WorldWideScience

Sample records for miniature fluidic modules

  1. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

    NARCIS (Netherlands)

    Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.; Jansen, R.; Tam, H.Y.

    2017-01-01

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and

  2. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  3. Microfluidic hubs, systems, and methods for interface fluidic modules

    Science.gov (United States)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  4. Hodoscope module with miniature photomultipliers

    International Nuclear Information System (INIS)

    Bel'zer, L.I.; Gribushin, A.M.; Zhil'tsov, L.Ya.; Matveeva, E.N.; Philipenko, T.D.; Sinev, N.B.

    1987-01-01

    The experimental Scintillation Magnetic Spectrometer (SMS) installation, whose main element is an extended hodoscope system, is being built for the accelerator of the High Energy Laboratory of the Joint Institute for Nuclear Research. The authors describe the scintillation hodoscope of the SMS installation and present the applicable amplitude and time characteristics of several types of miniature photomultipliers (FEU-58, FEU-60, FEU-114-1, FEU-147-1, and R-1635 (Hamamatsu, Japan)), which were obtained with a 106 Ru radioactive source and standard plastic scintillators of two types, based on oxazoles in polystyrene and in polymethylmethacrylate

  5. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    Science.gov (United States)

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  7. Miniaturized module for the wireless transmission of measurements with Bluetooth.

    Science.gov (United States)

    Roth, H; Schwaibold, M; Moor, C; Schöchlin, J; Bolz, A

    2002-01-01

    The wiring of patients for obtaining medical measurements has many disadvantages. In order to limit these, a miniaturized module was developed which digitalizes analog signals and sends the signal wirelessly to the receiver using Bluetooth. Bluetooth is especially suitable for this application because distances of up to 10 m are possible with low power consumption and robust transmission with encryption. The module consists of a Bluetooth chip, which is initialized in such a way by a microcontroller that connections from other bluetooth receivers can be accepted. The signals are then transmitted to the distant end. The maximum bit rate of the 23 mm x 30 mm module is 73.5 kBit/s. At 4.7 kBit/s, the current consumption is 12 mA.

  8. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  9. Fluidic sampling

    International Nuclear Information System (INIS)

    Houck, E.D.

    1992-01-01

    This paper covers the development of the fluidic sampler and its testing in a fluidic transfer system. The major findings of this paper are as follows. Fluidic jet samples can dependably produce unbiased samples of acceptable volume. The fluidic transfer system with a fluidic sampler in-line will transfer water to a net lift of 37.2--39.9 feet at an average ratio of 0.02--0.05 gpm (77--192 cc/min). The fluidic sample system circulation rate compares very favorably with the normal 0.016--0.026 gpm (60--100 cc/min) circulation rate that is commonly produced for this lift and solution with the jet-assisted airlift sample system that is normally used at ICPP. The volume of the sample taken with a fluidic sampler is dependant on the motive pressure to the fluidic sampler, the sample bottle size and on the fluidic sampler jet characteristics. The fluidic sampler should be supplied with fluid having the motive pressure of the 140--150 percent of the peak vacuum producing motive pressure for the jet in the sampler. Fluidic transfer systems should be operated by emptying a full pumping chamber to nearly empty or empty during the pumping cycle, this maximizes the solution transfer rate

  10. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  11. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  12. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  13. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    Science.gov (United States)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  14. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    International Nuclear Information System (INIS)

    Kim, Young Chul; Ahn, Seong Joon; Kim, Ho Seob; Kim, Dae-Wook; Ahn, Seungjoon

    2011-01-01

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  15. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seong Joon [Department of I and C Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho Seob; Kim, Dae-Wook [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Ahn, Seungjoon, E-mail: sjan@sunmoon.ac.kr [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of)

    2011-10-21

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  16. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  17. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  18. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  19. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  20. Thermo-mechanical actuator-based miniature tagging module for localization in capsule endoscopy

    Science.gov (United States)

    Chandrappan, Jayakrishnan; Ruiqi, Lim; Su, Nandar; Yen Yi, Germaine Hoe; Vaidyanathan, Kripesh

    2011-04-01

    Capsule endoscopy is a frontline medical diagnostic tool for the gastro intestinal tract disorders. During diagnosis, efficient localization techniques are essential to specify a pathological area that may require further diagnosis or treatment. This paper presents the development of a miniature tagging module that relies on a novel concept to label the region of interest and has the potential to integrate with a capsule endoscope. The tagging module is a compact thermo-mechanical actuator loaded with a biocompatible micro tag. A low power microheater attached to the module serves as the thermal igniter for the mechanical actuator. At optimum temperature, the actuator releases the micro tag instantly and penetrates the mucosa layer of a GI tract, region of interest. Ex vivo animal trials are conducted to verify the feasibility of the tagging module concept. X-ray imaging is used to detect the location of the micro tag embedded in the GI tract wall. The method is successful, and radiopaque micro tags can provide valuable pre-operative position information on the infected area to facilitate further clinical procedures.

  1. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module

    Directory of Open Access Journals (Sweden)

    Xiaotao Yang

    2017-07-01

    Full Text Available A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS sensor and is reported for the first time. The acoustic detection module (ADM was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C2H2 was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.

  2. Development and validation of a BEAMnrc component module for a miniature multileaf collimator

    Science.gov (United States)

    Doerner, E.; Hartmann, G. H.

    2012-05-01

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.

  3. Development and validation of a BEAMnrc component module for a miniature multileaf collimator

    International Nuclear Information System (INIS)

    Doerner, E; Hartmann, G H

    2012-01-01

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM. (paper)

  4. Fluidic pumping system

    International Nuclear Information System (INIS)

    Wilson, P.D.

    1995-01-01

    A fluidic pumping system comprises two charge vessels which communicate with a liquid inlet and a liquid outlet through a fluidic bridge rectifier. A pressurising and depressurising arrangement for alternately pressurising and depressurising the charge vessels comprises a chamber containing a piston and being in communication with the charge vessels. Drive means not mechanically connected to the piston are provided for causing reciprocatory movement of the piston. Movement of the piston in one direction causes pressurisation of one charge vessel to discharge a liquid therefrom through the liquid outlet. Simultaneously, the other charge vessel is depressurised to draw liquid from the liquid inlet into the depressurised charge vessel. Preferably, the drive means for the piston comprises an external solenoid winding at each end of a horizontally arranged chamber. Alternatively, the chamber may be vertically disposed with an external solenoid winding at the upper end of the chamber to effect upward movement of the piston, the piston then falling under gravity upon de-energisation of the winding. (UK)

  5. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  6. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    Science.gov (United States)

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  7. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila.

    Science.gov (United States)

    Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu

    2014-07-01

    Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.

  8. Compressible flow in fluidic oscillators

    Science.gov (United States)

    Graff, Emilio; Hirsch, Damian; Gharib, Mory

    2013-11-01

    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.

  9. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  10. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  11. High-frequency fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2015-01-01

    Roč. 234, October (2015), s. 158-167 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : pulsating flow * jet * fluidics Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S0924424715301114/pdfft?md5=42ec4f6f3180151913ceade1e4625d74&pid=1-s2.0-S0924424715301114-main.pdf

  12. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  13. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  14. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  15. Fluidics platform and method for sample preparation

    Science.gov (United States)

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  16. Fluidic-Based Virtual Aerosurface Shaping

    National Research Council Canada - National Science Library

    Glezer, Ari

    2004-01-01

    Recent work on a novel approach to the control of the aerodynamic performance of lifting surfaces by fluidic modification of their apparent aerodynamic shape, or virtual aerosurface shaping is reviewed...

  17. Automated micro fluidic system for PCR applications in the monitoring of drinking water quality

    International Nuclear Information System (INIS)

    Soria Soria, E.; Yanez Amoros, A.; Murtula Corbi, R.; Catalan Cuenca, V.; Martin-Cisneros, C. S.; Ymbern, O.; Alonso-Chamorro, J.

    2009-01-01

    Microbiological laboratories present a growing interest in automated, simple and user-friendly methodologies able to perform simultaneous analysis of a high amount of samples. Analytical tools based on micro-fluidic could play an important role in this field. In this work, the development of an automated micro fluidic system for PCR applications and aimed to monitoring of drinking water quality is presented. The device will be able to determine, simultaneously, fecal pollution indicators and water-transmitted pathogens. Further-more, complemented with DNA pre-concentration and extraction modules, the device would present a highly integrated solution for microbiological diagnostic laboratories. (Author) 13 refs.

  18. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  19. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  20. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  1. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  2. Water based fluidic radio frequency metamaterials

    Science.gov (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  3. APR1400 Fluidic Device Sensitivity Test

    International Nuclear Information System (INIS)

    Choi, Nam Hyun; Chu, In Cheol; Min, Kyong Ho; Song, Chul Hwa

    2005-12-01

    In the safety injection tank at the emergency core cooling system of APR1400, a new safety design feature, passive fluidic device is equipped which includes no active driving system. It is essential to evaluate the new design feature with various experiments. For this reason, three categories of sensitivity tests have been performed in the present study. As the first sensitivity experiment, the effect of the height of the stand pipe was investigated. The second sensitivity test was conducted with removing the insert plate gasket to examine its effect. The effect of the expansion of the control nozzle width was ascertained from the third sensitivity test. The results of each test showed that the passive fluidic device which will be equipped in the SIT tank of APR1400 has great integrity and repeatability

  4. Fluidic electrodynamics: Approach to electromagnetic propulsion

    International Nuclear Information System (INIS)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  5. Impinging jets controlled by fluidic input signal

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk; Peszyński, K.

    2016-01-01

    Roč. 249, October (2016), s. 85-92 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * jets * impinging jets * coanda effect Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303880

  6. Miniature linear cooler development

    International Nuclear Information System (INIS)

    Pruitt, G.R.

    1993-01-01

    An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results

  7. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  8. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  9. A Recipe for Soft Fluidic Elastomer Robots.

    Science.gov (United States)

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  10. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  11. Miniature Optical Isolator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for miniature optical isolators in atom interferometry applications, Physical Optics Corporation (POC) proposes to develop a miniature optical...

  12. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  13. SMARBot: a modular miniature mobile robot platform

    Science.gov (United States)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  14. Miniaturized Spacecraft Platform for Command, Data Handling and Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microelectronics Research Development Corporation (Micro RDC) proposes to develop a platform of low mass/volume/power, reliable miniaturized electronic modules that...

  15. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  16. Particle dynamics in magneto-fluidic microsystems

    NARCIS (Netherlands)

    Derks, R.J.S.

    2010-01-01

    The trend in microfluidics and lab-on-a-chip is to miniaturize and integrate many functions in a single chip, while achieving a high functional performance. To reach fast processing and a high sensitivity at the same time, recent lab-on-a-chip approaches use high-volume preparation steps together

  17. Measurement of microchannel fluidic resistance with a standard voltage meter

    International Nuclear Information System (INIS)

    Godwin, Leah A.; Deal, Kennon S.; Hoepfner, Lauren D.; Jackson, Louis A.; Easley, Christopher J.

    2013-01-01

    Highlights: ► Standard voltage meter used to measure fluidic resistance. ► Manual measurement takes a few seconds, akin to electrical resistance measurements. ► Measurement error is reduced compared to other approaches. ► Amenable to dynamic measurement of fluidic resistance. - Abstract: A simplified method for measuring the fluidic resistance (R fluidic ) of microfluidic channels is presented, in which the electrical resistance (R elec ) of a channel filled with a conductivity standard solution can be measured and directly correlated to R fluidic using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R fluidic to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600 kPa s mm −3 ) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R fluidic measurements were possible in more complex microfluidic designs. Microchannel R elec was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.

  18. Miniature radioactive light source

    International Nuclear Information System (INIS)

    Caffarella, T.E.; Radda, G.J.; Dooley, H.H.

    1980-01-01

    A miniature radioactive light source for illuminating digital watches is described consisting of a glass tube with improved laser sealing and strength containing tritium gas and a transducer responsive to the gas. (U.K.)

  19. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James

    2011-01-01

    Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...

  20. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  1. Fluidic control of reactor flow—Pressure drop matching

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2009-01-01

    Roč. 87, č. 6A (2009), s. 817-832 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * matching of fluidic devices * dissipance Subject RIV: BK - Fluid Dynamics Impact factor: 1.223, year: 2009 http://www.sciencedirect.com/science

  2. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  3. Integration of fluidic jet actuators in composite structures

    Science.gov (United States)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  4. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  5. Geometrical and fluidic tuning of periodically modulated thin metal films

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Beccherelli, Romeo

    2012-01-01

    We numerically demonstrate near-zero transmission of light through two-dimensional arrays of isolated gold rings. The analysis of the device as an optofluidic sensor is presented to demonstrate the tuning of the device in relation to variations of volume and refractive index of an isotropic fluid...... positioned over the structure. We also evaluate the performance of the device with respect to geometrical parameters of the rings....

  6. Measurement of microchannel fluidic resistance with a standard voltage meter.

    Science.gov (United States)

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-03

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Miniature UAVs : An overview

    NARCIS (Netherlands)

    Weimar, P.W.L.; Kerkkamp, J.S.F.; Wiel, R.A.N.; Meiller, P.P.; Bos, J.G.H.

    2014-01-01

    With this book TNO provides an overview of topics related to Miniature Unmanned Aerial Vehicles (MUAVs). Both novices and experts may find this publication valuable. The Netherlands Organisation for Applied Scientific Research TNO conducts research on UAVs and MUAVs, see for example [1], on the

  8. A Miniature Recording Cardiotachometer

    DEFF Research Database (Denmark)

    Zsombor-Murray, Paul J; Vroomen, Louis J.; Hendriksen, Nils Thedin

    1981-01-01

    The design of a miniature, recording cardiotachometer is described. It is simple and can store digital data. Bench and field tests, using a hand-held display, are presented. Construction and principles of operation are discussed. Applications, with performing athlete subjects, are outlined....

  9. Miniature Centrifugal Compressor

    Science.gov (United States)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  10. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  11. Integrated electronics and fluidic MEMS for bioengineering

    Science.gov (United States)

    Fok, Ho Him Raymond

    Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8

  12. Quasi-static analysis and control of planer and spatial bending fluidic actuator

    OpenAIRE

    Chang, Benjamin Che-Ming

    2011-01-01

    This work presents a novel silicone-based millimetre scale bending fluidic actuator. Two designs of the bending fluidic actuator are studied: a planer actuator that bends about one axis; and a spatial actuator able to bend about two orthogonal axes. The unique parallel micro-channel design of the fluidic actuators enables operation at low working pressures, while at the same time having a very limited thickness expansion during pressurization. The fluidic actuators can be easily scaled to des...

  13. Fluidics platform and method for sample preparation and analysis

    Science.gov (United States)

    Benner, W. Henry; Dzenitis, John M.; Bennet, William J.; Baker, Brian R.

    2014-08-19

    Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.

  14. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    International Nuclear Information System (INIS)

    Jiang, F.; Lei, Y.; Yu, J.

    2013-01-01

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  15. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  16. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  17. Miniaturization in Biocatalysis

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research.

  18. Miniaturized Environmental Monitoring Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  19. Dampers, fluidics and the failsafe fallacy [fire protection

    International Nuclear Information System (INIS)

    Dann, M.; Hodgson, T.

    1989-01-01

    The fire protection practices adopted at nuclear power stations generally follow the well established principles used throughout industry. Unfortunately, there is one particular area - the interaction with heating, ventilation and air conditioning (HVAC) services - where nuclear power stations pose a seemingly insoluble conflict: that between the need to contain and the need to ventilate. Now, however, solid state fire dampers using power fluidics may promise a solution. One of the key characteristics of a fluidic device is that it is 'solid state', i.e. it has no moving parts. Because of this, its inherent reliability is orders of magnitude greater than a mechanical device. (U.K.)

  20. New Fluidic-Oscillator Concept for Flow-Separation Control

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Zhong, S.; Rasheed, F.

    2013-01-01

    Roč. 51, č. 2 (2013), s. 397-405 ISSN 0001-1452 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795; GA ČR GA13-23046S Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : fluidics * fluidic oscillator * resonator Subject RIV: BK - Fluid Dynamics Impact factor: 1.165, year: 2013 http://arc.aiaa.org/doi/abs/10.2514/1.J051791?journalCode=aiaaj

  1. Miniaturized nuclear battery

    International Nuclear Information System (INIS)

    Adler, K.; Ducommun, G.

    1976-01-01

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a β-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case

  2. Miniaturizing RFID for magnamosis.

    Science.gov (United States)

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag.

  3. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    Science.gov (United States)

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P Infiniti ® IP system for NII and NIII cataracts.

  4. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    International Nuclear Information System (INIS)

    Udalagama, Chammika; Teo, E.J.; Chan, S.F.; Kumar, V.S.; Bettiol, A.A.; Watt, F.

    2011-01-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  5. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Science.gov (United States)

    Udalagama, Chammika; Teo, E. J.; Chan, S. F.; Kumar, V. S.; Bettiol, A. A.; Watt, F.

    2011-10-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  6. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Energy Technology Data Exchange (ETDEWEB)

    Udalagama, Chammika, E-mail: chammika@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Teo, E.J. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Chan, S.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, 117542 (Singapore); Department of Chemistry, NUS, 3 Science Drive 3, 117543 (Singapore); Kumar, V.S.; Bettiol, A.A.; Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  7. Rapid development of paper-based fluidic diagnostic devices

    CSIR Research Space (South Africa)

    Smith, S

    2014-11-01

    Full Text Available We present a method for rapid and low-cost development of microfluidic diagnostic devices using paper-based techniques. Specifically, the implementation of fluidic flow paths and electronics on paper are demonstrated, with the goal of producing...

  8. Continuous fabrication of polymeric vesicles and nanotubes with fluidic channe

    NARCIS (Netherlands)

    Peng, F.; Deng, N.-N.; Tu, Y.; van Hest, J.C.M.; Wilson, D.A.

    2017-01-01

    Fluidic channels were employed to induce the self-assembly of poly(ethylene glycol)-b-polystyrene into polymeric vesicles and nanotubes. The laminar flow in the device enables controlled diffusion of two miscible liquids at the phase boundary, leading to the formation of homogeneous polymeric

  9. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  10. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  11. Miniaturized radiation chirper

    International Nuclear Information System (INIS)

    Umbarger, C.J.; Wolf, M.A.

    1980-01-01

    A miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts is described. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers

  12. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  13. A miniature turbocompressor system

    Energy Technology Data Exchange (ETDEWEB)

    Zwyssig, C.; Kraehenbuehl, D.; Kolar, J. W. [Swiss Federal Institute of Technology, Power Electronic Systems Laboratory, Zuerich (Switzerland); Weser, H. [High Speed Turbomaschinen GmbH, Wolfsburg (Germany)

    2008-07-01

    The trend in compressors for fuel cells, heat pumps, aerospace and automotive air pressurization, heating, ventilation and air conditioning systems, is towards ultra-compact size and high efficiency. This can be achieved by increasing the rotational speed and employing new electrical drive system technology and materials. This paper presents a miniature, electrically driven turbocompressor system running at a speed of 500,000 rpm. The design includes the thermodynamics, the electric motor, the inverter, the control and the system integration with rotor dynamics and thermal considerations. In the experimental setup, the specified pressure ratio of 1.6 is achieved at a speed of 550,000 rpm, which is slightly higher than the design speed. (author)

  14. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  15. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  16. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  17. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  18. Optimum design of A fluidic micro-oscillator

    International Nuclear Information System (INIS)

    Noh, Yoojeong; Youn, Sungkie; Kim, Moonuhn

    2002-01-01

    A fluidic micro-oscillator is used to control a linear tool as generating an oscillating fluid jet at its two output ports. The linear tool is a linear actuator that transforms the fluidic energy into mechanical energy via a double acting piston placed in linear actuator housing. Together the two devices form a dynamic microsystem that can be used in medical application. In this paper, we intend to optimize the geometry of the fluidic micro-oscillator. A basic oscillator design is varied in terms of supply nozzle geometry, length of the feedback channels, wall angle, control port width and etc. It was found that characteristics parameters such as frequency, volume flow and output pressure depends strongly on above mentioned design parameters. According to above the observations, we can determine an object function and design variables. Since we eventually have to maximize force to drive and steer a cutting tool, the output pressure difference is chosen as an object function and nozzle width, feedback channel, control port width, distance between splitter and nozzle can be chosen as the design variables. As a result of such design optimization, we can obtain the maximum force. At this time we maximize the output pressure difference using shape optimization

  19. FLUIDICS: THE ANSWER TO PROBLEMS OF HANDLING HAZARDOUS FLUIDS – A SURVEY

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 2, č. 2 (2012), s. 167-183 ISSN 2041-9031 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidic pumps * fluidics * fluidic valves Subject RIV: BK - Fluid Dynamics http://journals.witpress.com/journals.asp?iID=78#papers

  20. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  1. Central Hypothyroidism in Miniature Schnauzers

    NARCIS (Netherlands)

    Voorbij, Annemarie M W Y; Leegwater, Peter A J; Buijtels, Jenny J C W M; Daminet, Sylvie; Kooistra, Hans S

    2016-01-01

    BACKGROUND: Primary hypothyroidism is a common endocrinopathy in dogs. In contrast, central hypothyroidism is rare in this species. OBJECTIVES: The objective of this article is to describe the occurrence and clinical presentation of central hypothyroidism in Miniature Schnauzers. Additionally, the

  2. Miniature Optical Isolator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for compact optical isolators, Physical Optics Corporation (POC) proposes to continue the development of a new Miniature Optical Isolator...

  3. Miniature Raman spectrometer development

    Science.gov (United States)

    Bonvallet, Joseph; Auz, Bryan; Rodriguez, John; Olmstead, Ty

    2018-02-01

    The development of techniques to rapidly identify samples ranging from, molecule and particle imaging to detection of high explosive materials, has surged in recent years. Due to this growing want, Raman spectroscopy gives a molecular fingerprint, with no sample preparation, and can be done remotely. These systems can be small, compact, lightweight, and with a user interface that allows for easy use and sample identification. Ocean Optics Inc. has developed several systems that would meet all these end user requirements. This talk will describe the development of different Ocean Optics Inc miniature Raman spectrometers. The spectrometer on a phone (SOAP) system was designed using commercial off the shelf (COTS) components, in a rapid product development cycle. The footprint of the system measures 40x40x14 mm (LxWxH) and was coupled directly to the cell phone detector camera optics. However, it gets roughly only 40 cm-1 resolution. The Accuman system is the largest (290x220X100 mm) of the three, but uses our QEPro spectrometer and get 7-11 cm-1 resolution. Finally, the HRS-30 measuring 165x85x40 mm is a combination of the other two systems. This system uses a modified EMBED spectrometer and gets 7-12 cm-1 resolution. Each of these units uses a peak matching algorithm that then correlates the results to the pre-loaded and customizable spectral libraries.

  4. The road to miniaturization

    International Nuclear Information System (INIS)

    Iwai, Hiroshi; Hei Wong

    2006-01-01

    Silicon microelectronics has revolutionized the way we live, but how long can the relentless down sizing of devices continue? Hei Wong and Hiroshi Iwai describe the challenges facing the semiconductor industry today. For the last four decades the miniaturization of the microchip has been the driving force behind developments in all kinds of technology, from home entertainment to space exploration. At the heart of this revolution lies the metal-oxide-semiconductor (MOS) transistor, which has evolved in two ways. First, it has become smaller, with the latest devices measuring a thousandth of their original size. Second, the number of transistors that can be interconnected on a single chip has risen from a few tens to hundreds of millions. The density of microchips has followed an exponential trend that was famously identified by Gordon Moore of Intel in 1965. Moore predicted that the number of components that could be crammed into an integrated circuit would double every two years for the foreseeable future. In fact, he slightly underestimated the trend, because the average number has actually doubled every 18 months. The question keeping chip manufacturers awake in 2005 is how long this exponential growth can continue. (U.K.)

  5. The Whole new world of miniature technology

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-07-01

    In the past ten years, miniaturization of both electrical and mechanical parts has significantly increased. Documentation of the design and production capabilities of miniaturization in the electronics industry is well-defined. Literature on the subject of miniaturization of metal piece parts, however, is hard to find. Some of the current capabilities in the manufacture of miniature metal piece parts or miniature features in larger piece parts are discussed.

  6. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy

    Science.gov (United States)

    Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting

    2016-03-01

    Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.

  7. Packaged integrated opto-fluidic solution for harmful fluid analysis

    Science.gov (United States)

    Allenet, T.; Bucci, D.; Geoffray, F.; Canto, F.; Couston, L.; Jardinier, E.; Broquin, J.-E.

    2016-02-01

    Advances in nuclear fuel reprocessing have led to a surging need for novel chemical analysis tools. In this paper, we present a packaged lab-on-chip approach with co-integration of optical and micro-fluidic functions on a glass substrate as a solution. A chip was built and packaged to obtain light/fluid interaction in order for the entire device to make spectral measurements using the photo spectroscopy absorption principle. The interaction between the analyte solution and light takes place at the boundary between a waveguide and a fluid micro-channel thanks to the evanescent part of the waveguide's guided mode that propagates into the fluid. The waveguide was obtained via ion exchange on a glass wafer. The input and the output of the waveguides were pigtailed with standard single mode optical fibers. The micro-scale fluid channel was elaborated with a lithography procedure and hydrofluoric acid wet etching resulting in a 150+/-8 μm deep channel. The channel was designed with fluidic accesses, in order for the chip to be compatible with commercial fluidic interfaces/chip mounts. This allows for analyte fluid in external capillaries to be pumped into the device through micro-pipes, hence resulting in a fully packaged chip. In order to produce this co-integrated structure, two substrates were bonded. A study of direct glass wafer-to-wafer molecular bonding was carried-out to improve detector sturdiness and durability and put forward a bonding protocol with a bonding surface energy of γ>2.0 J.m-2. Detector viability was shown by obtaining optical mode measurements and detecting traces of 1.2 M neodymium (Nd) solute in 12+/-1 μL of 0.01 M and pH 2 nitric acid (HNO3) solvent by obtaining an absorption peak specific to neodymium at 795 nm.

  8. Configurations of Fluidic Actuators for Generation of Hybrid-Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2007-01-01

    Roč. 138, - (2007), s. 213-220 ISSN 0924-4247 R&D Projects: GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * fluidics * fluidic alternators Subject RIV: BK - Fluid Dynamics Impact factor: 1.348, year: 2007

  9. Ballistic tongue projection in a miniaturized salamander.

    Science.gov (United States)

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  10. Variable recruitment fluidic artificial muscles: modeling and experiments

    International Nuclear Information System (INIS)

    Bryant, Matthew; Meller, Michael A; Garcia, Ephrahim

    2014-01-01

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force–strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes. (paper)

  11. Rheostatic control of tryptic digestion in a microscale fluidic system

    International Nuclear Information System (INIS)

    Percy, Andrew J.; Schriemer, David C.

    2010-01-01

    Integrated fluidic systems that unite bottom-up and top-down proteomic approaches have the potential to deliver complete protein characterization. To circumvent fraction collection, as is conducted in current blended approaches, a technique to regulate digestion efficiency in a flow-through system is required. The present study examined the concept of regulating tryptic digestion in an immobilized enzyme reactor (IMER), incorporating mixed solvent systems for digestion acceleration. Using ovalbumin, cytochrome c, and myoglobin as protein standards, we demonstrate that tryptic digestion can be efficiently regulated between complete digestion and no digestion extremes by oscillating between 45 and 0% acetonitrile in the fluid stream. Solvent composition was tuned using programmable solvent waveforms in a closed system consisting of the IMER, a sample delivery stream, a dual gradient pumping system and a mass spectrometer. Operation in this rheostatic digestion mode provides access to novel peptide mass maps (due to substrate unfolding hysteresis) as well as the intact protein, in a reproducible and stable fashion. Although cycle times were on the order of 90 s for testing purposes, we show that regulated digestion is sufficiently rapid to be limited by solvent switching efficiency and kinetics of substrate unfolding/folding. Thus, regulated digestion should be useful in blending bottom-up and top-down proteomics in a single closed fluidic system.

  12. Fluidic Sampler. Tanks Focus Area. OST Reference No. 2007

    International Nuclear Information System (INIS)

    1999-01-01

    Problem Definition; Millions of gallons of radioactive and hazardous wastes are stored in underground tanks across the U.S. Department of Energy (DOE) complex. To manage this waste, tank operators need safe, cost-effective methods for mixing tank material, transferring tank waste between tanks, and collecting samples. Samples must be collected at different depths within storage tanks containing various kinds of waste including salt, sludge, and supernatant. With current or baseline methods, a grab sampler or a core sampler is inserted into the tank, waste is maneuvered into the sample chamber, and the sample is withdrawn from the tank. The mixing pumps in the tank, which are required to keep the contents homogeneous, must be shut down before and during sampling to prevent airborne releases. These methods are expensive, require substantial hands-on labor, increase the risk of worker exposure to radiation, and often produce nonrepresentative and unreproducible samples. How It Works: The Fluidic Sampler manufactured by AEA Technology Engineering Services, Inc., enables tank sampling to be done remotely with the mixing pumps in operation. Remote operation minimizes the risk of exposure to personnel and the possibility of spills, reducing associated costs. Sampling while the tank contents are being agitated yields consistently homogeneous, representative samples and facilitates more efficient feed preparation and evaluation of the tank contents. The above-tank portion of the Fluidic Sampler and the replacement plug and pipework that insert through the tank top are shown.

  13. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  14. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  15. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  16. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  17. Visual thread quality for precision miniature mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1981-04-01

    Threaded features have eight visual appearance factors which can affect their function in precision miniature mechanisms. The Bendix practice in deburring, finishing, and accepting these conditions on miniature threads is described as is their impact in assemblies of precision miniature electromechanical assemblies.

  18. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  19. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  20. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  1. Sub-micrometer fluidic channel for measuring photon emitting entities

    Science.gov (United States)

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  2. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  3. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  4. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  5. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  6. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  8. Hybrid Macro-Micro Fluidics System for a Chip-Based Biosensor

    National Research Council Canada - National Science Library

    Tamanaha, C. R; Whitman, L. J; Colton, R.J

    2002-01-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators...

  9. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  10. Bend testing for miniature disks

    International Nuclear Information System (INIS)

    Huang, F.H.; Hamilton, M.L.; Wire, G.L.

    1982-01-01

    A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes

  11. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  12. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...... with mass production. The last part of this thesis also includes perspectives on how to expand the latest designed device to facilitate culturing of tissue and co-culturing of cells....

  13. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    OpenAIRE

    Andrew J. Capel; Andrew Wright; Matthew J. Harding; George W. Weaver; Yuqi Li; Russell A. Harris; Steve Edmondson; Ruth D. Goodridge; Steven D. R. Christie

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro and milli-scale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multi-functional fluidic devices with embedded reaction moni...

  14. Dr.Johnson's Dictionary in Miniature

    OpenAIRE

    Imazato, Chiaki

    1988-01-01

    More than hundred 'Johnson's' dictionaries have so far been published not only in English but in other countries, and there are numerous books and articles on Johnson's Dictionary. But few have referred to Johnson's Dictionary in Miniature; nor were there any books or articles on it. Fortunately, however, I've got one copy of Johnson's Dictionary in Miniature, which was published in 1806. Johnson's Dictionary (1755) has 41,677 entries, whereas Johnson's Dictionary in Miniature 23,439 entr...

  15. An Evaluation of Power Fluidics Mixing and Pumping for Application in the Single Shell Tank (SST) Retrieval Program

    International Nuclear Information System (INIS)

    CRASS, D.W.

    2001-01-01

    This document is being released for information only. It provides an explanation of fluidics pumping and mixing technology and explores the feasibility of using fluidics technology for the retrieval of S102. It concludes that there are no obvious flaws that would prevent deploying the technology and recommends further development of fluidics technology as a retrieval option. The configuration described herein does not represent the basis for project definition

  16. Miniature Ground Mapping LADAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — System & Processes Engineering Corporation (SPEC) proposes a miniature solid state surface imaging LADAR, for imaging the landing areas providing precision...

  17. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  18. Performance Verification for Safety Injection Tank with Fluidic Device

    International Nuclear Information System (INIS)

    Yune, Seok Jeong; Kim, Da Yong

    2014-01-01

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained

  19. Fluidic Vectoring of a Planar Incompressible Jet Flow

    Science.gov (United States)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  20. Fluidic actuators for active flow control on airframe

    Science.gov (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  1. Fluidic delivery of homogeneous solutions through carbon tube bundles

    International Nuclear Information System (INIS)

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  2. Miniature Packaging Concept for LNAs in the 200-300 GHz Range

    Science.gov (United States)

    Samoska, Lorene; Fung, Andy; Varonen, Mikko; Lin, Robert; Peralta, Alejandro; Soria, Mary; Lee, Choonsup; Padmanabhan, Sharmila; Sarkozy, Stephen; Lai, Richard

    2016-01-01

    In this work, we describe new miniaturized low noise amplifier modules which we developed for incorporation in small-scale satellites or Cubesats, and which exhibit similar or better performance compared to previously reported LNAs in the literature. We have targeted the WR4 (170-260 GHz) and WR3 (220-325 GHz) waveguide bands for the module development. The modules include two different methods of E-plane probes which have been developed for low loss, and stability at high frequencies. MMIC LNAs were also developed for these frequency ranges and fabricated in Northrop Grumman Corporation's 35 nm InP HEMT technology, and we have experimentally verified that noise performance is lower than reported in prior work. The best results include a miniature LNA module with 550K noise at 224 GHz, and a wideband LNA module with 15 dB gain from 230-280 GHz.

  3. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  4. Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art

    Science.gov (United States)

    Li, Suyi; Wang, K. W.

    2015-04-01

    By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.

  5. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Science.gov (United States)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  6. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  7. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    Science.gov (United States)

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  8. Advances in Miniaturized Instruments for Genomics

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2014-01-01

    Full Text Available In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices.

  9. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  10. Miniature mechanical transfer optical coupler

    Science.gov (United States)

    Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  11. Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Zhang, X.; Liu, H.; Richardson, A.; Nouet, P.; Azais, F.

    2005-01-01

    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used

  12. Miniature photometric stereo system for textile surface structure reconstruction

    Science.gov (United States)

    Gorpas, Dimitris; Kampouris, Christos; Malassiotis, Sotiris

    2013-04-01

    In this work a miniature photometric stereo system is presented, targeting the three-dimensional structural reconstruction of various fabric types. This is a supportive module to a robot system, attempting to solve the well known "laundry problem". The miniature device has been designed for mounting onto the robot gripper. It is composed of a low-cost off-the-shelf camera, operating in macro mode, and eight light emitting diodes. The synchronization between image acquisition and lighting direction is controlled by an Arduino Nano board and software triggering. The ambient light has been addressed by a cylindrical enclosure. The direction of illumination is recovered by locating the reflection or the brightest point on a mirror sphere, while a flatfielding process compensates for the non-uniform illumination. For the evaluation of this prototype, the classical photometric stereo methodology has been used. The preliminary results on a large number of textiles are very promising for the successful integration of the miniature module to the robot system. The required interaction with the robot is implemented through the estimation of the Brenner's focus measure. This metric successfully assesses the focus quality with reduced time requirements in comparison to other well accepted focus metrics. Besides the targeting application, the small size of the developed system makes it a very promising candidate for applications with space restrictions, like the quality control in industrial production lines or object recognition based on structural information and in applications where easiness in operation and light-weight are required, like those in the Biomedical field, and especially in dermatology.

  13. Molecular Weiss domain polarization in piezoceramics to diaphragm, cantilever and channel construction in low-temperature-cofired ceramics for micro-fluidic applications

    International Nuclear Information System (INIS)

    Khanna, P.K.; Ahmad, S.; Grimme, R.

    2005-01-01

    This paper presents the efforts made to study the process of comminution to Weiss domain polarization and phase transition in piezoceramics together with the versatility of low-temperature-cofired ceramics-based devices and components for their ready adoption for typical applications in the area of micro-fluidics. A conceptual micro-fluidic module has been presented and few unit entities necessary for its realization have been described. The purpose of these entities is to position the sensors and actuators by using piezoelectric materials. Investigations are performed to make useful constructions like diaphragms and cantilevers for laying the sensing elements, cavities for burying the electronic chip devices, and channels for fluid transportation. In order to realize these constructions, the basic step involves machining of circular, straight line, rectangular and square-shaped structure in the green ceramic tapes followed by lamination and firing with post-machining in some cases. The diaphragm and cavity includes one or more un-machined layer stacked together with several machined layers with rectangular or square slits. The cantilever is an extension of the diaphragm creation process with inclusion of a post-machining step. The channel essentially consists of a machined green ceramic layer sandwiched between an un-machined and a partially machined layer. The fabrication for all the above constructions has been exemplified and the details have been discussed

  14. Inheritance of congenital cataracts and microphthalmia in the Miniature Schnauzer.

    Science.gov (United States)

    Gelatt, K N; Samuelson, D A; Bauer, J E; Das, N D; Wolf, E D; Barrie, K P; Andresen, T L

    1983-06-01

    Congenital cataracts and microphthalmia in the Miniature Schnauzer were inherited as an autosomal recessive trait. Eighteen matings of affected X affected Miniature Schnauzers resulted in 87 offspring with congenital cataracts and microphthalmia (49 males/38 females). Two matings of congenital cataractous and microphthalmic Miniature Schnauzers (2 females) X a normal Miniature Schnauzer (1 male) yielded 11 clinically normal Miniature Schnauzers (7 males/4 females). Eighteen matings of congenital cataractous and microphthalmic Miniature Schnauzers (6 males) X carrier Miniature Schnauzers (9 females) produced 81 offspring; 39 exhibited congenital cataracts and microphthalmia (20 males/19 females) and 42 had clinically normal eyes (17 males/25 females).

  15. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  16. High Performance Miniature Bandpass Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for developing low impedance, miniature bandpass RF frequency filter via MEMS technique, in applications of SMAP, Aquarius follow-on,...

  17. Using Miniature Landforms in Teaching Geomorphology.

    Science.gov (United States)

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  18. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  19. Goniometry and Limb Girth in Miniature Dachshunds

    OpenAIRE

    Thomovsky, Stephanie A.; Chen, Annie V.; Kiszonas, Alecia M.; Lutskas, Lori A.

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girt...

  20. A miniature electrical capacitance tomograph

    Science.gov (United States)

    York, T. A.; Phua, T. N.; Reichelt, L.; Pawlowski, A.; Kneer, R.

    2006-08-01

    The paper describes a miniature electrical capacitance tomography system. This is based on a custom CMOS silicon integrated circuit comprising eight channels of signal conditioning electronics to source drive signals and measure voltages. Electrodes are deposited around a hole that is fabricated, using ultrasonic drilling, through a ceramic substrate and has an average diameter of 0.75 mm. The custom chip is interfaced to a host computer via a bespoke data acquisition system based on a microcontroller, field programmable logic device and wide shift register. This provides fast capture of up to 750 frames of data prior to uploading to the host computer. Data capture rates of about 6000 frames per second have been achieved for the eight-electrode sensor. This rate could be increased but at the expense of signal to noise. Captured data are uploaded to a PC, via a RS232 interface, for off-line imaging. Initial tests are reported for the static case involving 200 µm diameter rods that are placed in the sensor and for the dynamic case using the dose from an inhaler.

  1. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  2. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  3. Accurate and versatile multivariable arbitrary piecewise model regression of nonlinear fluidic muscle behavior

    NARCIS (Netherlands)

    Veale, A.J.; Xie, Sheng Quan; Anderson, Iain Alexander

    2017-01-01

    Wearable exoskeletons and soft robots require actuators with muscle-like compliance. These actuators can benefit from the robust and effective interaction that biological muscles' compliance enables them to have in the uncertainty of the real world. Fluidic muscles are compliant but difficult to

  4. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Palmarelli, Anna Laura; Liang, Xiaogan

    2011-01-01

    In this work, we propose an innovative approach to the fabrication of a complete micro/nano fluidic system, based on direct nanoimprint lithography. The fabricated device consists of nanochannels connected to U-shaped microchannels by triangular tapered inlets, and has four large reservoirs for l...

  5. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Science.gov (United States)

    Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J; Yoshida, Mari; Cronin, Leroy

    2015-01-01

    Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  6. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Directory of Open Access Journals (Sweden)

    Soichiro Tsuda

    Full Text Available Three dimensional (3D printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  7. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  8. No-moving-part electro/fluidic transducer based on plasma discharge effect

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2015-01-01

    Roč. 232, August (2015), s. 20-29 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : transducer * fluidic * plasma discharge Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S092442471500206X

  9. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).

  10. Development of fluidic device in SIT for Korean Next Generation Reactor I

    International Nuclear Information System (INIS)

    Cho, Bong Hyun; Lee, Joon; Bae, Yoon Young; Park, Jong Kyun

    1999-07-01

    The KNGR is to install a Fluidic Device at the bottom of the inner space of the SIT (Safety Injection Tank) to control the flow rate of safety injection coolant from SIT during LBLOCA. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology (UK) with appropriate modifications. The performance verification test is to be performed this year to obtain optimum characteristics and design data of full size fluidic device. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the fluidic device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristics curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the fluidic device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed. (author). 32 refs., 15 tabs., 47 figs

  11. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    , good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  12. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  13. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    International Nuclear Information System (INIS)

    Lyu, Hong-Kun; Kim, Dong-Sun; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun; Park, Hey-Jung; Park, Chin-Sung; Lim, Geun-Bae

    2004-01-01

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At V DS = -5 V and V GS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  14. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  15. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  16. Miniature EVA Software Defined Radio

    Science.gov (United States)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  17. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  18. Liquid storage of miniature boar semen.

    Science.gov (United States)

    Shimatsu, Yoshiki; Uchida, Masaki; Niki, Rikio; Imai, Hiroshi

    2002-04-01

    The effects of liquid storage at 15 degrees C on the fertilizing ability of miniature pig semen were investigated. Characterization of ejaculated semen from 3 miniature boars was carried out. Semen volume and pH were similar among these boars. In one of the boars, sperm motility was slightly low, and sperm concentration and total number of sperm were significantly lower than in the others (P semen was substituted with various extenders (Kiev, Androhep, BTS and Modena) by centrifugation and semen was stored for 7 days at 15 degrees C. Sperm motility was estimated daily at 37 degrees C. For complete substitution of seminal plasma, Modena was significantly more efficient than the other extenders (P Semen from each of the 3 miniature boars that had been stored for 5 to 7 days at 15 degrees C in Modena was used for artificial insemination of 15 miniature sows. The farrowing rates were 100, 100 and 60%, and litter sizes were 6.4 +/- 1.5, 5.8 +/- 0.8 and 5.0 +/- 1.0 for each boar semen, respectively. The boar that sired the smallest farrowing rate was the same one that showed lower seminal quality with respect to sperm motility, sperm concentration and total number of sperm. These results suggest that miniature boar semen can be stored for at least 5 days at 15 degrees C by the substitution of seminal plasma with Modena extender.

  19. Development of an opto-fluidic micro-system dedicated to chemical analysis in a nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Geoffray, F.; Canto, F.; Couston, L. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); Allenet, T.; Bucci, D.; Broquin, J.E. [IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France); Jardinier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France)

    2016-07-01

    Micromachining techniques enable the fabrication of innovative lab-on-a-chip. Following the trend in chemical and biological analysis, the use of microsystems also appears compelling in the nuclear industry. The volume reduction of radioactive solutions is especially attractive in order to reduce the workers radiation exposition in the context of off-line analysis in spent nuclear fuel reprocessing plants. We hence present the development of an opto-fluidic sensor combining micro-fluidic channels for fluid transportation and integrated optics for detection. With the aim of achieving automated microanalysis with reduced response time the sensor is made compatible with a commercial micro-fluidic holder. Therefore the chip is connected to computer controlled pumps and electro-valves thanks to capillary tubing. In this paper we emphasis on the fluid handling capacities of the opto-fluidic sensor. (authors)

  20. Goniometry and Limb Girth in Miniature Dachshunds.

    Science.gov (United States)

    Thomovsky, Stephanie A; Chen, Annie V; Kiszonas, Alecia M; Lutskas, Lori A

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic) (P > 0.05). When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  1. Goniometry and Limb Girth in Miniature Dachshunds

    Directory of Open Access Journals (Sweden)

    Stephanie A. Thomovsky

    2016-01-01

    Full Text Available Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic (P>0.05. When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  2. Presynaptic miniature GABAergic currents in developing interneurons.

    Science.gov (United States)

    Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain

    2010-04-29

    Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts. Copyright 2010 Elsevier Inc. All rights reserved.

  3. FY 2006 Miniature Spherical Retroreflectors Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  4. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  5. Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel

    International Nuclear Information System (INIS)

    Duan, G; Zhao, X; Seren, H R; Chen, C; Zhang, X

    2015-01-01

    A miniaturized antenna, 380μm by 380μm in size, was fabricated and integrated with a commercialized passive RFID chip to form a micro-tracer, whose size was 2mm by 1mm in total. The micro-tracer was wirelessly powered and interrogated by a single layer spiral reader antenna through near field coupling. To maximize the working distance, the resonant frequency of micro-tracer and reader antenna were matched at 840MHz. Due to the ultra small size of the tracer antenna, power transfer efficiency decreased dramatically as the distance between tracer antenna and reader antenna increased, thus the working distance of the microtracer was limited within 1mm. To achieve massive operation of the micro-tracer, a microfluidic platform was fabricated with in channel focusing and separation. Acrylic sheets were laser cut to define the channel and cover structure, then bonded together layer by layer with a glass substrate, on which reader antenna was integrated. Pump oil was used as the fluidic media carrying the micro-tracer flowing inside the microfluidic channel. The wireless power transfer and real-time communication was demonstrated with the micro-tracer flowing above the reader antenna, as the ID of the micro-tracer was retrieved and displayed on a computer screen. (paper)

  6. Miniaturized protein separation using a liquid chromatography column on a flexible substrate

    International Nuclear Information System (INIS)

    Yang Yongmo; Chae, Junseok

    2008-01-01

    We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5–20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ∼11 000 and successfully separates denatured and native protein mixtures at ∼71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ∼20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions

  7. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    International Nuclear Information System (INIS)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae

    2003-01-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin

  8. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae [Korea Power Engineering Company, Daejon (Korea, Republic of)

    2003-07-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin.

  9. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  10. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  11. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  12. Miniaturization, Packaging, and Thermal Analysis of Power Electronics Modules

    OpenAIRE

    Lostetter, Alexander B.

    1998-01-01

    High power circuits, those involving high levels of voltages and currents to produce several kilowatts of power, would possess an optimized efficiency when driven at high frequencies (on the order of MHz). Such an approach would greatly reduce the size of capacitive and magnetic components, and thus ultimately reduce the cost of the power electronic circuits. The problem with this strategy in conventional packaging, however, is that at high frequencies, interconnects between the power devic...

  13. Development of miniature module for [11C] methionine synthesis

    International Nuclear Information System (INIS)

    Watanabe, Toshimitsu; Araya, Hiroshi; Ueno, Satoshi

    2006-01-01

    [ 18 F]FDG-PET has spread rapidly in the cancer diagnosis. On the other hand, [ 11 C]Methionine is paid attention as one of the PET drugs that may help cancer diagnosis by [ 18 F]FDG. Due to its short half-life, repeated preparations of [ 11 C] Methionine, two or three times a day, are generally required for the routine PET practice. Although the automatic synthesis devices for [ 11 C]Methionine were developed, it was difficult to supply [ 11 C]Methionine two times a day or more. We developed a methionine synthesis system that was able to supply [ 11 C]Methionine two times a day or more, and a new methionine synthesis unit. The new synthesis unit is able to synthesize [ 11 C]Methionine efficiently without HPLC preparation and evaporation in a short time. The new methionine synthesis unit and system are more useful for the routine synthesis of [ 11 C]Methionine. (author)

  14. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.

    Science.gov (United States)

    Kim, A; Powell, C R; Ziaie, B

    2015-06-01

    This paper reports on a generic packaging method for reducing drift in implantable pressure sensors. The described technique uses fluidic isolation by encasing the pressure sensor in a liquid-filled medical-grade polyurethane balloon; thus, isolating it from surrounding aqueous environment that is the major source of baseline drift. In-vitro tests using commercial micromachined piezoresistive pressure sensors show an average baseline drift of 0.006 cmH 2 O/day (0.13 mmHg/month) for over 100 days of saline soak test, as compared to 0.101 cmH 2 O/day (2.23 mmHg/month) for a non-fluidic-isolated one soaked for 18 days. To our knowledge, this is the lowest reported drift for an implantable pressure sensor.

  15. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented....... The positive effect of continuous flow of growth medium, and thus stability of the glucose concentration and waste removal, is simulated and compared to the effect of stagnant medium that is most often used in tissue culturing. Furthermore, placement of the tissue slices in the developed device was studied...... by numerical simulations in order to optimize the nutrient distribution. The device was tested by culturing transverse hippocampal slices from 7 days old NMRI mice for a duration of 14 days. The slices were inspected visually and the slices cultured in the fluidic system appeared to have preserved...

  16. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  17. Induced fluid rotation and bistable fluidic turn-down valves (a survey

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2015-01-01

    Full Text Available Paper surveys engineering applications of an unusual fluidic principle — momentum transfer through a relatively small communicating window into a vortex chamber, where the initially stationary fluid is put into rotation. The transfer is often by shear stress acting in the window plane, but may be enhanced and perhaps even dominated by fluid flow crossing the boundary. The case of zero-time-mean fluid transport through the window has found use in experimental fluid mechanics: non-invasive measurement of wall shear stress on objects by evaluating the induced rotation in the vortex chamber. The case with the non-zero flow through the interface became the starting point in development of fluidic valves combining two otherwise mutually incompatible properties: bistability and flow turning down.

  18. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  19. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    Science.gov (United States)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  20. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  1. The thermal-hydraulic for the new technologies: the micro-fluidics

    International Nuclear Information System (INIS)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J.

    2000-01-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  2. Fluidic low-frequency oscillator with vortex spin-up time delay

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Smyk, E.

    2015-01-01

    Roč. 90, April (2015), s. 6-15 ISSN 0255-2701 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillator * vortex chamber Subject RIV: BK - Fluid Dynamics Impact factor: 2.154, year: 2015 http://www.sciencedirect.com/science/article/pii/S0255270115000252

  3. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  4. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Directory of Open Access Journals (Sweden)

    Andrew J. Capel

    2017-01-01

    Full Text Available Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  5. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852

  6. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation.

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D; Christie, Steven D R

    2017-01-01

    Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  7. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    Energy Technology Data Exchange (ETDEWEB)

    Grate, J.W.; O' Hara, M.J.; Farawila, A.F.; Ozanich, R.M.; Owsley, S.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2011-07-01

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  8. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  9. Characterization of printable cellular micro-fluidic channels for tissue engineering

    International Nuclear Information System (INIS)

    Zhang, Yahui; Chen, Howard; Ozbolat, Ibrahim T; Yu, Yin

    2013-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  10. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  11. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Venkatesha Muniswamy

    2018-03-01

    Full Text Available In this work modeling and analysis of an integrated opto-fluidic sensor, with a focus on achievement of single mode optical confinement and continuous flow of microparticles in the microfluidic channel for lab-on-a-chip (LOC sensing application is presented. This sensor consists of integrated optical waveguides, microfluidic channel among other integrated optical components. A continuous flow of microparticles in a narrow fluidic channel is achieved by maintaining the two sealed chambers at different temperatures and by maintaining a constant pressure of 1 Pa at the centroid of narrow fluidic channel geometry. The analysis of silicon on insulator (SOI integrated optical waveguide at an infrared wavelength of 1550 nm for single mode sensing operation is presented. The optical loss is found to be 5.7 × 10−4 dB/cm with an effective index of 2.3. The model presented in this work can be effectively used to detect the nature of microparticles and continuous monitoring of pathological parameters for sensing applications.

  12. New miniaturized alpha/beta spectrometric system for the surface contamination monitoring and radon personal dosimeter

    International Nuclear Information System (INIS)

    Streil, T.; Oeser, V.; Holfeld, G.

    1998-01-01

    The heart of the new miniaturized alpha/beta spectroscopic system is a Smart Card MCA having a 12 bit resolution and a 32 bit memory for each channel with the size of a cheque card. The system consists of a single or up to 12 alpha spectrometers in a battery powered casing with connectors for direct detector/amplifier module plugging. Surface contamination in the order of 1 Bq/cm 2 of 239 Pu can be measured. (M.D.)

  13. Plans for miniature machining at LASL

    International Nuclear Information System (INIS)

    Rhorer, R.L.

    1979-01-01

    A special shop for making miniature or very small parts is being established within the LASL Shop Department, and one of the machine tools for this shop is a high precision lathe. The report describes a method based on scale modeling analysis which was used to define the specific requirements for this lathe

  14. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  15. Naturalism and Mannerism in Indian Miniatures

    Science.gov (United States)

    Duran, Jane

    2001-01-01

    In this essay, the author furthers the argument that critical commentary on the Rajput and Muslim miniatures of India has focused on a rather odd use of labels and categories, perhaps to an even greater extent than has been the case with much of the rest of the criticism of the art of South Asia. She first examines the use of the term…

  16. Technologies for highly miniaturized autonomous sensor networks

    NARCIS (Netherlands)

    Baert, K.; Gyselinckx, B.; Torfs, T.; Leonov, V.; Yazicioglu, F.; Brebels, S.; Donnay, S.; Vanfleteren, J.; Beyne, E.; Hoof, C. van

    2006-01-01

    Recent results of the autonomous sensor research program HUMAN++ will be summarized in this paper. The research program aims to achieve highly miniaturized and (nearly) autonomous sensor systems that assist our health and comfort. Although the application examples are dedicated to human

  17. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  18. Miniaturized measurement system for ammonia in air

    NARCIS (Netherlands)

    Timmer, B.H.; van Delft, K.M.; Otjes, R.P.; Olthuis, Wouter; van den Berg, Albert

    2004-01-01

    The development of a miniaturized ammonia sensor made using microsystem technology is described. Gas is sampled in a sampler comprising two opposite channels separated by a gas permeable, water repellent polypropylene membrane. Subsequently, the acid sample solution is pumped into a selector where

  19. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  20. Miniature Scroll Pumps Fabricated by LIGA

    Science.gov (United States)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  1. Strange Animals and Creatures in Islamic Miniatures: Focusing on Miniatures of the Conference of the Birds

    Directory of Open Access Journals (Sweden)

    Neda Rohani

    2017-09-01

    Full Text Available Strange animals and creatures have always existed in every mythological culture. In Iran's pre-Islamic and post-Islamic miniatures and reliefs, there are many strange animals and creatures such as dragons and phoenix which were associated with the Iranian culture and civilization. Because of presence of these strange creatures, particularly human life, these creatures are first used in mythological life and then symbolically to express human ideas. However, these animals were present in both mythology and epics and, later in the Islamic era, in the mystical stories, educational stories and admonishing anecdotes like Sanai, Attar, and Rumi. This study tends to investigate genealogy of strange animals and creatures in ancient Iranian reliefs and their continued presence in miniatures of Islamic era as well as presence of these creatures in miniatures which are based on Attar’s Conference of the Birds. In fact, this study reviews elements and symbolic concepts of animals, allowing a deeper understanding of function of elements and symbolism in works of Iranian miniaturists. Contemplation of miniatures, icons and the relationship between literature and miniatures will lead to many results in recognition of mystical intellectual foundations. Therefore, this study tends to investigate mysterious and unknown aspects of Iranian miniatures and find their relationship with culture and stories.

  2. Performance Analysis of a Fluidic Axial Oscillation Tool for Friction Reduction with the Absence of a Throttling Plate

    Directory of Open Access Journals (Sweden)

    Xinxin Zhang

    2017-04-01

    Full Text Available An axial oscillation tool is proved to be effective in solving problems associated with high friction and torque in the sliding drilling of a complex well. The fluidic axial oscillation tool, based on an output-fed bistable fluidic oscillator, is a type of axial oscillation tool which has become increasingly popular in recent years. The aim of this paper is to analyze the dynamic flow behavior of a fluidic axial oscillation tool with the absence of a throttling plate in order to evaluate its overall performance. In particular, the differences between the original design with a throttling plate and the current default design are profoundly analyzed, and an improvement is expected to be recorded for the latter. A commercial computational fluid dynamics code, Fluent, was used to predict the pressure drop and oscillation frequency of a fluidic axial oscillation tool. The results of the numerical simulations agree well with corresponding experimental results. A sufficient pressure pulse amplitude with a low pressure drop is desired in this study. Therefore, a relative pulse amplitude of pressure drop and displacement are introduced in our study. A comparison analysis between the two designs with and without a throttling plate indicates that when the supply flow rate is relatively low or higher than a certain value, the fluidic axial oscillation tool with a throttling plate exhibits a better performance; otherwise, the fluidic axial oscillation tool without a throttling plate seems to be a preferred alternative. In most of the operating circumstances in terms of the supply flow rate and pressure drop, the fluidic axial oscillation tool performs better than the original design.

  3. The Textile Elements in Ottoman Miniatures

    Directory of Open Access Journals (Sweden)

    Kevser Gürcan Y A R D I M C I

    2015-07-01

    Full Text Available With the value given to the art and the artist, high quality works of art in many fields were produced in the Ottoman Era. The art of weaving also lived its brightest period in terms of color, design, and weaving techniques in the Ottoman Empire in XVI. Ce ntury. The weaving products shaped the lifestyles of the people in those times and received great interest in the Palace as well. Silk woven fabrics had become such a great power in those times that it became the greatest symbol showing the power of the Ot toman Empire to the foreigners, and the determiner of the social standing within the society. The Ottoman Sultans used their clothing, which they made to become flamboyant with embroideries, to distinguish themselves from the public, and make them accept t heir power. Among the presents that were presented to the Sultans, clothes, kaftans, and similar fabrics as well as other precious presents, were frequent. The miniature manuscripts that were produced in the Palace are in the quality of unique documents t hat transfer yesterday’s knowledge to the modern age. It is easy to decode the dimensions of the clothing habits, decoration elements and hierarchy concepts of the Ottoman Era, as well as the weaving activities by using the miniature manuscripts. On the ot her hand, these elements constitute a rich alphabet in transferring the emotional structure of the society in those times, the traditions and habits to our world today. The greatest share in this effort belongs to the artists who depicted the miniatures by staying loyal to the texts in the manuscripts as well as to their active participation in the events of those times and their narrating the events as the very first observers. In addition, the muralists depicting the manuscripts and their undertaking the job of drawing the designs on the original fabric helped them to reflect the richness in the design of those times to the miniatures. In this study, the weavings and the accessories

  4. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.

    Science.gov (United States)

    Wen, Li; Ren, Ziyu; Di Santo, Valentina; Hu, Kainan; Yuan, Tao; Wang, Tianmiao; Lauder, George V

    2018-04-10

    Although linear accelerations are an important common component of the diversity of fish locomotor behaviors, acceleration is one of the least-understood aspects of propulsion. Analysis of acceleration behavior in fishes with both spiny and soft-rayed median fins demonstrates that fin area is actively modulated when fish accelerate. We implemented an undulatory biomimetic robotic fish model with median fins manufactured using multimaterial three-dimensional printing-a spiny-rayed dorsal fin, soft-rayed dorsal/anal fins, and a caudal fin-whose stiffnesses span three orders of magnitude. We used an array of fluidic elastomeric soft actuators to mimic the dorsal/anal inclinator and erector/depressor muscles of fish, which allowed the soft fins to be erected or folded within 0.3 s. We experimentally show that the biomimetic soft dorsal/anal fin can withstand external loading. We found that erecting the soft dorsal/anal fins significantly enhanced the linear acceleration rate, up to 32.5% over the folded fin state. Surprisingly, even though the projected area of the body (in the lateral plane) increased 16.9% when the median fins were erected, the magnitude of the side force oscillation decreased by 24.8%, which may have led to significantly less side-to-side sway in the robotic swimmer. Visualization of fluid flow in the wake of median fins reveals that during linear acceleration, the soft dorsal fin generates a wake flow opposite in direction to that of the caudal fin, which creates propulsive jets with time-variant circulations and jet angles. Erectable/foldable fins provide a new design space for bioinspired underwater robots with structures that morph to adapt to different locomotor behaviors. This biorobotic fish model is also a potentially promising system for studying the dynamics of complex multifin fish swimming behaviors, including linear acceleration, steady swimming, and burst and coast, which are difficult to analyze in freely swimming fishes.

  5. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  6. The MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Possibilities exist for applying the MDBT approach to the determination of other mechanical properties. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly

  7. Two miniature electronic dosemeters Yperwatch - Gamcard

    International Nuclear Information System (INIS)

    Clavel, B.; Jaillon, J.

    1993-01-01

    Yperwatch and Gamcard were miniature electronic gamma personal dose and dose rate monitors. The Yperwatch is mounted in a wristwatch and the Gamcard in a case of the size of a standard credit card. The technology provides users with all the performance of a standard professional electronic dosemeter (integrated dose, dose rate, audible alarms, time in use). Yperwatch and Gamcard are based on well-proven electronic dosimetry technology, but with a greater ease of use. (author)

  8. Some characteristics of a miniature neutron spectrometer

    International Nuclear Information System (INIS)

    Sekimoto, H.; Oishi, K.; Hojo, K.; Hojo, T.

    1984-01-01

    Some characteristics of an NE213 miniature spherical spectrometer for in-assembly fast-neutron spectrometry were measured. As the bubbling time changed, the pulse-height did not change appreciably, but the n-γ discrimination characteristics changed considerably. As the count rate changed, the pulse-height did not change appreciably, and the change of the n-γ discrimination characteristics was acceptable. The neutron response function was measured to be almost isotropic except for the backward direction. (orig.)

  9. Glomerular Lesions in Proteinuric Miniature Schnauzer Dogs.

    Science.gov (United States)

    Furrow, E; Lees, G E; Brown, C A; Cianciolo, R E

    2017-05-01

    Miniature Schnauzer dogs are predisposed to idiopathic hypertriglyerceridemia, which increases risk for diseases such as pancreatitis and gallbladder mucocele. Recently, elevated triglyceride concentrations have been associated with proteinuria in this breed, although it is difficult to determine which abnormality is primary. Retrospective review of renal tissue from 27 proteinuric Miniature Schnauzers revealed that 20 dogs had ultrastructural evidence of osmophilic globules consistent with lipid in glomerular tufts. Seven of these dogs had lipid thromboemboli in glomerular capillary loops that distorted their shape and compressed circulating erythrocytes. Triglyceride concentrations were reported in 6 of these 7 dogs, and all were hypertriglyceridemic. In addition, glomerular lipidosis (defined as accumulation of foam cells within peripheral capillary loops) was identified in a single dog. The remaining 12 dogs had smaller amounts of lipid that could only be identified ultrastructurally. Neither signalment data nor clinicopathologic parameters (serum albumin, serum creatinine, urine protein-to-creatinine ratio, and blood pressure) differed among the various types of lipid lesions. During the time course of this study, all dogs diagnosed with glomerular lipid thromboemboli were Miniature Schnauzers, underscoring the importance of recognizing these clear spaces within capillary loops as lipid.

  10. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture.

    Science.gov (United States)

    Nampe, Daniel; Joshi, Ronak; Keller, Kevin; Zur Nieden, Nicole I; Tsutsui, Hideaki

    2017-09-01

    The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Induced movement of the magnetic beads and DNA-based dumbbell in a micro fluidic channel

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2007-12-01

    We have explored controlled movement of magnetic beads and a dumbbell structure composed of DNA, a magnetic and a non-magnetic bead in a micro fluidic channel. Movement of the beads and dumbbells is simulated assuming that a net force is described as a superposition between the magnetic and hydrodynamic drag forces. Trajectories of beads and dumbbells are observed with optical light microscopy. The experimentally measured data show a good agreement with the simulations. This dynamical approach offers the prospect to stretch the DNA within the dumbbell and investigate its conformational changes. Further on, we demonstrate that short sonication can reduce multiple attachments of DNA to the beads.

  12. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  13. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  14. A capability study of micro moulding for nano fluidic system manufacture

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2013-01-01

    With the present paper the authors analysed process capability of ultra-precision moulding used for producing nano crosses with the same critical channels dimensions of a nano fluidic system for optical mapping of genomic length DNA. The process variation focused on product tolerances is quantified...... through AFM measurements. Uncertainty assessment of measurements on polymer objects is described and quality control results of sub-micro injection moulded crosses are shown in respect of the tolerance range specified by the end user as limit value for functional design....

  15. An experimental study of the flow characteristics of fluidic device in a passive safety injection tank

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul Hwa; Won, Suon Yeon; Min, Kyong Ho; Chung, Moon Ki

    1998-01-01

    It is considered to adopt passive safety injection tank (SIT) as a enhanced safety feature in KNGR. Passive SIT employs a vortex chamber as a fluidic device, which control injection flow rate passively by the variation of flow resistance produced by vortex intensity within the vortex chamber. To investigate the flow characteristics of the vortex chamber many tests have been carried out by using small-scale test facility. In this report the effects of geometric parameters of vortex chamber on discharge flow characteristics and the velocity measurement result of flow field, measured by PIV, are presented and discussed. (author). 25 refs., 11 tabs., 31 figs

  16. Development of a miniature multiple reference optical coherence tomography imaging device

    Science.gov (United States)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  17. Modeling and testing of a knitted-sleeve fluidic artificial muscle

    Science.gov (United States)

    Ball, Erick J.; Meller, Michael A.; Chipka, Jordan B.; Garcia, Ephrahim

    2016-11-01

    The knitted-sleeve fluidic muscle is similar in design to a traditional McKibben muscle, with a separate bladder and sleeve. However, in place of a braided sleeve, it uses a tubular-knit sleeve made from a thin strand of flexible but inextensible yarn. When the bladder is pressurized, the sleeve expands by letting the loops of fiber slide past each other, changing the dimensions of the rectangular cells in the stitch pattern. Ideally, the internal volume of the sleeve would reach a maximum when its length has contracted by 2/3 from its maximum length, and although this is not reachable in practice, preliminary tests show that free contraction greater than 50% is achievable. The motion relies on using a fiber with a low coefficient of friction in order to reduce hysteresis to an acceptable level. In addition to increased stroke length, potential advantages of this technique include slower force drop-off during the stroke, more useable energy in certain applications, and greater similarity to the force-length relationship of skeletal muscle. Its main limitation is its potentially greater effect from friction compared to other fluidic muscle designs.

  18. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.

    2015-03-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  19. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  20. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    Science.gov (United States)

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  1. Numerical simulations on increasing turbojet engines exhaust mixture ratio using fluidic chevrons

    Directory of Open Access Journals (Sweden)

    Adrian GRUZEA

    2017-06-01

    Full Text Available This paper refers to some aspects regarding the terms “chevron” and “fluidic chevron” and to the process of increasing the jet engines exhaust mixing rate towards achieving noise reduction. One of the noise reduction methods consists in covering the high velocity main flow with a secondary one, having a much lower velocity, similar to the turbofan engines. The fluidic chevrons try to accomplish these requirements, being used just in particular moments of the flight. This study will be based on numerical simulations carried using the commercial software ANSYS. The geometry used will the based on the micro jet engine JetCat P80, equipping the turbines laboratory from the Faculty of Aerospace Engineering. A research based on the measured geometric, gasodynamic and cinematic parameters will be carried varying the mass flow and keeping the immersion angle constant. As a result of these simulations we’ll observe the influence of the mentioned parameters on the jet’s flow field.

  2. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments.

    Science.gov (United States)

    Thurgood, Peter; Baratchi, Sara; Szydzik, Crispin; Mitchell, Arnan; Khoshmanesh, Khashayar

    2017-07-11

    Typical microfluidic systems take advantage of multiple storage reservoirs, pumps and valves for the storage, driving and release of buffers and other reagents. However, the fabrication, integration, and operation of such components can be difficult. In particular, the reliance of such components on external off-chip equipment limits their utility for creating self-sufficient, stand-alone microfluidic systems. Here, we demonstrate a porous sponge made of polydimethylsiloxane (PDMS), which is fabricated by templating microscale water droplets using a T-junction microfluidic structure. High-resolution microscopy reveals that this sponge contains a network of pores, interconnected by small holes. This unique structure enables the sponge to passively release stored solutions very slowly. Proof-of-concept experiments demonstrate that the sponge can be used for the passive release of stored solutions into narrow channels and circular well plates, with the latter used for inducing intracellular calcium signalling of immobilised endothelial cells. The release rate of stored solutions can be controlled by varying the size of interconnecting holes, which can be easily achieved by changing the flow rate of the water injected into the T-junction. We also demonstrate the active release of stored liquids into a fluidic channel upon the manual compression of the sponge. The developed PDMS sponge can be easily integrated into complex micro/macro fluidic systems and prepared with a wide array of reagents, representing a new building block for self-sufficient microfluidic systems.

  3. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  4. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  5. Hybrid macro-micro fluidics system for a chip-based biosensor

    Science.gov (United States)

    Tamanaha, C. R.; Whitman, L. J.; Colton, R. J.

    2002-03-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators. The microfluidics system includes channels, valveless diffuser-based pumps, and pinch-valves that are cast into a poly(dimethylsiloxane) (PDMS) membrane and packaged along with the sensor chip into a palm-sized plastic cartridge. The microfluidics are driven by pump and valve actuators contained in an external unit (with a volume ~30 cm3) that interfaces kinematically with the PDMS microelements on the cartridge. The pump actuator is a simple-lever, flexure-hinge displacement amplifier that increases the motion of a piezoelectric stack. The valve actuators are an array of cantilevers operated by shape memory alloy wires. All components can be fabricated without the need for complex lithography or micromachining, and can be used with fluids containing micron-sized particulates. Prototypes have been modeled and tested to ensure the delivery of microliter volumes of fluid and the even dispersion of reagents over the chip sensing elements. With this hybrid approach to the fluidics system, the biochemical assay benefits from the many advantages of microfluidics yet we avoid the complexity and unknown reliability of immature microactuator technologies.

  6. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  7. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    International Nuclear Information System (INIS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-01-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π -type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm 3 , which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band. (paper)

  8. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    Science.gov (United States)

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Akagi

    Full Text Available Zebrafish (Danio rerio has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP. The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  10. Fabrication of miniaturized electrostatic deflectors using LIGA

    International Nuclear Information System (INIS)

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-01-01

    Miniaturized electron beam columns (open-quotes microcolumnsclose quotes) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of open-quotes selectively scaledclose quotes micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures

  11. High power VCSELs for miniature optical sensors

    Science.gov (United States)

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  12. Newly introduced sample preparation techniques: towards miniaturization.

    Science.gov (United States)

    Costa, Rosaria

    2014-01-01

    Sampling and sample preparation are of crucial importance in an analytical procedure, representing quite often a source of errors. The technique chosen for the isolation of analytes greatly affects the success of a chemical determination. On the other hand, growing concerns about environmental and human safety, along with the introduction of international regulations for quality control, have moved the interest of scientists towards specific needs. Newly introduced sample preparation techniques are challenged to meet new criteria: (i) miniaturization, (ii) higher sensitivity and selectivity, and (iii) automation. In this survey, the most recent techniques introduced in the field of sample preparation will be described and discussed, along with many examples of applications.

  13. A miniature concentrating photovoltaic and thermal system

    International Nuclear Information System (INIS)

    Kribus, Abraham; Kaftori, Daniel; Mittelman, Gur; Hirshfeld, Amir; Flitsanov, Yuri; Dayan, Abraham

    2006-01-01

    A novel miniature concentrating PV (MCPV) system is presented and analyzed. The system is producing both electrical and thermal energy, which is supplied to a nearby consumer. In contrast to PV/thermal (PV/T) flat collectors, the heat from an MCPV collector is not limited to low-temperature applications. The work reported here refers to the evaluation and preliminary design of the MCPV approach. The heat transport system, the electric and thermal performance, the manufacturing cost, and the resulting cost of energy in case of domestic water heating have been analyzed. The results show that the new approach has promising prospects

  14. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  15. Developing and Analysing sub-10 µm Fluidic Systems with Integrated Electrodes for Pumping and Sensing in Nanotechnology Applications

    NARCIS (Netherlands)

    Heuck, F.C.A.

    2010-01-01

    In this thesis, sub-10 µm fluidic systems with integrated electrodes for pumping and sensing in nanotechnology applications were developed and analyzed. This work contributes to the development of the scanning ion pipette (SIP), a tool to investigate surface changes on the nanometer scale induced by

  16. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics

    Science.gov (United States)

    Yeh, S. I.; Huang, Y. C.; Cheng, C. H.; Cheng, C. M.; Yang, J. T.

    2016-07-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here - soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world.

  17. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  18. Novel Miniature Spectrometer For Remote Chemical Detection

    International Nuclear Information System (INIS)

    Pipino, Andrew C.R.

    2000-01-01

    New chemical sensing technologies are critically important for addressing many of EM's priority needs as discussed in detail at http://emsp.em.doe.gov/needs. Many technology needs were addressed by this research. For example, improved detection strategies are needed for non-aqueous phase liquids (NAPL's), such as PCE (Cl2C=CCl2) and TCE (HClC=CCl2), which persist in the environment due their highly stable structures. By developing a miniature, ultra-sensitive, selective, and field-deployable detector for NAPL's, the approximate source location could be determined with minimal investigative expense. Contaminant plumes could also be characterized in detail. The miniature spectrometer developed under Project No.60231 could also permit accurate rate measurements in less time, either in the field or the laboratory, which are critically important in the development, testing, and ultimate utilization of models for describing contaminant transport. The technology could also be used for long-term groundwater monitoring or long-term stewardship in general. Many science needs are also addressed by the Project 60231, since the effort significantly advances the measurement science of chemical detection. Developed under Project No.60231, evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a novel form of CRDS, which is an the emerging optical absorption technique. Several review articles on CRDS, which has been generally applied only to gas-phase diagnostics, have been published1-3. EW-CRDS4-10 forms the basis for a new class of chemical sensors that extends CRDS to other states of matter and leads to a miniaturized version of the concept. EW-CRDS uses miniature solid-state optical resonators that incorporate one or more total internal reflection (TIR) surfaces, which create evanescent waves. The evanescent waves emanate from the TIR surfaces, sampling the surrounding medium. The utility of evanescent waves in chemical analysis forms the basis for the field of attenuated

  19. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N., E-mail: dinu@lal.in2p3.fr [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Imando, T. Ait; Nagai, A. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Pinot, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Puill, V. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Callier, S. [Omega Microelectronics Group, CNRS, Palaiseau (France); Janvier, B.; Esnault, C.; Verdier, M.-A. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Raux, L. [Omega Microelectronics Group, CNRS, Palaiseau (France); Vandenbussche, V.; Charon, Y.; Menard, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France)

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m{sup 2}. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm{sup 2} sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  20. The miniature optical transmitter and transceiver for the High-Luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Liu, C; Zhao, X; Deng, B; Gong, D; Guo, D; Li, X; Liang, F; Liu, G; Liu, T; Xiang, A C; Ye, J; Chen, J; Huang, D; Hou, S; Teng, P-K

    2013-01-01

    We present the design and test results of the Miniature optical Transmitter (MTx) and Transceiver (MTRx) for the high luminosity LHC (HL-LHC) experiments. MTx and MTRx are Transmitter Optical Subassembly (TOSA) and Receiver Optical Subassembly (ROSA) based. There are two major developments: the Vertical Cavity Surface Emitting Laser (VCSEL) driver ASIC LOCld and the mechanical latch that provides the connection to fibers. In this paper, we concentrate on the justification of this work, the design of the latch and the test results of these two modules with a Commercial Off-The-Shelf (COTS) VCSEL driver

  1. Application of miniature heat pipe for notebook PC cooling

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.H.; Hwang, G.; Choy, T.G. [Electronics and Telecommunications research Institute, Taejeon (Korea)

    2001-06-01

    Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4 mm diameter is pressed to 2 mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness of pressing is shown to be within the range of 2 mm {approx} 2.5 mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4 mm is reduced to 0.25 mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool notebook PC shows the stability as cooling system since T{sub j}(Temperature of Processor Junction) satisfy a demand condition of 0 {approx} 100 deg.C under 11.5 W of CPU heat. (author). 6 refs., 7 figs.

  2. Maintenance energy requirements in miniature colony dogs.

    Science.gov (United States)

    Serisier, S; Weber, M; Feugier, A; Fardet, M-O; Garnier, F; Biourge, V; German, A J

    2013-05-01

    There are numerous reports of maintenance energy requirements (MER) in dogs, but little information is available about energy requirements of miniature dog breeds. In this prospective, observational, cohort study, we aimed to determine MER in dogs from a number of miniature breeds and to determine which factors were associated with it. Forty-two dogs participated in the study. MER was calculated by determining daily energy intake (EI) during a period of 196 days (28-359 days) when body weight did not change significantly (e.g. ±2% in 12 weeks). Estimated median MER was 473 kJ/kg(0.75) /day (285-766 kJ/kg(0.75) /day), that is, median 113 kcal/kg(0.75) /day (68-183 kcal/kg(0.75) /day). In the obese dogs that lost weight, median MER after weight loss was completed was 360 kJ/kg(0.75) /day (285-515 kJ/kg(0.75) /day), that is, 86 kcal/kg(0.75) /day, (68-123 kcal/kg(0.75) /day). Simple linear regression analysis suggested that three breeds (e.g. Chihuahua, p = 0.002; Yorkshire terrier, p = 0.039; dachshund, p = 0.035) had an effect on MER. In addition to breed, simple linear regression revealed that neuter status (p = 0.079) and having previously been overweight (p = 0.002) were also of significance. However, with multiple linear regression analysis, only previous overweight status (MER less in dogs previously overweight p = 0.008) and breed (MER greater in Yorkshire terriers [p = 0.029] and less in Chihuahuas [p = 0.089]) remained in the final model. This study is the first to estimate MER in dogs of miniature breeds. Although further information from pet dogs is now needed, the current work will be useful for setting energy and nutrient requirement in such dogs for the future. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  3. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon S; Rust, Michael J; Do, Jaephil; Ahn, Chong H [Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 (United States); Yun, Yeo-Heung; Schulz, Mark J [Department of Mechanical Engineering, University of Cincinnati, 45221 (United States); Shanov, Vesselin, E-mail: chong.ahn@uc.ed [Department of Chemical and Materials Engineering, University of Cincinnati, 45221 (United States)

    2009-08-12

    A new method for the self-assembly of a carbon nanotube (CNT) using magnetic capturing and fluidic alignment has been developed and characterized in this work. In this new method, the residual iron (Fe) catalyst positioned at one end of the CNT was utilized as a self-assembly driver to attract and position the CNT, while the assembled CNT was aligned by the shear force induced from the fluid flow through the assembly channel. The self-assembly procedures were successfully developed and the electrical properties of the assembled multi-walled carbon nanotube (MWNT) and single-walled carbon nanotube (SWNT) were fully characterized. The new assembly method developed in this work shows its feasibility for the precise self-assembly of parallel CNTs for electronic devices and nanobiosensors.

  4. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    Science.gov (United States)

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  5. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  6. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    International Nuclear Information System (INIS)

    Gilardi, Giovanni; Beccherelli, Romeo

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift due to changes in the refractive index of the measurand fluid are studied for a set of different configurations by the finite element method and a high sensitivity versus fluid volume is found. The proposed device can be tailored to work with a minimum fluid volume of 1 pl and a sensitivity up of 2000 nm/(RIU·nl). We introduce a figure of merit which quantifies the amplifying effect on the sensitivity of high quality factor resonators and allows us to compare different devices. (paper)

  7. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Onal, Cagdas D; Rus, Daniela

    2013-01-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s −1 . (paper)

  8. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  9. Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits

    Science.gov (United States)

    Ainla, Alar; Gözen, Irep; Hakonen, Bodil; Jesorka, Aldo

    2013-01-01

    Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this “lab on a molecularly thin membrane”, various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use. PMID:24067786

  10. Dielectric elastomer strain and pressure sensing enable reactive soft fluidic muscles

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Sheng Q.

    2016-04-01

    Wearable assistive devices are the future of rehabilitation therapy and bionic limb technologies. Traditional electric, hydraulic, and pneumatic actuators can provide the precise and powerful around-the-clock assistance that therapists cannot deliver. However, they do so in the confines of highly controlled factory environments, resulting in actuators too rigid, heavy, and immobile for wearable applications. In contrast, biological skeletal muscles have been designed and proven in the uncertainty of the real world. Bioinspired artificial muscle actuators aim to mimic the soft, slim, and self-sensing abilities of natural muscle that make them tough and intelligent. Fluidic artificial muscles are a promising wearable assistive actuation candidate, sharing the high-force, inherent compliance of their natural counterparts. Until now, they have not been able to self-sense their length, pressure, and force in an entirely soft and flexible system. Their use of rigid components has previously been a requirement for the generation of large forces, but reduces their reliability and compromises their ability to be comfortably worn. We present the unobtrusive integration of dielectric elastomer (DE) strain and pressure sensors into a soft Peano fluidic muscle, a planar alternative to the relatively bulky McKibben muscle. Characterization of these DE sensors shows they can measure the full operating range of the Peano muscle: strains of around 18% and pressures up to 400 kPa with changes in capacitance of 2.4 and 10.5 pF respectively. This is a step towards proprioceptive artificial muscles, paving the way for wearable actuation that can truly feel its environment.

  11. Miniature reciprocating heat pumps and engines

    Science.gov (United States)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  12. Uniform LED illuminator for miniature displays

    Science.gov (United States)

    Medvedev, Vladimir; Pelka, David G.; Parkyn, William A.

    1998-10-01

    The Total Internally Reflecting (TIR) lens is a faceted structure composed of prismatic elements that collect a source's light over a much larger angular range than a conventional Fresnel lens. It has been successfully applied to the efficient collimation of light from incandescent and fluorescent lamps, and from light-emitting diodes (LEDs). A novel LED-powered collimating backlight is presented here, for uniformly illuminating 0.25'-diagonal miniature liquid- crystal displays, which are a burgeoning market for pagers, cellular phones, digital cameras, camcorders, and virtual- reality displays. The backlight lens consists of a central dual-asphere refracting section and an outer TIR section, properly curved with a curved exit face.

  13. Miniature photovoltaic energy system for lighting

    International Nuclear Information System (INIS)

    Awais, M.

    1999-01-01

    In this project a miniature photovoltaic energy system has been designed and developed, that may be used in remote areas and villages for lighting purposes. System sizing is the important part of the project because it affects the cost of the system. Therefore, first of all system sizing has been done. For conversion of dc voltage of the battery into ac voltage, an inverter has been designed. To charge the battery when the sun is not shining, a standby system has been developed using a bicycle and dynamo. To indicate the battery's state of charge and discharge, a battery monitoring circuit has also been developed. Similarly, to protect the battery from over discharging, a battery protection circuit has been designed. In order to measure how much energy is going from standby system to the battery, an efficient dc electronic energy meter has been designed and developed. The working of the overall system has been tested and found to give good performance. (author)

  14. Miniature neutron-alpha activation spectrometer

    International Nuclear Information System (INIS)

    Rhodes, Edgar; Goldsten, John; Holloway, James Paul; He, Zhong

    2002-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband

  15. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  16. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  17. Miniaturization of specimens for mechanical testing

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.

    1987-01-01

    The development of mechanical property tests based on bending of a 3 mm diameter by (typically) 0.25 mm thick disk is described. Slow strain rate testing of such a disk is used to obtain tensile properties. Finite element computer modelling is used to extract yield stress values with accuracies of at least +- 10% of uniaxial tensile test values for a variety of materials. Analytical estimates of ductility from disk bend test values are possible for low-ductility materials. Work directed toward finite element calculations for ductility and ultimate tensile strength is also discussed. Preliminary data indicating the feasibility of high strain rate testing for estimation of ductile-to-brittle transition temperatures, and an example of the successful application of miniature bend testing in obtaining relative fatigue information are also presented. (author)

  18. Miniature multichannel analyzer for process monitoring

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.; Wiig, L.G.; Ianakiev, K.D.

    1993-01-01

    A new, 4,000-channel analyzer has been developed for gamma-ray spectroscopy applications. A design philosophy of hardware and software building blocks has been combined with design goals of simplicity, compactness, portability, and reliability. The result is a miniature, modular multichannel analyzer (MMMCA), which offers solution to a variety of nondestructive assay (NDA) needs in many areas of general application, independent of computer platform or operating system. Detector-signal analog electronics, the bias supply, and batteries are included in the virtually pocket-size, low-power MMMCA unit. The MMMCA features digital setup and control, automated data reduction, and automated quality assurance. Areas of current NDA applications include on-line continuous (process) monitoring, process material holdup measurements, and field inspections

  19. Miniature solid-state gas compressor

    Science.gov (United States)

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  20. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J

    2014-01-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  1. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs.

    Science.gov (United States)

    Sohn, Jungmin; Yun, Sookyung; Lee, Jeosoon; Chang, Dongwoo; Choi, Mincheol; Yoon, Junghee

    2017-01-10

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly.

  2. Femtosecond laser-assisted cataract surgery and implantable miniature telescope

    Directory of Open Access Journals (Sweden)

    Randal Pham

    2017-09-01

    Conclusions and importance: To our knowledge and confirmed by the manufacturer of the implantable miniature telescope this is the first case ever reported of a patient who has undergone femtosecond laser cataract surgery with corneal astigmatism correction and implantation of the implantable miniature telescope. This is also the first case report of the preoperative use of microperimetry and visual electrophysiology to evaluate a patient's postoperative potential visual acuity. The success of the procedure illustrated the importance of meticulous preoperative planning, the combined use of state-of-the-art technologies and the seamless teamwork in order to achieve the best clinical outcome for patients who undergo implantation of the implantable miniature telescope.

  3. Evaluation of a miniature electromagnetic position tracker

    International Nuclear Information System (INIS)

    Hummel, Johann; Figl, Michael; Kollmann, Christian; Bergmann, Helmar; Birkfellner, Wolfgang

    2002-01-01

    The advent of miniaturized electromagnetic digitizers opens a variety of potential clinical applications for computer aided interventions using flexible instruments; endoscopes or catheters can easily be tracked within the body. With respect to the new applications, the systematic distortions induced by various materials such as closed metallic loops, wire guides, catheters, and ultrasound scan heads were systematically evaluated in this paper for a new commercial tracking system. We employed the electromagnetic tracking system Aurora trade mark sign (Mednetix/CH, NDI/Can); data were acquired using the serial port of a PC running SuSE Linux 7.1 (SuSE, Gmbh, Nuernberg). Objects introduced into the digitizer volume included wire loops of different diameters, wire guides, optical tracking tools, an ultrasonic (US) scan head, an endoscope with radial ultrasound scan head and various other objects used in operating rooms and interventional suites. Beyond this, we determined the influence of a C-arm fluoroscopy unit. To quantify the reliability of the system, the miniaturized sensor was mounted on a nonmetallic measurement rack while the transmitter was fixed at three different distances within the digitizer range. The tracker was shown to be more sensitive to distortions caused by materials close to the emitter (average distortion error 13.6 mm±16.6 mm for wire loops positioned at a distance between 100 mm and 200 mm from the emitter). Distortions caused by materials near the sensor (distances smaller than 100 mm) are small (typical error 2.2 mm±1.9 mm). The C-arm fluoroscopy unit caused considerable distortions and limits the reliability of the tracker (distortion error 18.6 mm±24.9 mm). Distortions resulting from the US scan head are high at distances smaller than about 100 mm from the emitter. The distortions also increase when the scan head is positioned horizontally and close to the sensor (average error 4.1 mm±1.5 mm when the scan head is positioned within a

  4. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    Science.gov (United States)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  5. Infrared hyperspectral imaging miniaturized for UAV applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  6. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  7. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    OpenAIRE

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network i...

  9. Adventitious shoot regeneration from leaf explants of miniature paprika

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... products, Capsicum spp. shows high levels of cross pollination ... Composition of a nutrient solution used for the culture of miniature paprika in the greenhouse. ... Yellow' were obtained from Seminis Korea Inc. Seeds were.

  10. Miniature Sensor for Aerosol Mass Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  11. Miniaturized Airborne Imaging Central Server System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  12. Miniaturized Airborne Imaging Central Server System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  13. Miniature Reaction Wheel for Small Satellite Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  14. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator

    Science.gov (United States)

    Wassermann, Florian; Hecker, Daniel; Jung, Bernd; Markl, Michael; Seifert, Avi; Grundmann, Sven

    2013-03-01

    In this work, the phase-resolved internal flow of a bi-stable fluidic oscillator was measured using phase-locked three-dimensional three-components magnetic resonance velocimetry (3D3C-MRV), also termed as 4D-MRV. A bi-stable fluidic oscillator converts a continuous inlet-mass flow into a jet alternating between two outlet channels and, as a consequence provides an unsteady, periodic flow. This actuator can therefore be used as flow-control actuator. Since data acquisition in a 3D volume takes up to several minutes, only a small portion of the data is acquired in each flow cycle for every time point of the flow cycle. The acquisition of the entire data set is segmented over many cycles of the periodic flow. This procedure allows to measure phase-averaged 3D3C velocity fields with a certain temporal resolution. However, the procedure requires triggering to the periodic nature of the flow. Triggering the MR scanner precisely on each flow cycle is one of the key issues discussed in this manuscript. The 4D-MRV data are compared to data measured using phase-locked laser Doppler anemometry and good agreement between the results is found. The validated 4D-MRV data is analyzed and the fluid-mechanic features and processes inside the fluidic oscillator are investigated and described, providing a detailed description of the internal jet-switching mechanism.

  15. Miniaturized digital fluxgate magnetometer for small spacecraft applications

    International Nuclear Information System (INIS)

    Forslund, Åke; Ivchenko, Nickolay; Olsson, Göran; Edberg, Terry; Belyayev, Serhiy; Marusenkov, Andriy

    2008-01-01

    A novel design of an Earth field digital fluxgate magnetometer is presented, the small magnetometer in low-mass experiment (SMILE). The combination of a number of new techniques results in significant miniaturization of both sensor and electronics. The design uses a sensor with volume compensation, combining three dual rod cores in a Macor® cube with the side dimension of 20 mm. Use of volume compensation provides high geometrical stability of the axes and improved performance compared to component compensated sensors. The sensor is operated at an excitation frequency of 8 kHz. Most of the instrument functionality is combined in a digital signal processing core, implemented in a field programmable gate array (FPGA). The pick-up signal is digitized after amplification and filtering, and values of compensation currents for each of the axes are determined by a digital correlation algorithm, equivalent to a matched filter, and are fed to a hybrid pulse-width modulation/delta-sigma digital-to-analogue converter driving the currents through the compensation coils. Using digital design makes the instrument very flexible, reduces power consumption and opens possibilities for the customization of the operation modes. The current implementation of the design is based on commercial off-the-shelf components. A calibration of the SMILE instrument was carried out at the Nurmijärvi Geophysical Observatory, showing high linearity (within 6 nT on the whole ±50 µT scale), good orthogonality (22 arcmin) and very good temperature stability of the axes

  16. Airtight miniaturized chromatography: a safer method for radiopharmaceutical quality control

    International Nuclear Information System (INIS)

    Coupal, J.J.; Shih, W.J.; Ryo, U.Y.

    1988-01-01

    Miniaturized chromatography is widely used for quality control of radiopharmaceuticals. Recently, published chromatography procedures have illustrated or described chromatography chambers open to the air in use, suggesting that volatile toxic mobile phases are harmless to people in the vicinity. The authors describe the results of their search for an inexpensive closed chromatography chamber that can be used to derive safely the benefits from conventional miniaturized chromatography

  17. Miniature tensile test specimens for fusion reactor irradiation studies

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1985-01-01

    Three miniature sheet-type tensile specimens and a miniature rod-type specimen are being used to determine irradiated tensile properties for alloy development for fusion reactors. The tensile properties of type 316 stainless steel were determined with these different specimens, and the results were compared. Reasonably good agreement was observed. However, there were differences that led to recommendations on which specimens are preferred. 4 references, 9 figures, 6 tables

  18. Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  19. Hypodipsic hypernatraemia in a miniature schnauzer.

    Science.gov (United States)

    Van Heerden, J; Geel, J; Moore, D J

    1992-03-01

    Normovolaemic hypernatraemia as a result of a suspected congenital primary hypodipsia was diagnosed in a young male Miniature Schnauzer. Despite an elevated serum sodium concentration, the dog did not appear dehydrated on physical examination and the urine osmolality: plasma osmolality ratio was greater than 4; antidiuretic hormone deficiency was therefore not suspected. Basal serum cortisol and thyroxine concentrations were normal. Plasma aldosterone concentration and plasma renin activity (37 pmol l-1 and 1.55 ng dl-1 h-1 respectively) were within normal range. A defective central thirst regulation mechanism was suspected as the dog was totally disinterested in drinking water despite the chronically elevated serum sodium concentration. Excessive ingestion of water mixed with food, and milk resulted in hyponatraemia and associated cerebral oedema. On stabilisation of the dog's condition, a calculated fluid intake based on daily maintenance fluid requirements was prescribed to prevent recurrence of hypernatraemia and hyponatraemia, and associated signs of central nervous system disease. The dog was in apparent good health with controlled fluid intake when examined 230 d later.

  20. Miniature Neutron-Alpha Activation Spectrometer

    Science.gov (United States)

    Rhodes, E.; Goldsten, J.

    2001-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.

  1. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  2. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  3. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  4. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  5. Miniaturization and globalization of clinical laboratory activities.

    Science.gov (United States)

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  6. An ultra miniature pinch-focus discharge

    International Nuclear Information System (INIS)

    Soto, L.; Pavez, C.; Moreno, J.; Pavez, C.; Barbaglia, M.; Clausse, A.

    2004-01-01

    As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra miniature device has been designed and constructed (nano focus NF: 5 nF, 5-10 kV, 5-10 kA, 60-250 mJ, 16 ns time to peak current). Sub-millimetric anode radius covered by a coaxial insulator were used for experiments in hydrogen. Evidence of pinch was observed in electrical signals in discharges operating at 60 mJ. A single-frame image converter camera (4 ns exposure) was used to obtain plasma images in the visible range. The dynamics observed from the photographs is consistent with: a) formation of a plasma sheath close to the insulator surface, b) fast axial motion of the plasma sheath, c) radial compression over the anode, and d) finally the plasma is detached from the anode in the axial direction. The total time since stage a) to d) was observed to be about 30 ns. X ray and neutron emission is being studied. Neutron yield of the order of 10 3 neutrons per shot is expected for discharges operating in deuterium at 10 kA. (authors)

  7. In Silico Investigation of a Surgical Interface for Remote Control of Modular Miniature Robots in Minimally Invasive Surgery

    Directory of Open Access Journals (Sweden)

    Apollon Zygomalas

    2014-01-01

    Full Text Available Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES and laparoendoscopic single site (LESS surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.

  8. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  9. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    Science.gov (United States)

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bio-inspired online variable recruitment control of fluidic artificial muscles

    Science.gov (United States)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  11. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level.

  12. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Science.gov (United States)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  13. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Yoo, Seung Hun

    2016-01-01

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level

  14. The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis

    Science.gov (United States)

    Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele

    2016-11-01

    Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).

  15. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    Science.gov (United States)

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract

  17. Psychicones: Visual Traces of the Soul in Late Nineteenth-Century Fluidic Photography.

    Science.gov (United States)

    Pethes, Nicolas

    2016-07-01

    The article discusses attempts to visualise the soul on photographic plates at the end of the nineteenth century, as conducted by the French physician Hippolyte Baraduc in Paris. Although Baraduc refers to earlier experiments on fluidic photography in his book on The Human Soul (1896) and is usually mentioned as a precursor to parapsychological thought photography of the twentieth century, his work is presented as a genuine attempt at photographic soul-catching. Rather than producing mimetic representations of thoughts and imaginations, Baraduc claims to present the vital radiation of the psyche itself and therefore calls the images he produces psychicones. The article first discusses the difference between this method of soul photography and other kinds of occult media technologies of the time, emphasising the significance of its non-mimetic, abstract character: since the soul itself was considered an abstract entity, abstract traces seemed all the more convincing to the contemporary audience. Secondly, the article shows how the technological agency of photography allowed Baraduc's psychicones to be tied into related discourses in medicine and psychology. Insofar as the photographic plates displayed actual visual traces, Baraduc and his followers no longer considered hallucinations illusionary and pathological but emphasised the physical reality and normality of imagination. Yet, the greatest influence of soul photography was not on science but on art. As the third part of the paper argues, the abstract shapes on Baraduc's plates provided inspiration for contemporary avant-garde aesthetics, for example, Kandinsky's abstract paintings and the random streams of consciousness in surrealistic literature.

  18. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    1999-03-11

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract.

  19. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  20. Engineering fluidic delays in paper-based devices using laser direct-writing.

    Science.gov (United States)

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2015-10-21

    We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

  1. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  2. Miniature Laboratory for Detecting Sparse Biomolecules

    Science.gov (United States)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  3. A miniature magnetic waveguide for cold atoms

    International Nuclear Information System (INIS)

    Key, M.G.

    2000-09-01

    This thesis presents the first demonstration of a guide for cold atoms based on a miniature structure of four current-carrying wires. The four wires are embedded within a hollow silica fibre. Atoms are guided along the centre of a fifth hole on the axis of the fibre by the Stern-Gerlach force. A vapour cell Magneto Optical Trap (MOT), formed 1 cm above the mouth of the waveguide is the source of cold 85 Rb atoms. After cooling the atoms to 25 μK in optical molasses they fall under the influence of gravity through a magnetic funnel into the waveguide. After propagating for 2 cm, the atoms are reflected by the field of a small pinch coil wound around the base of the guide. The atoms then travel back up the fibre and out into the funnel, where they can be imaged either in fluorescence or by recapturing in the MOT. A video sequence of atoms falling into the guide and re-emerging after reflection from the pinch coil graphically illustrates the operation of the guide. The coupling efficiency and transverse temperature of the atoms is measured experimentally and in a Monte-Carlo simulation. We find an optimum coupling efficiency of 12% and we measure the spatial extent of the cloud within the fibre to be of order 100 μm. We find good agreement between experimental data and results from the numerical simulation. We have also been able to observe different thresholds for the reflection of different positive m F levels. In another experiment we are able to trap the atoms in an elongated Ioffe trap for up to two seconds, increasing the distance over which the atoms are guided. We are able to guide the atoms over distances of 40 cm with a loss rate indistinguishable from the free space loss rate. (author)

  4. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Science.gov (United States)

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.

  5. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  6. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    Directory of Open Access Journals (Sweden)

    Shitong Mao

    2018-05-01

    Full Text Available There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  7. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Laura Becerra-Fajardo

    Full Text Available Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs that will be flexible, thread-like (diameters < 0.5 mm and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with

  8. An Embedded Reconfigurable Logic Module

    Science.gov (United States)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  9. Detection of magnetic resonance signals using a magnetoresistive sensor

    Science.gov (United States)

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  10. Gradual Changes of Gut Microbiota in Weaned Miniature Piglets

    Directory of Open Access Journals (Sweden)

    Xianghua Yan

    2016-11-01

    Full Text Available Colonization of gut microbiota in mammals during the early life is vital to host health. The miniature piglet has recently been considered as an optimal infant model. However, less is known about the development of gut microbiota in miniature piglets. Here, this study was conducted to explore how the gut microbiota develops in weaned Congjiang miniature piglets. In contrast to the relatively stabilized gut fungal community, gut bacterial community showed a marked drop in alpha diversity, accompanied by significant alterations in taxonomic compositions. The relative abundances of 24 bacterial genera significantly declined, whereas the relative abundances of 7 bacterial genera (Fibrobacter, Collinsella, Roseburia, Prevotella, Dorea, Howardella, and Blautia significantly increased with the age of weaned piglets. Fungal taxonomic analysis showed that the relative abundances of 2 genera (Kazachstania and Aureobasidium significantly decreased, whereas the relative abundances of 4 genera (Aspergillus, Cladosporium, Simplicillium, and Candida significantly increased as the piglets aged. Kazachstania telluris was the signature species predominated in gut fungal communities of weaned miniature piglets. The functional maturation of the gut bacterial community was characterized by the significantly increased digestive system, glycan biosynthesis and metabolism, and vitamin B biosynthesis as the piglets aged. These findings suggest that marked gut microbial changes in Congjiang miniature piglets may contribute to understand the potential gut microbiota development of weaned infants.

  11. Pricing of miniature vehicles made from telephone card waste

    Science.gov (United States)

    Puspitasari, N. B.; Pujotomo, D.; Muhardiansyah, H.

    2017-12-01

    The number of electronic devices in Indonesia in the last 10 years has been increasing quite drastically which contributes to more electronic waste. E-waste or electronic waste have different characteristics from other kinds of waste. Components of electronic waste often poisonous, consisting dangerous chemicals. The telephone card wasted is also an electronic waste. One alternative to handle and manage telephone card waste is to recycle it into collectible miniature vehicles. But the price of these miniatures is quite high, causing low interest in buying them. A research on the price of miniature vehicles in relation to consumers’ Ability to Pay (ATP) and Willingness to Pay (WTP) needs to be done. Segmentation analysis data, target, product positioning and product marketing mix are needed before commencing the research. Data collection is done through a survey by spreading questionnaire to 100 miniature vehicle collectors in Semarang, questioning their ability and willingness to pay recycled miniature vehicles. Calculations showed average ATP of Rp.112.520, 24 and average WTP of Rp.76.870. The last result showed the estimate pricing according to ATP and WTP which is Rp.66.000 with 58% of the respondents claiming to be willing and able to pay that price.

  12. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs

    Science.gov (United States)

    Su, Long-Jyun; Wu, Meng-Shiue; Hui, Yuen Yung; Chang, Be-Ming; Pan, Lei; Hsu, Pei-Chen; Chen, Yit-Tsong; Ho, Hong-Nerng; Huang, Yen-Hua; Ling, Thai-Yen; Hsu, Hsao-Hsun; Chang, Huan-Cheng

    2017-03-01

    Cell therapy is a promising strategy for the treatment of human diseases. While the first use of cells for therapeutic purposes can be traced to the 19th century, there has been a lack of general and reliable methods to study the biodistribution and associated pharmacokinetics of transplanted cells in various animal models for preclinical evaluation. Here, we present a new platform using albumin-conjugated fluorescent nanodiamonds (FNDs) as biocompatible and photostable labels for quantitative tracking of human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) in miniature pigs by magnetic modulation. With this background-free detection technique and time-gated fluorescence imaging, we have been able to precisely determine the numbers as well as positions of the transplanted FND-labeled pcMSCs in organs and tissues of the miniature pigs after intravenous administration. The method is applicable to single-cell imaging and quantitative tracking of human stem/progenitor cells in rodents and other animal models as well.

  13. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Moumita, E-mail: ghoshiisc@gmail.com [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ghosh, Siddharth [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Seibt, Michael [IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Schaap, Iwan A.T. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Schmidt, Christoph F. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Mohan Rao, G. [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-30

    Graphical abstract: To retain atomic structure and morphology of ZnO nanostructures (caused by deoxidation of ZnO) in water/bio-fluids, we propose and demonstrate a robust and inexpensive encapsulation technique using bio-compatible non-ionic surfactant. - Highlights: • Aqueous solutions of ZnO nanorods with and without surfactant are prepared. • With time ZnO nanorods show structural deterioration in different aqueous solutions. • Crystallinity of ZnO nanorods in absence of aqueous solution remain unaffected. • Encapsulation of bio-compatible surfactant in alchohol avoid ZnO deoxidation. • Crystallinity and structure of ZnO nanorods after encapsulation remain unaffected. - Abstract: Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  14. Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxyl group

    Directory of Open Access Journals (Sweden)

    Nor Shahanim Mohamad Hadis

    2017-06-01

    Full Text Available Two types of memristor sensor were fabricated using two different TiO2 deposition methods of sputtering and sol-gel spin coating. The surface morphology of the sensors and the behaviour of the sensors were analysed by using scanning electron microscopy with energy dispersive x-ray system and I-V characterisation system respectively. The sensors were applied with liquid with hydroxyl group to check the capability of this sensor in sensing different concentration of hydroxyl ion inside the liquid. For that purpose, d-glucose liquid with four concentrations of 10mM, 20mM, 30mM and 40mM were chosen. The liquids dispensed onto the TiO2 surface to act as sensing material. The TiO2 surface was initially covered with polydimethylsiloxane to control the liquid. The sensing capability of the sensors was determined via the current-voltage measurement and off-on resistance ratio. The sensitivity of the sensors was analysed from the off-on resistance ratio analysis. Type II memristor sensor which was fabricated using sol-gel spin coating technique recorded high sensitivity of 120.65 (mM−1, while Type I sensor fabricated using the sputtering technique recorded low sensitivity of 0.035 (mM−1. However, SEM-EDX image illustrated that the sputtering technique produced more uniform TiO2 thin film than sol-gel spin coating technique with larger atomic number of oxygen through the sol-gel spin coating technique. This indicates Type II sensor that has large number of oxygen atom produced more reaction with hydroxyl ion inside the liquid. While, Type I sensor produced less reaction compared with Type II and thus produced smaller off-on resistance ratio. Keywords: Fluidic based memristor, Hydroxyl ion, I-V characteristics, Off-on resistance ratio

  15. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  16. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  17. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  18. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  19. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  20. Miniature specimen technology for postirradiation fatigue crack growth testing

    International Nuclear Information System (INIS)

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  1. Miniature Blimps for Surveillance and Collection of Samples

    Science.gov (United States)

    Jones, Jack

    2004-01-01

    Miniature blimps are under development as robots for use in exploring the thick, cold, nitrogen atmosphere of Saturn's moon, Titan. Similar blimps can also be used for surveillance and collection of biochemical samples in buildings, caves, subways, and other, similar structures on Earth. The widely perceived need for means to thwart attacks on buildings and to mitigate the effects of such attacks has prompted consideration of the use of robots. Relative to rover-type (wheeled) robots that have been considered for such uses, miniature blimps offer the advantage of ability to move through the air in any direction and, hence, to perform tasks that are difficult or impossible for wheeled robots, including climbing stairs and looking through windows. In addition, miniature blimps are expected to have greater range and to cost less, relative to wheeled robots.

  2. Miniaturization design and implementation of magnetic field coupled RFID antenna

    Science.gov (United States)

    Hu, Tiling

    2013-03-01

    The development of internet of things has brought new opportunities and challenges to the application of RFID tags. Moreover, the Miniaturization application trend of tags at present has become the mainstream of development. In this paper, the double-layer design is to reduce the size of HF antenna, and the magnetic null point of magnetic reconnection region between the RLC resonant circuit and the reader provides sufficient energy to the miniaturization of antenna. The calculated and experimental results show that the miniaturization of HF antennas can meet the reading and writing requirement of the international standard ISO/IEC14443 standard. The results of this paper may make a positive contribution to the applications of RFID technology.

  3. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-16

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified.

  4. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.

    Science.gov (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert

    2014-09-01

    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  6. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  7. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  8. Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kragh, Søren; Kjeldsen, B.G.

    2003-01-01

    We investigate a micro-fluidic dye laser, which can be integrated with polymer-based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the lasing threshold. The laser device is characterised using the laser dye Rhodamine 6G dissolved...... in ethanol, and the influence of dye concentration on the lasing wavelength and threshold is investigated. The experiments confirm the predictions of the rate-equation model, that lasing can be achieved in the 10 mum long laser cavity with moderate concentrations of Rhodamine 6G in ethanol, starting from 5 x...

  9. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  10. Miniature and micro mass spectrometry for nanoscale sensing applications

    International Nuclear Information System (INIS)

    Taylor, S; France, N

    2009-01-01

    In recent years the use of miniature and/or microscale versions of the more popular mass spectrometers have been realised. This has led to the development of portable analytical devices for a range of 'in the field' sensing applications in aerospace, environmental monitoring, medical diagnosis and process control. In this paper the principles underpinning the development of miniature quadrupole mass spectrometers are reviewed. Two different microfabrication methods are compared with a conventional QMS used for residual gas analysis in the range 1-100 Da.

  11. Lobar holoprosencephaly in a Miniature Schnauzer with hypodipsic hypernatremia.

    Science.gov (United States)

    Sullivan, Stacey A; Harmon, Barry G; Purinton, P Thomas; Greene, Craig E; Glerum, Leigh E

    2003-12-15

    A 9-month-old male Miniature Schnauzer was examined because of a lifelong history of behavioral abnormalities, including hypodipsia. Diagnostic evaluation revealed marked hypernatremia and a single forebrain ventricle. The behavioral abnormalities did not resolve with correction of the hypernatremia, and the dog was euthanatized. At necropsy, midline forebrain structures were absent or reduced in size, and normally paired forebrain structures were incompletely separated. Findings were diagnostic for holoprosencephaly, a potentially genetic disorder and the likely cause of the hypodipsia. Similar evaluation of affected Miniature Schnauzer dogs may reveal whether holoprosencephaly routinely underlies the thirst deficiency that may be seen in dogs of this breed.

  12. Miniaturized radiation detector with custom synthesized diamond crystal as sensor

    International Nuclear Information System (INIS)

    Grobbelaar, J.H.; Burns, R.C.; Nam, T.L.; Keddy, R.J.

    1991-01-01

    A miniaturized detector consisting of three custom built hybrid circuits, a counter and a miniature high voltage power supply was designed to operate with custom synthesized Type Ib diamond crystals as sensors. Thick-film technology was incorporated in the circuit design. With a crystal having a volume of approximately 10 mm 3 and containing approximately 60 ppm paramagnetic nitrogen, the detector was capable of measuring γ-ray dose-rates as low as 7.5 μ Gy h -1 . The response characteristic was linear up to 1 cGy h -1 . (orig.)

  13. EMC, RF, and Antenna Systems in Miniature Electronic Devices

    DEFF Research Database (Denmark)

    Ruaro, Andrea

    Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems....... The structure allows for effective suppression of radiation from the MED, while taking into consideration the integration and miniaturization aspects. To increase the sensitivity of the system, a compact LNA suitable for on-body applications has been developed. The LNA allows for an increase in the overall...

  14. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  15. Design and characterization of a soft magneto-rheological miniature shock absorber for a controllable variable stiffness sole

    Directory of Open Access Journals (Sweden)

    Grivon Daniel

    2015-12-01

    Full Text Available The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm with low power consumption (from a minimum of 63 mW to a max. of 110 mW and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.

  16. Miniaturized Air-to-Refrigerant Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States); Bacellar, Daniel [Univ. of Maryland, College Park, MD (United States); Aute, Vikrant [Univ. of Maryland, College Park, MD (United States); Huang, Zhiwei [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Muehlbauer, Jan [Univ. of Maryland, College Park, MD (United States); Tancabel, James [Univ. of Maryland, College Park, MD (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Mingkan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-23

    Air-to-refrigerant Heat eXchangers (HX) are an essential component of Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized air-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs and also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat exchanger geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW air-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW air-to-water HX applications, also yielded optimized HX designs

  17. Novel lipoprotein density profiling in healthy dogs of various breeds, healthy miniature schnauzers, and miniature schnauzers with hyperlipidemia

    Science.gov (United States)

    2013-01-01

    Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the

  18. Advanced fluidic handling and use of two-phase flow for high throughput structural investigation of proteins on a microfluidic sample preparation platform

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Møller, M.

    2010-01-01

    Research on the structure of proteins can bring forth a wealth of information about biological function and can be used to better understand the processes in living cells. This paper reports a new microfluidic sample preparation system for the structural investigation of proteins by Small Angle X......-ray Scattering (SAXS). The system includes hardware and software features for precise fluidic control, synchrotron beamline control, UV absorbance measurements and automated data analysis. The precise fluidic handling capabilities are used to transport and precisely position samples as small as 500 n...

  19. Miniature bread baking as a timesaving research approach and mathematical modeling of browning kinetics

    NARCIS (Netherlands)

    Zhang, Lu; Putranto, Aditya; Zhou, Weibiao; Boom, Remko M.; Schutyser, Maarten A.I.; Chen, Xiao Dong

    2016-01-01

    Miniature bread baking is presented as an economical and timesaving laboratory approach to study the baking process in the present work. Results indicate that the miniature bread baking is essentially analogical to the baking process of regular-sized bread: quality-related properties of miniature

  20. 46 CFR 52.25-5 - Miniature boilers (modifies PMB-1 through PMB-21).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Miniature boilers (modifies PMB-1 through PMB-21). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-5 Miniature boilers (modifies PMB-1 through PMB-21). Miniature boilers must meet the applicable provisions in this part for the boiler type involved and the...

  1. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    Science.gov (United States)

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-09-13

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.

  2. Diagnosis of chronic active hepatitis in a miniature schnauzer.

    Science.gov (United States)

    Hendrix, Alana D

    2004-09-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  3. Diagnosis of chronic active hepatitis in a miniature schnauzer

    OpenAIRE

    Hendrix, Alana D.

    2004-01-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  4. Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping

    Science.gov (United States)

    Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca

    2017-11-01

    Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).

  5. Verification of a CT scanner using a miniature step gauge

    DEFF Research Database (Denmark)

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning...

  6. Miniature fuel cells relieve gas pressure in sealed batteries

    Science.gov (United States)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  7. Does malaria epidemiology project Cameroon as `Africa in miniature'?

    Indian Academy of Sciences (India)

    Cameroon, a west-central African country with a ∼20 million population, is commonly regarded as 'Africa in miniature' due to the extensive biological and cultural diversities of whole Africa being present in a single-country setting. This country is inhabited by ancestral human lineages in unique eco-climatic conditions and ...

  8. Miniature sources of irradiation for intracavitary thermo radiotherapy

    Science.gov (United States)

    Taubin, M.; Chesnokov, D.; Simonov, A.

    2018-02-01

    This report presents the development of a miniature ionizing and thermal radiation source for oncological diseases treatment namely the inward parts of the body. This source can be placed next to the tumor inside of the body. This report is only about methods and devices for the intracavitary therapy. Irradiation by external sources wasn’t considered in our investigation.

  9. AMINA-chip : a miniaturized measurement system for ambient ammonia

    NARCIS (Netherlands)

    Timmer, Björn Herman

    2004-01-01

    The development of a miniaturized and integrated measurement system for gaseous ammonia is described in this thesis. The measuring principle, ¿AMINA¿, is an indirect method for selectively measuring ammonia that makes use of pH-transitions, electrolyte conductivity detection and phaseseparating

  10. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  11. The mass miniature chest radiography programme in Cape Town ...

    African Journals Online (AJOL)

    Background. Tuberculosis (TB) control programmes rely mainly on passive detection of symptomatic individuals. The resurgence of TB has rekindled interest in active case finding. Cape Town (South Africa) had a mass miniature radiography (MMR) screening programme from 1948 to 1994. Objective. To evaluate screening ...

  12. Miniature, mobile X-ray computed radiography system

    Science.gov (United States)

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  13. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  14. A Miniature Data Repository on a Raspberry Pi

    NARCIS (Netherlands)

    Samourkasidis, Argyrios; Athanasiadis, Ioannis N.

    2017-01-01

    This work demonstrates a low-cost, miniature data repository proof-of-concept. Such a system needs to be resilient to power and network failures, and expose adequate processing power for persistent, long-term storage. Additional services are required for interoperable data sharing and visualization.

  15. Detached-Eddy Simulation of a Fluidic Device for a Prediction of Pressure Loss Characteristics in a Low Flow Mode

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; Lee, Suk Ho; Kim, Han Gon

    2010-01-01

    The Advanced Power Reactor 1400(APR1400) adopts a passive flow controller in Safety Injection Tanks (SITs) as one of Advanced Design Features (ADFs). This device, called a 'Fluidic Device (FD)', controls the flow rate of safety injection water in a passive manner. A flow control mechanism varies the flow resistance in the vortex chamber corresponding to the SIT water level hence the flow rate can be adjusted by the specific flow resistance in a specific flow regime. A full-scale test was performed and the test results met the design requirement of APR1400. To enhance the performance of the FD more effectively, a series of CFD analysis were implemented and remedy of design modification was proposed on the basis of a series of CFD analysis. The results of CFD analysis showed that total discharge time of the fluidic device is to be increased by enhancing the K-factor in consequence of changing the control nozzle angle. However, a tendency of a pressure loss was under-estimated as a limitation of turbulence models such as Reynolds Averaged Navier- Stokes (RANS) models compared to the experimental data. This paper shows that pressure loss characteristics of the FD can be predicted using a Detached-Eddy Simulation (DES) turbulence model, which can provide valuable flow characteristics far exceeding RANS simulations

  16. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    Science.gov (United States)

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  17. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    Science.gov (United States)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical

  18. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    The analytical capabilities of the microminiaturised lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis...... and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take advantage of kinetic discriminations schemes, where even subtle differences in reactions...... are utilized for analytical purposes. Furthemore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open architecture of the micromachined unit for the implementation...

  19. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  20. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    DEFF Research Database (Denmark)

    Cama, G.; Jacobs, T.; Dimaki, Maria

    2010-01-01

    among all the sensors of the array. As well, dedicated sensor interface electronics were developed and optimized for fast spectra acquisition of all 16 QCRs with a miniaturized impedance analyzer. This allowed performing cell cultivation experiments for the observation of fast cellular reaction kinetics...

  1. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  2. Serum C-reactive protein concentrations in healthy Miniature Schnauzer dogs.

    Science.gov (United States)

    Wong, Valerie M; Kidney, Beverly A; Snead, Elisabeth C R; Myers, Sherry L; Jackson, Marion L

    2011-09-01

    C-reactive protein (CRP) is a sensitive marker for inflammation in people and dogs. In people, an association between CRP concentration and atherosclerosis has been reported. Atherosclerosis is rare in dogs, but the Miniature Schnauzer breed may be at increased risk for developing this vascular disease. It is not known if CRP concentrations in Miniature Schnauzer dogs differ from those in other dog breeds. Our objectives were to validate an automated human CRP assay for measuring CRP in dogs and compare CRP concentrations in healthy Miniature Schnauzer dogs with those in non-Miniature Schnauzer breeds. Sera from 37 non-Miniature Schnauzer dogs with inflammatory disease were pooled and used to validate a human CRP immunoturbidimetric assay for measuring canine CRP. Blood was collected from 20 healthy Miniature Schnauzer dogs and 41 healthy dogs of other breeds. Median serum CRP concentration of healthy Miniature Schnauzer dogs was compared with that of healthy non-Miniature Schnauzer dogs. The human CRP assay measured CRP reliably with linearity between 0 and 20 mg/L. CRP concentration for healthy Miniature Schnauzer dogs (median 4.0 mg/L, minimum-maximum 0-18.2 mg/L) was significantly higher than for the healthy non-Miniature Schnauzer dogs (median 0.1 mg/L, minimum-maximum 0-10.7 mg/L); 17 of the 20 Miniature Schnauzer dogs had values that overlapped with those of the non-Miniature Schnauzer dogs. Median CRP concentration of Miniature Schnauzer dogs was slightly higher than that of other breeds of dogs. A relationship between higher CRP concentration in Miniature Schnauzer dogs and idiopathic hyperlipidemia, pancreatitis, and possible increased risk for atherosclerosis remains to be determined. ©2011 American Society for Veterinary Clinical Pathology.

  3. Maxillary bone epithelial cyst in an adult miniature schnauzer.

    Science.gov (United States)

    Lin, Chung-Tien; Tasi, Wen-Chih; Hu, Chun-Kun; Lin, Nien-Ting; Huang, Pei-Yun; Yeh, Lih-Seng

    2008-09-01

    Maxillary bone epithelial cyst is rare in dogs. A 5-year-old, spayed female miniature schnauzer developed a swelling below the nasal canthus of left eye. Plain radiograph demonstrated a 1.5 cm diameter of radiolucent lesion on the maxillary bone anteroventral to the eye, and contrast dacryocystorhinography confirmed an obstructed nasolarcrimal duct. The swelling showed poor response to antibiotic treatment but responded well to oral prednisolone. Exploratory surgery revealed a cyst-like structure filled with brown serous fluid. Histopathological examination of the removed cyst revealed a double cuboidal epithelial cyst. The dog recovered rapidly after surgery, and the swelling had not recurred for a 36-month follow-up. It is the first case of periorbital bone epithelial cyst reported in an adult miniature schnauzer.

  4. Hereditary esophageal dysfunction in the Miniature Schnauzer dog.

    Science.gov (United States)

    Cox, V S; Wallace, L J; Anderson, V E; Rushmer, R A

    1980-03-01

    Miniature Schnauzers maintained in a colony for 9 years were used to study the inheritance of esophageal dysfunction (canine achalasia, megaesophagus). All dogs were evaluated radiographically, using a barium swallow contrast technique which clearly distinguished normal and affected pups. At 4 to 6 months of age, all affected dogs had recovered clinically except one, and radiographic evidence of dysfunction was markedly diminished. None of the affected dogs required a special feeding regimen. Analysis of breeding pairs revealed a ratio of 9 affected/11 normal dogs when an affected male was mated with a normal female, and a 13/3 ratio was observed when two affected dogs were mated. These ratios were compatible with a simple autosomal dominant or a 60% penetrance autosomal-recessive mode of inheritance. Outbreeding to an affected Miniature Schnauzer/Poodle crossbred dog resulted in only two of 30 affected pups, indicating a polygenic mode of inheritance in outbred populations.

  5. Miniaturizing EM Sample Preparation: Opportunities, Challenges, and "Visual Proteomics".

    Science.gov (United States)

    Arnold, Stefan A; Müller, Shirley A; Schmidli, Claudio; Syntychaki, Anastasia; Rima, Luca; Chami, Mohamed; Stahlberg, Henning; Goldie, Kenneth N; Braun, Thomas

    2018-03-01

    This review compares and discusses conventional versus miniaturized specimen preparation methods for transmission electron microscopy (TEM). The progress brought by direct electron detector cameras, software developments and automation have transformed transmission cryo-electron microscopy (cryo-EM) and made it an invaluable high-resolution structural analysis tool. In contrast, EM specimen preparation has seen very little progress in the last decades and is now one of the main bottlenecks in cryo-EM. Here, we discuss the challenges faced by specimen preparation for single particle EM, highlight current developments, and show the opportunities resulting from the advanced miniaturized and microfluidic sample grid preparation methods described, such as visual proteomics and time-resolved cryo-EM studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Miniaturization of high-energy physics detectors. Vol. 14

    International Nuclear Information System (INIS)

    Stefanini, A.

    1983-01-01

    Continued experimental research in high-energy physics requires the reduction in size and cost of the advanced technical equipment involved. A new technology is rapidly evolving that promises to replace today's massive high-energy physics instruments--which may be composed of several thousand tons of sensitive parts--with miniaturized equivalents. Smaller, less expensive apparatus would create more opportunities for research worldwide, and many types of experiments now considered impractical could then be carried out. Scientists and engineers from many countries have contributed to this volume to provide a broad panorama of the new miniaturization technology in high-energy physics. They describe a wide range of new instruments and their applications, discuss limitations and technological problems, and explore the connections between technology and progress in the field of high-energy physics

  7. Flight experience with lightweight, low-power miniaturized instrumentation systems

    Science.gov (United States)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  8. A miniature spark counter for public communication and education

    International Nuclear Information System (INIS)

    Mao, C.H.; Weng, P.S.

    1987-01-01

    The fabrication of a miniature spark counter for public communication and education using naturally occurring radon as a radioactive source without involving any man-made radioactivity is described. The battery-powered miniature spark counter weighs 2.07 kg with a volume of 4.844 x 10/sup -4/ m/sup 3/. The circuitry consists of seven major components: timer, high-voltage power supply, attenuator, noninverting amplifier, low-pass filter, one-shot generator, and counter. Cellulose nitrate films irradiated with alpha particles from radon emanating from soil were etched and counted. The visible sparks during counting are rather heuristic, which can be used to demonstrate naturally occurring radioactivity in classrooms or showplaces

  9. The concept and application of miniaturization boiling in cooling system

    International Nuclear Information System (INIS)

    Suhaimi Illias; Muhammad Asri Idris

    2009-01-01

    The purpose of this research is to study and examine the phenomena of miniaturization-boiling, which intensely scatters with a large number of minute liquid particles from a water droplet surface to the atmosphere, when the droplet collided with a heating surface. As the material of the heating surface, the following were used: stainless steel (SUS 303 A Cr=17%,Ni=8%), sapphire (Al 3 O 2 ), brass, copper and carbon plane. The material was heated in order to study the miniaturization-boiling and droplet bounding phenomena at a very high temperature (160 degree C- 420 degree C). The phenomenon was photographed by a high-speed camera (10,000 fps) from the horizontal direction. The nuclear fusion reactor needs a very severe cooling, heat removal cooling method by special boiling is lead to this research. (Author)

  10. Challenges in miniaturized automotive long-range lidar system design

    Science.gov (United States)

    Fersch, Thomas; Weigel, Robert; Koelpin, Alexander

    2017-05-01

    This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.

  11. Miniaturized chromatographic radiochemical procedure for 131I - MIBG

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Pereira, N.S. de; Colturato, M.T.; Silva, C.P.G. da.

    1989-12-01

    Different solvents were used in paper chromatographic methods to obtain the best system in routine radiochemical control for 131 I-MIBG produced at IPEN-CNEN/SP. The dates were compared with those obtained with eletrophoresis method in buffer acetate, pH=4.5, 350V, during 40 minutes. The stability of the labeled compound store under 4 0 C was studied during 15 days. Miniaturized chromatographic procedures were established using Whatman 3MM (8x1cm) and n-butanol-:acetic acid: water (S:2:1) as a solvent. the Rf values were: 0.3 (I - ) and 1.0 (MIBG). The radiochemical purity was 99.3 and 99.2% (first day) obtained with eletrophoresis and miniaturized chromatographic procedures, respectively and, 84.7% after 15 days of its preparation. It is a rapid, practical and reproductive method. (author) [pt

  12. Digital intelligent booster for DCC miniature train networks

    Science.gov (United States)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  13. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  14. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Geist, A.; Weigl, M.; Gompper, K.

    2004-01-01

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  15. Design of a Ku band miniature multiple beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India); Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  16. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo

    2014-07-30

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  17. Reduction of degraded events in miniaturized proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.; Kirsten, T. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A method to reduce the number of degraded events in miniaturized proportional counters is described. A shaping of the outer cathode leads to a more uniform gas gain along the counter axis. The method is useful in situations in which the total number of decay events is very low. The effects leading to degraded events are studied theoretically and experimentally. The usefulness of the method is demonstrated by using it for the proportional counter of the GALLEX solar neutrino experiment. (orig.).

  18. Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems

    Science.gov (United States)

    Hu, Hao

    Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and

  19. Conceptual Design and Simulation of a Miniature Plasma Focus

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.; Amrollahi, R.

    2012-01-01

    Design and construction of a miniature plasma focus device with 3.6 J of energy bank is reported. In design the device, some of very important parameters of designing such as plasma energy density and derive parameter was used. Regarding to the electrical and geometrical parameters of the device, a simulation is carried out by MATLAB software. Simulation results showed that the formation of the pinch have occurred at the moment of the peak discharge current.

  20. Evaluation of miniature tension specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1993-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  1. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo; Cojoc, Gheorghe; Rajamanickam, Vijayakumar; Ferrara, Lorenzo; Bragheri, Francesca; Minzioni, Paolo; Perozziello, Gerardo; Candeloro, Patrizio; Cristiani, Ilaria; Di Fabrizio, Enzo M.

    2014-01-01

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  2. Evaluation of miniature tensile specimen fabrication techniques and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L. (Pacific Northwest Lab., Richland, WA (United States)); Blotter, M.A.; Edwards, D.J. (Missouri Univ., Rolla, MO (United States))

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed.

  3. Evaluation of miniature tensile specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  4. Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors

    OpenAIRE

    Dahlin, Andreas B.

    2012-01-01

    There is no doubt that the recent advances in nanotechnology have made it possible to realize a great variety of new sensors with signal transduction mechanisms utilizing physical phenomena at the nanoscale. Some examples are conductivity measurements in nanowires, deflection of cantilevers and spectroscopy of plasmonic nanoparticles. The fact that these techniques are based on the special properties of nanostructural entities provides for extreme sensor miniaturization since a single structu...

  5. Cautious NMPC with Gaussian Process Dynamics for Miniature Race Cars

    OpenAIRE

    Hewing, Lukas; Liniger, Alexander; Zeilinger, Melanie N.

    2017-01-01

    This paper presents an adaptive high performance control method for autonomous miniature race cars. Racing dynamics are notoriously hard to model from first principles, which is addressed by means of a cautious nonlinear model predictive control (NMPC) approach that learns to improve its dynamics model from data and safely increases racing performance. The approach makes use of a Gaussian Process (GP) and takes residual model uncertainty into account through a chance constrained formulation. ...

  6. Miniaturized tools and devices for bioanalytical applications: an overview

    DEFF Research Database (Denmark)

    Chudy, M.; Grabowska, I.; Ciosek, P.

    2009-01-01

    This article presents an overview of various miniaturized devices and technologies developed by our group. Innovative, fast and cheap procedures for the fabrication of laboratory microsystems based on commercially available materials are reported and compared with well-established microfabricatio...... optic detectors, potentiometric sensors platforms, microreactors and capillary electrophoresis (CE) microchips as well as integrated microsystems e. g. double detection microanalytical systems, devices for studying enzymatic reactions and a microsystem for cell culture and lysis....

  7. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  8. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  9. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  10. Vestibular-evoked myogenic potentials in miniature pigs

    Directory of Open Access Journals (Sweden)

    Xi Shi

    2016-06-01

    Conclusion: The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  11. A bladder-free, non-fluidic, conductive McKibben artificial muscle operated electro-thermally

    Science.gov (United States)

    Sangian, Danial; Foroughi, Javad; Farajikhah, Syamak; Naficy, Sina; Spinks, Geoffrey M.

    2017-01-01

    Fluidic McKibben artificial muscles that operate pneumatically or hydraulically provide excellent performance, but require bulky pumps/compressors, valves and connecting lines. Use of a pressure generating material, such as thermally expanding paraffin wax, can eliminate the need for these pumps and associated infrastructure. Here we further develop this concept by introducing the first bladderless McKibben muscle wherein molten paraffin is contained by surface tension within a tailored braid. Incorporation of electrically conductive wires in the braid allows for convenient Joule heating of the paraffin. The muscle is light (0.14 g) with a diameter of 1.4 mm and is capable of generating a tensile stress of 50 kPa (0.039 N) in 20 s. The maximum contraction strain of 10% (7.6 kPa given load) was achieved in 60 s with an applied electrical power of 0.35 W.

  12. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  13. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    Science.gov (United States)

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  14. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  15. Focal Segmental Glomerulosclerosis in Related Miniature Schnauzer Dogs.

    Science.gov (United States)

    Yau, Wilson; Mausbach, Lisa; Littman, Meryl P; Cianciolo, Rachel E; Brown, Cathy A

    2018-03-01

    Focal segmental glomerulosclerosis (FSGS) recently has been recognized as a common cause of proteinuria in dogs in general, and in Miniature Schnauzer dogs in particular. This study describes the morphologic features present in the kidneys of 8 related proteinuric Miniature Schnauzer dogs. The FSGS, characterized by solidification of portions of the capillary tuft, affected 32% to 49% of examined glomeruli in these dogs. Synechiae, often accompanied by hyalinosis, were present in 13% to 54% of glomeruli and were more prevalent in older dogs. Seven of 8 dogs had arteriolar hyalinosis. Ultrastructurally, all dogs had evidence of a podocytopathy in the absence of electron-dense deposits, glomerular basement membrane splitting, or fibrils. All dogs had multifocal to extensive podocyte foot process effacement. Other podocyte changes included microvillous transformation, the presence of vacuoles or protein resorption droplets, cytoplasmic electron-dense aggregates, and occasional binucleation. Variable amounts of intraglomerular lipid were present in all dogs. All dogs were proteinuric, with measured values for the urine protein-to-creatinine ratio ranging from 1.2 to 6.5. Azotemia was mild to absent and dogs were euthanatized at 5.1 to 14 years of age, in all cases due to nonrenal diseases. The underlying cause of FSGS in these Miniature Schnauzer dogs has yet to be determined, but contributors likely include genetic podocytopathy, lipid abnormalities, and glomerular hypertension.

  16. Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians.

    Science.gov (United States)

    Fröbisch, Nadia B; Schoch, Rainer R

    2009-06-01

    Among the diverse clade of Paleozoic dissorophoid amphibians, the small, terrestrial amphibamids and the neotenic branchiosaurids have frequently been suggested as possible antecedents of either all or some of the modern amphibian clades. Classically, amphibamids and branchiosaurids have been considered to represent distinct, but closely related clades within dissorophoids, but despite their importance for the controversial lissamphibian origins, a comprehensive phylogenetic analysis of small dissorophoids has thus far not been attempted. On the basis of an integrated data set, the relationships of amphibamids and branchiosaurids were analyzed using parsimony and Bayesian approaches. Both groups represent miniaturized forms and it was tested whether similar developmental pathways, associated with miniaturization, lead to an artificial close relationship of branchiosaurids and amphibamids. Moreover, the fit of the resulting tree topologies to the distribution of fossil taxa in the stratigraphic rock record was assessed as an additional source of information. The results show that characters associated with a miniaturized morphology are not responsible for the close clustering of branchiosaurids and amphibamids. Instead, all analyses invariably demonstrate a monophyletic clade of branchiosaurids highly nested within derived amphibamids, indicating that branchiosaurids represent a group of secondarily neotenic amphibamid dissorophoids. This understanding of the phylogenetic relationships of small dissorophoid amphibians provides a new framework for the discussion of their evolutionary history and the evolution of characters shared by branchiosaurids and/or amphibamids with modern amphibian taxa.

  17. Design and analysis of miniature tri-axial fluxgate magnetometer

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  18. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  19. Miniaturized Charpy test for reactor pressure vessel embrittlement characterization

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, M.P. Sr. [MPM Research and Consulting, Lemont, PA (United States)

    1999-10-01

    Modifications were made to a conventional Charpy machine to accommodate the miniaturized Charpy V-Notch (MCVN) specimens which were fabricated from an archived reactor pressure vessel (RPV) steel. Over 100 dynamic MCVN tests were performed and compared to the results from conventional Charpy V-Notch (CVN) tests to demonstrate the efficacy of the miniature specimen test. The optimized sidegrooved MCVN specimens exhibit transitional fracture behavior over essentially the same temperature range as the CVN specimens which indicates that the stress fields in the MCVN specimens reasonably simulate those of the CVN specimens and this fact has been observed in finite element calculations. This result demonstrates a significant breakthrough since it is now possible to measure the ductile-brittle transition temperature (DBTT) using miniature specimens with only small correction factors, and for some materials as in the present study, without the need for any correction factor at all. This development simplifies data interpretation and will facilitate future regulatory acceptance. The non-sidegrooved specimens yield energy-temperature data which is significantly shifted downward in temperature (non-conservative) as a result of the loss of constraint which accompanies size reduction.

  20. Miniature horizontal axis wind turbine system for multipurpose application

    International Nuclear Information System (INIS)

    Xu, F.J.; Yuan, F.G.; Hu, J.Z.; Qiu, Y.P.

    2014-01-01

    A MWT (miniature wind turbine) has received great attention recently for powering WISP (Wireless Intelligent Sensor Platform). In this study, two MHAWTs (miniature horizontal axis wind turbines) with and without gear transmission were designed and fabricated. A physics-based model was proposed and the optimal load resistances of the MHAWTs were predicted. The open circuit voltages, output powers and net efficiencies were measured under various ambient winds and load resistances. The experimental results showed the optimal load resistances matched well with the predicted results; the MHAWT without gear obtained higher output power at the wind speed of 2 m/s to 6 m/s, while the geared MHAWT exhibited better performance at the wind speed higher than 6 m/s. In addition, a DCM (discontinuous conduction mode) buck-boost converter was adopted as an interface circuit to maximize the charging power from MHAWTs to rechargeable batteries, exhibiting maximum efficiencies above 85%. The charging power reached about 8 mW and 36 mW at the wind speeds of 4 m/s and 6 m/s respectively, which indicated that the MHAWTs were capable for sufficient energy harvesting for powering low-power electronics continuously. - Highlights: • Performance of the miniature wind turbines with and without gears was compared. • The physics-based model was established and proved successfully. • The interface circuit with efficiency of more than 85% was designed

  1. Miniature scientific-grade magnetic sensors for CubeSats

    Science.gov (United States)

    Pronenko, Vira; Belyayev, Serhiy

    2016-07-01

    Micro- and nanosatellites have become more attractive due to their low development and launch cost. A class of nanosatellites defined by the CubeSat standard allows standardizing CubeSat preparation and launch, thus making the projects more affordable. Because of the complexity of sensors miniaturization to install them onboard CubeSat, the majority of CubeSat launches are aimed the technology demonstration or education missions. The scientific success of CubeSat mission depends on the sensors quality. In spite that the sensitivity of the magnetic sensors strongly depends on their size, the recent development in this branch allows us to propose tiny but sensitive both AC and DC magnetometers. The goal of the present report is to introduce the new design of miniature three-component sensors for measurement of vector magnetic fields - for quasi-stationary and slowly fluctuating - flux-gate magnetometer (FGM) - and for alternative ones - search-coil magnetometer (SCM). In order to create magnetometers with the really highest possible level of parameters, a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Construction details and technical specifications of miniature but sensitive FGM and SCM for the CubeSat mission are presented. This work is supported by EC Framework 7 funded project 607197.

  2. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  3. Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled Lattice Boltzmann algorithm

    Science.gov (United States)

    Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.

    2017-11-01

    Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.

  4. Miniature scientific-grade induction magnetometer for cubesats

    Science.gov (United States)

    Pronenko, Vira

    2017-04-01

    One of the main areas of space research is the study and forecasting of space weather. The society is more and more depending nowadays on satellite technology and communications, so it is vital to understand the physical process in the solar-terrestrial system which may disturb them. Besides the solar radiation and Space Weather effects, the Earth's ionosphere is also modified by the ever increasing industrial activity. There have been also multiple reports relating VLF and ELF wave activity to atmospheric storms and geological processes, such as earthquakes and volcanic activity. For advancing in these fields, the AC magnetic field permanent monitoring is crucial. Using the cubesat technology would allow increasing the number of measuring points dramatically. It is necessary to mention that the cubesats use for scientific research requires the miniaturization of scientific sensors what is a serious problem because the reduction of their dimensions leads, as a rule, to the parameters degradation, especially of sensitivity threshold. Today, there is no basic model of a sensitive miniature induction magnetometer. Even the smallest one of the known - for the Bepi-Colombo mission to Mercury - is too big for cubesats. The goal of the present report is to introduce the new design of miniature three-component sensor for measurement of alternative vector magnetic fields - induction magnetometer (IM). The study directions were concentrated on the ways and possibilities to create the miniature magnetometer with best combination of parameters. For this a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Finally, the LEMI-151 IM was developed for the SEAM cubesat mission with optimal performances within the

  5. Evaluation of the cationic trypsinogen gene for potential mutations in miniature schnauzers with pancreatitis.

    Science.gov (United States)

    Bishop, Micah A; Steiner, Jörg M; Moore, Lisa E; Williams, David A

    2004-10-01

    The purpose of this study was to evaluate the cationic trypsinogen gene in miniature schnauzers for possible mutations. Genetic mutations have been linked with hereditary pancreatitis in humans. Four miniature schnauzers were selected on the basis of a clinical history of pancreatitis. One healthy miniature schnauzer and 1 healthy mixed breed canine were enrolled as controls. DNA was extracted from these canines using a commercial kit. Primers were designed to amplify the entire canine cationic trypsinogen cDNA sequence. A polymerase chain reaction (PCR) was performed and products were purified and sequenced. All sequences were then compared. The healthy control canine, a healthy miniature schnauzer, and the 4 miniature schnauzers with pancreatitis showed identical sequences of the cationic trypsinogen gene to the published sequence. We conclude that, in contrast to humans with hereditary pancreatitis, mutations of the cationic trypsinogen gene do not play a major role in the genesis of pancreatitis in the miniature schnauzer.

  6. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer

    International Nuclear Information System (INIS)

    Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A; Giovangrandi, Laurent

    2012-01-01

    Seismocardiography (SCG) is a non-invasive measurement of the vibrations of the chest caused by the heartbeat. SCG signals can be measured using a miniature accelerometer attached to the chest, and are thus well-suited for unobtrusive and long-term patient monitoring. Additionally, SCG contains information relating to both cardiovascular and respiratory systems. In this work, algorithms were developed for extracting three respiration-dependent features of the SCG signal: intensity modulation, timing interval changes within each heartbeat, and timing interval changes between successive heartbeats. Simultaneously with a reference respiration belt, SCG signals were measured from 20 healthy subjects and a respiration rate was estimated using each of the three SCG features and the reference signal. The agreement between each of the three accelerometer-derived respiration rate measurements was computed with respect to the respiration rate derived from the reference respiration belt. The respiration rate obtained from the intensity modulation in the SCG signal was found to be in closest agreement with the respiration rate obtained from the reference respiration belt: the bias was found to be 0.06 breaths per minute with a 95% confidence interval of −0.99 to 1.11 breaths per minute. The limits of agreement between the respiration rates estimated using SCG (intensity modulation) and the reference were within the clinically relevant ranges given in existing literature, demonstrating that SCG could be used for both cardiovascular and respiratory monitoring. Furthermore, phases of each of the three SCG parameters were investigated at four instances of a respiration cycle—start inspiration, peak inspiration, start expiration, and peak expiration—and during breath hold (apnea). The phases of the three SCG parameters observed during the respiration cycle were congruent with existing literature and physiologically expected trends. (paper)

  7. Small is beautiful: features of the smallest insects and limits to miniaturization.

    Science.gov (United States)

    Polilov, Alexey A

    2015-01-07

    Miniaturization leads to considerable reorganization of structures in insects, affecting almost all organs and tissues. In the smallest insects, comparable in size to unicellular organisms, modifications arise not only at the level of organs, but also at the cellular level. Miniaturization is accompanied by allometric changes in many organ systems. The consequences of miniaturization displayed by different insect taxa include both common and unique changes. Because the smallest insects are among the smallest metazoans and have the most complex organization among organisms of the same size, their peculiar structural features and the factors that limit their miniaturization are of considerable theoretical interest to general biology.

  8. Low-power, miniature {sup 171}Yb ion clock using an ultra-small vacuum package

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Y.-Y.; Schwindt, P. D. D. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Partner, H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Quantum Information and Control (CQuIC), Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Prestage, J. D.; Kellogg, J. R.; Yu, N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2012-12-17

    We report a demonstration of a very small microwave atomic clock using the 12.6 GHz hyperfine transition of the trapped {sup 171}Yb ions inside a miniature, completely sealed-off 3 cm{sup 3} ion-trap vacuum package. In the ion clock system, all of the components are highly miniaturized with low power consumption except the 369 nm optical pumping laser still under development for miniaturization. The entire clock, including the control electronics, consumes <300 mW. The fractional frequency instability of the miniature Yb{sup +} clock reaches the 10{sup -14} range after a few days of integration.

  9. Long Life Miniature Hall Thruster Enabling Low Cost Human Precursor Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Key and Central Objectives: This investigation aims to demonstrate that the application of magnetic shielding technology on miniature Hall thrusters will...

  10. Miniature magnetic fluid seal working in liquid environments

    Science.gov (United States)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  11. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    Science.gov (United States)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  12. Mineral composition of urinary calculi from miniature schnauzer dogs.

    Science.gov (United States)

    Klausner, J S; Osborne, C A; Clinton, C W; Stevens, J B; Griffith, D P

    1981-05-15

    The mineral composition of 150 calculi from the urinary tracts of Miniature Schnauzer dogs was determined by qualitative and quantitative methods. Struvite was the predominant mineral in 92% of the calculi. Other calculi contained predominantly apatite, calcium oxalate, ammonium urate, or silica. Most calculi were from the urinary bladder or urethra, or both. Four were from the renal pelves. Struvite calculi were more frequently encountered in females than males. The mean age of the dogs at the time of detection of calculi was 4.8 years. Qualitative analysis failed to detect some minerals that were identified by quantitative analysis.

  13. Miniaturized fatigue crack growth specimen technology and results

    International Nuclear Information System (INIS)

    Puigh, R.J.; Bauer, R.E.; Ermi, A.M.; Chin, B.A.

    1981-01-01

    The miniature fatigue crack propagation technology has been extended to in-cell fabrication of irradiated specimens. Baseline testing of selected titanium alloys has been performed at 25 0 C in air. At relatively small values for the stress intensity factor, ΔK, the crack growth rates for all titanium alloys investigated are within a factor of three. The crack growth rates for these titanium alloys are a factor of three greater than the crack growth rates of either 316SS (20% CW) or HT-9. Each of the titanium alloys has observable crack propagation for stress intensity factors as small as 4.2 MPa√m

  14. Efficient 3M PBS enhancing miniature projection optics

    Science.gov (United States)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  15. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  16. Radiographic aspects of Pneumocystis carinii pneumonia in the miniature dachshund

    International Nuclear Information System (INIS)

    Kirberger, R.M.; Lobetti, R.G.

    1998-01-01

    The thoracic radiographic changes of Pneumocystis carinii in 7 miniature Dachshunds were reviewed, The dogs were 7-12 months old and presented with polypnea, exercise intolerance and clinical signs suggestive of immune-incompetence. P. carinii pneumonia was diagnosed in all the dogs using transtracheal aspirate cytology and confirmed at postmortemin 3 dogs that died. Radiographically, diffuse pulmonary changes we represent and varied from a mild interstitial and bronchial pattern to an alveolar pattern. Radiographic evidence of cor pulmonale was present in 1 dog. The most severe radiographic changes were seen in 2 of the dogs that died

  17. Data Collection using Miniature Aerial Vehicles in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2016-01-01

    Energy constraints of sensor nodes in wireless sensor networks (WSNs) is a major challenge and minimising the overall data transmitted across a network using data aggregation, distributed source coding, and compressive sensing have been proposed as mechanisms for energy saving. Similarly, use...... of mobile nodes capable of relocating within the network has been widely explored for energy saving. In this paper, we propose a novel method for using miniature aerial vehicles (MAVs) for data collection instead of actively sensing from a deployed network. The proposed mechanism is referred as Data...

  18. A miniature fuel reformer system for portable power sources

    Science.gov (United States)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  19. Miniaturized NIR scanning grating spectrometer for use in mobile phones

    Science.gov (United States)

    Knobbe, Jens; Pügner, Tino; Grüger, Heinrich

    2016-05-01

    An extremely miniaturized scanning grating spectrometer at the size of a sugar cube has been developed at Fraunhofer IPMS. To meet the requirements for the integration into a mobile phone a new system approach has been pursued. The key component within the system is a silicon-based deflectable diffraction grating with an integrated driving mechanism. A first sample of the new spectrometer was built and characterized. It was found to have a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The results show that the performance of the new MEMS spectrometer is in good agreement with the requirements for mobile phone integration.

  20. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    Science.gov (United States)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  1. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  2. The thermal-hydraulic for the new technologies: the micro-fluidics; La thermohydraulique au service des nouvelles technologies: la microfluidique

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J

    2000-07-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  3. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    Science.gov (United States)

    2016-03-07

    109 | e53555 | Page 1 of 8 Video Article Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of...www.jove.com/ video /53555 DOI: doi:10.3791/53555 Keywords: Environmental Sciences, Issue 109, Fish cells, impedance, sensors, biochip, water toxicity...sensitivity to cholinesterase-inhibiting pesticides . Applications for this toxicity detector are for rapid field-portable testing of drinking water

  4. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    Science.gov (United States)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  5. Fabrication of miniature magnetic magnet pole for validate simulation of magnetic cyclotron proton 13 MeV

    International Nuclear Information System (INIS)

    Subroto; Sukiya; Tony R

    2013-01-01

    A fabrication of miniature magnetic pole field has been made to validate the simulation system 13 MeV magnet of proton cyclotron using mild steel material. This electromagnet of magnetic pole at the end of the magnetic pole is divided into 8 parts of the valley and the hill interval to produce different magnetic field. Pole magnetic field fabrication is meet to match the design of the system simulation results 13 MeV cyclotron magnet. This requires strong cyclotron magnetic field average at 1.275 T magnetic field strength of each piece was different. So that the ion beam passing through a magnetic field. Will be focused before mashing target. The surface of magnetic pole is circular with a diameter of 100 mm and 32 mm pole spacing. Miniature of electrical pole diameter is only one-tenth the diameter of 960 mm designed this requires current 10 A with voltage 30 V to produce field strength of 0.3 T. To measure the magnetic field strength tesla meter is used and to measure the relationship curve in pole position with a magnetic field strength magnets cylinder directions X and Y the used mini lathe. Field strength measurement results with a straight, oblique and circular position show nearly equal to curve simulation results using a 3D module TOSCA opera program. (author)

  6. Recent results of the investigation of a micro-fluidic sampling chip and sampling system for hot cell aqueous processing streams

    International Nuclear Information System (INIS)

    Tripp, J.; Smith, T.; Law, J.

    2013-01-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and micro-fluidic sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. Different sampling volumes have been tested. It appears that the 10 μl volume has produced data that had much smaller relative standard deviations than the 2 μl volume. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The micro-fluidic-based robotic sampling system's mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of micro-fluidic sampling chips. (authors)

  7. Design of an optical and micro-fluidic sensor for concentration measurement by photo-thermal effect

    International Nuclear Information System (INIS)

    Schimpf, A.

    2011-01-01

    This work has been done in the context of fuel reprocessing in the nuclear industry. In fact, the handling of nuclear waste is one of the major issues in the nuclear industry. Its implications reach from economical to political to ecological dimensions. Since used nuclear fuel consists of 97% of recyclable substances, many countries have chosen to reprocess used fuel, not only for economical reasons but also to limit the quantity of nuclear waste. The most widely employed extraction technique is the PUREX process where the used fuel is diluted in nitric acid. The recyclable compounds can then be extracted by solvent techniques. Such processes need to be monitored crucially. However, nowadays, the process supervision is carried out by manually sampling the radioactive effluents and analyzing them in external laboratories. Not only prone to potential risks, this approach is little responsive and produces radio-toxic samples that cannot be reintroduced in the nuclear fuel cycle. In this study, we therefore present the developpement of a micro-fluidic glass sensor, based on the detection of a photothermal effect induced in the sample fluid. Micro-fluidic allows fluid handling on a microliter-scale and can therefore significantly reduce the sample volume and thereby the radio-toxicity of the analyzed fluids. Photothermal spectrometry is well suited for small-scale sample analysis since its sensitivity does not rely on the length of optical interaction with the analyte. The photothermal effect is a local refractive index variation due to the absorption of photons by the analyte species which are contained in the sample. On the sensor chip, the index refraction change is being sensed by an integrated Young interferometer made by ion-exchange in glass. The probed volume in the channel was (33.5± 3.5) pl. The interferometric system can sense refractive index changes as low as Δn(min)=7.5*10 -6 , allowing to detect a minimum concentration of cobalt(II) in ethanol c

  8. Solid intraocular xanthogranuloma in three Miniature Schnauzer dogs.

    Science.gov (United States)

    Zarfoss, Mitzi K; Dubielzig, Richard R

    2007-01-01

    Macrophages that contain abundant intracytoplasmic lipid are called 'foam cells'. In four canine globes submitted to the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), foam cells formed a solid intraocular mass. The purpose of this study was to describe the histopathologic findings in these cases. The electronic COPLOW database (1993-2006) was searched for the diagnosis of 'foam cell tumor'. Clinical history, gross pathology and histopathology (5-micron sections, hematoxylin and eosin and Alcian blue periodic acid Schiff) were reviewed in all cases. Cases were included if the globe was grossly filled by a solid mass and if all intraocular structures were effaced by lipid-laden foam cell macrophages admixed with birefringent, Alcian blue-positive crystals oriented in stellate patterns. All three patients (four globes) satisfying the selection criteria were Miniature Schnauzers. In all cases the clinical history included diabetes mellitus, hyperlipidemia and chronic bilateral uveitis that was interpreted to be lens-induced. All globes were enucleated because of glaucoma. The term solid intraocular xanthogranuloma was used to describe these cases because the intraocular contents were effaced by a solid mass of foam cells and birefringent crystals. The cases in this report suggest that diabetic Miniature Schnauzers with hyperlipidemia are at risk for lipid and macrophage-rich uveitis, which may in some cases form a solid inflammatory intraocular mass, precipitate glaucoma, and lead to enucleation.

  9. Ultrathin Graphene-Protein Supercapacitors for Miniaturized Bioelectronics.

    Science.gov (United States)

    Mosa, Islam M; Pattammattel, Ajith; Kadimisetty, Karteek; Pande, Paritosh; El-Kady, Maher F; Bishop, Gregory W; Novak, Marc; Kaner, Richard B; Basu, Ashis K; Kumar, Challa V; Rusling, James F

    2017-09-06

    Nearly all implantable bioelectronics are powered by bulky batteries which limit device miniaturization and lifespan. Moreover, batteries contain toxic materials and electrolytes that can be dangerous if leakage occurs. Herein, an approach to fabricate implantable protein-based bioelectrochemical capacitors (bECs) employing new nanocomposite heterostructures in which 2D reduced graphene oxide sheets are interlayered with chemically modified mammalian proteins, while utilizing biological fluids as electrolytes is described. This protein-modified reduced graphene oxide nanocomposite material shows no toxicity to mouse embryo fibroblasts and COS-7 cell cultures at a high concentration of 1600 μg mL -1 which is 160 times higher than those used in bECs, unlike the unmodified graphene oxide which caused toxic cell damage even at low doses of 10 μg mL -1 . The bEC devices are 1 μm thick, fully flexible, and have high energy density comparable to that of lithium thin film batteries. COS-7 cell culture is not affected by long-term exposure to encapsulated bECs over 4 d of continuous charge/discharge cycles. These bECs are unique, protein-based devices, use serum as electrolyte, and have the potential to power a new generation of long-life, miniaturized implantable devices.

  10. A miniaturized silicon based device for nucleic acids electrochemical detection

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2015-12-01

    Full Text Available In this paper we describe a novel portable system for nucleic acids electrochemical detection. The core of the system is a miniaturized silicon chip composed by planar microelectrodes. The chip is embedded on PCB board for the electrical driving and reading. The counter, reference and work microelectrodes are manufactured using the VLSI technology, the material is gold for reference and counter electrodes and platinum for working electrode. The device contains also a resistor to control and measuring the temperature for PCR thermal cycling. The reaction chamber has a total volume of 20 μL. It is made in hybrid silicon–plastic technology. Each device contains four independent electrochemical cells.Results show HBV Hepatitis-B virus detection using an unspecific DNA intercalating redox probe based on metal–organic compounds. The recognition event is sensitively detected by square wave voltammetry monitoring the redox signals of the intercalator that strongly binds to the double-stranded DNA. Two approaches were here evaluated: (a intercalation of electrochemical unspecific probe on ds-DNA on homogeneous solution (homogeneous phase; (b grafting of DNA probes on electrode surface (solid phase.The system and the method here reported offer better advantages in term of analytical performances compared to the standard commercial optical-based real-time PCR systems, with the additional incomes of being potentially cheaper and easier to integrate in a miniaturized device. Keywords: Electrochemical detection, Real time PCR, Unspecific DNA intercalator

  11. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre

    2013-01-01

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  12. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Science.gov (United States)

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  13. Detection of cryoglobulins in serum of Caspian miniature horse

    Directory of Open Access Journals (Sweden)

    Atyabi, N,

    2012-06-01

    Full Text Available Blood samples were collected from 20 healthy miniature Caspian horses at 37 °C. Isolation of cryoglobulin was performed based on a standard method in present study. Harvested sera were kept at 4 °C for two hours and then examined for cryoglubolin. Four serum samples containing precipitate Suspicious of containing cryoglobulin were selected. Subsequently serum protein electrophoresis was performed on normal serum samples and also on four serum samples containing precipitates using an automated electrophoresis system on cellulose acetate strips. In addition Ig isotypes detection (IgG, IgM and IgA was performed on both precipitates and serum containing precipitates using single radio immunediffusion method (SRID. A narrow-based peak on gamma region of precipitate acetate cellulose strips was observed. Precipitate concentrations were strikingly higher than normal concentration of serum immuneglobulins. It can be suggested that cryoglobulin concentration in a proportion of Caspian miniature horse is higher than other equides may be in relation with animal susceptibility to neoplasias such as lymphoma and leukemia.

  14. Potentials and limitations of miniaturized calorimeters for bioprocess monitoring.

    Science.gov (United States)

    Maskow, Thomas; Schubert, Torsten; Wolf, Antje; Buchholz, Friederike; Regestein, Lars; Buechs, Jochen; Mertens, Florian; Harms, Hauke; Lerchner, Johannes

    2011-10-01

    In theory, heat production rates are very well suited for analysing and controlling bioprocesses on different scales from a few nanolitres up to many cubic metres. Any bioconversion is accompanied by a production (exothermic) or consumption (endothermic) of heat. The heat is tightly connected with the stoichiometry of the bioprocess via the law of Hess, and its rate is connected to the kinetics of the process. Heat signals provide real-time information of bioprocesses. The combination of heat measurements with respirometry is theoretically suited for the quantification of the coupling between catabolic and anabolic reactions. Heat measurements have also practical advantages. Unlike most other biochemical sensors, thermal transducers can be mounted in a protected way that prevents fouling, thereby minimizing response drifts. Finally, calorimetry works in optically opaque solutions and does not require labelling or reactants. It is surprising to see that despite all these advantages, calorimetry has rarely been applied to monitor and control bioprocesses with intact cells in the laboratory, industrial bioreactors or ecosystems. This review article analyses the reasons for this omission, discusses the additional information calorimetry can provide in comparison with respirometry and presents miniaturization as a potential way to overcome some inherent weaknesses of conventional calorimetry. It will be discussed for which sample types and scientific question miniaturized calorimeter can be advantageously applied. A few examples from different fields of microbiological and biotechnological research will illustrate the potentials and limitations of chip calorimetry. Finally, the future of chip calorimetry is addressed in an outlook.

  15. Novel Miniaturized Octaband Antenna for LTE Smart Handset Applications

    Directory of Open Access Journals (Sweden)

    Haixia Liu

    2015-01-01

    Full Text Available A novel octaband LTE mobile phone antenna is presented, which has a compact size with the overall dimension of 35 mm × 9 mm × 3 mm. The miniaturized octaband antenna is implemented by a simple prototype of three parts which include a folded monopole as feeding element, main radiator element, and parasitic radiator element. The main and parasitic radiator elements are excited by the folded monopole feeding element coupling and shorting to the handset ground plane. A wide bandwidth in low-frequency bands covering from 747 MHz to 960 MHz (LTE Band13/GSM850/GSM900 is contributed by both main and parasitic radiator elements. In addition, the folded monopole is designed to resonate at 2530 MHz, and the coupling between the feeding element and main radiator element is designed to resonate at 1840 MHz. Subsequently, the wide bandwidth in high-frequency bands covering from 1710 MHz to 2690 MHz (DCS1800/PCS1900/WCDMA2100/LTE2300/LTE2500 is contributed by both structures. The antenna has the total efficiency up to 30% in low bands and up to 75% in high bands, respectively. At the same time, the proposed miniaturized octaband LTE mobile phone antenna is fabricated and tested to verify the design.

  16. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  17. Recent advancements in system design for miniaturized MEMS-based laser projectors

    Science.gov (United States)

    Scholles, M.; Frommhagen, K.; Gerwig, Ch.; Knobbe, J.; Lakner, H.; Schlebusch, D.; Schwarzenberg, M.; Vogel, U.

    2008-02-01

    Laser projection systems that use the flying spot principle and which are based on a single MEMS micro scanning mirrors are a very promising way to build ultra-compact projectors that may fit into mobile devices. First demonstrators that show the feasibility of this approach and the applicability of the micro scanning mirror developed by Fraunhofer IPMS for these systems have already been presented. However, a number of items still have to be resolved until miniaturized laser projectors are ready for the market. This contribution describes progress on several different items, each of them of major importance for laser projection systems. First of all, the overall performance of the system has been increased from VGA resolution to SVGA (800×600 pixels) with easy connection to a PC via DVI interface or by using the projector as embedded system with direct camera interface. Secondly, the degree of integration of the electronics has been enhanced by design of an application specific analog front end IC for the micro scanning mirror. It has been fabricated in a special high voltage technology and does not only allow to generate driving signals for the scanning mirror with amplitudes of up to 200V but also integrates position detection of the mirror by several methods. Thirdly, first results concerning Speckle reduction have been achieved, which is necessary for generation of images with high quality. Other aspects include laser modulation and solutions regarding projection on tilted screens which is possible because of the unlimited depth of focus.

  18. Development of Miniature Stewart Platform Using TiNiCu Shape-Memory-Alloy Actuators

    Directory of Open Access Journals (Sweden)

    Alaa AbuZaiter

    2015-01-01

    Full Text Available A Stewart platform is a parallel manipulator robot that is able to perform three linear movements, lateral, longitudinal, and vertical, and three rotations, pitch, yaw, and roll. This paper reports a 30 mm × 30 mm × 34 mm miniscale Stewart platform using TiNiCu shape-memory-alloy (SMA actuators. The proposed Stewart platform possesses various advantages, such as large actuation force and high robustness with a simple mechanical structure. This Stewart platform uses four SMA actuators and four bias springs and performs a linear z-axis movement and tilting motions. The SMA actuators are activated by passing a current through the SMA wires using a heating circuit that generates a pulse width modulation (PWM signal. This signal is varied to control the level of the displacement and tilting angle of the platform. The tilting direction depends on the SMA actuator that is activated, while all four SMA actuators are activated to achieve the linear z-axis movement. Each SMA actuator exerts a maximum force of 0.6 N at PWM duty cycle of 100%. The fabricated miniature Stewart platform yields a full actuation of 12 mm in the z-axis at 55°C, with a maximum tilting angle of 30° in 4 s.

  19. A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion.

    Science.gov (United States)

    Lauer, Matthias E; Maurer, Reto; Paepe, Anne T De; Stillhart, Cordula; Jacob, Laurence; James, Rajesh; Kojima, Yuki; Rietmann, Rene; Kissling, Tom; van den Ende, Joost A; Schwarz, Sabine; Grassmann, Olaf; Page, Susanne

    2018-05-19

    Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.

  20. Aesthetics of Islamic Miniature Art During the Periods of Safavid and ...

    African Journals Online (AJOL)

    Islamic art represents the spiritual and physical aspects in the lives of Muslims. Meaningful beauty in Islamic art expresses Islamic aesthetics. Islamic aesthetics is the connection between beauty and the sacred. The article is devoted to the Islamic art and miniature paintings of Timurid and Safavid periods in Iran. Miniature ...

  1. Miniature Inertial and Augmentation Sensors for Integrated Inertial/GPS Based Navigation Applications

    Science.gov (United States)

    2010-03-01

    Magnetometer (Ref [23]) Until miniature atomic magnetometers transition from laboratory demonstration units to a mass produced product, fluxgate ...and/or magnetoresistive designs are a better suited magnetometer technology for a miniature navigation system. Figure 8 below shows the basic fluxgate ...is required to resolve magnetic field orientation. Fig 8. Fluxgate Magnetometer Schematic The PNI Sensor Corporation (Santa Rosa, CA

  2. Use of miniature tensile specimen and video extensometer for measurement of mechanical properties

    International Nuclear Information System (INIS)

    Kumar, Kundan; Pooleery, Arun; Madhusoodanan, K.

    2014-08-01

    Miniaturisation of the tensile test specimen below the sub-size level poses various challenges, such as conformity of specimen to various acceptance criteria as per standard test specimen, aspect ratio, minimum number of grains required in a gauge cross-section, fabrication for uniformity in metrological values, etc. Apart from these, measurement of strain over a very limited available space on the test specimen is another practical challenge. Despite these limitations, miniature specimen testing is increasingly being used worldwide these days. The driving forces behind increasing use of miniature test techniques are new material development, assuring fitness of component after in-service-inspection, low dose of radiation exposure due to smaller dimensions of test specimens etc. However, the evaluation of mechanical properties from a miniature tensile test has a greater advantage over the other miniature novel test techniques, such as small punch test, ABI, miniature fatigue and impact tests etc., as it is a direct method of measurement of mechanical properties. This report covers various aspects of miniature tensile test methodologies, which include geometrical design of specimen having gauge length of 3-5 mm, fabrication, development of special fixtures for gripping the test specimens, and use of optical method for strain measurement. The geometrical design of the specimen and its behaviour over application of tensile load has been established using FEM analysis. A good agreement between conventional and miniature test results exemplifies the potential of the miniature tensile test technique. (author)

  3. Modeling the Peano fluidic muscle and the effects of its material properties on its static and dynamic behavior

    Science.gov (United States)

    Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander

    2016-06-01

    The promise of wearable assistive robotics cannot be realized without the development of actuators that mimic the behavior and form of biological muscles. Planar fluidic muscles known as Peano muscles or pouch motors have the potential to provide the high force and compliance of McKibben pneumatic artificial muscles with the low threshold pressure of pleated pneumatic artificial muscles. Yet they do so in a soft and slim form that can be discreetly distributed over the human body. This work is an investigation into the empirical modeling of the Peano muscle, the effect of its material on its performance, and its capabilities and limitations. We discovered that the Peano muscle could provide responsive and discreet actuation of soft and rigid bodies requiring strains between 15% and 30%. Ideally, they are made of non-viscoelastic materials with high tensile and low bending stiffnesses. While Sarosi et al’s empirical model accurately captures its static behavior with an root mean square error of 10.2 N, their dynamic model overestimates oscillation frequency and damping. We propose that the Peano muscle be modeled by a parallel ideal contractile unit and viscoelastic element, both in series with another viscoelastic element.

  4. The Development of Computer Code for Safety Injection Tank (SIT) with Fluidic Device(FD) Blowdown Test

    International Nuclear Information System (INIS)

    Lee, Joo Hee; Kim, Tae Han; Choi, Hae Yun; Lee, Kwang Won; Chung, Chang Kyu

    2007-01-01

    Safety Injection Tanks (SITs) with the Fluidic Device (FD) of APR1400 provides a means of rapid reflooding of the core following a large break Loss Of Coolant Accident (LOCA), and keeping it covered until flow from the Safety Injection Pump (SIP) becomes available. A passive FD can provide two operation stages of a safety water injection into the RCS and allow more effective use of borated water in case of LOCA. Once a large break LOCA occurs, the system will deliver a high flow rate of cooling water for a certain period of time, and thereafter, the flow rate is reduced to a lower flow rate. The conventional computer code 'TURTLE' used to simulate the blowdown of OPR1000 SIT can not be directly applied to simulate a blowdown process of the SIT with FD. A new computer code is needed to be developed for the blowdown test evaluation of the APR1400 SIT with FD. Korea Power Engineering Company (KOPEC) has developed a new computer code to analyze the characteristics of the SIT with FD and validated the code through the comparison of the calculation results with the test results obtained by Ulchin 5 and 6 units pre-operational test and VAlve Performance Evaluation Rig (VAPER) tests performed by The Korea Atomic Energy Research Institute (KAERI)

  5. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    Science.gov (United States)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

  6. Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes

    Science.gov (United States)

    Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra

    2017-06-01

    Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.

  7. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules

    Science.gov (United States)

    Si, Ting; Yin, Chuansheng; Gao, Peng; Li, Guangbin; Ding, Hang; He, Xiaoming; Xie, Bin; Xu, Ronald X.

    2016-01-01

    A compound-fluidic electro-flow focusing (CEFF) process is proposed to produce multicompartment microcapsules. The central device mainly consists of a needle assembly of two parallel inner needles and one outer needle mounted in a gas chamber with their tips facing a small orifice at the bottom of the chamber. As the outer and the inner fluids flow through the needle assembly, a high-speed gas stream elongates the liquid menisci in the vicinity of the orifice entrance. An electric field is further integrated into capillary flow focusing to promote the formation of steady cone-jet mode in a wide range of operation parameters. The multiphase liquid jet is broken up into droplets due to perturbation propagation along the jet surface. To estimate the diameter of the multiphase liquid jet as a function of process parameters, a modified scaling law is derived and experimentally validated. Microcapsules of around 100 μm with an alginate shell and multiple cores at a production rate of 103-105 per second are produced. Technical feasibility of stimulation triggered coalescence and drug release is demonstrated by benchtop experiments. The proposed CEFF process can be potentially used to encapsulate therapeutic agents and biological cargos for controlled micro-reaction and drug delivery.

  8. 3D lumped components and miniaturized bandpass filter in an ultra-thin M-LCP for SOP applications

    KAUST Repository

    Arabi, Eyad A.

    2013-01-01

    In this work, a library of 3D lumped components completely embedded in the thinnest, multilayer LCP (M-LCP) stack- up with four metallization layers and 100 μm of total thickness, is reported for the first time. A vertically and horizontally interdigitated capacitor, realized in this stack-up, provides higher self resonant frequency as compared to a similarly sized conventional parallel plate capacitor. Based on the above mentioned library, a miniaturized bandpass filter is presented for the GPS application. It utilizes mutually coupled inductors and is the smallest reported in the literature with a size of (0.035×0.028×0.00089)λg. Finally, the same filter realized in a competing ceramic technology (LTCC) is compared in performance with the ultra-thin M-LCP design. The M-LCP module presented in this work is inherently exible and offers great potential for wearable and conformal applications.

  9. Electrically modulated capillary filling imbibition of nematic liquid crystals

    Science.gov (United States)

    Dhar, Jayabrata; Chakraborty, Suman

    2018-04-01

    The flow of nematic liquid crystals (NLCs) in the presence of an electric field is typically characterized by the variation in its rheological properties due to transition in its molecular arrangements. Here, we bring out a nontrivial interplay of a consequent alteration in the resistive viscous effects and driving electrocapillary interactions, toward maneuvering the capillary filling dynamics over miniaturized scales. Considering a dynamic interplay of the relevant bulk and interfacial forces acting in tandem, our results converge nicely to previously reported experimental data. Finally, we attempt a scaling analysis to bring forth further insight to the reported observations. Our analysis paves the way for the development of microfluidic strategies with previously unexplored paradigms of interaction between electrical and fluidic phenomenon, providing with an augmented controllability on capillary filling as compared to tthose reported to be achievable by the existing strategies. This, in turn, holds utilitarian scopes in improved designs of functional capillarities in electro-optical systems, electrorheological utilities, electrokinetic flow control, as well as in interfacing and imaging systems for biomedical microdevices.

  10. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    Science.gov (United States)

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  11. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning

    Science.gov (United States)

    Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-01-01

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406

  12. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2016-01-01

    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  13. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    Science.gov (United States)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the

  14. Thrombosis of the portal vein in a miniature schnauzer.

    Science.gov (United States)

    Díaz Espiñeira, M M; Vink-Nooteboom, M; Van den Ingh, T S; Rothuizen, J

    1999-11-01

    A miniature schnauzer with a history of apathy, anorexia and jaundice was presented to the Utrecht University Clinic for Companion Animals. Abnormal laboratory findings included highly increased levels of total bile acids and alkaline phosphatase, and hyponatraemia. Abdominal ultrasonography revealed that the right side of the liver was enlarged and the left side was small, together with a thrombus in the portal vein. Biopsies from the right side of the liver demonstrated subacute to chronic active hepatitis, for which the dog was treated with prednisolone (1 mg/kg/day for four weeks). No improvement was observed and the owner requested euthanasia. At necropsy the left lobes of the liver were found to be small and firm, while the right lobes were large and soft. There were two thrombi in the portal vein. Microscopic examination revealed chronic active hepatitis and cirrhosis.

  15. Struvite urolithiasis in a litter of miniature Schnauzer dogs.

    Science.gov (United States)

    Klausner, J S; Osborne, C A; O'Leary, T P; Gebhart, R N; Griffith, D P

    1980-05-01

    Magnesium ammonium phosphate calculi developed in the urinary bladders and urethras of four of five offspring of Miniature Schnauzer parents with recurrent struvite urolithiasis. Calculi were detected by radiograhy when the dogs were 12 to 15 months old. Males and females were affected. A significant number of urease-producing staphylococci were identified in the urine of three of four dogs before urolith formation, and in one dog after urolith formation. The dogs were evaluated until they were 26 months old. Serum concentrations of calcium, phosphorus, and magnesium were inside usual limits throughout the study. Abnormalities that might predispose to urinary tract infection were not identified by radiography or necropsy studies. In one dog, bladder calculi recurred after surgical removal of multiple cystoliths. In another, urethral obstruction and acute generalized pyelonephritis induced a lethal uremic crisis. Gross and microscopic lesions, detected after necropsy of all dogs with uroliths, were typical of bacterial infection.

  16. Chemically modified graphene based supercapacitors for flexible and miniature devices

    Science.gov (United States)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  17. Miniaturization of metamaterial electrical resonators at the terahertz spectrum

    Science.gov (United States)

    Karamanos, Theodosios D.; Kantartzis, Nikolaos V.

    2014-05-01

    An efficient methodology for the modification of electrical resonators in order to be readily applicable at the terahertz regime is developed in this paper. To this aim, the proposed miniaturization technique starts from the conventional resonator which, without any change, exhibits the lowest possible electrical resonance for minimum dimensions. Subsequently, a set of interdigital capacitors is embedded in the original structure to increase capaci- tance, while their impact on the main resonance is investigated through computational simulations. Furthermore, to augment the inductance of the initial resonator, and, hence reduce the resonance frequency, the concept of spiral inductor elements is introduced. Again, results for the featured configuration with the additional elements are numerically obtained and all effects due to their presence are carefully examined. Finally, the new alterations are combined together and their in influence on the resonance position and quality is thoroughly studied.

  18. Unified electronic unit for miniature radioactivity logging equipment

    International Nuclear Information System (INIS)

    Bragin, A.A.; Goldshtejn, L.M.; Fedorov, R.F.; Shikhman, A.S.

    1981-01-01

    Appropriateness and urgency of the unification of components of radioactivity logging equipment used for the investigation of wells at solid mineral deposits is substantiated. A two-channel electronic unit for miniature equipment for radioactivity logging is described and its basic specifications and performance are given. All functional assemblies of the unit are structurally made in the form of printed circuit boards placed in a pan-shaped chassis 28 mm in diameter. The unit's general design provides for the possibility to attach two probes with detection devices to the unit. The unit is used in the two-channel radioactivity logging instrument ''Kura-2'' and in the two-channel radiometer ''RUR-2''. The outer diameter of these instruments is 48 mm and they ensure the investigation of ore and coal wells with a combination radioactivity methods [ru

  19. Development of miniature γ dose rate monitor with high sensitivity

    International Nuclear Information System (INIS)

    Shi Huilu; Tuo Xianguo; Xi Dashun; Tang Rong; Mu Keliang; Yang Jianbo

    2009-01-01

    This paper introduces a miniature γ dose rate monitor with high sensitivity which design based on single chip microcomputer, it can continue monitoring γ dose rate and then choose wire or wireless communications to sent the monitoring data to host according to the actual conditions. It has two kinds of power supply system, AC power supply system and battery which can be chose by concrete circumstances. The design idea and implementation technology of hardware and software and the system structure of the monitor are detailed illustrated in this paper. The experimental results show that measurable range is 0.1 mR/h-200 mR/h, the sensitivity of γ is 90 cps/mR/h, dead time below 200 us, error of stability below ±10%. (authors)

  20. Miniaturization of the atmospheric laser communication APT system

    Science.gov (United States)

    Sun, Wei; Ai, Yong; Yang, Jinling; Huang, Haibo

    2003-09-01

    The paper presents a scheme of the miniaturization of APT system and the design of the system based on the investigation of status in quo. It deals with the infrared image of the other terminal's beacon from the Charge Coupled Device (CCD) by the Complex Programmable Logic Device (CPLD). The result of the transaction is delivered to Single Chip Microcomputer (SCM), which controls the micro-servomotor. Subsequently, the precision drive system drives the optical system that uses only one light axis for signal beam and beacon to finish the acquisition, pointing, and tracking of the communication terminals. The anlayses of the APT system's error indicate that the tracking error limits in 70uRad with the weight of the system lighter than 8-kilogram.

  1. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  2. Wearable devices for blood purification: principles, miniaturization, and technical challenges.

    Science.gov (United States)

    Armignacco, Paolo; Lorenzin, Anna; Neri, Mauro; Nalesso, Federico; Garzotto, Francesco; Ronco, Claudio

    2015-01-01

    The prevalences of end-stage renal disease (ESRD) and renal replacement therapy (RRT) continue to increase across the world imposing staggering costs on providers. Therefore, strategies to optimize the treatment and improve survival are of fundamental importance. Despite the benefits of daily dialysis, its implementation is difficult and wearable hemodialysis might represent an alternative by which frequent treatments can be delivered to ESRD patients with much less interference in their routines promoting better quality of life. The development of the wearable artificial kidney (WAK) requires incorporation of basic components of a dialysis system into a wearable device that allows mobility, miniaturization, and above all, patient-oriented management. The technical requirements necessary for WAK can be divided into the following broad categories: dialysis membranes, dialysis regeneration, vascular access, patient monitoring systems, and power sources. Pumping systems for blood and other fluids are the most critical components of the entire device. © 2015 Wiley Periodicals, Inc.

  3. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  4. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology.

    Science.gov (United States)

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-11-12

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30-250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.

  5. Miniature interferometer for refractive index measurement in microfluidic chip

    Science.gov (United States)

    Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

    2012-12-01

    The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

  6. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  7. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif

    2014-10-16

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  8. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif; Arabi, Eyad A.

    2014-01-01

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  9. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  10. In vivo demonstration of surgical task assistance using miniature robots.

    Science.gov (United States)

    Hawks, Jeff A; Kunowski, Jacob; Platt, Stephen R

    2012-10-01

    Laparoscopy is beneficial to patients as measured by less painful recovery and an earlier return to functional health compared to conventional open surgery. However, laparoscopy requires the manipulation of long, slender tools from outside the patient's body. As a result, laparoscopy generally benefits only patients undergoing relatively simple procedures. An innovative approach to laparoscopy uses miniature in vivo robots that fit entirely inside the abdominal cavity. Our previous work demonstrated that a mobile, wireless robot platform can be successfully operated inside the abdominal cavity with different payloads (biopsy, camera, and physiological sensors). We hope that these robots are a step toward reducing the invasiveness of laparoscopy. The current study presents design details and results of laboratory and in vivo demonstrations of several new payload designs (clamping, cautery, and liquid delivery). Laboratory and in vivo cooperation demonstrations between multiple robots are also presented.

  11. Yield stress determination from miniaturized disk bend test data

    International Nuclear Information System (INIS)

    Sohn, D.S.; Kohse, G.; Harling, O.K.

    1985-04-01

    Methodology for testing 3.0 mm diameter by 0.25 mm thick disks by bending in a punch and die has been described previously. This paper describes the analysis of load/deflection data from such miniaturized disk bend tests (MDBT) using a finite element simulation. Good simulation has been achieved up to a point just beyond the predominantly elastic response, linear initial region. The load at which deviation from linearity begins has been found to correlate with yield stress, and yield stress has been successfully extracted from disk bend tests of a number of known materials. Although finite element codes capable of dealing with large strains and large rotations have been used, simulation of the entire load/deflection curve up to fracture of the specimen has not yet been achieved

  12. A Miniature Data Repository on a Raspberry Pi

    Directory of Open Access Journals (Sweden)

    Argyrios Samourkasidis

    2016-12-01

    Full Text Available This work demonstrates a low-cost, miniature data repository proof-of-concept. Such a system needs to be resilient to power and network failures, and expose adequate processing power for persistent, long-term storage. Additional services are required for interoperable data sharing and visualization. We designed and implemented a software tool called Airchive to run on a Raspberry Pi, in order to assemble a data repository for archiving and openly sharing timeseries data. Airchive employs a relational database for storing data and implements two standards for sharing data (namely the Sensor Observation Service by the Open Geospatial Consortium and the Protocol for Metadata Harvesting by the Open Archives Initiative. The system is demonstrated in a realistic indoor air pollution data acquisition scenario in a four-month experiment evaluating its autonomy and robustness under power and network disruptions. A stress test was also conducted to evaluate its performance against concurrent client requests.

  13. Real-Time Food Authentication Using a Miniature Mass Spectrometer.

    Science.gov (United States)

    Gerbig, Stefanie; Neese, Stephan; Penner, Alexander; Spengler, Bernhard; Schulz, Sabine

    2017-10-17

    Food adulteration is a threat to public health and the economy. In order to determine food adulteration efficiently, rapid and easy-to-use on-site analytical methods are needed. In this study, a miniaturized mass spectrometer in combination with three ambient ionization methods was used for food authentication. The chemical fingerprints of three milk types, five fish species, and two coffee types were measured using electrospray ionization, desorption electrospray ionization, and low temperature plasma ionization. Minimum sample preparation was needed for the analysis of liquid and solid food samples. Mass spectrometric data was processed using the laboratory-built software MS food classifier, which allows for the definition of specific food profiles from reference data sets using multivariate statistical methods and the subsequent classification of unknown data. Applicability of the obtained mass spectrometric fingerprints for food authentication was evaluated using different data processing methods, leave-10%-out cross-validation, and real-time classification of new data. Classification accuracy of 100% was achieved for the differentiation of milk types and fish species, and a classification accuracy of 96.4% was achieved for coffee types in cross-validation experiments. Measurement of two milk mixtures yielded correct classification of >94%. For real-time classification, the accuracies were comparable. Functionality of the software program and its performance is described. Processing time for a reference data set and a newly acquired spectrum was found to be 12 s and 2 s, respectively. These proof-of-principle experiments show that the combination of a miniaturized mass spectrometer, ambient ionization, and statistical analysis is suitable for on-site real-time food authentication.

  14. Miniaturized day/night sight in Soldato Futuro program

    Science.gov (United States)

    Landini, Alberto; Cocchi, Alessandro; Bardazzi, Riccardo; Sardelli, Mauro; Puntri, Stefano

    2013-06-01

    The market of the sights for the 5.56 mm assault rifles is dominated by mainly three types of systems: TWS (Thermal Weapon Sight), the Pocket Scope with Weapon Mount and the Clip-on. The latter are designed primarily for special forces and snipers use, while the TWS design is triggered mainly by the DRI (Detection, Recognition, Identification) requirements. The Pocket Scope design is focused on respecting the SWaP (Size, Weight and Power dissipation) requirements. Compared to the TWS systems, for the last two years there was a significant technological growth of the Pocket Scope/Weapon Mount solutions, concentrated on the compression of the overall dimensions. The trend for the assault rifles is the use of small size/light weight (SWaP) IR sights, suitable mainly for close combat operations but also for extraordinary use as pocket scopes - handheld or helmet mounted. The latest developments made by Selex ES S.p.A. are responding precisely to the above-mentioned trend, through a miniaturized Day/Night sight embedding state-of-the art sensors and using standard protocols (USB 2.0, Bluetooth 4.0) for interfacing with PDAs, Wearable computers, etc., while maintaining the "shoot around the corner" capability. Indeed, inside the miniaturized Day/Night sight architecture, a wireless link using Bluetooth technology has been implemented to transmit the video streaming of the rifle sight to an helmet mounted display. The video of the rifle sight is transmitted only to the eye-piece of the soldier shouldering the rifle.

  15. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  16. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our

  17. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.

    Science.gov (United States)

    Das, Siddhartha; Chakraborty, Suman

    2010-07-06

    In this article, we investigate the implications of ionic conductivity variations within the electrical double layer (EDL) on the streaming potential estimation in pressure-driven fluidic transport through narrow confinements. Unlike the traditional considerations, we do not affix the ionic conductivities apriori by employing preset values of dimensionless parameters (such as the Dukhin number) to estimate the streaming potential. Rather, utilizing the Gouy-Chapman-Grahame model for estimating the electric potential and charge density distribution within the Stern layer, we first quantify the Stern layer electrical conductivity as a function of the zeta potential and other pertinent parameters quantifying the interaction of the ionic species with the charged surface. Next, by invoking the Boltzmann model for cationic and anionic distribution within the diffuse layer, we obtain the diffuse layer electrical conductivity. On the basis of these two different conductivities pertaining to the two different portions of the EDL as well as the bulk conductivity, we define two separate Dukhin numbers that turn out to be functions of the dimensionless zeta potential and the channel height to Debye length ratio. We derive analytical expressions for the streaming potential as a function of the fundamental governing parameters, considering the above. The results reveal interesting and significant deviations between the streaming potential predictions from the present considerations against the corresponding predictions from the classical considerations in which electrochemically consistent estimates of variable EDL conductivity are not traditionally accounted for. In particular, it is revealed that the variations of streaming potential with zeta potential are primarily determined by the competing effects of EDL electromigration and ionic advection. Over low and high zeta potential regimes, the Stern layer and diffuse layer conductivities predominantly dictate the streaming

  18. A molecular diagnostic test for persistent Müllerian duct syndrome in miniature schnauzer dogs.

    Science.gov (United States)

    Pujar, S; Meyers-Wallen, V N

    2009-01-01

    In persistent Müllerian duct syndrome (PMDS), Müllerian ducts fail to regress in males during sexual differentiation. In the canine miniature schnauzer model, PMDS is caused by a C to T transition in exon 3 of the Müllerian inhibiting substance type II receptor (MISRII), which introduces a DdeI restriction site. Here we report a molecular diagnostic test for PMDS in the miniature schnauzer to identify affected dogs and carriers. As our test results suggest that the mutation is identical by descent in affected dogs of this breed, the test could be used to eliminate this mutation from the miniature schnauzer breed worldwide.

  19. An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

    OpenAIRE

    Hyun Jin Kim; Hyun Nam Kim; Hamid Saeed Raza; Han Beom Park; Sung Oh Cho

    2016-01-01

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be ...

  20. Encapsulation of Fluidic Tubing and Microelectrodes in Microfluidic Devices: Integrating Off-Chip Process and Coupling Conventional Capillary Electrophoresis with Electrochemical Detection.

    Science.gov (United States)

    Becirovic, Vedada; Doonan, Steven R; Martin, R Scott

    2013-08-21

    In this paper, an approach to fabricate epoxy or polystyrene microdevices with encapsulated tubing and electrodes is described. Key features of this approach include a fixed alignment between the fluidic tubing and electrodes, the ability to polish the device when desired, and the low dead volume nature of the fluidic interconnects. It is shown that a variety of tubing can be encapsulated with this approach, including fused silica capillary, polyetheretherketone (PEEK), and perfluoroalkoxy (PFA), with the resulting tubing/microchip interface not leading to significant band broadening or plug dilution. The applicability of the devices with embedded tubing is demonstrated by integrating several off-chip analytical methods to the microchip. This includes droplet transfer, droplet desegmentation, and microchip-based flow injection analysis. Off-chip generated droplets can be transferred to the microchip with minimal coalescence, while flow injection studies showed improved peak shape and sensitivity when compared to the use of fluidic interconnects with an appreciable dead volume. Importantly, it is shown that this low dead volume approach can be extended to also enable the integration of conventional capillary electrophoresis (CE) with electrochemical detection. This is accomplished by embedding fused silica capillary along with palladium (for grounding the electrophoresis voltage) and platinum (for detection) electrodes. With this approach, up to 128,000 theoretical plates for dopamine was possible. In all cases, the tubing and electrodes are housed in a rigid base; this results in extremely robust devices that will be of interest to researchers wanting to develop microchips for use by non-experts.