of ductility from disk bend test values are possible for low-ductility materials. Work directed toward finite element calculations for ductility and ultimate tensile strength is also discussed. Preliminary data indicating the feasibility of high strain rate testing for estimation of ductile-to-brittle transition temperatures, and an example of the successful application of miniature bend testing in obtaining relative fatigue information are also presented. (author)

  10. Miniature multichannel analyzer for process monitoring

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.; Wiig, L.G.; Ianakiev, K.D.

    1993-01-01

    A new, 4,000-channel analyzer has been developed for gamma-ray spectroscopy applications. A design philosophy of hardware and software building blocks has been combined with design goals of simplicity, compactness, portability, and reliability. The result is a miniature, modular multichannel analyzer (MMMCA), which offers solution to a variety of nondestructive assay (NDA) needs in many areas of general application, independent of computer platform or operating system. Detector-signal analog electronics, the bias supply, and batteries are included in the virtually pocket-size, low-power MMMCA unit. The MMMCA features digital setup and control, automated data reduction, and automated quality assurance. Areas of current NDA applications include on-line continuous (process) monitoring, process material holdup measurements, and field inspections

  11. Miniature solid-state gas compressor

    Science.gov (United States)

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  12. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J

    2014-01-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  13. Incorporating Basic Optical Microscopy in the Instrumental Analysis Laboratory

    Science.gov (United States)

    Flowers, Paul A.

    2011-01-01

    A simple and versatile approach to incorporating basic optical microscopy in the undergraduate instrumental analysis laboratory is described. Attaching a miniature CCD spectrometer to the video port of a standard compound microscope yields a visible microspectrophotometer suitable for student investigations of fundamental spectrometry concepts,…

  14. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    Science.gov (United States)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  15. The scientific use of technological instruments

    NARCIS (Netherlands)

    Boon, Mieke; Hansson, Sven Ove

    2015-01-01

    One of the most obvious ways in which the natural sciences depend on technology is through the use of instruments. This chapter presents a philosophical analysis of the role of technological instruments in science. Two roles of technological instruments in scientific practices are distinguished:

  16. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  17. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  18. CRUQS: A Miniature Fine Sun Sensor for Nanosatellites

    Science.gov (United States)

    Heatwole, Scott; Snow, Carl; Santos, Luis

    2013-01-01

    A new miniature fine Sun sensor has been developed that uses a quadrant photodiode and housing to determine the Sun vector. Its size, mass, and power make it especially suited to small satellite applications, especially nanosatellites. Its accuracy is on the order of one arcminute, and it will enable new science in the area of nanosatellites. The motivation for this innovation was the need for high-performance Sun sensors in the nanosatellite category. The design idea comes out of the LISS (Lockheed Intermediate Sun Sensor) used by the sounding rocket program on their solar pointing ACS (Attitude Control System). This system uses photodiodes and a wall between them. The shadow cast by the Sun is used to determine the Sun angle. The new sensor takes this concept and miniaturizes it. A cruciform shaped housing and a surface-mount quadrant photodiode package allow for a two-axis fine Sun sensor to be packaged into a space approx.1.25xl x0.25 in. (approx.3.2x2.5x0.6 cm). The circuitry to read the photodiodes is a simple trans-impedance operational amplifier. This is much less complex than current small Sun sensors for nanosatellites that rely on photo-arrays and processing of images to determine the Sun center. The simplicity of the circuit allows for a low power draw as well. The sensor consists of housing with a cruciform machined in it. The cruciform walls are 0.5-mm thick and the center of the cruciform is situated over the center of the quadrant photodiode sensor. This allows for shadows to be cast on each of the four photodiodes based on the angle of the Sun. A simple operational amplifier circuit is used to read the output of the photodiodes as a voltage. The voltage output of each photodiode is summed based on rows and columns, and then the values of both rows or both columns are differenced and divided by the sum of the voltages for all four photodiodes. The value of both difference over sums for the rows and columns is compared to a table or a polynomial fit

  19. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs.

    Science.gov (United States)

    Sohn, Jungmin; Yun, Sookyung; Lee, Jeosoon; Chang, Dongwoo; Choi, Mincheol; Yoon, Junghee

    2017-01-10

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly.

  20. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  1. Femtosecond laser-assisted cataract surgery and implantable miniature telescope

    Directory of Open Access Journals (Sweden)

    Randal Pham

    2017-09-01

    Conclusions and importance: To our knowledge and confirmed by the manufacturer of the implantable miniature telescope this is the first case ever reported of a patient who has undergone femtosecond laser cataract surgery with corneal astigmatism correction and implantation of the implantable miniature telescope. This is also the first case report of the preoperative use of microperimetry and visual electrophysiology to evaluate a patient's postoperative potential visual acuity. The success of the procedure illustrated the importance of meticulous preoperative planning, the combined use of state-of-the-art technologies and the seamless teamwork in order to achieve the best clinical outcome for patients who undergo implantation of the implantable miniature telescope.

  2. Tract Sizes in Miniaturized Percutaneous Nephrolithotomy: A Systematic Review from the European Association of Urology Urolithiasis Guidelines Panel.

    Science.gov (United States)

    Ruhayel, Yasir; Tepeler, Abdulkadir; Dabestani, Saeed; MacLennan, Steven; Petřík, Aleš; Sarica, Kemal; Seitz, Christian; Skolarikos, Andreas; Straub, Michael; Türk, Christian; Yuan, Yuhong; Knoll, Thomas

    2017-08-01

    Miniaturized instruments for percutaneous nephrolithotomy (PNL), utilizing tracts sized ≤22 Fr, have been developed in an effort to reduce the morbidity and increase the efficiency of stone removal compared with standard PNL (>22 Fr). We systematically reviewed all available evidence on the efficacy and safety of miniaturized PNL for removing renal calculi. The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. Since it was not possible to perform a meta-analysis, the data were summarized in a narrative synthesis. After screening 2945 abstracts, 18 studies were included (two randomized controlled trials [RCTs], six nonrandomized comparative studies, and 10 case series). Thirteen studies were full-text articles and five were only available as congress abstracts. The size of tracts used in miniaturized procedures ranged from 22 Fr to 4.8 Fr. The largest mean stone size treated using small instruments was 980mm 2 . Stone-free rates were comparable in miniaturized and standard PNL procedures. Procedures performed with small instruments tended to be associated with significantly lower blood loss, while the procedure duration tended to be significantly longer. Other complications were not notably different between PNL types. Study designs and populations were heterogeneous. Study limitations included selection and outcome reporting bias, as well as a lack of information on relevant confounding factors. The studies suggest that miniaturized PNL is at least as efficacious and safe as standard PNL for the removal of renal calculi. However, the quality of the evidence was poor, drawn mainly from small studies, the majority of which were single-arm case series, and only two of which were RCTs. Furthermore, the tract sizes used and types of stones treated were heterogeneous. Hence, the risks of bias and confounding were high, highlighting the need for more reliable data from RCTs. Removing kidney stones via

  3. A preview of a microgravity laser light scattering instrument

    Science.gov (United States)

    Meyer, W. V.; Ansari, R. R.

    1991-01-01

    The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.

  4. Low Power Consumption Lasers for Miniature Optical Spectrometers for Trace Gas Analysis

    Science.gov (United States)

    Forouhar, S.; Frez, C.; Franz, K. J.; Ksendzov, A.; Qiu, Y.; Soibel, K. A.; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; hide

    2011-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. Achieving a minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental absorption lines of the target gases, which are mostly in the 3.0-5.0 micron wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 micron and quantum cascade (QC) lasers in the 4.0-5.0 micron range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.

  5. In-situ phase analysis by a versatile miniaturized Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Held, P.; Bernhardt, B.; Foh, J.; Teucher, R.; Kankeleit, E.

    1998-01-01

    The element iron plays a major role in modern industries and technologies as for instance car-industry, mineral processing and steel production and power plants. For quality control, process monitoring and device inspection (e.g., pipes in power plants) a fast, non-destructive and sensitive analytical method is desirable. 57 Fe Moessbauer spectroscopy is able to determine the different iron phases (e.g., oxides, sulfides, nitrates, carbonates and carbides) and therefore would be the ideal tool to perform this job. We have developed a miniaturized backscattering Moessbauer spectrometer for space applications which will be modified and used for industrial applications under certain circumstances. The instrument is designed in a modular way which would allow to adapt it to different applications. The instrument has approximately the size of a soft drink can, a weight of about 0.5 kg, and a power consumption of about 3 watts

  6. Infrared hyperspectral imaging miniaturized for UAV applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  7. Adventitious shoot regeneration from leaf explants of miniature paprika

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... products, Capsicum spp. shows high levels of cross pollination ... Composition of a nutrient solution used for the culture of miniature paprika in the greenhouse. ... Yellow' were obtained from Seminis Korea Inc. Seeds were.

  8. Miniature Sensor for Aerosol Mass Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  9. Miniaturized Airborne Imaging Central Server System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  10. Miniaturized Airborne Imaging Central Server System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  11. Miniature Reaction Wheel for Small Satellite Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  12. Microspectrometers: an industry and instrumentation overview

    Science.gov (United States)

    Neece, Gregory A.

    2008-08-01

    Microspectrometers, miniature spectrometers, portable spectrometers, or Fiber Optic Spectrometers are some of the names typically given to the class small spectrometers that are derived from simple, fixed optics, and low cost detector arrays. The author will use these terms interchangeably. This class of instrument has been available for over 18 years, gaining industry acceptance with each year. From a very basic optical platform to sophisticated instrumentation for scientific investigation and process control, this class of instrument has evolved substantially since its introduction to the market. For instance it is now possible to cover the range from 200 - 2,500 nm utilizing only two channels of spectrometers with either synchronous or asynchronous channel control. On board processing and memory have enabled the instruments to become fully automated, stand alone sensors communicating with their environment via analog, digital, USB2 and even wireless protocols. New detectors have entered the market enabling solutions "tuned" to the demands of specific applications.

  13. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    International Nuclear Information System (INIS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-01-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π -type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm 3 , which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band. (paper)

  14. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  15. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  16. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  17. Airtight miniaturized chromatography: a safer method for radiopharmaceutical quality control

    International Nuclear Information System (INIS)

    Coupal, J.J.; Shih, W.J.; Ryo, U.Y.

    1988-01-01

    Miniaturized chromatography is widely used for quality control of radiopharmaceuticals. Recently, published chromatography procedures have illustrated or described chromatography chambers open to the air in use, suggesting that volatile toxic mobile phases are harmless to people in the vicinity. The authors describe the results of their search for an inexpensive closed chromatography chamber that can be used to derive safely the benefits from conventional miniaturized chromatography

  18. Miniature tensile test specimens for fusion reactor irradiation studies

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1985-01-01

    Three miniature sheet-type tensile specimens and a miniature rod-type specimen are being used to determine irradiated tensile properties for alloy development for fusion reactors. The tensile properties of type 316 stainless steel were determined with these different specimens, and the results were compared. Reasonably good agreement was observed. However, there were differences that led to recommendations on which specimens are preferred. 4 references, 9 figures, 6 tables

  19. Assessment of quality parameters in grapes during ripening using a miniature fiber-optic near-infrared spectrometer.

    Science.gov (United States)

    Fernández-Novales, Juan; López, María-Isabel; Sánchez, María-Teresa; García-Mesa, José-Antonio; González-Caballero, Virginia

    2009-01-01

    Changes in the chemical properties of wine grapes during ripening were studied using near-infrared (NIR) spectroscopy. A miniature fiber-optic NIR spectrometer system working in transmission mode in the spectral region (700 - 1,060 nm) was evaluated for this purpose. Spectra and analytical data were used to develop partial least square calibration models to quantify changes in the major parameters used to chart ripening in this fruit. NIR spectroscopy provided excellent precision for soluble solid content and for reducing sugars, and good precision for maturity index, while for pH and titratable acidity the miniature NIR spectroscopy instrument proved less accurate. The performance of the instrument in classifying wine grapes by grape type and by irrigation regime was also studied. Percentages of correctly classified samples ranged from 82.7% to 96.2%. The results show that the monitoring of soluble solid content and reducing sugars' changes in wine grape quality parameters during ripening, as well as the classification of grapes, can be performed non-destructively using a miniature fiber-optic NIR spectrometer.

  20. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers - Possibilities for Detecting Carotenoids of Psychrophiles on Mars?

    Science.gov (United States)

    Jehlička, Jan; Culka, Adam; Nedbalová, Linda

    2016-12-01

    We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars.

  1. Hypodipsic hypernatraemia in a miniature schnauzer.

    Science.gov (United States)

    Van Heerden, J; Geel, J; Moore, D J

    1992-03-01

    Normovolaemic hypernatraemia as a result of a suspected congenital primary hypodipsia was diagnosed in a young male Miniature Schnauzer. Despite an elevated serum sodium concentration, the dog did not appear dehydrated on physical examination and the urine osmolality: plasma osmolality ratio was greater than 4; antidiuretic hormone deficiency was therefore not suspected. Basal serum cortisol and thyroxine concentrations were normal. Plasma aldosterone concentration and plasma renin activity (37 pmol l-1 and 1.55 ng dl-1 h-1 respectively) were within normal range. A defective central thirst regulation mechanism was suspected as the dog was totally disinterested in drinking water despite the chronically elevated serum sodium concentration. Excessive ingestion of water mixed with food, and milk resulted in hyponatraemia and associated cerebral oedema. On stabilisation of the dog's condition, a calculated fluid intake based on daily maintenance fluid requirements was prescribed to prevent recurrence of hypernatraemia and hyponatraemia, and associated signs of central nervous system disease. The dog was in apparent good health with controlled fluid intake when examined 230 d later.

  2. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  3. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  4. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  5. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  6. Miniaturization and globalization of clinical laboratory activities.

    Science.gov (United States)

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  7. An ultra miniature pinch-focus discharge

    International Nuclear Information System (INIS)

    Soto, L.; Pavez, C.; Moreno, J.; Pavez, C.; Barbaglia, M.; Clausse, A.

    2004-01-01

    As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra miniature device has been designed and constructed (nano focus NF: 5 nF, 5-10 kV, 5-10 kA, 60-250 mJ, 16 ns time to peak current). Sub-millimetric anode radius covered by a coaxial insulator were used for experiments in hydrogen. Evidence of pinch was observed in electrical signals in discharges operating at 60 mJ. A single-frame image converter camera (4 ns exposure) was used to obtain plasma images in the visible range. The dynamics observed from the photographs is consistent with: a) formation of a plasma sheath close to the insulator surface, b) fast axial motion of the plasma sheath, c) radial compression over the anode, and d) finally the plasma is detached from the anode in the axial direction. The total time since stage a) to d) was observed to be about 30 ns. X ray and neutron emission is being studied. Neutron yield of the order of 10 3 neutrons per shot is expected for discharges operating in deuterium at 10 kA. (authors)

  8. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  9. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  10. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  11. A novel flow injection chemiluminescence method for automated and miniaturized determination of phenols in smoked food samples.

    Science.gov (United States)

    Vakh, Christina; Evdokimova, Ekaterina; Pochivalov, Aleksei; Moskvin, Leonid; Bulatov, Andrey

    2017-12-15

    An easily performed fully automated and miniaturized flow injection chemiluminescence (CL) method for determination of phenols in smoked food samples has been proposed. This method includes the ultrasound assisted solid-liquid extraction coupled with gas-diffusion separation of phenols from smoked food sample and analytes absorption into a NaOH solution in a specially designed gas-diffusion cell. The flow system was designed to focus on automation and miniaturization with minimal sample and reagent consumption by inexpensive instrumentation. The luminol - N-bromosuccinimide system in an alkaline medium was used for the CL determination of phenols. The limit of detection of the proposed procedure was 3·10 -8 ·molL -1 (0.01mgkg -1 ) in terms of phenol. The presented method demonstrated to be a good tool for easy, rapid and cost-effective point-of-need screening phenols in smoked food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  13. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  14. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  15. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  16. Miniaturized high performance sensors for space plasmas

    International Nuclear Information System (INIS)

    Young, D.T.

    1996-01-01

    Operating under ever more constrained budgets, NASA has turned to a new paradigm for instrumentation and mission development in which smaller, faster, better, cheaper is of primary consideration for future space plasma investigations. The author presents several examples showing the influence of this new paradigm on sensor development and discuss certain implications for the scientific return from resource constrained sensors. The author also discusses one way to improve space plasma sensor performance which is to search out new technologies, measurement techniques and instrument analogs from related fields including among others, laboratory plasma physics

  17. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  18. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  19. Miniature Laboratory for Detecting Sparse Biomolecules

    Science.gov (United States)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  20. A miniature magnetic waveguide for cold atoms

    International Nuclear Information System (INIS)

    Key, M.G.

    2000-09-01

    This thesis presents the first demonstration of a guide for cold atoms based on a miniature structure of four current-carrying wires. The four wires are embedded within a hollow silica fibre. Atoms are guided along the centre of a fifth hole on the axis of the fibre by the Stern-Gerlach force. A vapour cell Magneto Optical Trap (MOT), formed 1 cm above the mouth of the waveguide is the source of cold 85 Rb atoms. After cooling the atoms to 25 μK in optical molasses they fall under the influence of gravity through a magnetic funnel into the waveguide. After propagating for 2 cm, the atoms are reflected by the field of a small pinch coil wound around the base of the guide. The atoms then travel back up the fibre and out into the funnel, where they can be imaged either in fluorescence or by recapturing in the MOT. A video sequence of atoms falling into the guide and re-emerging after reflection from the pinch coil graphically illustrates the operation of the guide. The coupling efficiency and transverse temperature of the atoms is measured experimentally and in a Monte-Carlo simulation. We find an optimum coupling efficiency of 12% and we measure the spatial extent of the cloud within the fibre to be of order 100 μm. We find good agreement between experimental data and results from the numerical simulation. We have also been able to observe different thresholds for the reflection of different positive m F levels. In another experiment we are able to trap the atoms in an elongated Ioffe trap for up to two seconds, increasing the distance over which the atoms are guided. We are able to guide the atoms over distances of 40 cm with a loss rate indistinguishable from the free space loss rate. (author)

  1. Microssistemas de análises químicas: introdução, tecnologias de fabricação, instrumentação e aplicações Micro chemical analysis systems: Introduction, fabrication technologies, instrumentation and applications

    Directory of Open Access Journals (Sweden)

    Wendell Karlos Tomazelli Coltro

    2007-01-01

    Full Text Available The amazing world of micro total analysis systems has provided a true revolution in analytical chemistry in recent years. The application of the microfluidic devices for chemical and biochemical processing has attracted considerable interest due to its advantages such as reduced sample and reagent consumption, processing time, energy, waste, cost, and portability. The aim of the present report is to disseminate the state of the art related to the miniaturization science in Analytical Chemistry. Historical progress, microfabrication technologies, required instrumentation and applications of the mTAS are presented in the current article, with special attention to the Brazilian contributions.

  2. Fundamental studies on miniature dose meter using variable capacitance Si-diode

    International Nuclear Information System (INIS)

    Inoue, Yoshio

    1976-01-01

    The results of fundamental studies on development of a miniature dose meter using a semiconductor applicable for dosimetry in both intracavitary and external radiotherapy are described. Many different instruments have been applied in clinical dosimetry for regional lesions, mostly in phantom studies, e. g. the small sized ionization chamber, the fluoroluminescence glass dose meter and the thermoluminescence dose meter. However, there are considerable problems regarding safety, reproducibility, and simplicity for regional dosimetry of intracavitary lesions, such as genitourinary, gastrointestinal and respiratory malignancies. To overcome these problems, an attempt was made to develop a miniature catheter type detector using a variable capacitance Si-diode for gamma ray dosimetry. The newly developed miniature dose meter using a semiconductor has the following characteristics. As the tip of detector (23mm long and 3mm in diameter) is very small, the apparatus unit is easy to manipulate in the dosimetry of intracavitary lesions. As no voltage is supplied to the detector, there is no danger of electric shock from in vivo studies. A strict linearity existed between the radiation dose rate and the generated voltage even when the range of experimental irradiation dose rate was extremely wide. The sensitivity of the detector was affected by the environmental temperature, but it was easy to correct the sensitivity by applying a special calibration chart to the value derived from a thermister enclosed in the detector. Even with the experimental irradiation of more than 50,000R, no changes in the sensitivity of the detector were observed. Thus, the durability of the apparatus was shown to be excellent. (auth.)

  3. Recent developments in nuclear instruments

    International Nuclear Information System (INIS)

    Vaidya, P.P.

    2004-01-01

    Full text : Nuclear Instrumentation is a field of vital importance for DAE. It has important applications in many areas of interest such as Reactor Monitoring and control, Accelerator based research, Laser and nuclear physics experiments, Health and environmental monitoring, Astrophysics experiments etc. It is a specialized field involving expertise in detection of radioactivity down to the level of few events per minute as well as processing and analysis of signals which can be as small as few hundred micro volts embedded in noise. Some applications involve digitizing and processing these signals with 0.001% accuracy and timing accuracies of a fraction of nano sec. Rapid developments in semiconductor related technologies have influenced the field of nuclear instrumentation. Development of FPGA's and ASIC's have made it possible to develop miniaturized smart and portable instruments for field applications. Advancements in field of computers, communications and various field buses have been successfully utilized for smart, portable and DSP based instrumentation. Smart sensor with detector and front-end electronics on a single silicon chip is now a reality. These instruments are also made intelligent by addition of fuzzy logic, artificial neural networks and expert systems. Electronics Division of BARC has made significant contribution to the field of nuclear instrumentation to achieve self-reliance in this area. This has also led to development of several new methods, which have been published in international journals and appreciated worldwide. As a step towards achieving complete self-reliance a programme for development of FPGA's, HMC's and ASIC's has been undertaken and is being followed with special emphasis. This also includes development of detector and front- end electronics on a single chip. This talk brings out details of these developments and describes the 'state of art' work done in India

  4. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  5. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  6. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  7. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  8. Gradual Changes of Gut Microbiota in Weaned Miniature Piglets

    Directory of Open Access Journals (Sweden)

    Xianghua Yan

    2016-11-01

    Full Text Available Colonization of gut microbiota in mammals during the early life is vital to host health. The miniature piglet has recently been considered as an optimal infant model. However, less is known about the development of gut microbiota in miniature piglets. Here, this study was conducted to explore how the gut microbiota develops in weaned Congjiang miniature piglets. In contrast to the relatively stabilized gut fungal community, gut bacterial community showed a marked drop in alpha diversity, accompanied by significant alterations in taxonomic compositions. The relative abundances of 24 bacterial genera significantly declined, whereas the relative abundances of 7 bacterial genera (Fibrobacter, Collinsella, Roseburia, Prevotella, Dorea, Howardella, and Blautia significantly increased with the age of weaned piglets. Fungal taxonomic analysis showed that the relative abundances of 2 genera (Kazachstania and Aureobasidium significantly decreased, whereas the relative abundances of 4 genera (Aspergillus, Cladosporium, Simplicillium, and Candida significantly increased as the piglets aged. Kazachstania telluris was the signature species predominated in gut fungal communities of weaned miniature piglets. The functional maturation of the gut bacterial community was characterized by the significantly increased digestive system, glycan biosynthesis and metabolism, and vitamin B biosynthesis as the piglets aged. These findings suggest that marked gut microbial changes in Congjiang miniature piglets may contribute to understand the potential gut microbiota development of weaned infants.

  9. Pricing of miniature vehicles made from telephone card waste

    Science.gov (United States)

    Puspitasari, N. B.; Pujotomo, D.; Muhardiansyah, H.

    2017-12-01

    The number of electronic devices in Indonesia in the last 10 years has been increasing quite drastically which contributes to more electronic waste. E-waste or electronic waste have different characteristics from other kinds of waste. Components of electronic waste often poisonous, consisting dangerous chemicals. The telephone card wasted is also an electronic waste. One alternative to handle and manage telephone card waste is to recycle it into collectible miniature vehicles. But the price of these miniatures is quite high, causing low interest in buying them. A research on the price of miniature vehicles in relation to consumers’ Ability to Pay (ATP) and Willingness to Pay (WTP) needs to be done. Segmentation analysis data, target, product positioning and product marketing mix are needed before commencing the research. Data collection is done through a survey by spreading questionnaire to 100 miniature vehicle collectors in Semarang, questioning their ability and willingness to pay recycled miniature vehicles. Calculations showed average ATP of Rp.112.520, 24 and average WTP of Rp.76.870. The last result showed the estimate pricing according to ATP and WTP which is Rp.66.000 with 58% of the respondents claiming to be willing and able to pay that price.

  10. Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer.

    Science.gov (United States)

    Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao

    2017-12-05

    The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

  11. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.

    Science.gov (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6  mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100  ps, ∼0.5  nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  13. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  14. Optical instrumentation engineering in science, technology and society; Proceedings of the Sixteenth Annual Technical Meeting, San Mateo, Calif., October 16-18, 1972

    Science.gov (United States)

    Katz, Y. H.

    1973-01-01

    Visual tracking performance in instrumentation is discussed together with photographic pyrometry in an aeroballistic range, optical characteristics of spherical vapor bubbles in liquids, and the automatic detection and control of surface roughness by coherent diffraction patterns. Other subjects explored are related to instruments, sensors, systems, holography, and pattern recognition. Questions of data handling are also investigated, taking into account minicomputer image storage for holographic interferometry analysis, the design of a video amplifier for a 90 MHz bandwidth, and autostereoscopic screens. Individual items are announced in this issue.

  15. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  16. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  17. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  18. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  19. Miniature specimen technology for postirradiation fatigue crack growth testing

    International Nuclear Information System (INIS)

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  20. Miniature Blimps for Surveillance and Collection of Samples

    Science.gov (United States)

    Jones, Jack

    2004-01-01

    Miniature blimps are under development as robots for use in exploring the thick, cold, nitrogen atmosphere of Saturn's moon, Titan. Similar blimps can also be used for surveillance and collection of biochemical samples in buildings, caves, subways, and other, similar structures on Earth. The widely perceived need for means to thwart attacks on buildings and to mitigate the effects of such attacks has prompted consideration of the use of robots. Relative to rover-type (wheeled) robots that have been considered for such uses, miniature blimps offer the advantage of ability to move through the air in any direction and, hence, to perform tasks that are difficult or impossible for wheeled robots, including climbing stairs and looking through windows. In addition, miniature blimps are expected to have greater range and to cost less, relative to wheeled robots.

  1. Miniaturization design and implementation of magnetic field coupled RFID antenna

    Science.gov (United States)

    Hu, Tiling

    2013-03-01

    The development of internet of things has brought new opportunities and challenges to the application of RFID tags. Moreover, the Miniaturization application trend of tags at present has become the mainstream of development. In this paper, the double-layer design is to reduce the size of HF antenna, and the magnetic null point of magnetic reconnection region between the RLC resonant circuit and the reader provides sufficient energy to the miniaturization of antenna. The calculated and experimental results show that the miniaturization of HF antennas can meet the reading and writing requirement of the international standard ISO/IEC14443 standard. The results of this paper may make a positive contribution to the applications of RFID technology.

  2. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-16

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified.

  3. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  4. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  5. Massive stars and miniature robots: today's research and tomorrow's technologies

    Science.gov (United States)

    Taylor, William David

    2013-03-01

    This thesis documents the reduction of the VLT-FLAMES Tarantula Survey (VFTS) data set, whilst also describing the analysis for one of the serendipitous discoveries: the massive binary R139. This high-mass binary will provide an excellent future calibration point for stellar models, in part as it seems to defy certain expectations about its evolution. Out with the VFTS, a search for binary companions around a trio of B-type supergiants is presented. These stars are surrounded by nebulae that closely resemble the triple-ring structure associated with the poorly-understood SN1987A. Do these stars share a similar evolutionary fate? While strong evidence is found for periodic pulsations in one of the stars, there appears to be no indication of a short-period binary companion suggested in the literature. Gathering observations from a wide range of environments builds a fuller picture of massive stars, but the samples remain somewhat limited. The coming generation of extremely large telescopes will open new regions for studies like the VFTS. Fully utilising these remarkable telescopes will require many new technologies, and this thesis presents one such development project. For adaptive-optics corrected, multi-object instruments it will be necessary to position small pick-off mirrors in the telescope¿s focal plane to select the sub-fields on the sky. This could be most efficiently achieved if the mirrors were self-propelled, which has led to a miniature robot project called MAPS - the Micro Autonomous Positioning System. A number of robots have been built with a footprint of only 30 x 30mm. These wirelessly-controlled robots draw their power from the floor on which they operate and have shown the potential to be positioned to an accuracy of tens of microns. This thesis details much of the early design work and testing of the robots, and also the development of the camera imaging system used to determine the position of the robots. The MAPS project is ongoing and a

  6. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-01-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During…

  7. Miniature and micro mass spectrometry for nanoscale sensing applications

    International Nuclear Information System (INIS)

    Taylor, S; France, N

    2009-01-01

    In recent years the use of miniature and/or microscale versions of the more popular mass spectrometers have been realised. This has led to the development of portable analytical devices for a range of 'in the field' sensing applications in aerospace, environmental monitoring, medical diagnosis and process control. In this paper the principles underpinning the development of miniature quadrupole mass spectrometers are reviewed. Two different microfabrication methods are compared with a conventional QMS used for residual gas analysis in the range 1-100 Da.

  8. Lobar holoprosencephaly in a Miniature Schnauzer with hypodipsic hypernatremia.

    Science.gov (United States)

    Sullivan, Stacey A; Harmon, Barry G; Purinton, P Thomas; Greene, Craig E; Glerum, Leigh E

    2003-12-15

    A 9-month-old male Miniature Schnauzer was examined because of a lifelong history of behavioral abnormalities, including hypodipsia. Diagnostic evaluation revealed marked hypernatremia and a single forebrain ventricle. The behavioral abnormalities did not resolve with correction of the hypernatremia, and the dog was euthanatized. At necropsy, midline forebrain structures were absent or reduced in size, and normally paired forebrain structures were incompletely separated. Findings were diagnostic for holoprosencephaly, a potentially genetic disorder and the likely cause of the hypodipsia. Similar evaluation of affected Miniature Schnauzer dogs may reveal whether holoprosencephaly routinely underlies the thirst deficiency that may be seen in dogs of this breed.

  9. Miniaturized radiation detector with custom synthesized diamond crystal as sensor

    International Nuclear Information System (INIS)

    Grobbelaar, J.H.; Burns, R.C.; Nam, T.L.; Keddy, R.J.

    1991-01-01

    A miniaturized detector consisting of three custom built hybrid circuits, a counter and a miniature high voltage power supply was designed to operate with custom synthesized Type Ib diamond crystals as sensors. Thick-film technology was incorporated in the circuit design. With a crystal having a volume of approximately 10 mm 3 and containing approximately 60 ppm paramagnetic nitrogen, the detector was capable of measuring γ-ray dose-rates as low as 7.5 μ Gy h -1 . The response characteristic was linear up to 1 cGy h -1 . (orig.)

  10. EMC, RF, and Antenna Systems in Miniature Electronic Devices

    DEFF Research Database (Denmark)

    Ruaro, Andrea

    Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems....... The structure allows for effective suppression of radiation from the MED, while taking into consideration the integration and miniaturization aspects. To increase the sensitivity of the system, a compact LNA suitable for on-body applications has been developed. The LNA allows for an increase in the overall...

  11. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  12. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  13. New generation low power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  14. New-generation low-power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Wolf, M.A.; Trujillo, F.; Umbarger, C.J.

    1983-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and power-saving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  15. Management of science policy, sociology of science policy and economics of science policy

    CERN Document Server

    Ruivo, Beatriz

    2017-01-01

    'Management of science policy, sociology of science policy and economics of science policy' is a theoretical essay on the scientific foundation of science policy (formulation, implementation, instruments and procedures). It can be also used as a textbook.

  16. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Faiz, Y.; Siddique, N.

    2012-01-01

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  17. Miniaturized Air-to-Refrigerant Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States); Bacellar, Daniel [Univ. of Maryland, College Park, MD (United States); Aute, Vikrant [Univ. of Maryland, College Park, MD (United States); Huang, Zhiwei [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Muehlbauer, Jan [Univ. of Maryland, College Park, MD (United States); Tancabel, James [Univ. of Maryland, College Park, MD (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Mingkan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-23

    Air-to-refrigerant Heat eXchangers (HX) are an essential component of Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized air-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs and also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat exchanger geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW air-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW air-to-water HX applications, also yielded optimized HX designs

  18. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  19. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  20. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  1. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  2. Novel lipoprotein density profiling in healthy dogs of various breeds, healthy miniature schnauzers, and miniature schnauzers with hyperlipidemia

    Science.gov (United States)

    2013-01-01

    Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the

  3. TIME CONCEPTION IN THE ART OF MINIATURE

    OpenAIRE

    Ruhi KONAK

    2015-01-01

    Throughout history, the humanbeing discussed the space in the sense of both to perceive the truth and to state the connection between him and the truth itself. In this context; mythology, religion, phylosophy and positive science, etc. handle the subject from their point of view. As to the art,throughout history, handles the space from different points in terms of cultures, beliefs thoughts and periods in accordanc with the perspective of the fields that are issue and the guidance of the a...

  4. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Evaluation of instrumental parameters for obtaining acceptable analytical results of the Dosimetry Laboratory of Chemistry of the Regional Center of Nuclear Sciences, CNEN-NE, Recife, Brazil

    International Nuclear Information System (INIS)

    Souza, V.L.B.; Figueiredo, M.D.C.; Cunha, M.S.

    2008-01-01

    Instrumental parameters need to be evaluated for obtaining acceptable analytical results for a specific instrument. The performance of the UV-VIS spectrophotometer can be verified for wavelengths and absorbances with appropriate materials (solutions of different concentrations of K 2 CrO 4 , for example). The aim of this work was to demonstrate the results of the procedures to control the quality of the measurements carried out in the laboratory in the last four years. The samples were analyzed in the spectrophotometer and control graphics were obtained for K 2 CrO 4 and Fe 3+ absorbance values. The variation in the results obtained for the stability of the spectrophotometer and for the control of its calibration did not exceed 2%. (author)

  6. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  7. Miniature Low-Mass Drill Actuated by Flextensional Piezo Stack

    Science.gov (United States)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph

    2010-01-01

    Recent experiments with a flextensional piezoelectric actuator have led to the development of a sampler with a bit that is designed to produce and capture a full set of sample forms including volatiles, powdered cuttings, and core fragments. The flextensional piezoelectric actuator is a part of a series of devices used to amplify the generated strain from piezoelectric actuators. Other examples include stacks, bimorphs, benders, and cantilevers. These devices combine geometric and resonance amplifications to produce large stroke at high power density. The operation of this sampler/drill was demonstrated using a 3x2x1-cm actuator weighing 12 g using power of about 10-W and a preload of about 10 N. A limestone block was drilled to a depth of about 1 cm in five minutes to produce powdered cuttings. It is generally hard to collect volatiles from random surface profiles found in rocks and sediment, powdered cuttings, and core fragments. Toward the end of collecting volatiles, the actuator and the bit are covered with bellows-shaped shrouds to prevent fines and other debris from reaching the analyzer. A tube with a miniature bellows (to provide flexibility) is connected to the bit and directs the flow of the volatiles to the analyzer. Another modality was conceived where the hose is connected to the bellows wall directly to allow the capture of volatiles generated both inside and outside the bit. A wide variety of commercial bellows used in the vacuum and microwave industries can be used to design the volatiles capture mechanism. The piezoelectric drilling mechanism can potentially be operated in a broad temperature range from about-200 to less than 450 C. The actuators used here are similar to the actuators that are currently baselined to fly as part of the inlet funnel shaking mechanism design of MSL (Mars Science Laboratory). The space qualification of these parts gives this drill a higher potential for inclusion in a future mission, especially when considering its

  8. Miniature bread baking as a timesaving research approach and mathematical modeling of browning kinetics

    NARCIS (Netherlands)

    Zhang, Lu; Putranto, Aditya; Zhou, Weibiao; Boom, Remko M.; Schutyser, Maarten A.I.; Chen, Xiao Dong

    2016-01-01

    Miniature bread baking is presented as an economical and timesaving laboratory approach to study the baking process in the present work. Results indicate that the miniature bread baking is essentially analogical to the baking process of regular-sized bread: quality-related properties of miniature

  9. 46 CFR 52.25-5 - Miniature boilers (modifies PMB-1 through PMB-21).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Miniature boilers (modifies PMB-1 through PMB-21). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-5 Miniature boilers (modifies PMB-1 through PMB-21). Miniature boilers must meet the applicable provisions in this part for the boiler type involved and the...

  10. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    Science.gov (United States)

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-09-13

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.

  11. Diagnosis of chronic active hepatitis in a miniature schnauzer.

    Science.gov (United States)

    Hendrix, Alana D

    2004-09-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  12. Diagnosis of chronic active hepatitis in a miniature schnauzer

    OpenAIRE

    Hendrix, Alana D.

    2004-01-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  13. Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping

    Science.gov (United States)

    Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca

    2017-11-01

    Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).

  14. Verification of a CT scanner using a miniature step gauge

    DEFF Research Database (Denmark)

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning...

  15. Miniature fuel cells relieve gas pressure in sealed batteries

    Science.gov (United States)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  16. Does malaria epidemiology project Cameroon as `Africa in miniature'?

    Indian Academy of Sciences (India)

    Cameroon, a west-central African country with a ∼20 million population, is commonly regarded as 'Africa in miniature' due to the extensive biological and cultural diversities of whole Africa being present in a single-country setting. This country is inhabited by ancestral human lineages in unique eco-climatic conditions and ...

  17. Miniature sources of irradiation for intracavitary thermo radiotherapy

    Science.gov (United States)

    Taubin, M.; Chesnokov, D.; Simonov, A.

    2018-02-01

    This report presents the development of a miniature ionizing and thermal radiation source for oncological diseases treatment namely the inward parts of the body. This source can be placed next to the tumor inside of the body. This report is only about methods and devices for the intracavitary therapy. Irradiation by external sources wasn’t considered in our investigation.

  18. AMINA-chip : a miniaturized measurement system for ambient ammonia

    NARCIS (Netherlands)

    Timmer, Björn Herman

    2004-01-01

    The development of a miniaturized and integrated measurement system for gaseous ammonia is described in this thesis. The measuring principle, ¿AMINA¿, is an indirect method for selectively measuring ammonia that makes use of pH-transitions, electrolyte conductivity detection and phaseseparating

  19. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  20. The mass miniature chest radiography programme in Cape Town ...

    African Journals Online (AJOL)

    Background. Tuberculosis (TB) control programmes rely mainly on passive detection of symptomatic individuals. The resurgence of TB has rekindled interest in active case finding. Cape Town (South Africa) had a mass miniature radiography (MMR) screening programme from 1948 to 1994. Objective. To evaluate screening ...

  1. Miniature, mobile X-ray computed radiography system

    Science.gov (United States)

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  2. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  3. A Miniature Data Repository on a Raspberry Pi

    NARCIS (Netherlands)

    Samourkasidis, Argyrios; Athanasiadis, Ioannis N.

    2017-01-01

    This work demonstrates a low-cost, miniature data repository proof-of-concept. Such a system needs to be resilient to power and network failures, and expose adequate processing power for persistent, long-term storage. Additional services are required for interoperable data sharing and visualization.

  4. Integration of a Miniaturized Conductivity Sensor into an Animal-Borne Instrument

    Science.gov (United States)

    2013-09-30

    inductive sensors. However, there is a trade -off between size and accuracy. Decreasing size resuls in a decreased accuracy. In addition, by...modified for easy integration into the existing SRDL. The CT package will then be intergrated into the SRDL tested in the lab. After the successful

  5. Entering the Era of "Super" NDE Instruments, Followed by Progressive Miniaturization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An ideal NDE data acquisition and analysis tool would be a versatile and precise device capable of providing support for a large number of inspections using numerous...

  6. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.; Sevilla, Gallo. A. Torres; Hawsawi, Mayyada.; Mashraei, Yousof.; Mohammed, Hanan .; Cruz, Melvin E.; Ivanov, Yurii. P.; Jaiswal, Samridh.; Jakob, Gerhard.; Klä ui, Mathias.; Hussain, Muhammad.; Kosel, Jurgen.

    2018-01-01

    , where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first

  7. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  8. Possibilities of miniaturizing the TRIGA-reactor

    International Nuclear Information System (INIS)

    Bobleter, O.; Brunner, P.; Schachner, H.

    1976-01-01

    It is proposed to decrease the depth of the TRIGA pool in cases where the construction of the normal-sized pool causes difficulty. The loss of shielding in the vertical direction will be compensated by lead and lead glass. The influence of these changes in design on the reactor components (control rods, instrumentation, neutron beam tubes, pneumatic system, etc.) is discussed. The experimental part of the work concerns the irradiation of lead glasses with varying contents of lead and cerium, which was carried out in the pool at different distances from the TRIGA core. The advantages of a possible reduction in size of the TRIGA reactor by using lead and lead glass as shielding are compared with the main disadvantages of these materials (darkening of the glass and high prices). (author)

  9. Stability of miniature electromagnetic tracking systems

    International Nuclear Information System (INIS)

    Schicho, Kurt; Figl, Michael; Donat, Markus; Birkfellner, Wolfgang; Seemann, Rudolf; Wagner, Arne; Bergmann, Helmar; Ewers, Rolf

    2005-01-01

    This study aims at a comparative evaluation of two recently introduced electromagnetic tracking systems under reproducible simulated operating-room (OR) conditions: the recently launched Medtronic StealthStation TM Treon-EM TM and the NDI Aurora TM . We investigate if and to what extent these systems provide improved performance and stability in the presence of surgical instruments as possible sources of distortions compared with earlier reports on electromagnetic tracking technology. To investigate possible distortions under pseudo-realistic OR conditions, a large Langenbeck hook, a dental drill with its handle and an ultrasonic (US) scanhead are fixed on a special measurement rack at variable distances from the navigation sensor. The position measurements made by the Treon-EM TM were least affected by the presence of the instruments. The lengths of the mean deviation vectors were 0.21 mm for the Langenbeck hook, 0.23 mm for the drill with handle and 0.56 mm for the US scanhead. The Aurora TM was influenced by the three sources of distortion to a higher degree. A mean deviation vector of 1.44 mm length was observed in the vicinity of the Langenbeck hook, 0.53 mm length with the drill and 2.37 mm due to the US scanhead. The maximum of the root mean squared error (RMSE) for all coordinates in the presence of the Langenbeck hook was 0.3 mm for the Treon TM and 2.1 mm for the Aurora TM ; the drill caused a maximum RMSE of 0.2 mm with the Treon TM and 1.2 mm with the Aurora TM . In the presence of the US scanhead, the maximum RMSE was 1.4 mm for the Treon TM and 5.1 mm for the Aurora TM . The new generation of electromagnetic tracking systems has significantly improved compared to common systems that were available in the middle of the 1990s and has reached a high level of technical development. We conclude that, in general, both systems are suitable for routine clinical application

  10. Novel miniature high power ring filter

    International Nuclear Information System (INIS)

    Huang Huifen; Mao Junfa; Luo Zhihua

    2005-01-01

    The power handling capability of high temperature superconducting (HTS) filters is limited due to current concentration at the edges of the superconducting films. This problem can be overcome by using ring resonator, which employs the edge current free and reduces the current concentration. However, this kind of filter has large size. In order to reduce the cost and size and increase the power handling capability, in this paper a HTS photonic bandgap (PBG) structure filter is developed. The proposed pass band filter with PBG structure exhibits center frequency 12.23 GHz, steepness (about 35 dB/GHz), bandwidth (-3 dB bandwidth is 0.045 GHz), and low insertion loss (about -0.5 dB), and can handle input power up to 1 W (this value was limited by the measurement instrument used in the experiment). The size is reduced by 25%, insertion loss reduced by 37.5%, and steeper roll-off of the filter is also obtained compared with that in published literature

  11. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  12. Design, Modelling and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform.

    Science.gov (United States)

    Francis, P; Eastwood, K W; Bodani, V; Looi, T; Drake, J M

    2018-05-07

    This work explores the feasibility of creating and accurately controlling an instrument for robotic surgery with a 2 mm diameter and a three degree-of-freedom (DoF) wrist which is compatible with the da Vinci platform. The instrument's wrist is composed of a two DoF bending notched-nitinol tube pattern, for which a kinematic model has been developed. A base mechanism for controlling the wrist is designed for integration with the da Vinci Research Kit. A basic teleoperation task is successfully performed using two of the miniature instruments. The performance and accuracy of the instrument suggest that creating and accurately controlling a 2 mm diameter instrument is feasible and the design and modelling proposed in this work provide a basis for future miniature instrument development.

  13. The Science and Technology of Future Space Missions

    Science.gov (United States)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data

  14. Serum C-reactive protein concentrations in healthy Miniature Schnauzer dogs.

    Science.gov (United States)

    Wong, Valerie M; Kidney, Beverly A; Snead, Elisabeth C R; Myers, Sherry L; Jackson, Marion L

    2011-09-01

    C-reactive protein (CRP) is a sensitive marker for inflammation in people and dogs. In people, an association between CRP concentration and atherosclerosis has been reported. Atherosclerosis is rare in dogs, but the Miniature Schnauzer breed may be at increased risk for developing this vascular disease. It is not known if CRP concentrations in Miniature Schnauzer dogs differ from those in other dog breeds. Our objectives were to validate an automated human CRP assay for measuring CRP in dogs and compare CRP concentrations in healthy Miniature Schnauzer dogs with those in non-Miniature Schnauzer breeds. Sera from 37 non-Miniature Schnauzer dogs with inflammatory disease were pooled and used to validate a human CRP immunoturbidimetric assay for measuring canine CRP. Blood was collected from 20 healthy Miniature Schnauzer dogs and 41 healthy dogs of other breeds. Median serum CRP concentration of healthy Miniature Schnauzer dogs was compared with that of healthy non-Miniature Schnauzer dogs. The human CRP assay measured CRP reliably with linearity between 0 and 20 mg/L. CRP concentration for healthy Miniature Schnauzer dogs (median 4.0 mg/L, minimum-maximum 0-18.2 mg/L) was significantly higher than for the healthy non-Miniature Schnauzer dogs (median 0.1 mg/L, minimum-maximum 0-10.7 mg/L); 17 of the 20 Miniature Schnauzer dogs had values that overlapped with those of the non-Miniature Schnauzer dogs. Median CRP concentration of Miniature Schnauzer dogs was slightly higher than that of other breeds of dogs. A relationship between higher CRP concentration in Miniature Schnauzer dogs and idiopathic hyperlipidemia, pancreatitis, and possible increased risk for atherosclerosis remains to be determined. ©2011 American Society for Veterinary Clinical Pathology.

  15. Scientific Applications of Optical Instruments to Materials Research

    Science.gov (United States)

    Witherow, William K.

    1997-01-01

    Microgravity is a unique environment for materials and biotechnology processing. Microgravity minimizes or eliminates some of the effects that occur in one g. This can lead to the production of new materials or crystal structures. It is important to understand the processes that create these new materials. Thus, experiments are designed so that optical data collection can take place during the formation of the material. This presentation will discuss scientific application of optical instruments at MSFC. These instruments include a near-field scanning optical microscope, a miniaturized holographic system, and a phase-shifting interferometer.

  16. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  17. Low Power Consumption Lasers for Next Generation Miniature Optical Spectrometers for Major Constituent and Trace Gas Analysis

    Science.gov (United States)

    Forouhar, Siamak; Soibel, Alexander; Frez, Clifford; Qiu, Yueming; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; Tsvid, G.; Belenky, G.; hide

    2010-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. The minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental frequency of the target gases which are mostly in the 3.0-5.0 micrometers wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 micrometers and quantum cascade (QC) lasers in the 4.0-5.0 micrometers range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.

  18. Development of high time-resolution laser flash equipment for thermal diffusivity measurements using miniature-size specimens

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Namba, Chusei; Kosuda, Michinori; Maeda, Yukio.

    1994-01-01

    For measurements of thermal diffusivity of miniature-size specimens heavily irradiated by neutrons, a new Q-switched laser-flash instrument was developed. In the present instrument the time-resolution was improved to 0.1 ms by using a laser-pulse width of 25 ns. The realization of high time-resolution made it possible to measure the thermal diffusivity of thin specimens. It is expected that copper of 0.7 mm thick, and SUS 304 of 0.1 mm could be used for the measurements. In case of ATJ graphite, 0.5 mm thick specimen could be used for the reliable measurement in the temperature range of 300-1300 K. (author)

  19. Scientific Instruments and Epistemology Engines

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Tomáš

    2012-01-01

    Roč. 34, č. 4 (2012), s. 529-540 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GAP401/11/2338 Institutional support: RVO:67985955 Keywords : material culture of science * scientific instruments * epistemology engines * experimental systems Subject RIV: AA - Philosophy ; Religion

  20. Multimodality instrument for tissue characterization

    Science.gov (United States)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  1. Miniature Piezoelectric Macro-Mass Balance

    Science.gov (United States)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    120 Cedrat flextensional piezoelectric actuators spaced equidistantly at 120 degrees supporting the plate and a softer macro balance with an APA 150 actuator/sensor were developed. These flextensional actuators were chosen because they increase the sensitivity of the actuator to stress, allow the piezoelectric to be pre-stressed, and the piezoelectric element is a stacked multilayer actuator, which has a considerably lower input impedance than a monolithic element that allows for common instruments (e.g., input impedance of 10 megohms) to measure the voltage without rapidly discharging the charge/voltage on the piezoelectric actuator.

  2. Increasing Robotic Science Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal objectives are to demonstrate robotic-based scientific investigations and resource prospecting, and develop and demonstrate modular science instrument...

  3. Maxillary bone epithelial cyst in an adult miniature schnauzer.

    Science.gov (United States)

    Lin, Chung-Tien; Tasi, Wen-Chih; Hu, Chun-Kun; Lin, Nien-Ting; Huang, Pei-Yun; Yeh, Lih-Seng

    2008-09-01

    Maxillary bone epithelial cyst is rare in dogs. A 5-year-old, spayed female miniature schnauzer developed a swelling below the nasal canthus of left eye. Plain radiograph demonstrated a 1.5 cm diameter of radiolucent lesion on the maxillary bone anteroventral to the eye, and contrast dacryocystorhinography confirmed an obstructed nasolarcrimal duct. The swelling showed poor response to antibiotic treatment but responded well to oral prednisolone. Exploratory surgery revealed a cyst-like structure filled with brown serous fluid. Histopathological examination of the removed cyst revealed a double cuboidal epithelial cyst. The dog recovered rapidly after surgery, and the swelling had not recurred for a 36-month follow-up. It is the first case of periorbital bone epithelial cyst reported in an adult miniature schnauzer.

  4. Hereditary esophageal dysfunction in the Miniature Schnauzer dog.

    Science.gov (United States)

    Cox, V S; Wallace, L J; Anderson, V E; Rushmer, R A

    1980-03-01

    Miniature Schnauzers maintained in a colony for 9 years were used to study the inheritance of esophageal dysfunction (canine achalasia, megaesophagus). All dogs were evaluated radiographically, using a barium swallow contrast technique which clearly distinguished normal and affected pups. At 4 to 6 months of age, all affected dogs had recovered clinically except one, and radiographic evidence of dysfunction was markedly diminished. None of the affected dogs required a special feeding regimen. Analysis of breeding pairs revealed a ratio of 9 affected/11 normal dogs when an affected male was mated with a normal female, and a 13/3 ratio was observed when two affected dogs were mated. These ratios were compatible with a simple autosomal dominant or a 60% penetrance autosomal-recessive mode of inheritance. Outbreeding to an affected Miniature Schnauzer/Poodle crossbred dog resulted in only two of 30 affected pups, indicating a polygenic mode of inheritance in outbred populations.

  5. Miniaturizing EM Sample Preparation: Opportunities, Challenges, and "Visual Proteomics".

    Science.gov (United States)

    Arnold, Stefan A; Müller, Shirley A; Schmidli, Claudio; Syntychaki, Anastasia; Rima, Luca; Chami, Mohamed; Stahlberg, Henning; Goldie, Kenneth N; Braun, Thomas

    2018-03-01

    This review compares and discusses conventional versus miniaturized specimen preparation methods for transmission electron microscopy (TEM). The progress brought by direct electron detector cameras, software developments and automation have transformed transmission cryo-electron microscopy (cryo-EM) and made it an invaluable high-resolution structural analysis tool. In contrast, EM specimen preparation has seen very little progress in the last decades and is now one of the main bottlenecks in cryo-EM. Here, we discuss the challenges faced by specimen preparation for single particle EM, highlight current developments, and show the opportunities resulting from the advanced miniaturized and microfluidic sample grid preparation methods described, such as visual proteomics and time-resolved cryo-EM studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A miniature spark counter for public communication and education

    International Nuclear Information System (INIS)

    Mao, C.H.; Weng, P.S.

    1987-01-01

    The fabrication of a miniature spark counter for public communication and education using naturally occurring radon as a radioactive source without involving any man-made radioactivity is described. The battery-powered miniature spark counter weighs 2.07 kg with a volume of 4.844 x 10/sup -4/ m/sup 3/. The circuitry consists of seven major components: timer, high-voltage power supply, attenuator, noninverting amplifier, low-pass filter, one-shot generator, and counter. Cellulose nitrate films irradiated with alpha particles from radon emanating from soil were etched and counted. The visible sparks during counting are rather heuristic, which can be used to demonstrate naturally occurring radioactivity in classrooms or showplaces

  7. The concept and application of miniaturization boiling in cooling system

    International Nuclear Information System (INIS)

    Suhaimi Illias; Muhammad Asri Idris

    2009-01-01

    The purpose of this research is to study and examine the phenomena of miniaturization-boiling, which intensely scatters with a large number of minute liquid particles from a water droplet surface to the atmosphere, when the droplet collided with a heating surface. As the material of the heating surface, the following were used: stainless steel (SUS 303 A Cr=17%,Ni=8%), sapphire (Al 3 O 2 ), brass, copper and carbon plane. The material was heated in order to study the miniaturization-boiling and droplet bounding phenomena at a very high temperature (160 degree C- 420 degree C). The phenomenon was photographed by a high-speed camera (10,000 fps) from the horizontal direction. The nuclear fusion reactor needs a very severe cooling, heat removal cooling method by special boiling is lead to this research. (Author)

  8. Challenges in miniaturized automotive long-range lidar system design

    Science.gov (United States)

    Fersch, Thomas; Weigel, Robert; Koelpin, Alexander

    2017-05-01

    This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.

  9. Miniaturized chromatographic radiochemical procedure for 131I - MIBG

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Pereira, N.S. de; Colturato, M.T.; Silva, C.P.G. da.

    1989-12-01

    Different solvents were used in paper chromatographic methods to obtain the best system in routine radiochemical control for 131 I-MIBG produced at IPEN-CNEN/SP. The dates were compared with those obtained with eletrophoresis method in buffer acetate, pH=4.5, 350V, during 40 minutes. The stability of the labeled compound store under 4 0 C was studied during 15 days. Miniaturized chromatographic procedures were established using Whatman 3MM (8x1cm) and n-butanol-:acetic acid: water (S:2:1) as a solvent. the Rf values were: 0.3 (I - ) and 1.0 (MIBG). The radiochemical purity was 99.3 and 99.2% (first day) obtained with eletrophoresis and miniaturized chromatographic procedures, respectively and, 84.7% after 15 days of its preparation. It is a rapid, practical and reproductive method. (author) [pt

  10. Digital intelligent booster for DCC miniature train networks

    Science.gov (United States)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  11. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  12. Neutronic control instrumentation of protection systems

    International Nuclear Information System (INIS)

    Furet, J.

    1977-01-01

    The aims of neutronic control instrumentation are briefly recalled and the present status of materials research and development is presented. As for the out-of-pile instrumentation, emphasis is put on the reliability and efficiency of the detectors and the new solutions of electric signal processing. The possible reactivity measurements at rest are examined. As for in-pile instrumentation results relating to mobile detectors of the type of miniaturized fission chambers are presented. The radiation tests on course of development for several years in the working conditions of neutron self-powdered detectors are analyzed so as to show that their use as built-in in-core instrumentation is to be envisaged at short term. Basic options inherent to the 'Nuclear Safety' philosophy that define the protection system are recalled. A definition and a justification of the performance testing of the instrumentation at rest and in-service are then derived. Some new solutions are envisaged for processing the digital data obtained from the various sensors . A quality control of the materials setting conditions (especially electric noise) ensures a high reliability and availability of the materials involved in the neutron control and the protection system in working conditions [fr

  13. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  14. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  15. Design of a Ku band miniature multiple beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India); Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  16. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo

    2014-07-30

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  17. Reduction of degraded events in miniaturized proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.; Kirsten, T. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A method to reduce the number of degraded events in miniaturized proportional counters is described. A shaping of the outer cathode leads to a more uniform gas gain along the counter axis. The method is useful in situations in which the total number of decay events is very low. The effects leading to degraded events are studied theoretically and experimentally. The usefulness of the method is demonstrated by using it for the proportional counter of the GALLEX solar neutrino experiment. (orig.).

  18. Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems

    Science.gov (United States)

    Hu, Hao

    Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and

  19. Conceptual Design and Simulation of a Miniature Plasma Focus

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.; Amrollahi, R.

    2012-01-01

    Design and construction of a miniature plasma focus device with 3.6 J of energy bank is reported. In design the device, some of very important parameters of designing such as plasma energy density and derive parameter was used. Regarding to the electrical and geometrical parameters of the device, a simulation is carried out by MATLAB software. Simulation results showed that the formation of the pinch have occurred at the moment of the peak discharge current.

  20. Evaluation of miniature tension specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1993-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  1. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo; Cojoc, Gheorghe; Rajamanickam, Vijayakumar; Ferrara, Lorenzo; Bragheri, Francesca; Minzioni, Paolo; Perozziello, Gerardo; Candeloro, Patrizio; Cristiani, Ilaria; Di Fabrizio, Enzo M.

    2014-01-01

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  2. Evaluation of miniature tensile specimen fabrication techniques and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L. (Pacific Northwest Lab., Richland, WA (United States)); Blotter, M.A.; Edwards, D.J. (Missouri Univ., Rolla, MO (United States))

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed.

  3. Evaluation of miniature tensile specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  4. Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors

    OpenAIRE

    Dahlin, Andreas B.

    2012-01-01

    There is no doubt that the recent advances in nanotechnology have made it possible to realize a great variety of new sensors with signal transduction mechanisms utilizing physical phenomena at the nanoscale. Some examples are conductivity measurements in nanowires, deflection of cantilevers and spectroscopy of plasmonic nanoparticles. The fact that these techniques are based on the special properties of nanostructural entities provides for extreme sensor miniaturization since a single structu...

  5. Cautious NMPC with Gaussian Process Dynamics for Miniature Race Cars

    OpenAIRE

    Hewing, Lukas; Liniger, Alexander; Zeilinger, Melanie N.

    2017-01-01

    This paper presents an adaptive high performance control method for autonomous miniature race cars. Racing dynamics are notoriously hard to model from first principles, which is addressed by means of a cautious nonlinear model predictive control (NMPC) approach that learns to improve its dynamics model from data and safely increases racing performance. The approach makes use of a Gaussian Process (GP) and takes residual model uncertainty into account through a chance constrained formulation. ...

  6. Miniaturized tools and devices for bioanalytical applications: an overview

    DEFF Research Database (Denmark)

    Chudy, M.; Grabowska, I.; Ciosek, P.

    2009-01-01

    This article presents an overview of various miniaturized devices and technologies developed by our group. Innovative, fast and cheap procedures for the fabrication of laboratory microsystems based on commercially available materials are reported and compared with well-established microfabricatio...... optic detectors, potentiometric sensors platforms, microreactors and capillary electrophoresis (CE) microchips as well as integrated microsystems e. g. double detection microanalytical systems, devices for studying enzymatic reactions and a microsystem for cell culture and lysis....

  7. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  8. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  9. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  10. Vestibular-evoked myogenic potentials in miniature pigs

    Directory of Open Access Journals (Sweden)

    Xi Shi

    2016-06-01

    Conclusion: The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  11. Combined Raman/Infrared Reflectance Instrument for In Situ Mineral Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Science Instruments, Observatories, and Sensor Systems Roadmap calls for instruments capable of in situ mineralogical analysis in support of planetary...

  12. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  13. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  14. Focal Segmental Glomerulosclerosis in Related Miniature Schnauzer Dogs.

    Science.gov (United States)

    Yau, Wilson; Mausbach, Lisa; Littman, Meryl P; Cianciolo, Rachel E; Brown, Cathy A

    2018-03-01

    Focal segmental glomerulosclerosis (FSGS) recently has been recognized as a common cause of proteinuria in dogs in general, and in Miniature Schnauzer dogs in particular. This study describes the morphologic features present in the kidneys of 8 related proteinuric Miniature Schnauzer dogs. The FSGS, characterized by solidification of portions of the capillary tuft, affected 32% to 49% of examined glomeruli in these dogs. Synechiae, often accompanied by hyalinosis, were present in 13% to 54% of glomeruli and were more prevalent in older dogs. Seven of 8 dogs had arteriolar hyalinosis. Ultrastructurally, all dogs had evidence of a podocytopathy in the absence of electron-dense deposits, glomerular basement membrane splitting, or fibrils. All dogs had multifocal to extensive podocyte foot process effacement. Other podocyte changes included microvillous transformation, the presence of vacuoles or protein resorption droplets, cytoplasmic electron-dense aggregates, and occasional binucleation. Variable amounts of intraglomerular lipid were present in all dogs. All dogs were proteinuric, with measured values for the urine protein-to-creatinine ratio ranging from 1.2 to 6.5. Azotemia was mild to absent and dogs were euthanatized at 5.1 to 14 years of age, in all cases due to nonrenal diseases. The underlying cause of FSGS in these Miniature Schnauzer dogs has yet to be determined, but contributors likely include genetic podocytopathy, lipid abnormalities, and glomerular hypertension.

  15. Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians.

    Science.gov (United States)

    Fröbisch, Nadia B; Schoch, Rainer R

    2009-06-01

    Among the diverse clade of Paleozoic dissorophoid amphibians, the small, terrestrial amphibamids and the neotenic branchiosaurids have frequently been suggested as possible antecedents of either all or some of the modern amphibian clades. Classically, amphibamids and branchiosaurids have been considered to represent distinct, but closely related clades within dissorophoids, but despite their importance for the controversial lissamphibian origins, a comprehensive phylogenetic analysis of small dissorophoids has thus far not been attempted. On the basis of an integrated data set, the relationships of amphibamids and branchiosaurids were analyzed using parsimony and Bayesian approaches. Both groups represent miniaturized forms and it was tested whether similar developmental pathways, associated with miniaturization, lead to an artificial close relationship of branchiosaurids and amphibamids. Moreover, the fit of the resulting tree topologies to the distribution of fossil taxa in the stratigraphic rock record was assessed as an additional source of information. The results show that characters associated with a miniaturized morphology are not responsible for the close clustering of branchiosaurids and amphibamids. Instead, all analyses invariably demonstrate a monophyletic clade of branchiosaurids highly nested within derived amphibamids, indicating that branchiosaurids represent a group of secondarily neotenic amphibamid dissorophoids. This understanding of the phylogenetic relationships of small dissorophoid amphibians provides a new framework for the discussion of their evolutionary history and the evolution of characters shared by branchiosaurids and/or amphibamids with modern amphibian taxa.

  16. Design and analysis of miniature tri-axial fluxgate magnetometer

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  17. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  18. Miniaturized Charpy test for reactor pressure vessel embrittlement characterization

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, M.P. Sr. [MPM Research and Consulting, Lemont, PA (United States)

    1999-10-01

    Modifications were made to a conventional Charpy machine to accommodate the miniaturized Charpy V-Notch (MCVN) specimens which were fabricated from an archived reactor pressure vessel (RPV) steel. Over 100 dynamic MCVN tests were performed and compared to the results from conventional Charpy V-Notch (CVN) tests to demonstrate the efficacy of the miniature specimen test. The optimized sidegrooved MCVN specimens exhibit transitional fracture behavior over essentially the same temperature range as the CVN specimens which indicates that the stress fields in the MCVN specimens reasonably simulate those of the CVN specimens and this fact has been observed in finite element calculations. This result demonstrates a significant breakthrough since it is now possible to measure the ductile-brittle transition temperature (DBTT) using miniature specimens with only small correction factors, and for some materials as in the present study, without the need for any correction factor at all. This development simplifies data interpretation and will facilitate future regulatory acceptance. The non-sidegrooved specimens yield energy-temperature data which is significantly shifted downward in temperature (non-conservative) as a result of the loss of constraint which accompanies size reduction.

  19. Miniature horizontal axis wind turbine system for multipurpose application

    International Nuclear Information System (INIS)

    Xu, F.J.; Yuan, F.G.; Hu, J.Z.; Qiu, Y.P.

    2014-01-01

    A MWT (miniature wind turbine) has received great attention recently for powering WISP (Wireless Intelligent Sensor Platform). In this study, two MHAWTs (miniature horizontal axis wind turbines) with and without gear transmission were designed and fabricated. A physics-based model was proposed and the optimal load resistances of the MHAWTs were predicted. The open circuit voltages, output powers and net efficiencies were measured under various ambient winds and load resistances. The experimental results showed the optimal load resistances matched well with the predicted results; the MHAWT without gear obtained higher output power at the wind speed of 2 m/s to 6 m/s, while the geared MHAWT exhibited better performance at the wind speed higher than 6 m/s. In addition, a DCM (discontinuous conduction mode) buck-boost converter was adopted as an interface circuit to maximize the charging power from MHAWTs to rechargeable batteries, exhibiting maximum efficiencies above 85%. The charging power reached about 8 mW and 36 mW at the wind speeds of 4 m/s and 6 m/s respectively, which indicated that the MHAWTs were capable for sufficient energy harvesting for powering low-power electronics continuously. - Highlights: • Performance of the miniature wind turbines with and without gears was compared. • The physics-based model was established and proved successfully. • The interface circuit with efficiency of more than 85% was designed

  20. Miniature scientific-grade magnetic sensors for CubeSats

    Science.gov (United States)

    Pronenko, Vira; Belyayev, Serhiy

    2016-07-01

    Micro- and nanosatellites have become more attractive due to their low development and launch cost. A class of nanosatellites defined by the CubeSat standard allows standardizing CubeSat preparation and launch, thus making the projects more affordable. Because of the complexity of sensors miniaturization to install them onboard CubeSat, the majority of CubeSat launches are aimed the technology demonstration or education missions. The scientific success of CubeSat mission depends on the sensors quality. In spite that the sensitivity of the magnetic sensors strongly depends on their size, the recent development in this branch allows us to propose tiny but sensitive both AC and DC magnetometers. The goal of the present report is to introduce the new design of miniature three-component sensors for measurement of vector magnetic fields - for quasi-stationary and slowly fluctuating - flux-gate magnetometer (FGM) - and for alternative ones - search-coil magnetometer (SCM). In order to create magnetometers with the really highest possible level of parameters, a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Construction details and technical specifications of miniature but sensitive FGM and SCM for the CubeSat mission are presented. This work is supported by EC Framework 7 funded project 607197.