WorldWideScience

Sample records for mini dosimeters radiographic

  1. Tissue interfaces dosimetry in small field radiotherapy with alanine/EPR mini dosimeters and Monte Carlo-Penelope simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, J. L.; Nicolucci, P.; Baffa, O. [Universidade de Sao Paulo, FFCLRP, Departamento de Fisica, Av. Bandeirantes 3900, Bairro Monte Alegre, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Chen, F. [Universidade Federale do ABC, CCNH, Rua Santa Adelia 166, Bangu, 09210-170 Santo Andre, Sao Paulo (Brazil); Apaza V, D. G., E-mail: josevegaramirez@yahoo.es [Universidad Nacional de San Agustin de Arequipa, Departamento de Fisica, Arequipa (Peru)

    2014-08-15

    The dosimetry system based on alanine mini dosimeters plus K-Band EPR spectrometer was tested in the tissue-interface dosimetry through the percentage depth-dose (Pdd) determination for 3 x 3 cm{sup 2} and 1 x 1 cm{sup 2} radiation fields sizes. The alanine mini dosimeters were produced by mechanical pressure from a mixture of 95% L-alanine and 5% polyvinyl alcohol (Pva) acting as binder. Nominal dimensions of these mini dosimeters were 1 mm diameter and 3 mm length as well as 3 - 4 mg mass. The EPR spectra of the mini dosimeters were registered using a K-Band (24 GHz) EPR spectrometer. The mini dosimeters were placed in a nonhomogeneous phantom and irradiated with 20 Gy in a 6 MV PRIMUS Siemens linear accelerator, with a source-to-surface distance of 100 cm using the small fields previously mentioned. The cylindrical non-homogeneous phantom was comprised of several disk-shaped plates of different materials in the sequence acrylic-bone cork-bone-acrylic, with dimensions 15 cm diameter and 1 cm thick. The plates were placed in descending order, starting from top with four acrylic plates followed by two bone plates plus eight cork plates plus two bone plates and finally, four acrylic plates (4-2-8-2-4). Pdd curves from the treatment planning system and from Monte Carlo simulation with Penelope code were determined. Mini dosimeters Pdd results show good agreement with Penelope, better than 95% for the cork homogeneous region and 97.7% in the bone heterogeneous region. In the first interface region, between acrylic and bone, it can see a dose increment of 0.6% for mini dosimeters compared to Penelope. At the second interface, between bone and cork, there is 9.1% of dose increment for mini dosimeter relative to Penelope. For the third (cork-bone) and fourth (bone-acrylic) interfaces, the dose increment for mini dosimeters compared to Penelope was 4.1% both. (Author)

  2. Tissue interfaces dosimetry in small field radiotherapy with alanine/EPR mini dosimeters and Monte Carlo-Penelope simulation

    International Nuclear Information System (INIS)

    Vega R, J. L.; Nicolucci, P.; Baffa, O.; Chen, F.; Apaza V, D. G.

    2014-08-01

    The dosimetry system based on alanine mini dosimeters plus K-Band EPR spectrometer was tested in the tissue-interface dosimetry through the percentage depth-dose (Pdd) determination for 3 x 3 cm 2 and 1 x 1 cm 2 radiation fields sizes. The alanine mini dosimeters were produced by mechanical pressure from a mixture of 95% L-alanine and 5% polyvinyl alcohol (Pva) acting as binder. Nominal dimensions of these mini dosimeters were 1 mm diameter and 3 mm length as well as 3 - 4 mg mass. The EPR spectra of the mini dosimeters were registered using a K-Band (24 GHz) EPR spectrometer. The mini dosimeters were placed in a nonhomogeneous phantom and irradiated with 20 Gy in a 6 MV PRIMUS Siemens linear accelerator, with a source-to-surface distance of 100 cm using the small fields previously mentioned. The cylindrical non-homogeneous phantom was comprised of several disk-shaped plates of different materials in the sequence acrylic-bone cork-bone-acrylic, with dimensions 15 cm diameter and 1 cm thick. The plates were placed in descending order, starting from top with four acrylic plates followed by two bone plates plus eight cork plates plus two bone plates and finally, four acrylic plates (4-2-8-2-4). Pdd curves from the treatment planning system and from Monte Carlo simulation with Penelope code were determined. Mini dosimeters Pdd results show good agreement with Penelope, better than 95% for the cork homogeneous region and 97.7% in the bone heterogeneous region. In the first interface region, between acrylic and bone, it can see a dose increment of 0.6% for mini dosimeters compared to Penelope. At the second interface, between bone and cork, there is 9.1% of dose increment for mini dosimeter relative to Penelope. For the third (cork-bone) and fourth (bone-acrylic) interfaces, the dose increment for mini dosimeters compared to Penelope was 4.1% both. (Author)

  3. Dosimetry in non-homogeneous media with alanine/EPR mini dosemeters and simulation with PENELOPE Monte Carlo code

    International Nuclear Information System (INIS)

    Vega Ramirez, J.L.; Chen, F.; Nicolucci, P.; Baffa, O.

    2009-01-01

    The dosimetric system of L-alanine mini dosimeter and K-Band EPR spectrometer was tested for the dosimetry in non-homogeneous media through the determination of the Percentage Depth Dose (PDD) curve for a small radiation field. The alanine mini dosimeters were produced by mechanical pressure of a mixture of L-alanine (95%) and PVA (5%) to nominal dimensions of 1 mm diameter and 3 mm length and 3 - 4 mg. For detecting the EPR signal of the mini dosimeters irradiated to 25 Gy, a K-Band (24 GHz) spectrometer was used. The dosimeters were irradiated in a 60 Co radiotherapy unit using 80 cm source skin distance and field sizes of 2.5 x 2.5 cm 2 . The inhomogeneous phantom consisted of acrylic and cork sheets of 30 x 30 x 1 cm 3 ; six cork sheets were sandwiched between five and nine acrylic sheets, which were placed at the top and bottom regions respectively. PDD curves with radiographic film and PENELOPE simulation were also determined. The PDD results for alanine mini dosimeters agreed better than 5.9% with film and PENELOPE. (author)

  4. Dosimetry in non-homogeneous media with alanine/EPR mini dosemeters and simulation with PENELOPE Monte Carlo code;Dosimetria em meios nao-homogeneos com minidosimetros de alanina/EPR e simulacao Monte Carlo com o codigo PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Vega Ramirez, J.L.; Chen, F.; Nicolucci, P.; Baffa, O. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2009-07-01

    The dosimetric system of L-alanine mini dosimeter and K-Band EPR spectrometer was tested for the dosimetry in non-homogeneous media through the determination of the Percentage Depth Dose (PDD) curve for a small radiation field. The alanine mini dosimeters were produced by mechanical pressure of a mixture of L-alanine (95%) and PVA (5%) to nominal dimensions of 1 mm diameter and 3 mm length and 3 - 4 mg. For detecting the EPR signal of the mini dosimeters irradiated to 25 Gy, a K-Band (24 GHz) spectrometer was used. The dosimeters were irradiated in a {sup 60}Co radiotherapy unit using 80 cm source skin distance and field sizes of 2.5 x 2.5 cm{sup 2}. The inhomogeneous phantom consisted of acrylic and cork sheets of 30 x 30 x 1 cm{sup 3}; six cork sheets were sandwiched between five and nine acrylic sheets, which were placed at the top and bottom regions respectively. PDD curves with radiographic film and PENELOPE simulation were also determined. The PDD results for alanine mini dosimeters agreed better than 5.9% with film and PENELOPE. (author)

  5. General radiographic attributes of optically stimulated luminescence dosimeters: A basic insight

    Science.gov (United States)

    Musa, Y.; Hashim, S.; Ghoshal, S. K.; Bradley, D. A.; Ahmad, N. E.; Karim, M. K. A.; Hashim, A.; Kadir, A. B. A.

    2018-06-01

    We report the ubiquitous radiographic characteristics of optically stimulated luminescence dosimeters (OSLD) so called nanoDot OSLDs (Landauer Inc., Glendwood, IL). The X-ray irradiations were performed in free air ambiance to inspect the repeatability, the reproducibility, the signal depletion, the element correction factors (ECFs), the dose response and the energy dependence. Repeatability of multiple readouts after single irradiation to 10 mGy revealed a coefficient of variation below 3%, while the reproducibility in repeated irradiation-readout-annealing cycles was above 2%. The OSL signal depletion for three nanoDots with simultaneous irradiation to 20 mGy and sequential readouts of 25 times displayed a consistent signal reduction ≈0.5% per readout with R2 values over 0.98. ECFs for individual OSLDs were varied from 0.97 to 1.03. In the entire dose range under 80 kV, a good linearity with an R2 exceeding 0.99 was achieved. Besides, the percentage difference between OSLD and ion-chamber dose was less than 5%, which was superior to TLD. The X-ray photon irradiated energy response factors (between 0.76 and 1.12) in the range of 40-150 kV (26.1-61.2 keV) exhibited significant energy dependence. Indeed, the nanoDot OSLDs disclosed good repeatability, reproducibility and linearity. The OSLDs measured doses were closer to ion-chamber doses than that of TLD. It can be further improved up to ≈3% by applying the individual dosimeter ECF. On top, the energy dependent uncertainties can be minimized using the energy correction factors. It is established that the studied nanoDot OSLDs are prospective for measuring entrance dose in general radiographic practices.

  6. Radiographic testing - optimum radiographs of plastics and composite materials with dosimeter control

    International Nuclear Information System (INIS)

    Kuster, J.

    1978-01-01

    In view of great differencies in X-ray transmission it is more difficult to get optimum radiographs of plastics and especially of reinforced plastics than for example of metals. A procedure will be reported how to get with little effort optimum radiographs especially also in the range of long wavelength radiation corresponding 10 to 25 kV.P. (orig.) [de

  7. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology

    International Nuclear Information System (INIS)

    Dong, S.L.; Chu, T.C.; Lan, G.Y.; Wu, T.H.; Lin, Y.C.; Lee, J.S.

    2002-01-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40 Vp to 125 kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures

  8. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy

    International Nuclear Information System (INIS)

    Vega R, J. L.; Cayllahua, F.; Apaza, D. G.; Javier, H.

    2015-10-01

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm 2 and 1 x 1 cm 2 at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  9. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  10. Long-term efficacy of a mini-course in radiation-reducing techniques in invasive cardiology

    International Nuclear Information System (INIS)

    Kuon, E.; Empen, K.; Hummel, A.; Doerr, M.; Reffelmann, T.; Felix, S.B.; Weitmann, K.; Hoffmann, W.; Staudt, A.

    2013-01-01

    Purpose: To validate the long-term efficacy of a 90-min. educational mini-course in less-irradiating cardiac interventional techniques. Materials and Methods: Before, two months after, and two years after the mini-course (periods I, II, and III), we analyzed the following radiation dose parameters for ten coronary angiographies (CA), performed by each of 7 cardiologists: total dose-area product (DAP), radiographic and fluoroscopic DAP fractions, number of radiographic frames and runs, and fluoroscopy time. Results: The median patient DAP for periods I, II and III was 31.4, 15.8 and 8.5 Gy x cm 2 , respectively. The long-term effect was related to shorter median fluoroscopy times (180, 172, and 120 s), shorter (57, 52, and 45) and fewer (12, 12, and 10) radiographic runs, consistent collimation and restriction to an adequate image quality. Both radiographic DAP/frame (28.7, 17.0, and 18.4 mGy x cm 2 ) and fluoroscopic DAP/second (45.7, 24.2, and 10.0 mGy x cm 2 ) decreased significantly. The multivariate linear regression analysis confirmed the increasing efficacy of the mini-course itself (-44.6 and -60.7 %), and revealed a decreasing influence of the interventionalist's experience (-8.6 % and -4.9 % per 1,000 CAs, lifelong performed until the mini-course). The number of CAs performed after the mini-course did not influence the long-term DAP results. Conclusion: The presented educational mini-course allows a significant, long-lasting, and apparently ongoing reduction of patient radiation exposure due to CA. A self-surveillant documentation of relevant radiation parameters is well suited to monitor and improve each operator's individual long-term radiation-reducing efforts. (orig.)

  11. Long-term efficacy of a mini-course in radiation-reducing techniques in invasive cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Kuon, E. [Klinik Fraenkische Schweiz, Ebermannstadt (Germany). Abt. fuer Kardiologie; Empen, K.; Hummel, A.; Doerr, M.; Reffelmann, T.; Felix, S.B. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Abt. fuer Innere Medizin B; Weitmann, K.; Hoffmann, W. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Inst. fuer Versorgungsmedizin; Staudt, A. [Helios Kliniken, Schwerin (Germany). Abt. fuer Kardiologie und Angiologie

    2013-08-15

    Purpose: To validate the long-term efficacy of a 90-min. educational mini-course in less-irradiating cardiac interventional techniques. Materials and Methods: Before, two months after, and two years after the mini-course (periods I, II, and III), we analyzed the following radiation dose parameters for ten coronary angiographies (CA), performed by each of 7 cardiologists: total dose-area product (DAP), radiographic and fluoroscopic DAP fractions, number of radiographic frames and runs, and fluoroscopy time. Results: The median patient DAP for periods I, II and III was 31.4, 15.8 and 8.5 Gy x cm{sup 2}, respectively. The long-term effect was related to shorter median fluoroscopy times (180, 172, and 120 s), shorter (57, 52, and 45) and fewer (12, 12, and 10) radiographic runs, consistent collimation and restriction to an adequate image quality. Both radiographic DAP/frame (28.7, 17.0, and 18.4 mGy x cm{sup 2}) and fluoroscopic DAP/second (45.7, 24.2, and 10.0 mGy x cm{sup 2}) decreased significantly. The multivariate linear regression analysis confirmed the increasing efficacy of the mini-course itself (-44.6 and -60.7 %), and revealed a decreasing influence of the interventionalist's experience (-8.6 % and -4.9 % per 1,000 CAs, lifelong performed until the mini-course). The number of CAs performed after the mini-course did not influence the long-term DAP results. Conclusion: The presented educational mini-course allows a significant, long-lasting, and apparently ongoing reduction of patient radiation exposure due to CA. A self-surveillant documentation of relevant radiation parameters is well suited to monitor and improve each operator's individual long-term radiation-reducing efforts. (orig.)

  12. Pen dosimeters

    CERN Multimedia

    SC/RP Group

    2006-01-01

    The Radiation Protection Group has decided to withdraw all pen dosimeters from the main PS and SPS access points. This will be effective as of January 2006. The following changes will be implemented: All persons working in a limited-stay controlled radiation area must wear an operational dosimeter in addition to their personal DIS dosimeter. Any persons not equipped with this additional dosimeter must contact the SC/RP Group, which will make this type of dosimeter available for temporary loan. A notice giving the phone numbers of the SC/RP Group members to contact will be displayed at the former distribution points for the pen dosimeters. Thank you for your cooperation. The SC/RP Group

  13. OCCUPATIONAL DOSE DURING ADULT INTERVENTIONAL CARDIOLOGY: FIRST VALUES WITH PERSONAL ACTIVE DOSIMETERS IN CHILE.

    Science.gov (United States)

    Ubeda, Carlos; Morales, Claudio; Gutiérrez, Diego; Oliveira, Marcus; Manterola, Carlos

    2018-05-11

    The objective of this article is to present initial occupational dose values using digital active personal dosimeters for medical staff during adult interventional cardiology procedures in a public hospital in Chile. Personal dose equivalent Hp(10) over the lead apron of physician, nurse and radiographer were measured during 59 procedures. Mean values of occupational dose Hp(10) per procedure were 47.6, 6.2 and 4.3 μSv for physician, nurse and radiographer, respectively. If no protective tools are used, physician dose can exceed the new eye lens dose limit.

  14. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  15. Radiation dosimeter

    International Nuclear Information System (INIS)

    Lowe, D.

    1980-01-01

    A radiation dosimeter is described, comprising a thermoluminescent phosphor incorporated in matrix of polyethersulphone. The dosimeter is preferably a thin film formed by spreading a suspension of a powdered phosphor in a solution of polyethersulphone onto a flat surface. The solvent for the polyethersulphone is a mixture of a n-methyl-2-pyrrolidone and xylene in equal proportions. A thin, inert film of polyethersulphone can be cemented to one surface of the dosimeter so as to provide a skin dosimeter. (author)

  16. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  17. Small radiation field dosimetry with 2-methylalanine miniature dosimeters at K-band electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Chen, F.; Guzman Calcina, C.S.; Almeida, A. de; Almeida, C.E. de; Baffa, O.

    2007-01-01

    Minidosimeters of 2-methyalanine (2MA) with millimeter dimensions were produced and tested for small radiation field dosimetry. Their performance was assessed by measuring the relative output factor (ROF), beam profile (BP) and penumbra width values and were determined for square fields of 0.5x0.5, 1x1, 3x3, 5x5 and 10x10cm 2 . These results were compared with those obtained for Kodak X-Omat V radiographic film. The 2MA minidosimeters (mini2MA) were irradiated with 6 MV X-rays Varian/Clinac 2100 linear accelerator with SSD of 100 cm and depth of 1.5 cm (depth for build-up equilibrium). EPR measurements were made with a K-Band (24 GHz) spectrometer. The ROF and BP results demonstrate that the dimensions of the mini2MA are adequate for the field sizes used in this experiment. The results for penumbra width indicate that the spatial resolution of the mini2MA is comparable with that of radiographic film

  18. Development of Thermoluminescence Dosimeter CaSO4:Dy as Personal and Environmental Dosimeters

    International Nuclear Information System (INIS)

    Hasnel Sofyan

    2009-01-01

    Development of personal and environmental dosimeters using material phosphors of CaSO 4 :Dy powder in form capillary glass and disc teflon thermoluminescence (TL) dosimeter have been done. TL dosimeter CaSO 4 :Dy powder used can record dose response less than 0.01 mGy. Fading of TL dosimeter capillary glass after 29 days is 25%. In 1 batch, making of CaSO 4 :Dy powder can obtain 2 groups of dosimeter capillaries with coefficient variance smaller than 10%. This discrepancy caused difference in powder making and reading of the TL dosimeter. TL dosimeter CaSO 4 :Dy teflon disc with dia. 5 mm and 0.8 mm thickness is homogeneous mixture between phosphor powder with dia. 80 to 150 mesh and teflon powder dia. 20 μm. The composition of CaSO 4 :Dy and teflon in TL dosimeter influence sensitivity of the dosimeter. It’ concluded that in order to obtain optimal sensitivity of TL dosimeter, the composition of CaSO 4 :Dy and teflon is 3 and 1 with pressured of disc in 700 MPa. (author).

  19. Alarm pocket dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, H; Kitamura, S [Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan)

    1975-04-01

    This instrument is a highly reliable pocket dosimeter which has been developed for personal monitoring use. The dosimeter generates an alarm sound when the exposure dose reaches a preset value. Using a tiny GM tube for a radiation detector and measuring the integrated dose by means of a digital counting method, this new pocket dosimeter has high accuracy and stability. Using a sealed alkali storage battery for the power supply, and with an automatic control charger, this dosimetry system is easy and economical to operate and maintain. Detectable radiation by the dosimeter are X and ..gamma.. rays. Standard preset dose values are 30, 50, 80 and 100 mR. Detection accuracy is betwen +10% and -20%. The dosimeter is continuously usable for more than 14 hours after charging for 2 hours. The dosimeter has the following features; good realiability, shock-proof loud and clear alarm sound, the battery charger also serves as a stock container for the dosimeters, and no switching operation required for the power supply due to the internal automatic switch. Therefore, the dosimetry system is very useful for personal monitoring management in many radiation industry establishments.

  20. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    International Nuclear Information System (INIS)

    Chen, Felipe; Graeff, Carlos F.O.; Baffa, Oswaldo

    2005-01-01

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm 3 and irradiated with a (3x3) cm 2 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range

  1. Study on the angular dependence of personal exposure dosimeter - Focus on thermoluminescent dosimeter and photoluminescent dosimeter

    International Nuclear Information System (INIS)

    Dong, Kyung-Rae; Kweon, Dae Cheol; Chung, Woon-Kwan; Goo, Eun-Hoe; Dieter, Kevin; Choe, Chong-Hwan

    2011-01-01

    Radiation management departments place more emphasis on the accuracy of measurements than on the increase in the average dose and personal exposure dose from the use of radiation equipment and radioactive isotopes. Although current measurements are taken using devices, such as film badge dosimeters, pocket dosimeters and thermoluminescent dosimeters (TLDs), this study compared the angular dependence between the widely used TLDs and photoluminescent dosimeter (PLDs) in order to present primary data and evaluate the utility of PLD as a new dosimeter device. For X-ray fluoroscopy, a whole body phantom was placed on a table with a setting for the G-I technical factors fixed at a range of approximately 40 cm with a range of ±90 o at an interval scale of 15 o from the center location of an average radiological worker for PLDs (GD-450) and TLDs (Carot). This process was repeated 10 times, and at each time, the cumulative dosage was interpreted from 130 dosimeters using TLDs (UD-710R, Panasonic) and PLDs (FGD-650). The TLD and PLD showed a 52% and 23% decrease in the depth dosage from 0 o to -90 o , respectively. Therefore, PLDs have a lower angular dependence than TLDs.

  2. Experimental analysis of motion artifacts in chest radiographs with the AMBER system

    International Nuclear Information System (INIS)

    Boetticher, H. von; Hofmann, K.; Luska, G.

    1999-01-01

    The prerequisites, mechanisms and principles of motion artifacts in AMBER radiographs were analysed. The experiments were performed using metronomes, a moving conventional mammography phantom, and arrangements of oscillating coil spring, spheroid and grid elements. A diagnostic dosimeter and TLDs, respectively, were used to measure exposure times and doses. The deree of distortion in AMBER radiographs depends on the direction of the object movement relative to the AMBER fan beam in a complex manner. The size of the motion artifacts depends on the local exposure time. The maximum value of this time is 75 ms and thus 1.5 times higher than specified by the manufacturer. To interpret AMBER radiographs possible system specific artifacts have to be considered to avoid misinterpretations of potentially significant details. (orig.) [de

  3. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  4. Dosimeter design specifications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The combination dosimeter and security credential holder was developed as part of the effort involved to provide an automated readout and thermoluminescent dosimetry capability at Hanford. The holder is designed to accomodate the thermoluminescent dosimeter card, appropriate filters, the security credential and a snap type clip. The body of the holder is ABS plastic (acrylontrile-butadiene-styrene). The dosimeter holder and card is mold casted providing uniformity of construction

  5. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    Science.gov (United States)

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  6. ΔOSI: a prototype microstrip dosimeter for characterization of medical radiotherapy and radiosurgery systems

    International Nuclear Information System (INIS)

    Redondo-Fernandez, I.; Buttar, C.; Walsh, S.; Manolopoulos, S.; Homer, J.M.; Young, S.; Conway, J.

    2006-01-01

    As the technology for medical radiotherapy and radiosurgery evolves, there is a growing need for dosimeters capable of measuring dose distributions on-line with submillimeter spatial resolution, both for facility commissioning and patient-related quality assurance. We have designed and built a high spatial resolution dosimeter based on silicon micro-strip technology for characterization of small radiotherapy and radiosurgery fields. The aim is to provide relative dosimetry measurement with film-like spatial resolution and to be able to resolve the temporal evolution. Following the description of the prototypes, first beam test results of a 250 μm pitch, 128 channels prototype with X-rays in a clinical 6 MV accelerator are presented. The device demonstrated good dosimetric capabilities when compared to reference measurements made with ionization chambers and agrees with radiographic film in the steep dose gradient region produced by the collimator edge

  7. An implantable radiation dosimeter for use in external beam radiation therapy

    International Nuclear Information System (INIS)

    Scarantino, Charles W.; Ruslander, David M.; Rini, Christopher J.; Mann, Gregory G.; Nagle, H. Troy; Black, Robert D.

    2004-01-01

    An implantable radiation dosimeter for use with external beam therapy has been developed and tested both in vitro and in canines. The device uses a MOSFET dosimeter and is polled telemetrically every day during the course of therapy. The device is designed for permanent implantation and also acts as a radiographic fiducial marker. Ten dogs (companion animals) that presented with spontaneous, malignant tumors were enrolled in the study and received an implant in the tumor CTV. Three dogs received an additional implant in collateral normal tissue. Radiation therapy plans were created for the animals and they were treated with roughly 300 cGy daily fractions until completion of the prescribed cumulative dose. The primary endpoints of the study were to record any adverse events due to sensor placement and to monitor any movement away from the point of placement. No adverse events were recorded. Unacceptable device migration was experienced in two subjects and a retention mechanism was developed to prevent movement in the future. Daily dose readings were successfully acquired in all subjects. A rigorous in vitro calibration methodology has been developed to ensure that the implanted devices maintain an accuracy of ±3.5% relative to an ionization chamber standard. The authors believe that an implantable radiation dosimeter is a practical and powerful tool that fosters individualized patient QA on a daily basis

  8. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  9. Passive radon daughter dosimeters

    International Nuclear Information System (INIS)

    McElroy, R.G.C.; Johnson, J.R.

    1986-03-01

    On the basis of an extensive review of the recent literature concerning passive radon daughter dosimeters, we have reached the following conclusions: 1) Passive dosimeters for measuring radon are available and reliable. 2) There does not presently exist an acceptable passive dosimeter for radon daughters. There is little if any hope for the development of such a device in the foreseeable future. 3) We are pessimistic about the potential of 'semi-passive dosimeters' but are less firm about stating categorically that these devices cannot be developed into a useful radon daughter dosimeter. This report documents and justifies these conclusions. It does not address the question of the worker's acceptance of these devices because at the present time, no device is sufficiently advanced for this question to be meaningful. 118 refs

  10. Dosimeter charging and/or reading apparatus

    International Nuclear Information System (INIS)

    Fine, L.T.; Jackson, T.P.

    1980-01-01

    A device is disclosed for charging and/or reading a capacitor associated with an electrometer incorporated in a radiation dosimeter for the purpose of initializing or ''zeroing'', the dosimeter at the commencement of a radiation measurement cycle or reading it at any time thereafter. The dosimeter electrometer has a movable electrode the position of which is indicative of the charge remaining on the dosimeter capacitor and in turn the amount of radiation incident on the dosimeter since it was zeroed. The charging device also includes means for discharging, immediately upon conclusion of the dosimeter capacitor charging operation, stray capacitance inherent in the dosimeter by reason of its mechanical construction. The charge on the stray capacitance, if not discharged at the conclusion of the dosimeter capacitor charging operation, leaks off during the measurement cycle, introducing measurement errors. A light source and suitable switch means are provided for automatically illuminating the movable electrode of the dosimeter electrometer as an incident to charging the dosimeter capacitor to facilitate reading the initial, or ''zero'', position of the movable electrometer electrode after the dosimeter capacitor has been charged and the stray capacitance discharged. Also included is a manually actuatable switch means, which is operable independently of the aforementioned automatic switch means, to energize the lamp and facilitate reading of the dosimeter without charging

  11. Measurement of irradiation doses secondary to bedside radiographs in a medical intensive care unit

    Energy Technology Data Exchange (ETDEWEB)

    Boles, J M; Boussert, F; Manens, J P; Le Cam, B; Bellet, M; Garre, M

    1987-01-01

    The authors prospectively studied the radiation doses to radio-sensitive organs secondary to bedside radiographs in intensive care patients and in a control phantom. Dosimeters were taped on different organs during each bedside X-ray. The mean radiation doses, expressed in 10(-5) Gy (m-rad), for an ''average patient'' who was hospitalized 9 days and had 6 chest X-rays were respectively: 292 to the sternal bone marrow; 239 to the thyroid gland; 3 to the testes; 1 to the ovaries; 605 to the eye for 2 maxillary sinus X-rays. No diffused irradiation was measured during a 2-month period in the intensive care unit nor on dosimeters worn by four nurses.

  12. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  13. Electronic dosimeter characteristics and new developments

    International Nuclear Information System (INIS)

    Thompson, I.M.G.

    1999-01-01

    Electronic dosimeters are very much more versatile than existing passive dosimeters such as TLDs and film badges which have previously been the only type of dosimeters approved by national authorities for the legal measurement of doses to occupationally exposed workers. Requirements for the specifications and testing of electronic dosimeters are given in the standards produced by the International Electrotechnical Commission Working Group IEC SC45B/B8. A description is given of these standards and the use of electronic dosimeters as legal dosimeters is discussed. (author)

  14. MOSFET dosimeter depth-dose measurements in heterogeneous tissue-equivalent phantoms at diagnostic x-ray energies

    International Nuclear Information System (INIS)

    Jones, A.K.; Pazik, F.D.; Hintenlang, D.E.; Bolch, W.E.

    2005-01-01

    The objective of the present study was to explore the use of the TN-1002RD metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter for measuring tissue depth dose at diagnostic photon energies in both homogeneous and heterogeneous tissue-equivalent materials. Three cylindrical phantoms were constructed and utilized as a prelude to more complex measurements within tomographic physical phantoms of pediatric patients. Each cylindrical phantom was constructed as a stack of seven 5-cm-diameter and 1-cm-thick discs of materials radiographically representative of either soft tissue (S), bone (B), or lung tissue (L) at diagnostic photon energies. In addition to a homogeneous phantom of soft tissue (SSSSSSS), two heterogeneous phantoms were constructed: SSBBSSS and SBLLBSS. MOSFET dosimeters were then positioned at the interface of each disc, and the phantoms were then irradiated at 66 kVp and 200 mAs. Measured values of absorbed dose at depth were then compared to predicated values of point tissue dose as determined via Monte Carlo radiation transport modeling. At depths exceeding 2 cm, experimental results matched the computed values of dose with high accuracy regardless of the dosimeter orientation (epoxy bubble facing toward or away from the x-ray beam). Discrepancies were noted, however, between measured and calculated point doses near the surface of the phantom (surface to 2 cm depth) when the dosimeters were oriented with the epoxy bubble facing the x-ray beam. These discrepancies were largely eliminated when the dosimeters were placed with the flat side facing the x-ray beam. It is therefore recommended that the MOSFET dosimeters be oriented with their flat sides facing the beam when they are used at shallow depths or on the surface of either phantoms or patients

  15. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy; Comparacion dosimetrica en interfaces de tejidos con dosimetros TLD, L-alanina, peliculas EDR2 y simulacion Penelope para una fuente de Co-60 y acelerador lineal en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, J. L.; Cayllahua, F.; Apaza, D. G.; Javier, H., E-mail: josevegaramirez@yahoo.es [Universidad Nacional de San Agustin, Departamento de Fisica, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm{sup 2} and 1 x 1 cm{sup 2} at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  16. Comparison of alanine dosimeters using silicone as their binder to a commercial, polystyrene-bound, alanine dosimeter

    International Nuclear Information System (INIS)

    Galindo, S.; Urena-Nunez, F.

    1997-01-01

    The feasibility of practical boron-containing alanine ESR dosimeters for gamma-neutron mixed field irradiation dosimeters depends in part on whether the γ response characteristics of these silicone-bound dosimeters are comparable to those of a commercially available dosimeter that has been used by the International Atomic Energy Agency (International Dose Assurance Service) as a transfer reference dosimeter. This work presents the results of the comparison of 3 batches of silicone-bound alanine dosimeters. The first batch consists of a mixture of alanine and boric acid; the second, alanine and borax; and the last contains only alanine. Results indicate that γ response characteristics of the silicone-bound samples are comparable to those of the commercial, polystyrene-bound, alanine dosimeter and that silicone has a strong potential as a binding substance for alanine ESR dosimetry. (Author)

  17. Development of a TL personal dosimeter identifiable PA exposure, and comparison with commercial TL dosimeters

    International Nuclear Information System (INIS)

    Kwon, J.W.; Kim, H.K.; Lee, J.K.; Kim, J.L.

    2004-01-01

    A single-dosimeter worn on the anterior surface of the body of a worker was found to significantly underestimate the effective dose to the worker when the radiation comes from the back. Several researchers suggested that this sort of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. However, use of multiple dosimeters also has disadvantages such as complication in control or incurrence of extra cost. Instead of the common multi-dosimeter approach, in this study, a single dosimeter introducing asymmetric filters which enabled to identify PA exposure was designed, and its dose evaluation algorithm for AP-PA mixed radiation fields was established. A prototype TL personal dosimeter was designed and constructed. The Monte Carlo simulations were utilized in the design process and verified by experiments. The dosimeter and algorithm were applicable to photon radiation having an effective energy beyond 100 keV in AP-PA mixed radiation fields. A simplified performance test based on ANSI N13.11 showed satisfactory results. Considering that the requirements of the International Electrotechnical Commission (IEC) and the American National Standards Institute (ANSI) with regard to the dosimeter on angular dependency is reinforced, the dosimeter and the dose evaluation algorithm developed in this study provides a useful approach in practical personal dosimetry against inhomogeneous high energy radiation fields. (author)

  18. Selfcalibrated alanine/EPR dosimeters. A new generation of solid state/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratio I alanine /I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for 60 Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 10 2 - 5 x 10 4 Gy. (author)

  19. Heater design for reading radiation dosimeters

    International Nuclear Information System (INIS)

    Seidel, J.G.; Felice, P.E.

    1982-01-01

    The nichrome heating element of a conventional dosimeter reading apparatus has been redesigned to include a flat-bottomed depression big enough to hold a thermoluminescent dosimeter. A thin glass plate is positioned in the recess on top of the dosimeter to retain it in the recess during the heating and reading process. This technique of securing the dosimeter in contact with the heating element avoids physical scratching or damage to the dosimeter

  20. Hanford personnel dosimeter supporting studies FY-1981

    International Nuclear Information System (INIS)

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies

  1. Radiation dosimeters for medical use

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    The several personal radiation dosimeter types for medical use, which look like promising for this kind of application, as pMOS (RADFET) dosimeter, direct ion storage (DIS) dosimeters, thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters, are described, and their advantages and disadvantages are analyzed. The p-channel metal-oxide-semiconductor (pMOS) dosimetric transistors allow dose measurements in vivo in real time, and they are especially important for radiotherapy. Direct ion storage (DIS) dosimeters are a hybrid of ion chamber and floating gate MOSFETs (FGMOSFETs), show very high sensitivity. Radiative processes that happen during the exposure of crystal to radiation are classified as prompt luminescence or radioluminescence (RL). In the case of an emission during stimulation, this phenomenon is referred to thermoluminescence or optically stimulated luminescence depending on whether the stimulation source is heat or light. TL and OSL dosimeters are natural or synthetic materials, which the intensity of emitted light is proportional to the irradiation dose. (Author)

  2. Characteristics of radiophotoluminescent glass dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masashi; Shiraishi, Akemi; Murakami, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    In Japan Atomic Energy Research Institute, a film badge is recently replaced by a new type radiophotoluminescent (RPL) glass dosimeter for external personal monitoring. Some fundamental characteristics of this dosimeter, such as dose dependence linearity, energy dependence, angular dependence, dose evaluation accuracy at mixed irradiation conditions, fading, etc., were examined at the Facility of Radiation Standard (FRS), JAERI. The results have proved that the RPL glass dosimeter has sufficient characteristics for practical use as a personal dosimeter for all of the items examined. (author)

  3. Fast-neutron solid-state dosimeter

    International Nuclear Information System (INIS)

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-01-01

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300 0 C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO 4 :Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot-pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150 0 C prior to first use dosimeters

  4. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results

    International Nuclear Information System (INIS)

    Shaw, K.R.

    1993-07-01

    Currently at Oak Ridge National Laboratory (ORNL), the responses of thermoluminescent dosimeters (TLDs) and direct-reading dosimeters (DRDs) are not officially compared or the discrepancies investigated. However, both may soon be required due to the new US Department of Energy (DOE) Radiological Control Manual. In the past, unofficial comparisons of the two dosimeters have led to discrepancies of up to 200%. This work was conducted to determine the reasons behind such discrepancies. For tests conducted with the TLDs, the reported dose was most often lower than the delivered dose, while DRDs most often responded higher than the delivered dose. Trends were identified in personnel DRD readings, and ft was concluded that more training and more control of the DRDs could improve their response. TLD responses have already begun to be improved; a new background subtraction method was implemented in April 1993, and a new dose algorithm is being considered. It was concluded that the DOE Radiological Control Manual requirements are reasonable for identifying discrepancies between dosimeter types, and more stringent administrative limits might even be considered

  5. Operation of Personal Electronic Dosimeters at NRCN

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    In the recent years, electronic personal dosimeters (EPD's) are increasingly being used at NRCN, replacing the old direct reading dosimeters that are still widely used. The most significant advantage of the new dosimeters is the real time alarm in a radiation field exceeding a pre-determined threshold. The EPD dosimeters are more precise and can measure γ, β and x rays of a wide range of energies. In addition, the electronic dosimeters collects and stores the reading at a fixed pattern (every 10 seconds) and keeps the data until it is downloaded from the dosimeter. This feature gives the ability to build a personal time-dependent exposure report for each worker who carries this device and to analyze, identify and measure the exact dose, time and duration of any exposure event he was involved in. Designing and building a personal electronic dosimeter became possible as a result of the massive technological improvements of semi conductor detectors and the minimization processes of microprocessors and low energy electronic devices. The main purpose for personal electronic dosimeters was to monitor on-line doses for radiation workers.A special reader device enables to download data and upload operational settings of the dosimeters. By means of this communication channel, one can save the data acquired by the dosimeter, clear the dosimeter memory and set the dosimeter operational parameters. There are two possible working patterns. The first is to read and set all the dosimeters at a central point, normally a dosimetry laboratory (single reader) and the second and more expensive one, is to build a network of readers covering the plant for obtaining on-line communication

  6. To the attention of all dosimeter users

    CERN Multimedia

    2005-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include a compulsory monthly read-out of the dosimeter. Therefore we would like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350.-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short term visitor dosimeter (VCT). This dosimeter has a limited validity period but without for a compulsory periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service Bldg. 24 E 011 http://cern.ch/rp-dosimetry

  7. To the attention of all dosimeter users

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include the compulsory monthly read-out of the dosimeter. Therefore we would like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350.-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short term visitor dosimeter (VCT). This dosimeter has a limited validity period but without for a compulsory periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service Bld 24 E 011 http://cern.ch/rp-dosimetry

  8. To the attention of all dosimeter users

    CERN Multimedia

    Dosimetry Service

    2006-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include the compulsory monthly read-out of the dosimeter. We would therefore like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350,-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short-term visitor dosimeter (VCT). This dosimeter has a limited validity period but does not require a periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service - Bldg. 24 E 011 - http://cern.ch/rp-dosimetry

  9. Thermoluminescent dosimeter system

    International Nuclear Information System (INIS)

    Felice, P.E.; Gonzalez, J.L.; Seidel, J.G.

    1979-01-01

    An improved thermoluminescent dosimeter system and apparatus for sensing alpha particle emission is described. A thermoluminescent body is sealed between a pair of metallized plastic films. The dosimeter is mounted within a protective inverted cup or a tube closed at one end, which is disposed in a test hole for exposure to radioactive radon gas which is indicaive of uranium deposits

  10. Cell-phone interference with pocket dosimeters

    International Nuclear Information System (INIS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A

    2005-01-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  11. Cell-phone interference with pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A [Department of Radiation Oncology, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521 (United States)

    2005-05-07

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  12. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  13. Passive dosimeters other than film and TLDs [thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1986-01-01

    This presentation will describe CR-39 plastic as a personnel neutron dosimeter. Recent research at LLNL and elsewhere has resulted in the development of a dosimetry system that is superior to any personnel neutron dosimeter previously available. The author describes the features of the dosimetry system and the new etching procedures and techniques in detail. Most of the research was done at the LLNL and has been supported as a part of the DOE Neutron Dosimetry Upgrade Program. 10 refs., 4 figs., 1 tab

  14. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  15. A new radiochromic dosimeter film

    Science.gov (United States)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  16. Evaluation of personal dosimeters

    International Nuclear Information System (INIS)

    Correa, C. A.

    2007-01-01

    This work makes a screening of the different types of dosimeters present in the international market, to provide operative dosimetry of individual monitoring to measure Hp(10) and Hp(0,07)-specifically for external radiation gamma and beta, as well as to give knowledge of advances of passive and operative dosimetry, and the changes in the regulatory policy relative to these aspects. The data has been extracted from several providers of dosimeters, and the importance has been stressed in a good election of the dosimeter before its use, as well as the important advances in these equipment. (Author) 14 refs

  17. Improved sample holders for the PMMA dosimeters

    International Nuclear Information System (INIS)

    Kobayashi, Toshikazu; Sone, Koji; Iso, Katsuaki

    1994-01-01

    PMMA dosimeters are widely used for high dose dosimetry. Dose is determined by measuring the change in optical density of the irradiated PMMA dosimeter element. Measurement precision depends on the mounting method of a dosimeter element in the sample room of a spectrophotometer. We tried to prepare three types of holders, (holders A, B and C in Figs. 1-3), according to the shape of PMMA dosimeter elements. We measured optical density of the irradiated PMMA dosimeter elements by using the three types of holders. It is revealed that the holder of the type A gives more precise results for the Red 4034 or Gammachrome YR dosimeter than that of the type B. The measurements with a spectrophotometer using the type C holder gives better results for the Red acrylic dosimeter than the case of the measurements by the exclusive reader. (author)

  18. The intelligence of dosimeter for ionization radiation

    International Nuclear Information System (INIS)

    He Jinglun

    1992-01-01

    The connection of dosimeter with microcomputer system is described, which has the functions of sampling, data handling, display and printing dose values in legal units of measurement. The accuracy and speed of measurement for dosimeters are also raised, thereby the dosimeters are made to have intelligence and the application range of dosimeter is enlarged

  19. Citizen's dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Klemic, Gladys [Naperville, IL; Bailey, Paul [Chicago, IL; Breheny, Cecilia [Yonkers, NY

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  20. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    Science.gov (United States)

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  1. Acoustic evaluation of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mather, M.L.; De Deene, Y.; Baldock, C.; Whittaker, A.K.

    2002-01-01

    Advances in radiotherapy treatment techniques such as intensity modulated radiotherapy are placing increasing demands on radiation dosimetry for verification of dose distributions in 3D. In response, polymer gel dosimeters that are capable of recording dose distributions in 3D are currently being developed. Recently, a new technique for evaluation of absorbed dose distributions in these dosimeters using ultrasound was introduced. The current work aims to demonstrate the potential of ultrasound as an evaluation technique for polymer gel dosimeters and to investigate the ultrasound properties of two different dosimeter formulations, PAG and MAGIC gels

  2. Water-resistant alanine-EPR dosimeter alanpol

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Zofia; Bryl-Sandelewska, Teresa; Mirkowski, Krzysztof; Sartowska, Bozena

    2009-01-01

    Alanpol-water-resistant alanine-electron paramagnetic resonance (EPR) dosimeter consisted of cheap DL-α-alanine (9.8-27%) suspended in polyethylene matrix was presented. The rods (O=2.8 mm) were extruded from a hot mixture of alanine and low-density polyethylene. No grinding or crushing was used for alanine preparation. An orientation of cylindrical crystals, up to 300 μm long in parallel to the rod axis was responsible for some differences in a shape of EPR signal. These differences had no negative consequences for dosimetric applications. Signal-to-dose dependence was linear up to 10 kGy. Standard deviation of dosimetric answer was up to ±1.8% and up to 2.4% for dosimeters with 9.8% and 27% of DL-α-alanine, respectively. Irradiation temperature coefficient for both dosimeters was equal 0.2%/ deg. C. Hydrophobic properties of polyethylene and small number of alanine crystals located on the surface of the rod led to high resistance of dosimeters to water and humidity. The 24 h soaking of irradiated dosimeters in liquid water-reduced EPR signals by 3-4% and by 2-3% for dosimeters with 27% and 9.8% of DL-α-alanine, respectively. Three month storage time of irradiated dosimeters in room conditions decreases EPR signal for ∼3%.

  3. SDI-100 radiation dosimeter

    International Nuclear Information System (INIS)

    Zheng Zheng; Zhao Yongfu; Dai Honggui

    1995-01-01

    An intelligent radiation dosimeter, with such functions as signal collection and data processing, store, print and display, has been developed. Its detector is made of a micro-semiconductor. This dosimeter can be used in laboratories for agricultural 60 Co irradiators, radiotherapeutic facilities and other small and medium-size 60 Co irradiators

  4. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    This patent describes a portable radon daughter dosimeter unit used to measure radon gas alpha daughters in ambient air. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as in uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout displays the result in terms of working level-hours

  5. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    A portable radon daughter dosimeter unit used to measure Radon gas alpha daughters in ambient air is described. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout diplays the result in terms of working level-hours

  6. Hanford beta-gamma personnel dosimeter prototypes and evaluation

    International Nuclear Information System (INIS)

    Fix, J.J.; Holbrook, K.L.; Soldat, K.L.

    1983-04-01

    Upgraded and modified Hanford dosimeter prototypes were evaluated for possible use at Hanford as a primary beta-gamma dosimeter. All prototypes were compatible with the current dosimeter card and holder design, as well as processing with the automated Hanford readers. Shallow- and deep-dose response was determined for selected prototypes using several beta sources, K-fluorescent x rays and filtered x-ray techniques. All prototypes included a neutron sensitive chip. A progressive evaluation of the performance of each of the upgrades to the current dosimeter is described. In general, the performance of the current dosimeter can be upgraded using individual chip sensitivity factors to improve precision and an improved algorithm to minimize bias. The performance of this dosimeter would be adequate to pass all categories of the ANSI N13.11 performance criteria for dosimeter procesors, provided calibration techniques compatible with irradiations adopted in the standard were conducted. The existing neutron capability of the dosimeter could be retained. Better dosimeter performance to beta-gamma radiation can be achieved by modifying the Hanford dosimeter so that four of the five chip positions are devoted to calculating these doses instead of the currently used two chip positions. A neutron sensitive chip was used in the 5th chip position, but all modified dosimeter prototypes would be incapable of discriminating between thermal and epithermal neutrons. An improved low energy beta response can be achieved for the current dosimeter and all prototypes considered by eliminating the security credential. Further improvement can be obtained by incorporating the 15-mil thick TLD-700 chips

  7. Dose measurement in periapical radiographic exams using dosemeter pen: a look at the radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Renato; Ferreira, Vanessa, E-mail: vanessamachado@ufmg.br [Curso Superior de Tecnologia em Radiologia. Faculdade de Medicina. Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Claubia; Oliveira, Arno H.; Veloso, M.A.F., E-mail: gbarros@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: Dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    The use of radiology has been a large increase with the crescent accessibility to dental care, orthodontics and aesthetic. Besides the increase in the number of exams, there was an increase in radiation dose during dental exams such as computed tomography. The objective of this work is to evaluate the radiation dose to which the patient is subjected in a peri apical dental radiography. The dose values were measured with a dosimeter pen during radiographs in real exams peri apical with the X-ray equipment Timex 70 C Gnatus. During the exams realization, was maintained, in the holder, the dosimeter pen near to the region of interest. The values collected were recorded in dosimeter pen. These values were compared with the reference doses of the Portaria 453 of ANVISA, this procedure allows to verify if the recommended dose limits for this exam are being respected. These data indicates if the used equipment is calibrated and in good condition of use. It was performed a comparison between the obtained experimental dose values and the values found from computer simulation with the code MCNPX 2.6.0. (author)

  8. Dose measurement in periapical radiographic exams using dosemeter pen: a look at the radioprotection

    International Nuclear Information System (INIS)

    Oliveira, Renato; Ferreira, Vanessa; Pereira, Claubia; Oliveira, Arno H.; Veloso, M.A.F.

    2011-01-01

    The use of radiology has been a large increase with the crescent accessibility to dental care, orthodontics and aesthetic. Besides the increase in the number of exams, there was an increase in radiation dose during dental exams such as computed tomography. The objective of this work is to evaluate the radiation dose to which the patient is subjected in a peri apical dental radiography. The dose values were measured with a dosimeter pen during radiographs in real exams peri apical with the X-ray equipment Timex 70 C Gnatus. During the exams realization, was maintained, in the holder, the dosimeter pen near to the region of interest. The values collected were recorded in dosimeter pen. These values were compared with the reference doses of the Portaria 453 of ANVISA, this procedure allows to verify if the recommended dose limits for this exam are being respected. These data indicates if the used equipment is calibrated and in good condition of use. It was performed a comparison between the obtained experimental dose values and the values found from computer simulation with the code MCNPX 2.6.0. (author)

  9. The neutron response of a 7 LiF thermoluminescent dosimeter incorporated in the UKAEA criticality dosimeter

    International Nuclear Information System (INIS)

    Eid, A.M.; Delafield, H.J.

    1976-04-01

    There are practical advantages in incorporating a 7 LiF thermoluminescent dosimeter (TLD) for the measurement of γ-ray dose, into the personnel criticality dosimeter. This paper investigated the corrections necessary for the inherent direct response of the TLD neutrons, and its enhanced indirect response from prompt γ-rays resulting from neutron interactions with the metallic foils contained in the criticality dosimeter. The response of the TLD to fast fission neutrons was measured to be 0.02 γ rad/n rad. The indirect response of the TLD to thermal neutrons was measured to be 4.8 x 10 -10 rad n -1 cm 2 for dosimeters exposed in free air, and 7 x 10 -10 rad n -1 cm 2 for dosimeters worn on the body respectively. Application of these correction factors to TLD measurements made at International Dosimetry Intercomparisons (sponsored by the I.A.E.A.) gave improved agreement with the values given by other participants. (author)

  10. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  11. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  12. Radiation dosimeter assembly

    International Nuclear Information System (INIS)

    Seidel, J.G.

    1982-01-01

    A technique is disclosed for securing a thermoluminescent radiation dosimeter, used for monitoring underground radon gas in uranium prospecting, to a cup-like support member made of heavy gauge aluminum foil. A metalized film, consisting of an aluminum layer and a high tensile strength plastic layer, covers an aperture in the support members for the dosimeter. The film is secured by a high temperature adhesive to the support member, and both are capable of withstanding an annealing temperature of up to 300 0 C

  13. Performance testing of extremity dosimeters, Study 2

    International Nuclear Information System (INIS)

    Harty, R.; Reece, W.D.; Hooker, C.D.

    1990-04-01

    The Health Physics Society Standards Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance with the standard. Pacific Northwest Laboratory (PNL) has conducted two separate evaluations of the performance of extremity dosimeter processors to determine the appropriateness of the draft standard, as well as to obtain information regarding the performance of extremity dosimeters. Based on the information obtained during the facility visits and the results obtained from the performance testing, it was recommended that changes be made to ensure that the draft standard is appropriate for extremity dosimeters. The changes include: subdividing the mixture category and the beta particle category; eliminating the neutron category until appropriate flux-to-dose equivalent conversion factors are derived; and changing the tolerance level for the performance criterion to provide consistency with the performance criterion for whole body dosimeters, and to avoid making the draft standard overly difficult for processors of extremity dosimeters to pass. 20 refs., 10 figs., 6 tabs

  14. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  15. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  16. Comparative study of some new EPR dosimeters

    International Nuclear Information System (INIS)

    Alzimami, K.S.; Maghraby, Ahmed M.; Bradley, D.A.

    2014-01-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (W PP ) and peak-to-peak signal height (H PP ). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic. - Highlights: ► Several EPR dosimeters were suggested based on SO 3 − radical. ► Taurine, homotaurine, sulfanilic, and sulfamic acid all possess simple EPR spectra. ► Dosimeters were compared to each other in terms of the dosimetric point of view. ► Energy dependence curves of the selected dosimeters were compared to eachother

  17. Directional Radiation Dosimeter for Area and Environmental Monitoring

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Campos, V.P.; Moura, E.S.

    2009-01-01

    It is presented a dosimeter that is able to measure the photon exposure and the direction from where the radiation came from. Preliminary measurements performed by this new directional radiation dosimeter demonstrate its application. This dosimeter consists of a small lead cube with thermoluminescent discs on each face, placed in well known coordinates. Only one dosimeter of this kind indicates the direction of the radiation beam, if it came from a unique position. This study was conducted inside the radiation room of a Cobalt-60 Gamma Irradiator and the dosimeter indicated the source position

  18. Dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1986-01-01

    This invention relates to a dosimeter for measuring ionizing radiation, and particularly to a dosimeter using an insulated gate field effect transistor (IGFET) as a sensor, having substantially improved accuracy. An IGFET is a field effect transistor fabricated on a silicon substrate and having an oxide insulator between the gate electrode and the silicon substrate. The gate electrode can be either metal or polycrystalline silicon dioxide. This invention overcomes previously-noted problems with IGFET sensors - the variation of threshold voltage with temperature, their inherent zero offset which varies from wafer to wafer, and the zero drift in threshold voltage - by measuring the differential threshold between two IGFET sensors exposed to the same radiation, in which one is biased into its conducting region, and the other is biased either off or to a conducting level less than the first. The measured differential threshold voltage between the two transistors will be a measure of the gamma radiation dose

  19. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    International Nuclear Information System (INIS)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-01-01

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated

  20. Measurements of surgeons' exposure to ionizing radiation dose: comparison of conventional and mini C-arm fluoroscopy.

    Science.gov (United States)

    Sung, K H; Min, E; Chung, C Y; Jo, B C; Park, M S; Lee, K

    2016-03-01

    This study was performed to measure the equivalent scattered radiation dose delivered to susceptible organs while simulating orthopaedic surgery using conventional and mini C-arm fluoroscopy. In addition, shielding effects on the thyroid, thymus, and gonad, and the direct exposure delivered to the patient's hands were also compared. A conventional and mini C-arms were installed in an operating room, and a hand and an operator phantom were used to simulate a patient's hand and a surgeon. Photoluminescence dosimeters were used to measure the equivalent dose by scattered radiation arriving at the thyroid, thymus, and gonad on a whole-body phantom in the position of the surgeon. Equivalent scattered radiation doses were measured in four groups: (1) unshielded conventional C-arm group; (2) unshielded mini C-arm group; (3) lead-shielded conventional C-arm group; and (4) lead-shielded mini C-arm group. Equivalent scattered radiation doses to the unshielded group were significantly lower in the mini C-arm group than those in the conventional C-arm group for all organs. The gonad in the lead-shielded conventional C-arm group showed the highest equivalent dose among operator-susceptible organs, and radiation dose was reduced by approximately 96% compared with that in the unshielded group. Scattered radiation was not detected in any susceptible organ in the lead-shielded mini C-arm group. The direct radiation dose to the hand phantom measured from the mini C-arm was significantly lower than that measured from the conventional C-arm. The results show that the equivalent scattered radiation dose to the surgeon's susceptible organs and the direct radiation dose to a patient's hand can be decreased significantly by using a mini C-arm rather than a conventional C-arm. However, protective lead garments, such as a thyroid shield and apron, should be applied to minimize radiation exposure to susceptible organs, even during use of mini C-arm fluoroscopy. © The Author(s) 2015.

  1. Intercomparison measurements with albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Alberts, W.G.; Kluge, H.

    1994-01-01

    Since the introduction of the albedo dosimeter as the official personal neutron dosimeter the dosimetry services concerned have participated in intercomparison measurements at the PTB. Their albedo dosimeters were irradiated in reference fields produced by unmoderated and D 2 O-moderated 252 Cf neutron sources in the standard irradiation facility of the PTB. Six fields with fluences different in energy and angle distribution could be realised in order to determine the response of the albedo dosimeter. The dose equivalent values evaluated by the services were compared with the reference values of the PTB for the directional dose equivalent H'(10). The results turned out to be essentially dependent on the evaluation method and the choice of the calibration factors. (orig.) [de

  2. Application of solid dosimeter to radiation control

    International Nuclear Information System (INIS)

    Tsujimoto, Tadashi

    1988-01-01

    Individual exposure dose measuring devices are used to measure the dose of each person in facilities using radiations. Major devices of this type currently used in Japan include the film badge, thermoluminescence dosimeter, portable radiation dosimeter and fluorescent glass dosimeter. All of these devices except the portable radiation dosimeter are of a solid type. Various portable-type spatial dose rate measuring devices, generally called survey meters, are available to determine the spatial distribution of radiations. Major survey meters incorporates an ionization chamber, GM counter tube or scintillation counter, while BF 3 counting tubes are available for neutron measurement. Of these, the scintillation dosimeter is of a solid type. A new scintillation survey meter has recently been developed which incorporated a discrimination bias modulation circuit. Dosimeters incorporating an ionization chamber or a GM counter tube are generally used as portable alarms. Recently, a new solid-type alarm has been developed which incorporates a solicon radiation detector. Microcomputers are also used for self-diagnosis, data processing, automatic calibration, etc. (Nogami, K.)

  3. Personnel neutron dosimeter evaluation and upgrade program

    International Nuclear Information System (INIS)

    Fix, J.J.; Brackenbush, L.W.; McDonald, J.C.; Roberson, P.L.; Holbrook, K.L.; Endres, G.W.R.; Faust, L.G.

    1983-01-01

    Evaluation of neutron dosimeters from twelve DOE laboratories involved about 2500 dosimeter irradiations at both PNL and the National Bureau of Standards (NBS) using neutrons of several energies and doses and several irradiations for good statistical analysis. The data and their analyses will be published later. The information evaluates accuracy, precision, lower dose detection, and energy response of dosimeters

  4. Mexican gems as thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Azorin N, J.

    1979-01-01

    The possibility of using naturally ocurring mexican gems as thermoluminescent dosimeters (TLD) was investigated. Twelve types of gems were irradiated with X and gamma rays in order to determinate their dosimetric properties. Three of these gems showed favorable thermoluminescent characteristics compared with commercial thermoluminescent dosimeters. The plots of their thermoluminescent response as a function of gamma dose are straight lines on full log paper in the dose range 10 -2 to 10 2 Gy. The energy dependence is very strong to low energies of the radiation. Their fading was found to be about 5%/yr. and they may be annealed as reused without loss in sensitivity. Therefore, these gems can be used as X and gamma radiation dosimeters. (author)

  5. Evaluation of personal integrating dosimeters

    International Nuclear Information System (INIS)

    Correa, C.A.; Bisauta, Mauricio A.

    2007-01-01

    The objective of this work is to analyze the different types of dosimeters present in the international market that are used to provide personal dose monitoring, specifically for external gamma and beta radiation, Hp(10) and Hp (0,07), as well as to add comments of advances in the field of passive and operative dosimetry, and the changes that are being produced in the regulating policy in other countries regarding the use of this devices. The technical specification of each dosimeter has been extracted of different catalogues of products. To conclude, the importance has been stressed in a proper selection of dosimeters with its advantages and disadvantages before its use. (author) [es

  6. Research on the formula of radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Li Huazhi; Xiao Zhenhong; Lin Min; Cui Ying; Chen Kesheng; Chen Yundong; Ye Hongsheng; Lin Jingwen

    2006-10-01

    The formula of radiochromic film dosimeters was studied. Commercially available nylon was used as the matrix, while hexahydroxyethyl pararosaniline cyanide (HPR-CN) and pararosaniline cyanide (PR-CN) that are made in China and other countries were used as the dyes of the dosimeters. the performance of the thin film dosimeters made in CIAE was tested and compared with each other. The formula of the dosimeters was finally confirmed by testing its physical properties and dosimetric characteristics. (authors)

  7. Development and dosimetric evaluation of radiochromic PCDA vesicle gel dosimeters

    International Nuclear Information System (INIS)

    Sun, P.; Fu, Y.C.; Hu, J.; Hao, N.; Huang, W.; Jiang, B.

    2016-01-01

    The gel dosimeter has the unique capacity in recording radiation dose distribution in three dimensions (3D), which has the specific advantages in dosimetry measurements where steep dose gradients exist, such as in intensity-modulated radiation therapy (IMRT), brachytherapy and so on. Some 3D dosimeters, such as Fricke gel dosimeters, polymer gel dosimeters, the PRESAGE plastic dosimeters and micelle gel dosimeters have appeared recently. However, there are several disadvantages of these 3D dosimeters limit their application in radiotherapy dose verification. In this study, a novel radiochromic gel dosimeter for 3D dose verification of radiotherapy was developed by dispersing nanovesicles self-assembled by 10,12-pentacosadiynoic acid (PCDA) into the tissue equivalence gel matrix. The characteristics of radiochromic PCDA vesicle gel dosimeters were evaluated. The results indicate that these radiochromic gel dosimeters have good linear dose response to X-ray irradiation in the dose range of 2–100 Gy. In addition, the radiochromic gel dosimeters breakthrough the limitations of the existing gel dosimeters such as diffusion effect, post-radiation effect, and poor forming ability. The response of the gel dosimeter does not show any dose rate dependence, energy dependence and temperature effect, and there was no obvious difference in the gel response between single and cumulative dose of fractional irradiation. Hence, the radiochromic PCDA vesicle gel dosimeters developed in this study could be generally applied to 3D dose verification in radiotherapy. - Highlights: • A novel radiochromic gel dosimeter was developed by dispersing PCDA nanovesicles into the tissue equivalence gel matrix. • This nanovesicle overcomes the dose image blurring caused by the diffusion of monomer molecules. • This nanovesicle limits the polymer chain growth, so as to reduce the post-radiation effect. • The gel matrixes possess excellent tissue equivalence and elastic strength, which

  8. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  9. Use of wrist albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1983-01-01

    We are developing a wrist dosimeter that can be used to measure the exposure at the wrist to x-rays, gamma rays, beta-particles, thermal neutrons and fast neutrons. It consists of a modified Hankins Type albedo neutron dosimeter and also contains three pieces of CR-39 plastic. ABS plastic in the form of an elongated hemisphere provides the beta and low energy x-ray shielding necessary to meet the requirement of depth dose measurements at 1 cm. The dosimeter has a beta window located in the side of the hemisphere oriented towards an object being held in the hands. A TLD 600 is positioned under the 1 cm thick ABS plastic and is used to measure the thermal neutron dose. At present we are using Velcro straps to hold the dosimeter on the inside of the wrist. 9 figures

  10. Evaluation of fading factor and self-dose for glass dosimeter and thermoluminescence dosimeter

    International Nuclear Information System (INIS)

    Yamasaki, T.; Yamanishi, H.; Miyake, H.; Komura, K.

    2000-01-01

    The glass dosimeter (GD) and thermoluminescence dosimeter (TLD) are both passive radiation detectors. They are often used for measuring environmental radiation. In order to measure low dose rate preciously, it is important to evaluate decreased dose due to fading and self-dose during the exposure period. We evaluate the fading factor and self-dose of thee passive detectors, GD and TLD. We select Ogoya tunnel for the experiment. The tunnel is suitable field for measuring faded dose and self-dose because it is low cosmic radiation. At the center of the tunnel, the intensity of cosmic ray is reduced to about 1/177 than the outside of the funnel. We prepared two sets of dosimeters. One set consists of five GDs, five TLDs and some pre-irradiated GDs and TLDs that are exposed to standard radiation of 4 mGy by Cs-137. These dosimeters are put in the 10 cm thick lead box in order to shield the terrestrial gamma ray. One set is located at the center of the tunnel and the other is the outside of the funnel. The dosimeters were exposed for ten months, from May 1998 to March 1999. After the exposure, the readers of dosimeters are carried into the funnel to read out the signals promptly as soon as taking out the dosimeters. As a result of the measurement, four kinds of data are taken for GD and TLD respectively. Assumed that the self-dose and cosmic ray are constant during exposure, the four independent unknown quantities, a self-dose a dose due to cosmic ray and a fading coefficient at the center of the tunnel and at the outside, are considered. Therefore four simultaneous equations should be obtained. From these examinations, the faded dose of GD is less than 1%, but that of TLD is about 16% during ten months. The coefficient for compensation of fading of GD and TLD is given as the half of the each value. At the outside of the tunnel, the measured dose rate of cosmic ray that can pass through the 10 cm lead is evaluated to be about 16 nGy/h by both detectors. The self

  11. Comparison of electronic digital alarm dosimeter with TLD

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Pandey, J.P.N.; Shinde, A M.; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Control of exposure of radiation workers on day to day basis has been made easy by use of semiconductor based electronic digital dosimeter. Additional dose constraints of 10 mSv for occupational radiation workers have made it essential to use such type of digital personal monitoring devices. In addition to conventional ionisation chamber based direct reading dosimeters, additional 35 semiconductor based digital dosimeters model MGP DMC 2000 S were used for the monitoring of personal exposure of radiation workers in a spent fuel reprocessing plant. Though better least count and good performance over a wide range of dose rate are claimed by the manufacture, before making use of such dosimeter on large scale, validation of its performance is required to be checked. In this paper, an effort is made to determine the performance of digital dosimeters, by exposing these digital dosimeters in combination with TLDs at different radiation levels and obtained results were compared and analysed

  12. Mini-open transforaminal lumbar interbody fusion.

    Science.gov (United States)

    Tangviriyapaiboon, Teera

    2008-09-01

    To demonstrate the surgical technique and advantages of the mini-open transforaminal approach for lumbar interbody fusion (TLIF) combined with transpedicular screw fixation. Clinical and radiographic results were assessed to determine the clinical outcomes in twelve consecutive patients selected for minimally invasive access (mini-open technique) for TLIF in Prasat Neurological Institute. A retrospective analysis was performed on 12 patients (age range, 38-74 yr; mean, 54. 8 yr) who underwent mini-open transforaminal approach for lumbar interbody fusion (TLIF) combined with transpedicular screw fixation between September 2006 and June 2008. The titanium pedicle screws were introduced bilaterally through the 3.5 cm length, skin incisions with Spine Classics MLD- system retractor, autologous bone graft were inserted to perform TLIF in all patients. Eight patients were augmented anterior column support with titanium interbody cage, unilateral cage insertion in four patients and the others were inserted bilaterally interbody cages. Six patients presented with low back pain and associated radiculopathy, and six presented with low back pain only. Transforaminal lumbar interbody fusion was performed at L3-L4 in two patients, L4-L5 in four patients, L5-S1 in five patients, and two levels fusion in one patient. All patients were able to ambulate after spinal fusion. The patients were able to walk within 1.4 days (range 1-2 days). The hospital stay averaged 4.4 days (range 3-7 days). Periodic follow-up took place 1 to 21 months after surgery (mean, 7.4 months). The radiological fusion was archived in all nine patients who were operated on more than two months age. The other three patients who had been follow-up less than two months were probably fusion on the 1-month followed-up radiological examination. The use of mini-open technique for pedicle screw instrumentation with spinal fusion procedure provides excellent clinical results and may be an operation of choice for

  13. Personal noise dosimeters: Accuracy and reliability in varied settings

    Directory of Open Access Journals (Sweden)

    Sheri Lynn Cook-Cunningham

    2014-01-01

    Full Text Available This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units in both pink noise (PN environments and natural environments (NEs through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3 Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b all dosimeters were within the recommended American National Standard Institute (ANSI SI.25-1991 standard of ±2 dB (A of a reference measurement; and (c all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students. This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured

  14. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  15. Neutron dosimeter utilizing CR-39

    International Nuclear Information System (INIS)

    Souza, H.V.C. de.

    1991-05-01

    A personnel neutron dosimeter has been developed with discretization in a wide range of energies of real interest, utilizing the CR-39 polymer, to detect recoil protons in the fast range, and alpha particles in the thermal and epithermal ranges, with possibility to be disposed in the IRD/CNEN's conventional film badge suport. They are presented, abstractly, the difficulties and importance of the neutron dosimetry, beyond the general objectives that motivated this work execution. The details of the materials utilized in the dosimeter confection, and the experimental methodology employed to obtain the performance curves are presented. The results about linearity response of the dosimeter with respect to equivalent dose, in a wide range of doses, and about the verified angular dependence are analysed. (author)

  16. The 'mini brain' appearance of plasmacytoma in the appendicular skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Subhas, N.; Sundaram, M. [Cleveland Clinic, Department of Diagnostic Radiology, Cleveland, OH (United States); Bauer, T.W. [Cleveland Clinic, Department of Anatomic Pathology, Cleveland, OH (United States); Joyce, M.J. [Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, OH (United States)

    2008-08-15

    We report on the case of a 70-year-old woman presenting with right hip pain. Radiographs of the right hip demonstrated a well-defined large lytic lesion in the proximal right femur, with prominent trabeculae situated peripherally and extending into the lesion in a 'spoke-wheel' pattern. Magnetic resonance imaging (MRI) demonstrated solid enhancing marrow-replacing lesion, with intervening linear nonenhancing areas of low T2 signal intensity. The MRI appearance resembled that of a small brain or 'mini brain'. Biopsy specimen demonstrated predominantly mature plasma cells, with occasional admixed immature forms. A diagnosis of plasmacytosis, consistent with myeloma, was made. This case illustrates a rare but seemingly characteristic 'mini brain' appearance of plasmacytoma, which, to date, has only been reported in the spine and has not been observed in other bony lesions. (orig.)

  17. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  18. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Morsy, M.A.

    2008-01-01

    This study attempts to overcome some of the reported discrepancies in alanine-EPR reproducibility that may be related to alanine dosimeter preparation and/or EPR spectrometer settings. The dosimeters were prepared by packing pure polycrystalline L-α-alanine directly as supplied by the manufacturer in glass tubes. This dosimeter production scheme avoids any possible contribution to the EPR signal from a binding material. The dosimeters were irradiated with gamma ray to low-dose ranges typical for medical therapy (0-20 Gy). Special attention has been paid to the study of minimum detectable dose, measurement repeatability and reproducibility, and post-irradiation stability. The dosimeter exhibited a linear dose response in the dose range from 0.1 to 20 Gy. These positive properties favor the polycrystalline alanine-in-glass tube as a radiation dosimeter

  19. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  20. Bronchial dosimeter for radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, T.K.; Yu, K.N.; Nikezic, D.; Haque, A.K.M.M. [City University of Hong Kong, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2000-05-01

    Traditionally, assessments of the bronchial dose from radon progeny were carried out by measuring the unattached fraction (f{sub p}) of potential alpha energy concentration (PAEC), the total PAEC, activity median diameters (AMDs) and equilibrium factor, and then using dosimetric lung models. A breakthrough was proposed by Hopke et al. (1990) to use multiple metal wire screens to mimic the deposition properties of radon progeny in the nasal (N) and tracheobronchial (T-B) regions directly. In particular, they were successful in using four layers of 400-mesh wire screens with a face velocity of 12 cm s{sup -1} for the simulation of radon progeny deposition in the T-B region. Oberstedt and Vanmarcke (1995) carried out precise calibrations for the system, and named the system as the 'bronchial dosimeter'. Based on these, Yu and Guan (1998) proposed a portable bronchial dosimeter similar to a normal measurement system for radon progeny or PAEC and consisted of only a single sampler and employed only one 400-mesh wire screen and one filter. However, all these 'bronchial dosimeters' in fact only determined the fraction of potential alpha energy from radon progeny deposited in the T-B region, which required certain assumptions and calculations to further give the final bronchial dose. In the present work, a true 'bronchial dosimeter' was designed, which consisted of three 400-mesh wire screens and a filter. With a face velocity of 11 cm s{sup -1}, the deposition pattern on the wire screens was found to satisfactorily match the variation of the dose conversion factor (in the unit of mSv/WLM) with the size of radon progeny from 1 to 1000 nm. In this way, this bronchial dosimeter directly gave the bronchial dose from the alpha counts recorded on the wire-screens and the filter paper. With the development of this bronchial dosimeter, the present practice of 'dose estimation' from large-scale radon surveys can be replaced by large

  1. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  2. Calibration and testing of the DMG gamma dosimeter

    International Nuclear Information System (INIS)

    Dolgirev, E.I.

    1987-01-01

    25-1000 nGy/h (2.5-1000 μrad/h) absorbed dose gamma dosimeter for measuring the efficient equivalent irradiation dose for population is developed. It has two subranges 1000 nGy/h and 250 nGy/h. Results of dosimeter calibration and testing are presented. The dosimeter error for both subranges is less than 10%

  3. CRRES dosimeter simulations

    International Nuclear Information System (INIS)

    Auchampaugh, G.; Cayton, T.

    1993-04-01

    Conflicting data have been obtained from electron instruments aboard CRRES (Combined Release and Radiation Effects Satellite). To gain insight and to help in the interpretation of the data, we have calculated electron- and proton-flux and dose response functions for the four domes of the CRRES dosimeters using the Los Alamos Monte Carlo radiation transport codes. The response functions were calculated for electron and proton energies representative of those present in the space radiation environment. We also calculated the response of the dosimeters to a model radiation environment for orbit 607, which occurred on April 1, 1991 and compared the results to the measured values. The electron and proton components of the radiation environment were calculated using the solar maximum versions of the AE8 and AP8 models, namely, AE8MAX and AP8MAX. To facilitate the second task, we wrote two FORTRAN programs (CRRESunderscoreSIMP for AP8MAX and CRRESunderscoreSIME for AE8MAX) to read in a standard CRRES data file and to produce a comparison file of the calculated and measured values for all four dosimeter domes.The FORTRAN code will be available to the Phillips Laboratory for their use in making comparisons to other orbital data

  4. Dose measurement during defectoscopic work using electronic personal dosimeters

    International Nuclear Information System (INIS)

    Smoldasova, J.

    2008-01-01

    Personal monitoring of the external radiation of radiation, personnel exposed to sources of ionizing radiation at a workplace is an important task of the radiological protection. Information based on the measured quantities characterizing the level of the exposure of radiation personnel enable to assess the optimum radiological protection at the relevant workplace and ascertain any deviation from the normal operation in time. Different types of personal dosimeters are used to monitor the external radiation of radiation personnel. Basically, there are two types of dosimeters, passive and active (electronic). Passive dosimeters provide information on the dose of exposure after its evaluation, while electronic dosimeters provide this information instantly. The goal of the work is to compare data acquired during different working activities using the DMC 2000 XB electronic dosimeters and the passive film dosimeters currently used at the defectoscopic workplace. (authors)

  5. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet......Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  6. Role of gel dosimeters in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Khajeali, Azim; Farajollahi, Ali Reza; Khodadadi, Roghayeh; Kasesaz, Yaser; Khalili, Assef

    2015-01-01

    Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process. - Highlights: • Gel dosimeters have been investigated. • Conventional dosimetric proses of BNCT has been investigated. • Role of gel dosimeters in BNCT has been investigated

  7. Polymer gel dosimeter based on itaconic acid

    International Nuclear Information System (INIS)

    Mattea, Facundo; Chacón, David

    2015-01-01

    A new polymeric dosimeter based on itaconic acid and N, N’-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158 cGy/min, 226 cGy min and 298 cGy/min with doses up to 1000 Gy. The dosimeters presented a linear response in the dose range 75–1000 Gy, sensitivities of 0.037 1/Gy at 298 cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. - Highlights: • A novel polymer gel dosimeters based on itaconic acid is presented and characterized. • The typical linear trend of the dose behavior in a specific dose range was found. • Different gel structures were formed when oxygen and an antioxidant were present. • Absorbed dose is univocally correlated with optic absorbance and Raman spectroscopy. • Itaconic acid appears as a reliable radiation dosimeter that may be further improved.

  8. US progress on the development of CR-39 based neutron dosimeters

    International Nuclear Information System (INIS)

    Hadlock, D.E.

    1987-06-01

    Historically at US nuclear facilities, two types of personnel neutron dosimeters have been in routine use: nuclear track emulsion-Type A (NTA) film and thermoluminescent dosimeter (TLD)-albedo. Both of these dosimeters have energy-dependent responses. Therefore, the neutron energy spectra must be known, to interpret the dosimeter results properly. A new state-of-the-art dosimetry system has been developed within the US Department of Energy (US DOE) Personnel Neutron Dosimeter Evaluation and Upgrade Program. This system is called the combination thermoluminescent dosimeter/track etch dosimeter (TLD/TED). This paper briefly describes US DOE research currently being conducted to further enhance the TED portion of the combination TLD/TED system. The research areas involved include dose sensitivity, neutron energy range, specialized radiators, self-developing dosimeters, and neutron spectrometry. 1 fig., 1 tab

  9. X-rays individual dose assessment using TLD dosimeters

    International Nuclear Information System (INIS)

    Salas, Carlos

    2008-01-01

    This paper describes the methodology used in Embalse NPP for measuring individual X-ray dose in dentists and radiologists, who work in areas near the plant. Personnel is provided with TLD personal dosimeters for thoracic use, as well as TLD ring dosimeters. This individual X-ray dosimetry is fundamental in order to know the effective energy coming from the radiation field, since the dosimetry factors depend on it. On the other hand, the response of the TLD crystals also depends of the effective energy; this accentuates the problem when assessing the individual dose. The X-ray dosimeter must simultaneously determine the value of the effective energy and the corresponding dose value. The basic principle for determining effective energy is by using at least two different TLD materials covered by filters of different thickness. The TLD materials used have totally energy responses. Therefore, different readouts from each of the crystals are obtained. The ratio between both readouts provides a factor that depends of the effective energy but that is 'independent' from the exposure values irradiated to the dosimeter. The Personal TLD dosimeter currently in use is Bicron-Harshaw. It comprises a carrier model 8807. This carrier contains a card model 2211 which groups two TLD 200 crystals and two TLD 100 crystals. It has internal filters at each side of the TLD 200 crystals. The periodical calibration of these dosimeters consists in the irradiation of some dosimeters with different X-ray energy beams in the National Atomic Energy Commission (CNEA). This dosimeter was used, by the National Regulatory Authority (ARN) in several comparisons, always getting satisfactory results. (author)

  10. An Emergency Dosimeter for Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J; Nilsson, R

    1960-05-15

    A neutron dosimeter suitable for single emergency exposures is described. The dosimeter is furnished with detectors for thermal, epi-thermal and fast neutrons. This means that three of the constants by which the spectrum of the incident neutron flux is approximated, can be determined. The dose calculated from these approximated spectra is compared to the dose from spectra obtained in different standard spectra of types which may be expected in a radiation accident.

  11. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  12. Fiber-optic dosimeters for radiation therapy

    Science.gov (United States)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  13. Silicon Diode Dosimeter for Fast Neutrons

    International Nuclear Information System (INIS)

    Svansson, L.; Widell, C.O.; Swedberg, P.; Wik, M.

    1968-11-01

    The change of the current-voltage characteristics of a small silicon diode is used as a measure of fast neutron dose in the Fast Neutron Dosimeter 5422. This change is permanent and therefore it is possible to integrate doses over a long period of time. Doses from some rad up to 1000 rad can be measured and the information stored is not destroyed during readout. Considerable research work in this field has previously been carried out by the Swedish Institute for National Defence in collaboration with the Institute of Semiconductor Research Stockholm. The present investigation has been made in order to establish the possibilities of the dosimeter for practical applications and to study the variations of important parameters as a function of the production process. In particular the following parameters have been studied: - dose sensitivity, - energy dependence; - fading effect; - temperature influence; - maximum measurable dose. In general one might conclude that the dosimeter 5422 well fulfills requirements usually specified for a dosimeter for field service. Temperature influence and fading effect are of little practical importance within the recommended range of measurement

  14. Silicon Diode Dosimeter for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Svansson, L; Widell, C O; Swedberg, P [The Inst. of Semiconductor Researc h, Stockholm (Sweden); Wik, M [The Swedish Institute for National Defence, Sun dbyberg (Sweden)

    1968-11-15

    The change of the current-voltage characteristics of a small silicon diode is used as a measure of fast neutron dose in the Fast Neutron Dosimeter 5422. This change is permanent and therefore it is possible to integrate doses over a long period of time. Doses from some rad up to 1000 rad can be measured and the information stored is not destroyed during readout. Considerable research work in this field has previously been carried out by the Swedish Institute for National Defence in collaboration with the Institute of Semiconductor Research Stockholm. The present investigation has been made in order to establish the possibilities of the dosimeter for practical applications and to study the variations of important parameters as a function of the production process. In particular the following parameters have been studied: - dose sensitivity, - energy dependence; - fading effect; - temperature influence; - maximum measurable dose. In general one might conclude that the dosimeter 5422 well fulfills requirements usually specified for a dosimeter for field service. Temperature influence and fading effect are of little practical importance within the recommended range of measurement.

  15. Investigation of self-indicating radiation personal dosimeter

    International Nuclear Information System (INIS)

    Xia Wen; Ye Honsheng; Lin Min; Xu Lijun; Chen Kesheng; Chen Yizhen

    2014-01-01

    A self-indicating radiation personal dosimeter was investigated using radiation sensitive material diacetylene monomer PCDA, which was a component of the polymerization system. The substrate material, solvent, sensitive material, solution temperature, thickness of film and the preparation method were studied. The dosimeter colour changes from white to blue when exposed 0.1-2.5 Gy, and the linearly dependent coefficient of the exposure response is 0.9998, the stability of absorbency in two weeks after exposure is testified well. It can be used as self-indicating radiation alert personal dosimeter. (authors)

  16. SU-G-IeP3-02: Characteristics of In-Vivo MOSFET Dosimeters for Diagnostic X-Ray Low-Dose Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, S; Ali, S; Harper, K; Liang, Q; Serratore, D [Temple University Hospital, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To correct in-vivo metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters dependence on X-ray energy, dose and dose rate, and temperature in order to measure doses or exposures on several anatomic points of interest undergoing some routine radiographs. Methods: A mobile MOSFET system (BEST Medical) was carefully calibrated with X-ray at kVp of 70, 80, 100, 120, and 138 kVp, phantom temperatures at 0, 21, and 43 oC, and exposure range from 0.01 to 10 R confirmed with Raysafe and RadCal dosimeters. The MOSFETS were placed on the midline bladder or uterus, left pelvic iliac artery, left abdominal above iliac crest, abdominal midline anterior at inferior margin of stomach, and left pectoral of a large and a small body-size cadavers undergoing AP/PA chest and lumber spine radiographs using manual and automatic exposure control (AEC) with and without lead shielding. MOSTFETs and TLD chips were also placed on the stomach, sigmoid, pubic symphysis, left and right pelvic walls of another cadaver for AP pelvic manual or AEC radiography prior to and after a left hip metal implant. Results: Individual MOSFET detectors had various low-dose limits in ranged from 0.03 to 0.08 R, nonlinear response to X-ray energy, and significant temperature effect of 15%. By accumulating 10 manual exposures and 20 AEC exposures, we achieved dose measured accuracy of 6%. There were up to 8 fold increases for AEC exposure of spine and chest X-ray procedure from no shielding to with shielding. For pelvic radiography, exposure to public symphysis was the highest even higher than that of the skin. After hip implant, AEC pelvic radiograph increase exposure by 30 to 200% consistent with results of TLDs. Conclusion: Dependence of energy, temperature and dose limit were accurately corrected. We have found significant exposure for those clinical pr°ocedures and the study provided evidences for developing new clinical procedures.

  17. Clinical dosimeter based on diamond detector

    International Nuclear Information System (INIS)

    Chervjakov, A.M.; Ljalina, L.I.; Ljutina, G.J.; Khrunov, V.S.; Martynov, S.S.; Popov, S.A.

    2002-01-01

    Full text: Diamond detectors have found application in the relative dosimetry and their parameters have been described elsewhere. Today, the exclusive producer of the diamond detector is the Institute of Physical and Technical Problems, Russia, and exclusive dealer is the PTW-Freiburg. The main features of the diamond detector are good long time stability, suitable range of the energy dependence for photon and electron beams in clinical use, independence of the measured date from temperature and pressure. The high sensitivity per volume unit of the diamond detector (1500 times higher than ionization chamber) allowed using detectors with very small volume (1-5 mm 3 ) and rather simple electronics for ionization current registration. The new dosimeter consists of the diamond detector itself, 40 m registration cable, pre-amplifier, micro-processor block for data handling and absorbed dose calculation using the calibration factor of diamond detector in terms of absorbed dose to water. Dosimeter has the possibility to work with PC using standard RS-232 interface. The main features of the dosimeter are as follows: the range of dose rate measurements for photon, electron and proton beams is within 0.01-1.0 Gy/s; the energy ranges for photons are 0.08-25 MeV, and 4-25 MeV for electrons, with energy dependence no more than ±2%; the main uncertainty of the dose measurements is within ±2%; the pre-irradiation dose for diamond detector is no more than 10 Gy; the sensitive volume of the used diamond detectors is within 1-5 mm 3 ; the weight of the dosimeter no more than 2 kg. The new dosimeter was evaluated at the Central Research Institute of Roentgenology and Radiology, St. Petersburg, Russia to verify its performance. The dosimeter was used as a reference instrument for dose measurements at Cobalt-60 unit, SL75-5 and SL-20 linear accelerators and the test results have shown that the device have met the specifications. It is planned to produce dosimeter as serial device by

  18. Procedure for the delivering of personal short-term visitor dosimeters

    CERN Document Server

    2016-01-01

    Update of the administrative procedure for delivering a personal short-term visitor dosimeter to associated members of CERN’s personnel.   Associated members of the CERN personnel may request a short term visitor dosimeter if working only in Supervised Radiation Areas and for a period of less than two months in a calendar year. Such a dosimeter is delivered without the need to provide the usual regular documents: radiation passport, certificate from the home institute or medical certificate. Periodic verification will ensure that holders of these personal dosimeters do not exceed the maximum allowed personal dose for this type of dosimeter, which is the same as the limit for members of the public at 1 mSv per year. From now on, the two-month period can be spread over a calendar year, offering greater flexibility to users coming to CERN for multiple short periods. Please return unused dosimeters Persons leaving CERN for a period of more than one month should return their dosimeter to the D...

  19. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    International Nuclear Information System (INIS)

    Lanuza, L.G.; Cabalfin, E.G.; Kojima, T.; Tachibana, H.

    1999-01-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author)

  20. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lanuza, L G; Cabalfin, E G [Philippine Nuclear Research Institute, Quezon City (Philippines); Kojima, T; Tachibana, H [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research institute, Takasaki (Japan)

    1999-03-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author) 8 refs, 3 figs, 4 tabs

  1. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  2. Calibration of dosimeters at 80-120 keV electron irradiation

    DEFF Research Database (Denmark)

    Miller, A.; Helt-Hansen, J.

    to calibrate thin-film dosimeters (Risø B3 and alanine films) by irradiation at the 80–120 keV electron accelerators. This calibration was compared to a 10MeV calibration, and we show that the radiation response of the dosimeter materials (the radiation chemical yield) is constant at these irradiation energies....... However, dose gradients within the dosimeters, when it is irradiated at low electron energies,mean that calibration function here will depend on both irradiation energy and the required effective point of measurement of the dosimeter. These are general effects that apply to any dosimeter that has a non...

  3. Evaluation of optical fibres as gamma radiation dosimeter

    International Nuclear Information System (INIS)

    Bohra, Dinesh; Chaudhary, H.S.; Panwar, Lalit; Vaijapurkar, S.G.; Bhatnagar, P.K.; Dasgupta, K.

    2005-01-01

    Semiconductor base gamma and neutron sensors are the fastest and popular dosimeters and are in competition with Thermoluminescence (TL) and Radio photoluminescence (RPL) dosimeters. All over the world armed forces require a dosimeter which records cumulative doses of ionizing radiations from mcGy to 10 Gy and is readable repeatedly without loss of dose information. TL dosimeters do not meet the criteria and RPL dosimeter meet the expectations and are in use by armed forces. Technologists have used laser as an excitation source to stimulate the glass and have achieved success in recording gamma doses of occupational/accidental span (mcGy to 10 Gy). However synthesizing RPL glass batches with exactly same characteristics predoses is a difficult task. Silicon base phosphorous doped step index multimode optical fibre can be made in a significant quantity and large number of dosimeters from it can be achieved with uniform predose. The radiation induced transmission loss gives a measure of gamma dose which is cumulative, readable repeatedly without loss of information. Assorted composition, core dia optical fibres have been synthesized and evaluated for dose linearity, dose rate independence, fading, length optimization. Here in is described some results of recent experiments and sensitivities achieved. (author)

  4. Monte Carlo validation and optimisation of detector packaging for spectroscopic dosimetry for in vivo urethral dosimetry during low dose rate brachytherapy

    International Nuclear Information System (INIS)

    Nourbehesht, L.K.; Cutajar, D.L.; Guatelli, S.; Rosenfeld, A.B.

    2015-01-01

    The urethral mini-dosimeter, developed by the Centre for Medical Radiation Physics, University of Wollongong, uses spectroscopic dosimetry to provide real time point dose measurements along the urethra during low dose rate prostate brachytherapy. Spectroscopic dosimetry uses the measured spectrum of the treatment isotope to estimate the dose rate at the point of measurement, however, the silicon mini-detectors employed in the urethral mini-dosimeter require water proof encapsulation which must be capable of providing electromagnetic shielding without greatly increasing the size of the probe. The introduction of non-tissue equivalent materials within the encapsulation can change the spectrum of radiation incident on the detector, which may influence the application of spectroscopic dosimetry within the urethral dosimeter. The Monte Carlo code Geant4 was adopted to study the effect of encapsulation on the operation of the urethral mini-dosimeter, as well as to determine whether an appropriate thickness of aluminium shielding was possible for electromagnetic screening. The depth dose response and angular dependence of the urethral mini-dosimeter with three thicknesses of aluminium shielding (20, 50, 100 µm) was compared with the urethral mini-dosimeter without aluminium shielding. The aluminium shielding had the effect of increasing the depth dose response (up to 3 % within 30 mm and up to 5 % within 50 mm), slightly reduced the azimuth angular dependence and slightly increased the polar angular dependence. The 100 µm thick shielding provided the least azimuth angular dependence (±2 %) and provided a polar angular dependence of ±1.4 % within the angles of −45° to 45°.

  5. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  6. Limitations of commonly used thick-element personal dosimeters

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1983-01-01

    In the ANSI Standard N13.11, accepted in June 1982, radiation dose depths of 1.0 cm and 0.007 cm in tissue for protection dosimetry have been adopted for deep and shallow dose equivalent estimations respectively. This standard is presently used for a mandatory personnel dosimetry performance testing program in the United States. Estimation of shallow-dose equivalent using a two-element dosimeter is described under the guidelines of this standard and the dosimetry practices followed by most dosimeter processors. A mathematical formulation, correlating a dosimeter response and shallow-dose equivalent factors at different energies, is presented. Also, the performance of a two-element thermoluminescent dosimeter is examined and the shallow-dose equivalent response results, both for the beta particles and photons, are discussed

  7. Solid-state personal dosimeter using dose conversion algorithm

    International Nuclear Information System (INIS)

    Lee, B.J.; Lee, Wanno; Cho, Gyuseong; Chang, S.Y.; Rho, S.R.

    2003-01-01

    Solid-state personal dosimeters using semiconductor detectors have been widely used because of their simplicity and real time operation. In this paper, a personal dosimeter based on a silicon PIN photodiode has been optimally designed by the Monte Carlo method and also developed. For performance test, the developed dosimeter was irradiated within the energy range between 50 keV and 1.25 MeV, the exposure dose rate between 3 mR/h and 25 R/h. The thickness of 0.2 mm Cu and 1.0 mm Al was selected as an optimal filter by simulation results. For minimizing the non-linear sensitivity on energy, dose conversion algorithm was presented, which was able to consider pulse number as well as pulse amplitude related to absorbed energies. The sensitivities of dosimeters developed by the proposed algorithm and the conventional method were compared and analyzed in detail. When dose conversion algorithm was used, the linearity of sensitivity was better about 38%. This dosimeter will be used for above 65 keV within the relative response of ±10% to 137 Cs

  8. A PC based thin film dosimeter system

    DEFF Research Database (Denmark)

    Miller, A.; Hargittai, P.; Kovacs, A.

    2000-01-01

    A dosimeter system based on the Riso B3 dosimeter film, an office scanner for use with PC and the associated software is presented. The scanned image is analyzed either with standard software (Paint Shop Pro 5 or Excel) functions or with the computer code "Scanalizer" that allows presentation...

  9. Organic liquids as ''activ media'' in a holographic ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some types of organic liquids for using as activ media in a holographic ionizing radiation dosimeter are presented. One outlined the advantages of the holographic dosimeter comparatively with those of common used dosimeters. One presented the advantages of utilization of the organic liquids comparatively with another chemical systems used in a holographic ionizing radiation dosimeter. (author)

  10. Radiation measured for ISS-Expedition 12 with different dosimeters

    International Nuclear Information System (INIS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Weyland, M.

    2007-01-01

    Radiation in low Earth orbit (LEO) is mainly from Galactic Cosmic Rays (GCR), solar energetic particles and particles in South Atlantic Anomaly (SAA). These particles' radiation impact to astronauts depends strongly on the particles' linear energy transfer (LET) and is dominated by high LET radiation. It is important to investigate the LET spectrum for the radiation field and the influence of radiation on astronauts. At present, the best active dosimeters used for all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors; the best passive dosimeters are thermoluminescence dosimeters (TLDs) or optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation for space mission Expedition 12 (ISS-11S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the mission with these different dosimeters. This paper introduces the operation principles for these dosimeters, describes the method to combine the results measured by CR-39 PNTDs and TLDs/OSLDs, presents the experimental LET spectra and the radiation quantities

  11. An approved personal dosimetry service based on an electronic dosimeter

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Campbell, J.I.; Hill, C.E.; Pook, E.A.; Sandford, D.J.

    1991-01-01

    At the Second Conference on Radiation Protection and Dosimetry a paper was presented which, in part, announced the development of an electronic dosimeter to be undertaken in the UK by the National Radiological Protection Board (NRPB) and Siemens Plessey Controls Ltd. This dosimeter was to be of a standard suitable for use as the basis of an approved personal dosimetry service for photon and beta radiations. The project has progressed extremely well and dosimeters and readers are about to become commercially available. The system and the specification of the dosimeter are presented. The NRPB is in the process of applying for approval by the Health and Safety Executive (HSE) to operate as personal monitoring service based on this dosimeter. As part of the approval procedure the dosimeter is being type tested and is also undergoing an HSE performance test and wearer trials. The tests and the wearer trials are described and a summary of the results to date presented. The way in which the service will be organized and operated is described and a comparison is made between the running of the service and others based on passive dosimeters at NRPB

  12. Investigating On Colour Stability Conditions Of Postirradiation Radiochromic Film Dosimeter

    International Nuclear Information System (INIS)

    Nguyen Nguyet Dieu; Doan Binh; Pham Thu Hong; Cao Van Chung; Nguyen Thanh Duoc

    2011-01-01

    B3 dosimeter is a thin film with average thickness of 0.0194 mm, which is supplied by the Gex company, the United States. This dosimeter was influenced by many factors: light, temperature, humidity during and after irradiation process. In fact, B3 film dosimeters will be stable under certain conditions such as tightly sealed packs, controlled irradiation and stored temperature after irradiated. Therefore, investigation of the stability effect of postirradiated B3 film dosimeters on the heating temperature, heating time and storing time is carried out before the absorbed dose is read and followed standard reading procedures. When exposed to ionizing radiation, the dosimeters change from colorless to colour. The absorbed doses are read on a Genesys 20 spectrophotometer at a wavelength of 544 nm. Absorbed dose range is investigated from 0.55 to 80 kGy. Experimental results were indicated that colour stability of the postirradiated dosimeters at a temperature of 65 ± 3 o C for 30 minutes and keeping them in desiccator for 5 minutes before read out. Under these conditions, colour stability of B3 film dosimeter has maintained for 3 months. (author)

  13. SU-E-T-749: Thorough Calibration of MOSFET Dosimeters

    International Nuclear Information System (INIS)

    Plenkovich, D; Thomas, J

    2015-01-01

    Purpose: To improve the accuracy of the MOSFET calibration procedure by performing the measurement several times and calculating the average value of the calibration factor for various photon and electron energies. Methods: The output of three photon and six electron beams of Varian Trilogy linear accelerator SN 5878 was calibrated. Five reinforced standard sensitivity MOSFET dosimeters were placed in the calibration jig and connected to the Reader Module. As the backscatter material was used 7 cm of Virtual Water. The MOSFET dosimeters were covered with 1.5 cm thick bolus for the regular and SRS 6 MV beams, 3 cm bolus for 15 MV beam, 1.5 cm bolus for 6 MeV electron beam, and 2 cm bolus for the electron energies of 9, 12, 15, 18, and 22 MeV. The dosimeters were exposed to 100 MU, and the calibration factor was determined using the mobileMOSFET software. To improve the accuracy of calibration, this procedure was repeated ten times and the calibration factors were averaged. Results: As the number of calibrations was increasing the variability of calibration factors of different dosimeters was decreasing. After ten calibrations, the calibration factors for all five dosimeters were within 1% of one another for all energies, except 6 MV SRS photons and 6 MeV electrons, for which the variability was 2%. Conclusions: The described process results in calibration factors which are almost independent of modality or energy. Once calibrated, the dosimeters may be used for in-vivo dosimetry or for daily verification of the beam output. Measurement of the radiation dose under bolus and scatter to the eye are examples of frequent use of calibrated MOSFET dosimeters. The calibration factor determined for full build-up is used under these circumstances. To the best of our knowledge, such thorough procedure for calibrating MOSFET dosimeters has not been reported previously. Best Medical Canada provided MOSFET dosimeters for this project

  14. Development of bead-type radiophotoluminescence glass dosimeter applicable to various purposes

    International Nuclear Information System (INIS)

    Sato, F.; Toyota, Y.; Maki, D.; Zushi, N.; Kato, Y.; Yamamoto, T.; Iida, T.

    2013-01-01

    Bead-type radiophotoluminescence (RPL) glass dosimeters were well fabricated with a gas-particle jet flame system for glass melting-cooling process. A rod of silver-activated phosphate glass was pulverized into micrometer-size particles. Spherical glass particles were formed from the pulverized glass particles in the high-temperature jet flame owing to the surface tension of the glass material. Some groups of spherical glass particles were irradiated with X-rays and their RPL was demonstrably observed for their exposure to UV light. A flexible RPL glass sheet was also made of bead-type RPL glass dosimeters and was useful for radiation imaging. Bead-type RPL glass dosimeters are expected to be used for dose monitoring in highly radioactively-contaminated area. -- Highlights: ► We developed bead-type radiophotoluminescence glass dosimeters. ► Bead-type glass RPL dosimeters are satisfactorily used as radiation dosimeters. ► A flexible RPL glass sheet is made of bead-type RPL glass dosimeters

  15. Light scattering in optical CT scanning of Presage dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Adamovics, J; Cheeseborough, J C; Chao, K S; Wuu, C S, E-mail: yx2010@columbia.ed

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS' optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  16. Diffusion measurement in ferrous infused gel dosimeters

    International Nuclear Information System (INIS)

    Zahmatkesh, M. H.; Healy, B. J.

    2003-01-01

    Background: The compositions of Ferrous sulphate, Agarose and Xylenol orange dye and Ferrous sulphate, Gelatin and Xylenol orange dye in solution of distilled water and sulphuric acid are two tissue-equivalent gel dosimeters. Ionizing radiation causes oxidation of Fe 2+ ion to Fe 3+ ions which diffuse through the gel matrix and blur the image of absorbed dose over a period of hours after irradiation. Materials and methods: 25 m M sulphuric acid, 0.4 mm ferrous ammonium sulphate, 0.2 mm xylenol orange dye and 1% by weight agarose in distilled water named Agarose and Xylenol orange dye and 0.1 mm ferrous ammonium sulphate, 0.1 mm xylenol orange dye, 50 mm sulphuric acid and 5% by weight gelatin in distilled water named Gelatin and Xylenol orange dye are used as two gel dosimeters. All chemicals were supplied by Sigma Ald ridge Company, Germany. The gels were poured in Perspex casts and were irradiated to a beam of X ray from linear accelerators or X ray machine. Results: In this study diffusion coefficients of Agarose and Xylenol orange dye and Gelatin and Xylenol orange dye dosimeters have been measured through a computer program for different temperature. The ferric ion diffusion coefficient (D) for the Agarose and Xylenol orange dye and Gelatin and Xylenol orange dye dosimeters were measured as (1.19.±0.03) x 10 -2 cm 2 .hr -1 and (0.83±0.03) x 10 -2 cm 2 .hr -1 respectively at room temperature. Conclusion: For both dosimeters the diffusion coefficients decreased with gel storage temperatures down to 6 d ig C . Gelatin and Xylenol orange dye dosimeters have advantage of lower diffusion coefficient for a specified temperature

  17. Development and underground testing of the α dosimeter: a solid state electronic personal radiation dosimeter for uranium miners

    International Nuclear Information System (INIS)

    Parkinson, R.N.; Roze, V.; Shepherd, R.

    1981-01-01

    The αDOSIMETER is a complete, integrated system designed to monitor the immediate worksite of underground miners where the disintegration for radon daughters is a risk to the health of mining personnel. The dosimeter weighing little more than one pound is worn by each miner throughout the entire shift and is powered by the miner's cap lamp battery. After this integration period, the unit is connected to a reading network whereupon the day's data is dumped, calculated and stored. Beginning in July 1980, prototype units were subjected to vigorous underground testing in uranium mines in Canada and the United States and in tin mines in Cornwall, UK. The testing results are summarized and proposals advanced for a typical mine monitoring system utilizing the αDOSIMETER

  18. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  19. Development of a new type thyroid glands dosimeter

    International Nuclear Information System (INIS)

    He Lihua; Song Yiyang; Chen Qin; Chen Yannan

    2000-01-01

    A new dosimeter of 125 I in thyroid gland is described. The dosimeter consists of NaI(Tl) detector and intelligent data recorder. Single-chip-microcomputer is used for data handling. The activity of 125 I in thyroid glands of human being is measured directly, rapidly, and accurately. Furthermore, it can calculate and display the intake, committed dose equivalent and committed effective dose equivalent. The measuring range of 125 I in thyroid glands is 10-2 x 10 6 Bq. The dosimeter has been operating continuously for a long time with high stability

  20. Device for the automatic evaluation of pencil dosimeters

    International Nuclear Information System (INIS)

    Schallopp, B.

    1976-01-01

    In connenction with the automation of radiation protection in nuclear power plants, an automatic reading device has been developed for the direct input of the readings of pencil dosimeters into a computer. Voltage measurements would be simple but are excluded, because the internal electrode of the dosimeter may not be touched, for operational reasons. This paper describes an optical/electronic conversion device in which the reading of the dosimeter is projected onto a Vidicon, scanned, and converted into a digital signal for output to the computer. (orig.) [de

  1. Portable battery-free charger for radiation dosimeters

    International Nuclear Information System (INIS)

    Manning, F.W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter

  2. Portable battery-free charger for radiation dosimeters

    Science.gov (United States)

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  3. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  4. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  5. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    International Nuclear Information System (INIS)

    Braunlich, P.F.; Tetzlaff, W.

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs

  6. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  7. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  8. The BaBar Mini

    International Nuclear Information System (INIS)

    Brown, David N.

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  9. The BaBar mini

    International Nuclear Information System (INIS)

    Brown, David N.; BaBar Collaboration

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  10. Effect of electromagnetic field in fusion facility on electronic personal dosimeter

    International Nuclear Information System (INIS)

    Yamada, Junya; Kawano, Takao; Uda, Tatsuhiko; Shimo, Michikuni

    2010-01-01

    The effect of electromagnetic field on electronic personal dosimeters in a nuclear fusion facility was examined in a Magnetic Resonance Imaging (MRI) examination room instead of a nuclear fusion facility. Three types of electronic personal dosimeters, the PDM-111, the 112, and the 117, were used as typical ones. We surveyed the electromagnetic field distribution and dosimeters were placed at locations with various strengths of the electromagnetic field. The natural radiation dose was measured for about one week. We found that while dosimeters were not affected by the electric field, they were affected by the magnetic one. Dosimeters detected radiation levels less sensitively as the magnetic field strength was increased up to 150 mT. The dosimeters underestimated the environmental radiation dose rates by about 10-30% when the magnetic field strength was larger than 150 mT. We assumed that hall-effect caused the reduction in radiation sensitivity. We concluded that the strength of the magnetic field needs to be carefully considered when an electronic personal dosimeter is used for monitoring both personal and area dose in a nuclear fusion facility. (author)

  11. Implant Mandibular Overdentures Retained by Immediately Loaded Implants: A 1-Year Randomized Trial Comparing the Clinical and Radiographic Outcomes Between Mini Dental Implants and Standard-Sized Implants.

    Science.gov (United States)

    Zygogiannis, Kostas; Aartman, Irene Ha; Parsa, Azin; Tahmaseb, Ali; Wismeijer, Daniel

    The aim of this 1-year randomized trial was to evaluate and compare the clinical and radiographic performance of four immediately loaded mini dental implants (MDIs) and two immediately loaded standard-sized tissue-level (STL) implants, placed in the interforaminal region of the mandible and used to retain mandibular overdentures (IODs) in completely edentulous patients. A total of 50 completely edentulous patients wearing conventional maxillary dentures and complaining about insufficient retention of their mandibular dentures were divided into two groups; 25 patients received four MDIs and 25 patients received two STL implants. The marginal bone loss (MBL) at the mesial and distal sides of each implant was assessed by means of standardized intraoral radiographs after a period of 1 year. Implant success and survival rates were also calculated. Immediate loading was possible for all patients in the first group. In the second group, an immediate loading protocol could not be applied for 10 patients. These patients were treated with a delayed loading protocol. A mean MBL of 0.42 ± 0.56 mm for the MDIs and 0.54 ± 0.49 mm for the immediately loaded STL implants was recorded at the end of the evaluation period. There was no statistically significant difference between the MDIs and the immediately loaded STL implants. Two MDIs failed, resulting in a survival rate of 98%. The success rate was 91%. For the immediately loaded conventional implants, the survival rate was 100% and the success rate 96.7% after 1 year of function. However, in 10 patients, the immediate loading protocol could not be followed. Considering the limitations of this short-term clinical study, immediate loading of four unsplinted MDIs or two splinted STL implants to retain mandibular overdentures seems to be a feasible treatment option. The marginal bone level changes around the MDIs were well within the clinically acceptable range.

  12. UVB DNA dosimeters analyzed by polymerase chain reactors

    International Nuclear Information System (INIS)

    Yoshida, Hiroko; Regan, J.D.; Florida Inst. of Tech., Melbourne, FL

    1997-01-01

    Purified bacteriophage λ DNA was dried on a UV-transparent polymer film and served as a UVB dosimeter for personal and ecological applications. Bacteriophage λ DNA was chosen because it is commercially available and inexpensive, and its entire sequence is known. Each dosimeter contained two sets of DNA sandwiched between UV-transparent polymer films, one exposed to solar radiation (experimental) and another protected from UV radiation by black paper (control). The DNA dosimeter was then analyzed by a polymerase chain reaction (PCR) that amplifies a 500 base pair specific region of λ DNA. Photoinduced damage in DNA blocks polymerase from synthesizing a new strand; therefore, the amount of amplified product in UV-exposed DNA was reduced from that found in control DNA. The dried λ DNA dosimeter is compact, robust, safe and transportable, stable over long storage times and provides the total UVB dose integrated over the exposure time. (author)

  13. A pocket warning γ-dosimeter with numerical display

    International Nuclear Information System (INIS)

    Jones, A.R.

    1980-09-01

    A pocket warning dosimeter is described. It provides alarms (continuous tone and a flashing red light) when a presettable dose has been accumulated in the range .064 - 16.4 rads (0.64 - 164 μGy). This warning level can be selected in nine steps of 2 with a switch inside the dosimeter. The dose rate is indicated by a series of sound pulses whose repetition rate is proportional to the dose rate. At 1 rad/h (10 mGy/h) about 17 pluses/minute are emitted. The accumulated dose up to 20 rads (0.2 Gy) is displayed in steps of 1 mrad (10 μGy) with a liquid crystal display. A red LED lights before battery failure occurs. The effects of changes in temperature, battery voltage, dose rate and photon energy upon dosimeter sensitivity are presented. Finally, the applications of the dosimeter are discussed. (auth)

  14. LOW-COST PERSONNEL DOSIMETER.

    Science.gov (United States)

    specification was achieved by simplifying and improving the basic Bendix dosimeter design, using plastics for component parts, minimizing direct labor, and making the instrument suitable for automated processing and assembly. (Author)

  15. Angular dependence of the nanoDot OSL dosimeter

    International Nuclear Information System (INIS)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  16. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  17. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    Gall, K.; Serago, C.; Desrosiers, M.; Bensen, D.

    1997-01-01

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  18. Automated dose estimation for lost or damaged dosimeters

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deininger, R.J.

    1988-01-01

    This paper reports that some dosimetry vendors will compute doses for their customers' lost/damaged dosimeters based upon an average of recent dosimeter readings. However, the vendors usually require authorization from the customer for each such occurrence. Therefore, the tedious task of keeping track of the overdue status of each missing dosimeter and constantly notifying the vendor is still present. Also, depending on the monthly variability of a given person's doses, it may be more valid to use the employee's average dose, his/her highest dose over a recent period, an average dose of other employees with similar job duties for that period, or the maximum permissible dose. Thus, the task of estimating doses for lost/damaged dosimeters cannot be delegated to dosimetry vendor. Instead, the radiation safety department must sue the data supplied by the vendor as input for performing estimates. The process is performed automatically at the Medical Center Hospital of Vermont using a personal computer and a relational database

  19. Investigating potential physicochemical errors in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sedaghat, Mahbod; Lepage, Martin; Bujold, Rachel

    2011-01-01

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  20. Investigating potential physicochemical errors in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sedaghat, Mahbod; Lepage, Martin [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Bujold, Rachel, E-mail: martin.lepage@usherbrooke.ca [Service de radio-oncologie, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC (Canada)

    2011-09-21

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  1. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  2. Calibration and performance testing of electronic personal dosimeters (EPD)

    International Nuclear Information System (INIS)

    Banaga, H.A.

    2008-04-01

    In modern radiation protection practices, active personal dosimeters are becoming absolutely necessary operational tools for satisfying the ALARA principle. The aim of this work was to carry out calibration and performance testing of ten electronic personal dosimeters (EPD) used for the individual monitoring. The EPDs were calibrated in terms of operation radiation protection quantity, personal dose equivalent, Hp (10). Calibrations were carried out at three of x-ray beam qualities described in ISO 4037 namely 60, 100 and 150 kV in addition to Cs-137 gamma ray quality. The calibrations were performed using polymethylmethacrylate (PMMA) phantom with dimensions 20*20*15 cm 3 . Conversion coefficient Hp (10)/K air for the phantom was also calculated. The response and linearity of the dosimeter at the specified energies were also tested. The EPDs tested showed that the calibration coefficient ranged from 0.60 to 1.31 and an equivalent response for the specified energies that ranged from 0.76 to 1.67. The study demonstrated the possibility of using non standard phantom for calibrating dosimeters used for individual monitoring. The dosimeters under study showed a good response in all energies except the response in quality 100 kV. The linearity of the dosimeters was within ±15%, with the exception of the quality 100 kV where this limit was exceeded.(Author)

  3. Performance testing of beta dosimeters used at Department of Energy facilities

    International Nuclear Information System (INIS)

    Roberson, P.L.; Holbrook, K.L.; Pappin, J.L.

    1983-01-01

    A performance test based on the American national draft standard N13.11 was conducted for dosimeter systems in use at Department of Energy facilities. The large differences in dosimeter response found were due to use of different calibration source standards and different dosimeter designs. Differences in 90 Sr/ 90 Y calibrations were approximately 20% or less for all but one participant. The differences observed were attributed to variable thicknesses of dosimeter elements and variable source irradiation geometries. Improved beta calibration standards will result if irradiation specifications include acceptable ranges from the depth-dose characteristics. The low-energy beta responses observed were consistent with the thicknesses of dosimeter sensitive elements and overlying filtration

  4. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  5. Approving of personal dosimeter services

    International Nuclear Information System (INIS)

    Bergman, K.; Malmqvist, L.

    2001-09-01

    The Swedish regulation SSI FS 98:5 requires that radiological workers of category A use dosemeters from an approved personal dosimetry service. The regulation also includes certain specific dosimeter requirements, which are based on those presented in the Technical Recommendations by the European Commission (Report EUR 14852 EN, 1994). All services have been tested for their ability to determine Hp(10) and some of them to determine Hp(0.07) at one radiation quality. The test was performed in the interval 0.2 mSv to 100 mSv at three different dose equivalents unknown to the system owner. The 11 services operating in Sweden at the moment use 5 different types of dosimeters. The five unique systems have been tested regarding the angular and energy dependence of the response of the dosimeters. The dosimeters were irradiated to a personal dose equivalent of about 1 mSv at three photon energies and at four angles (0, 20, 40 and 60 deg. resp. ) both vertically and horizontally rotated. Only 2 of the services determine Hp(0.07) for beta and gamma radiation and were tested for this quantity. The test results for Hp(10) are all except two within the trumpet curve. For the unique systems it is shown that the uncertainty related to angular response at a specified energy is within the required ±40 % except for the lowest X-ray quality at 40 kV. The response is more dependent on photon energy than on the direction of the photon radiation and the choice of radiation quality for the calibration is of great importance for the system performance

  6. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  7. Comparison of Panasonic’s Dosimetric System with Gamma-31 Dosimeters

    Directory of Open Access Journals (Sweden)

    Paweł Urban

    2013-01-01

    Full Text Available Equipment being used in medical or industrial institutions is often a source of ionizing radiation with different energies and types, which complicates the detection and assessment of doses. Up until now, for dosimetric measurements of ionizing radiation, Gamma-31 dosimeters have been used in the Central Mining Institute for many years. Now, this system will be expanded by a Panasonic system, for which measurement procedures were developed and comparisons with other dosimeters were held. The method is based on a four-element dosimeters UD-802 Panasonic equipped with CaSO and LiBO detectors additionally sheltered by filters of different surface mass. The use of UD-802 dosimeters, in contrast to Gamma-31 dosimeters, permits measuring radiation doses in a different range of photon energy. Consequently, it is possible to obtain a more accurate analysis of the hazards caused by gamma radiation in underground mines. The publication includes a description of the dosimetry system and presents the results of measurements conducted by means of both types of dosimeters. In order to verify the correctness of the indications of the new dosimetry system a series of measurements were carried out, which allowed examining the behaviour of the dosimeters under different environmental conditions. As a place of exposure, the selected laboratories in the Silesian Centre for Environmental Radiometry were chosen, where the work is connected with (TENORM and equipment producing ionizing radiation or containing sources of this type of radiation. Moreover, to observe the dosimeters behaviour in difficult environmental conditions, they were exposed in water treatment plants and an underground potassium salt mine.

  8. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    Directory of Open Access Journals (Sweden)

    Feras M. Aldweri

    2018-03-01

    Full Text Available Thymol blue (TB solutions and Thymol blue Polyvinyl Alcohol (TB-PVA films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125–1 kGy and of 5–20 kGy, respectively. Keywords: Dose sensitivity, Radio-chromic dosimeter, Thymol blue, Absorbance, Concentrations

  9. Portable dosimeter

    International Nuclear Information System (INIS)

    Buffa, A.; Caley, R.; Pfaff, K.

    1986-01-01

    A simple but very accurate portable dosimeter is described for indicating the intensity of ionizing radiation, comprising, as a unit: (a) a radiation-detection chamber having a pair of parallel, facing, electrically-conducting, radiation-permeable electrodes spaced from each other to define a volume for a gas which is ionized by the radiation when exposed thereto; (b) electric potential supply means connected across the electrodes for attracting the gas ions to the electrodes and transferring their charge to the electrodes; (c) detection circuit means connected across the electrodes and having at least one of high-frequency electromagnetic- and radiation-sensitive components for detecting the charge on the electrodes and indicating therefrom a representation of the intensity of the radiation; (d) radiation shield means surrounding the radiation-sensitive components of the detection circuit means for shielding the latter from the ionizing radiation; (e) electric shield means surrounding the sensitive components of the detection circuit means for shielding the latter from electromagnetic interference including any caused by the ionizing radiation; and (f) ion shield means potting the ion-sensitive components for shielding them from radiation-caused ambient ionization; whereby the entire dosimeter may be assembled as the unit and portably transported into various radiation sources

  10. Prosthetic Rehabilitation of Child Victim of Avulsion of Anterior Teeth with Orthodontic Mini-Implant

    Directory of Open Access Journals (Sweden)

    Natalice Sousa de Oliveira

    2017-01-01

    Full Text Available The treatment of choice in cases of avulsed permanent teeth is the immediate reimplantation. However, this conduct does not always work favorably, either by failures in the initial approach or by inappropriate interventions. In this sense, the aim of this study is to present an alternative prosthetic rehabilitation with the use of orthodontic mini-implants in the anterior region. This case reports a ten-year-old child with history of avulsion of superior central incisors. The therapeutic approach was planned to promote physiological teeth contacts and acceptable esthetics and phonetics. First, the occlusal-gingival insertion of two orthodontic mini-implants was performed in the alveolar ridge, and, immediately after that, two provisional crowns were attached to the implants. The interventions achieved satisfactory cosmetic and functional results. After one-year follow-up, the adjacent periodontal tissues remained without signs and/or symptoms of inflammation. The provisional crowns presented no mobility and fractures. During radiographic examination, a healthy bone tissue appearance was observed. The simplicity of mini-implant installation makes them a promising alternative for temporary prosthetic rehabilitation of patients undergoing growth and development. The technique provides positive aesthetic and functional results that may reflect on self-esteem and social inclusion of children and adolescents.

  11. Advances in the development of Cr-39 based neutron dosimeters

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.

    1987-12-01

    A combination thermoluminescent dosimeter (TLD) and track etch dosimeter (TED), which can be used for detecting neutrons over a wide energy range, has been developed through recent research in passive neutron dosimetery. This dosimeter uses Li-600 TLDs to detect thermal and low energy neutrons reflected from the body, and the TED polymer of CR-39, to detect fast neutrons from proton recoil interactions with the polyethylene radiator or with CR-39 itself. Some form of the combination dosimeter is currently in use at several US Department of Energy (DOE) facilities, and its use is expected to expand over the next year to include all DOE facilities where significant neutron exposures may occur. The extensive research conducted on the TED component over the past six years has continually focused on material improvements, reduction in processing time and dosimeter handling, and ease of sample readout with the goal of automating the process as much as possible. 1 fig

  12. Radiographic evaluations

    International Nuclear Information System (INIS)

    Williams, J.L.

    1988-01-01

    The author describes how to: perform a systematic evaluation of a chest radiograph; state the classic radiographic description of hyaline membrane disease; list the conditions that cause hyperaeration and describe the radiologic feature of hyperaeration; describe the radiograph of a patient with a congenital diaphragmatic hernia; identify optimum placement of an endotracheal tube, gastric feeding tube, and umbilical artery catheter on a radiograph; differentiate between pulmonary interstitial air and hyaline membrane disease; select radiographic features that would indicate the presence of a tension pneumothorax; describe a lateral decubitus projection and state the type of problem it is most often used to identify; explain the procedure used in obtaining a lateral neck radiograph and list two problems that may require this view; and describe the radiograph of a patient with cystic fibrosis

  13. Stable Chemical Dosimeters for Partial Reconstruction of Nuclear Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvornik, I.; Zec, U.; Baric, M.; Razem, D. [Ruder Boskovic Nuclear Institute, Zagreb, Yugoslavia (Croatia)

    1969-10-15

    The application of chemical dosimeters, tissue equivalent with respect to gamma rays and neutrons, is proposed for dosimetric topography of the space around nuclear devices in case of accidents. The dosimeters in the form of sealed glass ampoules have sufficient sensitivity and long-term stability and are evaluated or checked directly by conventional spectrophotometry. The sensitivity, expressed as yield per rad, is approximately equal for gamma rays and neutrons. The resolution in both cases is about one rad, and the range is up to several thousand rads. The precision of dosimetry is {+-} 1 rad or {+-} 2%, whichever is higher. In free space and unshielded the dosimeter measures the total rad-absorbed dose delivered by gamma rays and neutrons, i.e. the first collision gamma plus neutron dose. If used on- or in-phantom, especially if several dosimeters are disposed within and around the same phantom, it can give important data about the amount of the neutron component of the dose and about the effective mean energy of incident neutrons. The neutron component of the dose can be directly measured if the gamma dosimeter is used together with the chemical dosimeter. The experiments giving the change of optical density per rad and the radiation chemical yield with respect to the absorbed dose delivered by 14-MeV neutrons are described in detail. The possibility is also mentioned of applying the dosimeter as a very sensitive monitor for thermal neutrons, which is due to the chlorine content of 4.73% and activation to {sup 38}Cl. The opinion is expressed that this dosimeter deserves some attention as a part of future planning and development work on area and personnel accidental dosimetry systems. (author)

  14. Automating the personnel dosimeter monitoring program

    International Nuclear Information System (INIS)

    Compston, M.W.

    1982-12-01

    The personnel dosimetry monitoring program at the Portsmouth uranium enrichment facility has been improved by using thermoluminescent dosimetry to monitor for ionizing radiation exposure, and by automating most of the operations and all of the associated information handling. A thermoluminescent dosimeter (TLD) card, worn by personnel inside security badges, stores the energy of ionizing radiation. The dosimeters are changed-out periodically and are loaded 150 cards at a time into an automated reader-processor. The resulting data is recorded and filed into a useful form by computer programming developed for this purpose

  15. Design of calibration method in neutron and individual dosimeter

    International Nuclear Information System (INIS)

    Belkhodia, M.

    1984-12-01

    Usually albedo dosemeters are calibrated with beam of monoenergetic neutrons. Since neutron energy around neutron sources varies greatly, we applied the calibration method to a mixed field whose energy spectrum lies between 0.025 ev and 10 Mev. The method is based on a mathematical model that deals with the dosimeter response as a function at the neutron energy. The measurements carried out with solid state nuclear track detectors show the dosimeter practical aspect. The albedo dosimeter calibration gave results on good agreement with the international institution recommendations

  16. Chemical dosimeter

    International Nuclear Information System (INIS)

    Baker, W.B.; Clark, D.G.

    1979-01-01

    The dosimeter may be carried by individuals e.g. at the belt and serves to monitor for vinyl-chloride vapors in industrial plants and for toxic radon gas and toxic radon gas products in mines. It contains a pump, sucking an air flow through an orifice and a filter, as well as a sensor circuit for detecting low air flow rates and a battery testing circuit. (DG) 891 HP/DG 892 MKO [de

  17. Radiation sensitive polymer gel dosimeters

    International Nuclear Information System (INIS)

    Lepage, M.; Back, S.A.J.; Baldock, C.; Whittaker, A.K.; Rintoul, L.

    2000-01-01

    Full text: Radiation sensitive gels are studied for their potential to retain a permanent 3D dose distribution for applications in radiotherapy. Co-monomers dissolved in a tissue-equivalent hydrogel undergo a polymerization reaction upon absorption of ionizing radiation. The polymer formed influences the local spin-spin relaxation time (T 2 ) of the dosimeter that can be determined using magnetic resonance imaging (MRI). The relationship between T2 and the absorbed dose was studied for different initial chemical compositions. The aim was to find a model linking the changes in T 2 with absorbed dose to the initial composition of the dosimeter. It is believed this will help designing new gel dosimeters having desired properties to minimize the uncertainty in the determination of the dose distribution. 1 H, 13 C nuclear magnetic resonance spectroscopy and FT-Raman spectroscopy were used to quantify the amount of monomers still remaining after the absorption of a given dose of radiation. This data is used to model the changes of T2 as a function of the absorbed dose. A model of fast exchange of magnetization between three proton pools was used, where the fraction of protons (f x H ) in the x th pool is obtained from the chemical composition of the dosimeter and the apparent T2 of each pool is determined for a given composition. Initially, the protons are contained in two pools; a mobile (mob), which contains the water protons and the monomers protons, and a gelatin (gela) proton pool. The mobile pool is partially depleted as polymer is formed, the protons are transferred into the polymer (pol) pool. In the figure, the experimental data along with the calculated values are plotted for three different monomer concentrations, with the gelatin concentration fixed. The model is seen to provide a good fit to the experimental data

  18. The LLNL CR-39 personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1987-01-01

    We developed a personnel neutron dosimetry system based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This CR-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. 3 refs., 4 figs

  19. Perfection of the individual photographic emulsion dosimeter

    International Nuclear Information System (INIS)

    Soudain, G.

    1960-01-01

    A photographic dosimeter making possible the measurement of γ radiation doses of from 10 mr up to 800 r by means of 3 emulsion bands of varying sensitivity stuck to the same support is described. The dosimeter has also a zone for marking and a test film insensitive to radiation. This requires a photometric measurement by diffuse reflection an d makes it possible to measure doses with an accuracy of 20 per cent. (author) [fr

  20. Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity

    Science.gov (United States)

    Farhood, Bagher; Abtahi, Seyed Mohammad Mahdi; Geraily, Ghazale; Ghorbani, Mehdi; Mahdavi, Seied Rabi; Zahmatkesh, Mohammad Hasan

    2018-06-01

    Despite many advantages of polymer gel dosimeters, their clinical use is only not realized now. Toxicity of polymer gel dosimeters can be considered as one of their main limitations for use in routine clinical applications. In the current study, a new polymer gel dosimeter is introduced with negligible toxicity. For this purpose, 2-Acrylamido-2-Methy-1-PropaneSulfonic acid (AMPS) sodium salt monomer was replaced instead of acrylamide monomer used in PAGAT gel dosimeter by using %6 T and %50 C to the gel formula and the new formulation is called PASSAG (Poly AMPS Sodium Salt and Gelatin) polymer gel dosimeter. The irradiation of gel dosimeters was carried out using a Co-60 therapy machine. MRI technique was used to quantify the dose responses of the PASSAG gel dosimeter. Then, the MRI responses (R2) of the gel dosimeter was analyzed at different dose values, post-irradiation times, and scanning temperatures. The results showed that the new gel formulation has a negligible toxicity and it is also eco-friendly. In addition, carcinogenicity and genetic toxicity tests are negative for the monomer used in PASSAG. The radiological properties of PASSAG gel dosimeter showed that this substance can be considered as a soft tissue/water equivalent material. Furthermore, dosimetric evaluation of the new polymer gel dosimeter revealed an excellent linear R2-dose response in the evaluated dose range (0-15 Gy). The R2-dose sensitivity and dose resolution of PASSAG gel dosimeter were 0.081 s-1Gy-1 (in 0-15 Gy dose range) and 1 Gy (in 0-10 Gy dose range), respectively. Moreover, it was shown that the R2-dose sensitivity and dose resolution of the new gel dosimeter improves over time after irradiation. It was also found that the R2 response of the PASSAG gel dosimeter has less dependency to the 18, 20, and 24 °C scanning temperature in comparison to that of room temperature (22 °C).

  1. Antioxidant effect of green tea on polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E J J; Sathiyaraj, P; Deena, T; Kumar, D S

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer

  2. Optimizing the sensitivity and radiological properties of the PRESAGE® dosimeter using metal compounds

    International Nuclear Information System (INIS)

    Alqathami, Mamdooh; Blencowe, Anton; Qiao, Greg; Adamovics, John; Geso, Moshi

    2012-01-01

    The aim of this study is to investigate the radiation-modifying effects of incorporating commercially available bismuth-, tin- and zinc-based compounds in the composition of the PRESAGE ® dosimeter, and the feasibility of employing such compounds for radiation dose enhancement. Furthermore, we demonstrate that metal compounds can be included in the formulation to yield water-equivalent PRESAGE ® dosimeters with enhanced dose response. Various concentrations of the metal compounds were added to a newly developed PRESAGE ® formulation and the resulting dosimeters were irradiated with 100 kV and 6 MV photon beams. A comparison between sensitivity and radiological properties of the PRESAGE ® dosimeters with and without the addition of metal compounds was carried out. Optical density changes of the dosimeters before and after irradiation were measured using a spectrophotometer. In general, when metal compounds were incorporated in the composition of the PRESAGE ® dosimeter, the sensitivity of the dosimeters to radiation dose increased depending on the type and concentration of the metal compound, with the bismuth compound showing the highest dose enhancement factor. In addition, these metal compounds were also shown to improve the retention of the post-response absorption value of the PRESAGE ® dosimeter over a period of 2 weeks. Thus, incorporating 1–3 mM (ca. 0.2 wt%) of any of the three investigated metal compounds in the composition of the PRESAGE ® dosimeter is found to be an efficient way to enhance the sensitivity of the dosimeter to radiation dose and stabilize its post-response for longer times. Furthermore, the addition of small amounts of the metal compounds also accelerates the polymerization of the PRESAGE ® dosimeter precursors, significantly reducing the fabrication time. Finally, a novel water-equivalent PRESAGE ® dosimeter formula optimized with metal compounds is proposed for clinical use in both kilovoltage and megavoltage radiotherapy

  3. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    International Nuclear Information System (INIS)

    Babic, Steven; Schreiner, L John

    2006-01-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters

  4. Design, construction and characterization of a dosimeter for neutron radiation

    International Nuclear Information System (INIS)

    Souto, Eduardo de Brito

    2007-01-01

    An individual dosimeter for neutron-gamma mixed field dosimetry was design and developed aiming monitoring the increasing number of workers potentially exposed to neutrons. The proposed dosimeter was characterized to an Americium-Beryllium source spectrum and dose range of radiation protection interest (up to 20 mSv). Thermoluminescent albedo dosimetry and nuclear tracks dosimetry, traditional techniques found in the international literature, with materials of low cost and national production, were used. A commercial polycarbonate, named SS-1, was characterized for solid state tack detector application. The chemical etching parameters and the methodology of detectors evaluation were determined. The response of TLD-600, TLD-700 and SS-1 were studied and algorithms for dose calculation of neutron and gamma radiation of Americium- Beryllium sources were proposed. The ratio between thermal, albedo and fast neutrons responses, allows analyzing the spectrum to which the dosimeter was submitted and correcting the track detector response to variations in the radiation incidence angle. The new dosimeter is fully characterized, having sufficient performance to be applied as neutron dosimeter in Brazil. (author)

  5. A personal radio-frequency dosimeter with cumulative-dose recording capabilities

    International Nuclear Information System (INIS)

    Rochelle, R.W.; Moore, M.R.; Thomas, R.S.; Ewing, P.D.; Hess, R.A.; Hoffheins, B.S.

    1990-01-01

    The radio-frequency (rf) dosimeter developed by the Oak Ridge National Laboratory is a portable, pocket-sized cumulative-dose recording device designed to detect and record the strengths and durations of electric fields present in the work areas of naval vessels. The device measures an integrated dose and records the electric fields that exceed the permissible levels set by the American National Standards Institute. Features of the rf dosimeter include a frequency range of 30 MHz to 10 GHz and a three-dimensional sensor. Data obtained with the rf dosimeter will be used to determine the ambient field-strength profile for shipboard personnel over an extended time. Readings are acquired and averaged over a 6-min period corresponding to the rise time of the core body temperature. These values are stored for up to 6 months, after which the data are transferred to a computer via the dosimeter's serial port. The rf dosimeter should increase knowledge of the levels of electric fields to which individuals are exposed. 13 refs., 16 figs., 2 tabs

  6. Development and characterization of real-time wide-energy range personal neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Tsujimura, Norio (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Yamano, Toshiya; Suzuki, Toshikazu; Okamoto, Eisuke

    1994-04-01

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated [sup 252]Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to [gamma]-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and [gamma]-ray dose equivalents simultaneously by installing [gamma]-ray silicon sensor. (author).

  7. Dental tissue as a thermoluminescence dosimetry dosimeter

    International Nuclear Information System (INIS)

    Solaimani, F.; Zahmatkesh, M.H.; Akhlaghpoor, Sh.

    2003-01-01

    Background: Thermoluminescence dosimetry is one of the dosimetry procedures used widely as routine and personal dosimeters. In order to extend this kind of dosimeters, dental tissue has been examined and was found promising as a Thermoluminescence Dosimetry dosimeter. Materials and Methods: In this study, 70 health teeth were collected. The only criterion, wich was considered for selection of the teeth, was the healthiness of them regardless of age and gender of the donors. All collected samples were washed and cleaned and milled uniformly. The final powder had a uniform grain size between 100-300 micrometer. The sample was divided into four groups. Group A and B were used for measurement of density and investigation of variation of thermoluminescent characteristics with temperature respectively. Groups C and D were used for investigation of variation of thermoluminescent intensity with dose and fading of this intensity with time. In all cases the results obtained with dental tissue were compared to a standard LiF, thermoluminescence dosimetry dosimeter. Results: It was found that, average density of the dental tissue was 1.570 g/cm 3 , which is comparable to density of LiF, which is 1.612g/cm 3 . It was also concluded that the range of 0-300 d ig C , dental tissue has a simple curve with two specific peaks at 140 and 25 d ig C respectively. The experiment also showed that, the variation of relative intensity versus dose is linear in the range of 0.04-0.1 Gy. The fading rate of dental tissue is higher than LiF but still in the acceptable range (14% per month in compare to 5.2% per month). Conclusion: Dental tissue as a natural dosimeter is comparable with Thermoluminescence Dosimetry and can be used in accidental events with a good approximation

  8. Experimental evaluation of a MOSFET dosimeter for proton dose measurements

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-01-01

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations

  9. Early development and characterization of a DNA-based radiation dosimeter

    Science.gov (United States)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  10. Dosimetry of blood irradiation using an alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    Chen, F.; Covas, D.T.; Baffa, O.

    2001-01-01

    A batch of 80 DL-alanine dosimeters was supplied to Hemocentro of the Hospital and Clinics of Faculdade de Medicina de Ribeirao Preto (HC-FMRP) SP, Brazil for the purpose of quality control of the radiation dose delivered to blood bags. The irradiation was made using two (40x40) cm 2 parallel opposed radiation fields each with 80 cm of source to surface distance in the Radiotherapy Section of HC-FMRP with the 60 Co teletherapy unit. The calculated radiation absorbed dose at the center of the box was 20 Gy. The dosimeter readings were performed using a Varian E-4 ESR Spectrometer operating in X-band. For the 80 dosimeters and over the irradiation volume throughout a blood bag, the minimum and maximum doses were 14 and 23 Gy, respectively. The mean dose was (18±2) Gy (1σ), and the coefficient of variability was 11.1%. Alanine dosimeters demonstrated easy handling, good precision and adequate sensitivity for this application

  11. Electret dosimeter utilizing gas multiplication

    International Nuclear Information System (INIS)

    Ikeya, M.; Miki, T.

    1980-01-01

    It was found that the high electric field around the surface of an electret leads to cascade multiplication of the ionization process in a surrounding gas. Very sensitive charge decay constants of the order of 1mrad, were obtained for electrets composed of polyvinyliden fluoride or teflon polymers. The reduced charge is stable and can be utilized in personnel dosimetry. A simple pocket chamber dosimeter is described consisting of a small speaker or buzzer, a cylindrical chamber filled with air, argon or other gases, a polymer thermoelectret foil and an electrode. The sonic vibration of the foil induces an alternating charge on the electrode which is amplified and detected. The feasibility of this dosimeter and its shock and vibration resistance have been demonstrated. (author)

  12. Monte Carlo simulation experiments on box-type radon dosimeter

    International Nuclear Information System (INIS)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-01-01

    Epidemiological studies show that inhalation of radon gas ( 222 Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222 Rn concentrations (Bq/m 3 ) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η int ) and alpha hit efficiency (η hit ). The η int depends upon only on the dimensions of the dosimeter and η hit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon

  13. Monte Carlo simulation experiments on box-type radon dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-11

    Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper

  14. Angular dependence of the nanoDot OSL dosimeter

    OpenAIRE

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of...

  15. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    Energy Technology Data Exchange (ETDEWEB)

    Stranden, E.; Widmark, A.; Sekse, T. (Buskerud Univ. College, Drammen (Norway))

    2008-05-15

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  16. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    International Nuclear Information System (INIS)

    Stranden, E.; Widmark, A.; Sekse, T.

    2008-01-01

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  17. Environmental monitoring by CaSO4:Dy TL dosimeters

    International Nuclear Information System (INIS)

    Deme, S.; Szabo, P.P.

    1975-12-01

    The thermoluminescent dosimeters of high sensitivity are useful for monitoring the area near nuclear installations. CaSO 4 :Dy TL dosimeters have high sensitivity and low fading so that by means of them the dose from the background can be measured with an accuracy of 10-20%. An increase of 2 mR in the background can be observed and doses as high as 1000R can be registered with an accuracy of 5%. The measuring method and results are reported here. For two years these CaSO 4 :Dy dosimeters have been successfully used at the site of the Central Research Institute for Physics. (K.A.)

  18. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  19. Evaluation of the implementation and use of active personal dosimeters for neutrons in Brazil

    International Nuclear Information System (INIS)

    Castro B, C. P.; Wagner P, W.; De Souza P, K. C.

    2014-08-01

    This work was conducted through of a field research based on a questionnaire sent to users of active personal dosimeters. A retrospective study of the last six years was also carried out of the services in the Neutron Metrology Laboratory (2008-2013) referent to the active personal dosimeters, taking into consideration the standards ISO-8529-3 and IEC-61526. The active personal dosimeters are defined as any instrument of individual monitoring with direct reading capacity, used by individuals exposed to ionizing radiation fields. Through research was verified that the active personal dosimeters work associated with other dosimeter types. Considering all dosimeters declared in the questionnaire, only two dosimeters (MGP brand Dmc 2000-GN model and the brand ATOMTEX model AT2503A) have conformity declaration with the international standard IEC-61526: 2005 reported by the manufacturers. (author)

  20. Anthracene dosimeter characterization under radiotherapy photons

    International Nuclear Information System (INIS)

    Czelusniak, Caroline

    2011-01-01

    New radiotherapy techniques such as intensity-modulated radiation therapy and stereotactic radiosurgery have increased the need for dosimeters that can provide measurements in real time with high spatial resolution. Organic scintillation dosimeters are able to measure with accuracy small radiation fields and fields with high gradients, besides having advantages such as water and soft tissue equivalence and the possibility to be used in vivo. Anthracene is an organic scintillator crystal with the highest known scintillation efficiency among organic scintillation materials. The objective of this work is to characterize the anthracene as a dosimeter under radiotherapy photons energies, analysing its signal against average granulosity, intern capsule diameter, absorbed dose, absorbed dose rate, photon energy and its spatial resolution; with the last one analysed under three methods (edge spread function, line spread function and modulation transfer function). The photons energies used were 1.25 MeV ( 60 Co), 0.661 MeV ( 137 Cs) and X-rays (effective energies of 28.4; 46.5; 48.5; 94.0 e 106.0 keV). The scintillation detection system consisted of an optical fiber with one end attached to the anthracene capsule and the other to a photomultiplier tube maintained by power supply followed by an electrometer. Once Cerenkov radiation occurs in the optical fiber, it was removed from the total scintillation signal trough the subtraction of the signal, taken irradiating the optical fiber without the anthracene attached to one of its extremity. From results obtained, one can infer that the dosimeter signal increases proportionally with average granulosity and intern capsule diameter. The signal is linearly dependent of absorbed dose, linearly dependent of low photons energies and independent for high photons energies, as well as independent of the absorbed dose rate. From the spatial resolution values obtained it was possible to infer that the one obtained through modulation

  1. Automatic dosimeter for kerma measurement based on commercial PIN photo diodes

    International Nuclear Information System (INIS)

    Kushpil, V.; Kushpil, S.; Huna, Z.

    2011-01-01

    A new automatic dosimeter for measurement of radiation dose from neutron and ionization radiation is presented. The dosimeter (kerma meter) uses commercial PIN diodes with long base as its active element. Later it provides a maximal dependence of the minority carriers life time versus absorbed dose. The characteristics of the dosimeter were measured for several types of commercial diodes. Device can be useful in many environmental or industrial applications. (authors)

  2. Use of normoxic polymer gel dosimeters for measuring diagnostic doses on CT scanners

    International Nuclear Information System (INIS)

    Hill, B; Venning, A J; Baldock, C

    2004-01-01

    X-ray CT has been used to evaluate polymer gel dosimeters for dose response in the therapeutic dose range. This method of polymer gel dosimeter evaluation has been shown to be useful for instance in the comparison of complex sterotactic field distributions with treatment plans. Image averaging and subtraction techniques are used for noise reduction in polymer gel dosimeters resulting in the delivery of several CT slices across the polymer gel dosimeters. It was a logical progression to evaluate normoxic polymer gel dosimeters with optimized CT scanning protocols. During these investigations it was found that unirradiated regions in irradiated normoxic polymer gel dosimetry phantoms polymerised possibly as a result of the evaluation using CT. This prompted an investigation of the CT diagnostic dose response of the normoxic polymer gel dosimeter in order to determine the dose contribution when evaluated using a CT scanner. Having established that there was an effect on the normoxic polymer gel dosimeter when evaluating with a CT scanner the suitability of these gels in the determination of CT diagnostic dose measurement was further investigated

  3. Development of a miniaturized watch-type dosimeter using a silicon printed-circuit board

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Sakamaki, Tsuyoshi; Matsumoto, Iwao; Aoyama, Kei; Nakamura, Takashi

    2008-01-01

    The electrical personal dosimeter using a silicon semiconductor sensor has the advantage of real time response and alarm function, which can prevent unexpected over-exposure. We tried to develop a miniaturized watch-type dosimeter by incorporating the silicon semiconductor sensor on a silicon printed-circuit board. Thin film resistors, capacitors and wiring patterns are formed on a downsized printed-circuit board. Electronic parts including transistors are mounted by soldering on the silicon printed-circuit board. The dosimeter is further miniaturized by downsizing the amplifier circuit, the semiconductor radiation sensor, the power supply circuit, setting parts and alarm part. The performance of the developed dosimeter was evaluated with respect to the gamma-ray spectra, angular dependence and linearity to dose equivalent rate, and it was confirmed that this dosimeter has the performance equivalent to a commercially available electrical personal dosimeter. (author)

  4. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stone, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-30

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  5. Internal background build-up measurements in CaF2:Mn thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Balasybrahmanyam, V.; Measures, M.P.

    1977-01-01

    Some problems associated with the internal background build-up (IBB) of CaF 2 :Mn thermoluminescent dosimeters are reported. As a result of an investigation of batches of the EG and G model 15 dosimeter it is considered that measurements using this type of dosimeter are accurate and reproducible once the IBB has been determined. However, the use of the Manufacturer's claimed average of 0.064 mR/day can lead to erroneous results when determining environmental background dose rates. The authors therefore urge a rigid quality control program by the manufacturer and suggest that purchasers should be supplied with IBB information of each batch of dosimeters. Meanwhile each user should be aware of the IBB problem and be extremely cautious when using these dosimeters for environmental monitoring purposes. (U.K.)

  6. Dosimetric Characteristics of Radio-Photoluminescent Glass Dosimeters for Medical Applications: Linearity

    Energy Technology Data Exchange (ETDEWEB)

    Shehzadi, N. N.; Jeong, J. P.; Kim, B. C.; Kim, I. J.; Yi, C. Y. [Center for Ionizing Radiation, Korea Research Institute of Standards and Science, Seoul (Korea, Republic of)

    2017-04-15

    Radio-photoluminescent glass dosimeter (GD) has advantage of non-destructive reading process, negligible fading and superior radiation detection characteristics than other personal dosimeters like thermoluminescent dosimeters (TLD) or film dosimeters. In this study, one dosimetric characteristic of GDs, dose linearity was evaluated with two different approaches: one for each set of GDs selected and another for a batch of them using accumulated doses of same set of GDs and GDs in a batch, respectively. Within a dose range upto 10 Gy, not only each set of GDs but also a batch of them showed excellent linearity. Within a dose range upto 10 Gy, not only each set of GDs but also a batch of them showed excellent linearity.

  7. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford's mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue

  8. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford`s mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

  9. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford's mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

  10. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  11. Radiographers and trainee radiologists reporting accident radiographs

    DEFF Research Database (Denmark)

    Buskov, L; Abild, A; Christensen, A

    2013-01-01

    To compare the diagnostic accuracy and clinical validity of reporting radiographers with that of trainee radiologists whom they have recently joined in reporting emergency room radiographs at Bispebjerg University Hospital....

  12. Thermoluminescence dosimeter reader

    International Nuclear Information System (INIS)

    Robertson, M.E.A.; Marshall, J.; Brabants, J.A.P.; Davies, M.E.

    1975-01-01

    An electric circuit arrangement is described including a photomultiplier tube and a high voltage source therefor also includes a feedback loop from the output of the tube to the high voltage source, and loop providing automatic gain stabilization for the tube. The arrangement is used in a dosimeter reader to provide sensitivity correction for the reader each time the reader is to be used

  13. Optical dosimeter

    International Nuclear Information System (INIS)

    Drukaroff, I.; Fishman, R.

    1984-01-01

    A reflecting optical dosimeter is a thin block of optical material having an input light pipe at one corner and an output light pipe at another corner, arranged so that the light path includes several reflections off the edges of the block to thereby greatly extend its length. In a preferred embodiment, one corner of the block is formed at an angle so that after the light is reflected several times between two opposite edges, it is then reflected several more times between the other two edges

  14. Comparison between dosimeter films and electronic dosimeters results obtained in F-18 production practices at IEN/CNEN

    International Nuclear Information System (INIS)

    Paulo, Osvaldir; Carlos, Luiz R.J.; Mendes, Milton

    2008-01-01

    Full text: The aim of the present work is the comparison of the dose rates values obtained from dosimeter films with the values obtained from electronic dosimeters used by radiological protection technician involved in practices with fluorine-18 production in CV-28 cyclotron at IEN/CNEN. The motivation for this work was the increase on the demand of this radiopharmaceutical. Nowadays there is an increase demand on the number of clinics and hospitals which had started to use the technique of radiodiagnostic using positron-emission tomography (PET). Therefore, the produced radionuclide activities (physics quantity) and also the complexity of the practices of radiological protection in the areas of that facility had increased a lot. The conventional statistical methods will be used to evaluate the results obtained in the analysis of the data obtained in the reading of the dosimeters. This comparative method is however a first step to taking decisions regarding radiological protection service. Therefore that the radiometric surveys of routine are taken in consideration, as well as the information from the technician of radiological protection that is working in those areas. All this data will give support to improve and implement methods and practices on the accelerators' facilities. In addition, the use of these electronic dosimeters will makes possible the technician read these dose rates received immediately during the practices and use these information you make decisions. In case of dose rates values to present above the expected the practice will be ploughed. Another point to be considered is that this work will propitiate the future updates of the procedures designated to those practices and to conduct at the radiological protection optimization. (author)

  15. Response characteristics of selected personnel neutron dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Fix, J.J.; Hadley, R.T.; Holbrook, K.L.; Yoder, R.C.; Roberson, P.L.; Endres, G.W.R.; Nichols, L.L.; Schwartz, R.B.

    1983-09-01

    Performance characteristics of selected personnel neutron dosimeters in current use at Department of Energy (DOE) facilities were determined from their evaluation of neutron dose equivalent received after irradiations with specific neutron sources at either the National Bureau of Standards (NBS) or the Pacific Northwest Laboratory (PNL). The characteristics assessed included: lower detection level, energy response, precision and accuracy. It was found that when all of the laboratories employed a common set of calibrations, the overall accuracy was approximately +-20%, which is within uncertainty expected for these dosimeters. For doses above 80 mrem, the accuracy improved to better than 10% when a common calibration was used. Individual differences found in this study may reflect differences in calibration technique rather than differences in the dose rates of actual calibration standards. Second, at dose rates above 100 mrem, the precision for the best participants was generally below +-10% which is also within expected limits for these types of dosimeters. The poorest results had a standard deviation of about +-25%. At the lowest doses, which were sometimes below the lower detection limit, the precision often approached or exceeded +-100%. Third, the lower level of detection for free field 252 Cf neutrons generally ranged between 20 and 50 mrem. Fourth, the energy dependence study provided a characterization of the response of the dosimeters to neutron energies far from the calibration energy. 11 references, 22 figures, 26 tables

  16. Evaluation of performance of metal oxide-silicon semiconductor field effect transistor (MOSFET) dosimeter

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Sano, Naoki; Nakamura, Osamu

    2001-01-01

    The JARP level dosimeter is the most suitable for absorbed dose determination in radiotherapy because of its high accuracy. However, in measuring the dose of an extremely small field, a dosimeter with a smaller active region is required. The active region of the MOSFET dosimeter is very small, having a volume of just 0.02 mm 3 . In this study, we evaluated the performance of MOSFET dosimeters with two different sensitivities and examined the usefulness of the MOSFET dosimeter in stereotactic radiosurgery. Using the high-sensitivity MOSFET dosimeter, we were able to reduce the experimental error of absorbed dose (≤±1.8%), and, by correcting the sensitivity, we could use it as a field dosimeter. By turning detectors inside out, we could reduce directional dependence (≤±1.8%). Correction was necessary in the TMR determination because peak depth shifts according to the material of the detector. In the determination of the dose distribution in the penumbra, the resolution of the MOSFET detectors was equal to that of the diamond detector. In the determination of OPF for the extremely small field, better results were obtained with MOSFET than with other small detectors. The high-sensitivity MOSFET dosimeter could properly evaluate the dose of an extremely small field and will be useful in dosimetry of the maximum dose of the field center in stereotactic radiosurgery. (author)

  17. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    International Nuclear Information System (INIS)

    Park, M; Kim, G; Ji, Y; Kim, K; Park, S; Jung, H

    2015-01-01

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm 3 , respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). The shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm 3 . The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom

  18. Quality of radiograph

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    This chapter discussed on how to get a good radiograph. There are several factors that can make good radiograph such as density of radiograph, the contrast of radiograph, definition of radiograph, the present of artifact and backscattering. All of this factor will discuss detailed on each unit of chapter with some figure, picture to make the reader understand more when read this book. And at the end, the reader will introduce with penetrameter, one of device to determine the level of quality of the radiograph. There are two type of penetrameter like wire type or holes type. This standard must be followed by all the radiographer around the world to produce the good result that is standard and more reliable.

  19. Psychometric properties of a sign language version of the Mini International Neuropsychiatric Interview (MINI).

    Science.gov (United States)

    Øhre, Beate; Saltnes, Hege; von Tetzchner, Stephen; Falkum, Erik

    2014-05-22

    There is a need for psychiatric assessment instruments that enable reliable diagnoses in persons with hearing loss who have sign language as their primary language. The objective of this study was to assess the validity of the Norwegian Sign Language (NSL) version of the Mini International Neuropsychiatric Interview (MINI). The MINI was translated into NSL. Forty-one signing patients consecutively referred to two specialised psychiatric units were assessed with a diagnostic interview by clinical experts and with the MINI. Inter-rater reliability was assessed with Cohen's kappa and "observed agreement". There was 65% agreement between MINI diagnoses and clinical expert diagnoses. Kappa values indicated fair to moderate agreement, and observed agreement was above 76% for all diagnoses. The MINI diagnosed more co-morbid conditions than did the clinical expert interview (mean diagnoses: 1.9 versus 1.2). Kappa values indicated moderate to substantial agreement, and "observed agreement" was above 88%. The NSL version performs similarly to other MINI versions and demonstrates adequate reliability and validity as a diagnostic instrument for assessing mental disorders in persons who have sign language as their primary and preferred language.

  20. Psychometric properties of a sign language version of the Mini International Neuropsychiatric Interview (MINI)

    Science.gov (United States)

    2014-01-01

    Background There is a need for psychiatric assessment instruments that enable reliable diagnoses in persons with hearing loss who have sign language as their primary language. The objective of this study was to assess the validity of the Norwegian Sign Language (NSL) version of the Mini International Neuropsychiatric Interview (MINI). Methods The MINI was translated into NSL. Forty-one signing patients consecutively referred to two specialised psychiatric units were assessed with a diagnostic interview by clinical experts and with the MINI. Inter-rater reliability was assessed with Cohen’s kappa and “observed agreement”. Results There was 65% agreement between MINI diagnoses and clinical expert diagnoses. Kappa values indicated fair to moderate agreement, and observed agreement was above 76% for all diagnoses. The MINI diagnosed more co-morbid conditions than did the clinical expert interview (mean diagnoses: 1.9 versus 1.2). Kappa values indicated moderate to substantial agreement, and “observed agreement” was above 88%. Conclusion The NSL version performs similarly to other MINI versions and demonstrates adequate reliability and validity as a diagnostic instrument for assessing mental disorders in persons who have sign language as their primary and preferred language. PMID:24886297

  1. Improvement in the accuracy of polymer gel dosimeters using scintillating fibers

    International Nuclear Information System (INIS)

    Tremblay, Nicolas M; Hubert-Tremblay, Vincent; Bujold, Rachel; Beaulieu, Luc; Lepage, Martin

    2010-01-01

    We propose a novel method for the absolute calibration of polyacrylamide gel (PAG) dosimeters with one or more reference scintillating fiber dosimeters inserted inside the gel. Four calibrated scintillating fibers were inserted into a cylindrical glass container filled with a PAG dosimeter irradiated with a wedge filtered 6 MV photon beam. Calibration curves using small glass vials containing the same gel as the cylindrical containers were used to obtain a first calibration curve. This calibration curve was then adjusted with the dose measured with one of the scintillating fibers in a low gradient part of the field using different approaches. Among these, it was found that a translation of the gel calibration curve yielded the highest accuracy with PAG dosimeters.

  2. Synthesis and production of potassium dichromate as a secondary standard dosimeter; Investigation of its comparative properties with Fricke and clear perspex dosimeters in comprehensive dose mapping of IR-136 Gamma Irradiator

    International Nuclear Information System (INIS)

    Taimoori Seechani; Behzad.

    1995-01-01

    Measurement of the absorbed dose is the principle mode or means of quality control in various application of radiation processing. Specially, the cumulative absorbed dose and its variation in different density product boxes (dose mapping) are often required. Proper discharge of these task would require the use of dosimeters having sufficient degree of accuracy and precision. The secondary standard potassium dichromate dosimeter is synthesized for the first time in Iran. The properties of this dosimeter such as dose response, dose rate dependency, reproducibility, molar extinction coefficient, reduction yield and effect of silver ions on reduction yield of dosimetry solution, irradiation temperature effect as well as pre- and post-irradiation stability of the dosimetry solution have been studied. The comparison of the results of this work with that of the ASTM standard of potassium dichromate has shown very good agreement. The produced dichromate dosimeters were used for comprehensive dose mapping or commissioning of the IR-136 irradiator. The non-uniformity ratio and the isodose lines in various product densities in the IR-136 have been measured. Cumulative dose values were obtained for different rows and levels of the IR-136 irradiator system. The results of dichromate dosimetry, wherever possible, were compared with the response of Fricke and clear perspex dosimeters. At low dose values, the precision of this dosimeter was found to be better than the precision of clear perspex, but about the same as that of Fricke dosimeter. It is thus may be said that this dosimeter has combined the desirable properties of both dosimeter together

  3. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    Science.gov (United States)

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film

  4. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  5. Description and evaluation of the Hanford personnel dosimeter program from 1944 through 1989. [Contain Glossary

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.; Fix, J.J.; Baumgartner, W.V.; Nichols, L.L.

    1990-09-01

    This report describes the evolution of personnel dosimeter technology at Hanford since the inception of Hanford operations in 1944. Each of the personnel dosimeter systems used by people working or visiting Hanford is described. In addition, the procedures used to calibrate and calculate dose for each of the dosimeter systems are described. The accuracy of the recorded dose, primarily whole body deep dose, for the different dosimeter systems is evaluated. The evaluation is based on an extensive review of historical literature, as well as a 1989 intercomparison study of all film dosimeters and performance testing of the thermoluminescent dosimeter, also conducted during 1989. 73 refs., 40 figs., 41 tabs.

  6. Performances of Dose Measurement of Commercial Electronic Dosimeters using Geiger Muller Tube and PIN Diode

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunjun; Kim, Chankyu; Kim, Yewon; Kim, Giyoon; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    There are two categories in personal dosimeters, one is passive type dosimeter such as TLD (thermoluminescence dosimeter) and the other is active type dosimeter such as electronic dosimeter can show radiation dose immediately while TLD needs long time to readout its data by heating process. For improving the reliability of measuring dose for any energy of radiations, electronic dosimeter uses energy filter by metal packaging its detector using aluminum or copper, but measured dose of electronic dosimeter with energy filter cannot be completely compensated in wide radiation energy region. So, in this paper, we confirmed the accuracy of dose measurement of two types of commercial EPDs using Geiger Muller tube and PIN diode with CsI(Tl) scintillator in three different energy of radiation field. The experiment results for Cs-137 was almost similar with calculation value in the results of both electronic dosimeters, but, the other experiment values with Na-22 and Co-60 had higher error comparing with Cs-137. These results were caused by optimization of their energy filters. The optimization was depending on its thickness of energy filter. So, the electronic dosimeters have to optimizing the energy filter for increasing the accuracy of dose measurement or the electronic dosimeter using PIN diode with CsI(Tl) scintillator uses the multi-channel discriminator for using its energy information.

  7. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Fahimian, B; Pratx, G [Department of Radiation Oncology, Stanford University, Palo Alto, CA (United States)

    2016-06-15

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in a thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS

  8. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    International Nuclear Information System (INIS)

    Kim, T; Fahimian, B; Pratx, G

    2016-01-01

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in a thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS

  9. LLL development of a combined etch track: albedo dosimeter

    International Nuclear Information System (INIS)

    Griffith, R.V.; Fisher, J.C.; Harder, C.A.

    1977-01-01

    The addition of polycarbonate sheet to albedo detectors for electrochemical etching provides a simple, inexpensive way to reduce the spectral sensitivity of the personnel dosimeter without losing the albedo features of sensitivity and ease of automation. The ECEP technique also provides the dosimetrist with the potential for identifying conditions of body orientation that might otherwise lead to significant error in dosimeter evaluation

  10. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  11. Return of the mini

    International Nuclear Information System (INIS)

    Ashmore, C.

    2001-01-01

    Partly as a result of the contentious nature of some large hydroelectric schemes, and continuing deregulation on a global scale, the mini hydro systems are enjoying unprecedented growth. This article discusses the reasons for the increase in demand for mini hydro systems, and describes Alstom Power Hydro's new, integrated 'water-to-wire' renewable energy solution which is a modular system which integrates the hydro-turbine, generator and controls to provide a single optimised product called the Mini-Aqua. The Mini-Aqua can be supplied inside a turnkey package including all civil works. The company is also looking to the future with development of its Powerformer technology for smaller-scale, grid-connected applications

  12. Consistência interna da versão em português do Mini-Inventário de Fobia Social (Mini-SPIN Internal consistency of the Portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN

    Directory of Open Access Journals (Sweden)

    Gustavo J. Fonseca D'El Rey

    2007-01-01

    Full Text Available CONTEXTO: A fobia social é um grave transtorno de ansiedade que traz incapacitação e sofrimento. OBJETIVOS: Investigar a consistência interna da versão em português do Mini-Inventário de Fobia Social (Mini-SPIN. MÉTODOS: Foi realizado um estudo da consistência interna do Mini-SPIN em uma amostra de 206 estudantes universitários da cidade de São Paulo, SP. RESULTADOS: A consistência interna do instrumento, analisada pelo coeficiente alfa de Cronbach, foi de 0,81. CONCLUSÕES: Esses achados permitiram concluir que a versão em português do Mini-SPIN exibiu resultados de boa consistência interna, semelhantes aos da versão original em inglês.BACKGROUND: Social phobia is a severe anxiety disorder that brings disability and distress. OBJECTIVES: To investigate the internal consistency of the Portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN. METHODS: We conducted a study of internal consistency of the Mini-SPIN in a sample of 206 college students of the city of São Paulo, SP. RESULTS: The internal consistency of the instrument, analyzed by Cronbach's alpha coefficient, was 0.81. CONCLUSIONS: These findings suggest that the Portuguese version of the Mini-SPIN has a good internal consistency, similar to those obtained with the original English version.

  13. Passive dosimetry: introduction of a new dosimeter based on OSL technology

    International Nuclear Information System (INIS)

    Archambault, V.; Le Roy, G.; Prugnaud, B.

    2005-01-01

    A new passive dosimeter based on OSL technology has been introduced on the French market. In this article are described: the technology and the material on which this new detector relied, the dosimeter itself. (author)

  14. Evaluation of apical root resorption in orthodontic patients with maxillary anterior intrusion using utility arches and mini screws: A comparative clinical trial

    Directory of Open Access Journals (Sweden)

    Muraleedhara Bhat

    2014-01-01

    Full Text Available Objectives: The purpose of this study was to compare the amount of apical root resorption in orthodontic patients undergoing maxillary anterior intrusion using utility arches and mini screws; and to compare the efficacy of mini screws and utility arches in reducing over bite. Materials and Methods: The study sample consisted of 20 patients, divided in two groups. Group A consisted of ten patients in whom titanium mini-screws were used Group B consisted of 10 patients in whom utility arches made of 0.017 × 0.25" TMA were used. Diagnostic records (study models and radiovisiography [RVG] were taken at 2 time intervals, T1 (just before implant/utility arch placement and T2 (at the end of intrusion 6 months later. The pre and post radiographic images were measured from incisal tip to the root apex with the help of intrascan DC software. Root resorption was computed as the difference between the pre-treatment total tooth length and the post treatment total tooth length. These values were subjected to statistical analyses using SPSS 16.00 statistical software. (Statistical Package for the Social Sciences, IBM Corporation, December 2007 Results: The results showed that root resorption was seen in both groups. Amount of resorption seen was higher in mini implant group than utility arch group. Mini implants were more efficient in reducing the overbite when compared to utility arches. Conclusion: It was concluded from the study that intrusion using mini implant resulted in more root resorption than utility arch; and mini implant was more effective in intruding the incisors than utility arch.

  15. Development of colored alumilite dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yagi, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yokoo, Noriko [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2003-03-01

    In the ITER (International Thermonuclear Experimental Reactor), in-vessel components such as blanket and divertor, which are installed in the vacuum vessel of the ITER, are maintained by remote handling equipment (RH equipment). The RH equipment for maintenance is operated under sever environmental conditions, such as high temperature (50{approx}100 degC), high gamma-ray radiation ({approx}1 kGy/h) in an atmosphere of inert gas or vacuum; therefore many components of the RH equipment must have a suitable radiation resistance efficiency for long time operation (10{approx}100 MGy). Typical components of the RH equipment have been extensively tested under an intensive gamma-ray radiation. Monitoring of the radiation dose of the components of the RH equipment is essential to control the operation period of the RH equipment considering radiation resistance. However, the maximum measurable radiation dose of the conventional dosimeters, such as ionization chamber, liquid, glass and plastic dosimeters are limited to be approximately 1MGy which is too low to monitor the RH equipment for the ITER. In addition, these conventional dosimeters do not involve sufficient radiation resistance against the high gamma-ray radiation as well as are not easy handling and low cost. Based on the above backgrounds, a new dosimeter with bleaching of an azo group dye to be applied to a radiation monitor has been developed for high gamma-ray radiation use. The colored alumilite dosimeter is composed of the azo group dye (-N=N-) in an anodic oxidation layer of aluminum alloy (Al{sub 2}O{sub 3}). It can monitor the radiation dose by measuring the change of the bleaching of azo dye in the Al{sub 2}O{sub 3} layer due to gamma-ray irradiation. The degree of bleaching is measured as the change of hue (color) and brightness based on the Munsell's colors with a three dimensional universe using spectrophotometer. In the tests, the dependencies such as colors, anodized layer thickness, type of azo

  16. Estimation of personal dose based on the dependent calibration of personal dosimeters in interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige; Koshida, Kichiro; Ichikawa, Katsuhiro

    2007-01-01

    The purpose of present study is, in interventional radiology (IVR), to elucidate the differences between each personal dosimeter, and the dependences and calibrations of area or personal dose by measurement with electronic dosimeters in particular. We compare space dose rate distributions measured by an ionization survey meter with the value measured by personal dosimeter: an optically stimulated luminescence, two fluoroglass, and two electronic dosimeters. Furthermore, with electronic dosimeters, we first measured dose rate, energy, and directional dependences. Secondly, we calibrated the dose rate measured by electronic dosimeters with the results, and estimated these methods with coefficient of determination and Akaike's Information Criterion (AIC). The results, especially in electronic dosimeters, revealed that the dose rate measured fell by energy and directional dependences. In terms of methods of calibration, the method is sufficient for energy dependence, but not for directional dependence, because of the lack of stable calibration. This improvement poses a question for the future. The study suggested that these dependences of the personal dosimeter must be considered when area or personal dose is estimated in IVR. (author)

  17. Graphic software ''MiniG'' for the Mini-6

    International Nuclear Information System (INIS)

    Zen, J.

    1984-06-01

    MiniG is a set of subprograms, written and aimed at being used in Fortran for graphic applications in nuclear physics (histograms or point clouds). It includes three representation modes of axis scales (linear, semi-log and squared root), five types of vectors and numerous graphic symbols for spectra representation with or without notation (circle, cross, arrow, triangle, spiral, etc.). It offers also the possibilities of the software ''Plot-10'' of Tektronix, and accept all the types of graphic terminals of SATD connected to Mini-6 [fr

  18. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed small volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  19. MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter

    International Nuclear Information System (INIS)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N

    2016-01-01

    Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed small volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  20. Design and development of a PMOSFET gamma ray dosimeter

    International Nuclear Information System (INIS)

    Khanna, V.K.; Kumar, A.; Gupta, R.P.; Pandya, A.; Roy, Rajesh

    2005-01-01

    A P-channel MOSFET chip has been designed for detection of gamma radiations. The chip consists of three MOSFETs of different geometrical parameters for achieving sensitivity to low and high dose ranges. One of the MOSFET structures has a closed geometry to reduce the leakage current. The developed dosimeter being a MOSFET, its IC (Integrated Circuit)-compatibility helps in easy interfacing with readout circuitry. The dosimeter fabrication process is based on metal-gate MOSFET technology with thick gate oxide to increase the effective number of electron-hole pairs generated by the gamma rays impinging on the device. The process for the chip realization has been designed and simulated to achieve the required impurity diffusion profile. The chip has been fabricated using the above process and electrically characterized. The device has been exposed to gamma ray source and its characteristics measured. The change in threshold voltage of the MOSFET after exposure has been used to calculate the sensitivity of the device. The developed dosimeter has potential applications in personnel dosimetry and cancer treatment. This paper describes the basic detection mechanism of the MOSFET, the design approach, and fabrication process of the MOSFET dosimeter. (author)

  1. Angular dependence of response of dosimeters exposed to an extended radioactive source

    International Nuclear Information System (INIS)

    Manai, K.; Trabelsi, A.; Madouri, F.

    2014-01-01

    This study was carried out to investigate the exposure angular dependence of dosimeters response when exposed to the extended gamma source of an irradiation facility. Using analytical and Monte Carlo analysis, we show that dosimeters response has no angular dependence as claimed by a previous study. The dose rate formula we derived takes into account the path length of the photons in the dosimeter. Experimental data have been used to validate our analytical and Monte Carlo methods. Furthermore, the effects on the dosimeters responses in relation to their sizes response of their size and geometry and orientation have been investigated and, within statistical errors, no angular dependence was found. - Highlights: • We investigate the exposer angle dependence of dosimeter response to a gamma source. • Analytical and Monte Carlo analyses show no angular dependence as claimed by others. • We derive the dose rate formulae taking into account the path length of photons. • Analytical and Monte Carlo models have been validated using experimental data

  2. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    Science.gov (United States)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For

  3. [Validation of the portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN)].

    Science.gov (United States)

    D'El Rey, Gustavo José Fonseca; Matos, Cláudia Wilmor

    2009-01-01

    Social phobia (also known as social anxiety disorder) is a severe mental disorder that brings distress and disability. The aim of this study was validate to the Portuguese language the Mini-Social Phobia Inventory (Mini-SPIN) in a populational sample. We performed a discriminative validity study of the Mini-SPIN in a sample of 644 subjects (Mini-SPIN positive group: n = 218 and control/negative group: n = 426) of a study of anxiety disorders' prevalence in the city of Santo André-SP. The Portuguese version of the Mini-SPIN (with score of 6 points, suggested in the original English version) demonstrated a sensitivity of 95.0%, specificity of 80.3%, positive predictive value of 52.8%, negative predictive value of 98.6% and incorrect classification rate of 16.9%. With score of 7 points, was observed an increase in the specificity and positive predictive value (88.6% and 62.7%), while the sensitivity and negative predictive value (84.8% and 96.2%) remained high. The Portuguese version of the Mini-SPIN showed satisfactory psychometric qualities in terms of discriminative validity. In this study, the cut-off of 7, was considered to be the most suitable to screening of the generalized social phobia.

  4. A critical assessment of two types of personal UV dosimeters.

    Science.gov (United States)

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  5. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    International Nuclear Information System (INIS)

    Hill, Robin L.; Conrady, Matthew M.

    2011-01-01

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

  6. Personnel neutron dosimeter for use in a plutonium processing plant

    International Nuclear Information System (INIS)

    Brunskill, R.T.; Hwang, F.S.W.

    1978-01-01

    A thermoluminesence dosimeter for personnel neutron dose measurement, which is based on the albedo principle, has been developed at Windscale works. The dosimeter has been calibrated against a 238 Pu/Be neutron source using different degrees of moderation and against a variety of neutron spectra prevailing in different areas of the Plutonium Finishing Plant. The dosimeter consists of two identical parts in which the sensitive elements are graphite discs which have thermoluminescent crystals sealed to the plane faces with a high temperature resin. The graphite discs are supported in teflon washers which fit into a body of tufnol. A circular insert of boronated polythene in each tufnol body provides a thermal neutron absorber for the sensitive element in the other half of the dosimeter. Natural lithium borate was used as the neutron sensitive phosphor and a lithium borate made from isotopes 7 Li (99.9%) and 11 B (99.2%) as the neutron insensitive materials. Neutron-sensitive lithium borate is sealed to one face of each disc and the neutron-insensitive material to the opposite face. The dosimeter is so assembled that the neutron-sensitive faces both lie in the central plane. The design is such that one neutron sensitive face responds to the incident flux of neutron only while the other responds to the albedo flux

  7. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  8. P A Mini

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P A Mini. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 547-551. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT · T S Sonia P A Mini R Nandhini Kalluri Sujith Balakrishnan ...

  9. Validação da versão em português do Mini-Inventário de Fobia Social (Mini-SPIN) Validation of the portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN)

    OpenAIRE

    Gustavo José Fonseca D'El Rey; Cláudia Wilmor Matos

    2009-01-01

    A fobia social (também conhecida como transtorno de ansiedade social) é um grave transtorno mental que traz sofrimento e incapacitação. O objetivo deste estudo foi validar para a língua portuguesa o Mini-Inventário de Fobia Social (Mini-SPIN) em uma amostra da população. Foi realizado um estudo da validade discriminativa do Mini-SPIN em uma amostra de 644 pessoas (grupo positivo para o Mini-SPIN: n = 218 e grupo controle/negativo: n = 426) de um estudo de prevalência de transtornos de ansieda...

  10. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  11. IAEA reference dosimeter: Alanine-ESR

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1999-01-01

    Since 1985, the IAEA has been using alanine-ESR as a transfer dosimeter for its dose quality audit service, namely the International Dose Assurance Service. The alanine dosimeters are rod-type containing 70 wt% DL--α-alanine and 30 wt% polystyrene. We have two self-shielded gamma facilities for the calibration of the dosimetry system, where the temperature within the irradiation chamber can be controlled by a specially designed unit. A 4th order polynomial is fitted to the 16 data points in the dose range of 100 Gy to 50 kGy. The measured value of the irradiation temperature coefficient at two dose values (15 and 45 kGy) is 0.23 %/deg. C. Also, the ESR-response was followed for several dosimeters for about 8 months to study the post-irradiation effect. A value of 0.008 %/day was observed for the fading of the response for two dose values (15 and 45 kGy) and three irradiation temperatures (15, 27 and 40 deg. C). The effect of the analysis temperature on the ESR response was also studied. The combined relative uncertainty for the IAEA alanine-ESR dosimetry system is 1.5% (k=1). This includes that transferred from the primary laboratory for the dose rate measurements of the gamma facilities, dosimetry system calibration uncertainties, batch variability and uncertainty in the curve fitting procedure. This value however does not include the contribution due to the irradiation temperature correction which is applied when it differs from that during calibration; this component being specific for each dose measurement. (author)

  12. Methacholine challenge test: Comparison of tidal breathing and dosimeter methods in children.

    Science.gov (United States)

    Mazi, Ahlam; Lands, Larry C; Zielinski, David

    2018-02-01

    Methacholine Challenge Test (MCT) is used to confirm, assess the severity and/or rule out asthma. Two MCT methods are described as equivalent by the American Thoracic Society (ATS), the tidal breathing and the dosimeter methods. However, the majority of adult studies suggest that individuals with asthma do not react at the same PC 20 between the two methods. Additionally, the nebulizers used are no longer available and studies suggest current nebulizers are not equivalent to these. Our study investigates the difference in positive MCT tests between three methods in a pediatric population. A retrospective, chart review of all MCT performed with spirometry at the Montreal Children's Hospital from January 2006 to March 2016. A comparison of the percentage positive MCT tests with three methods, tidal breathing, APS dosimeter and dose adjusted DA-dosimeter, was performed at different cutoff points up to 8 mg/mL. A total of 747 subjects performed the tidal breathing method, 920 subjects the APS dosimeter method, and 200 subjects the DA-dosimeter method. At a PC 20 cutoff ≤4 mg/mL, the percentage positive MCT was significantly higher using the tidal breathing method (76.3%) compared to the APS dosimeter (45.1%) and DA-dosimeter (65%) methods (P < 0.0001). The choice of nebulizer and technique significantly impacts the rate of positivity when using MCT to diagnose and assess asthma. Lack of direct comparison of techniques within the same individuals and clinical assessment should be addressed in future studies to standardize MCT methodology in children. © 2017 Wiley Periodicals, Inc.

  13. Radiographer interpretation of trauma radiographs: Issues for radiography education providers

    International Nuclear Information System (INIS)

    Hardy, Maryann; Snaith, Beverly

    2009-01-01

    Background: The role of radiographers with respect to image interpretation within clinical practice is well recognised. It is the expectation of the professional, regulatory and academic bodies that upon qualification, radiographers will possess image interpretation skills. Additionally, The College of Radiographers has asserted that its aspiration is for all radiographers to be able to provide an immediate written interpretation on skeletal trauma radiographs by 2010. This paper explores the readiness of radiography education programmes in the UK to deliver this expectation. Method: A postal questionnaire was distributed to 25 Higher Education Institutions in the UK (including Northern Ireland) that provided pre-registration radiography education as identified from the Society and College of Radiographers register. Information was sought relating to the type of image interpretation education delivered at pre- and post-registration levels; the anatomical range of image interpretation education; and education delivery styles. Results: A total of 19 responses (n = 19/25; 76.0%) were received. Image interpretation education was included as part of all radiographer pre-registration programmes and offered at post-registration level at 12 academic centres (n = 12/19; 63.2%). The anatomical areas and educational delivery methods varied across institutions. Conclusion: Radiography education providers have embraced the need for image interpretation education within both pre- and post-registration radiography programmes. As a result, UK education programmes are able to meet the 2010 College of Radiographers aspiration.

  14. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obeidat, M; Cline, K; Stathakis, S; Papanikolaou, N; Rasmussen, K; Gutierrez, A; Ha, CS; Lee, SE; Shim, EY; Kirby, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads and the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)

  15. Development of neutron dosimeter using CR-39 for measurement of ambient dose equivalent

    International Nuclear Information System (INIS)

    Maki, Daisuke; Shinozaki, Wakako; Ohguchi, Hiroyuki; Yamamoto, Takayoshi; Nakamura, Takayoshi

    2010-01-01

    A CR-39 has good advantages such as cumulative type dosimeter, small fading effect and gamma-ray insensitive. Therefore, we developed the wide energy-range environmental neutron dosimeter using eight CR-39s for area monitoring in this study. This dosimeter is made of octagonal columnar polyethylene block which height is 60 mm and bottom side is 25 mm. The dosimeter contains two types of CR-39s for fast neutron detection and slow neutron detection. Four CR-39s for fast neutron detection are used for detection of recoil protons produced by H (n, p) reactions. Four CR-39s for slow neutron detection are used with boron nitride converter to detect alpha-rays produced by 10 B (n, α) 7 Li reactions. Ambient dose equivalent is obtained by adding the number of etch-pits observed in four CR-39s for fast neutron detection to the number of etch-pits observed in four CR-39s for slow neutron detection with appropriate constants respectively. Dosimeters were irradiated with some energetic neutrons and evaluated results of ambient dose equivalent were compared with results from neutron transport calculations. Energy response of dosimeter shows good agreement with neutron fluence to ambient dose equivalent conversion coefficients. Directional dependence of dosimeter is at the same level as the rem-counter. (author)

  16. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    Science.gov (United States)

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0

  17. Dose response of thin-film dosimeters irradiated with 80-120 keV electrons

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; Sharpe, P.

    2005-01-01

    Thin-film dosimeters (Riso B3 and alanine films) were irradiated at 10 MeV and 80-120 keV electron accelerators, and it has been shown that the radiation response of the dosimeter materials (the radiation chemical yields) are constant at these irradiation energies. However, dose gradients within ...... are present within the dosimeter. (C) 2005 Elsevier Ltd. All rights reserved....

  18. SSDL Preparation for Implementation of the Use of OSL Dosimeters in Malaysia

    International Nuclear Information System (INIS)

    Sangau, J.K.; Taiman Kadni; Ahmad Bazlie Abdul Kadir

    2013-01-01

    Since the early 1980's, film badge has been widely used as a device of personal dose monitoring in Malaysia. Secondary Standard Dosimetry Laboratory (SSDL), as a service center for film badge has obtained the supply of personal monitoring film from Agfa Gevaert, Belgium every year. As the uses of film badge have some weaknesses, it has prompted SSDL to find an alternative dosimeter to replace the film badge. Based on the studies that have been conducted, SSDL has selected OSL dosimeter (Optically Stimulated Luminescent Dosimeter) to replace the film badge and is expected to be fully operational by middle of 2015. This paper aims to explain the selection of OSL dosimeter and planning carried out to ensure the success of their application in Malaysia. (author)

  19. Ceramic BeO exoelectron dosimeters for tritium and radon monitoring

    International Nuclear Information System (INIS)

    Gammage, R.B.

    1979-01-01

    An environmental monitoring device with BeO ceramic dosimeters can be used to measure 222 Rn in dwellings. Radon diffuses into a porous hemispheric chamber and the radon daughters are electrostatically collected on aluminized Mylar foil covering the BeO dosimeter that records the alpha activity. A 10:1 signal-to-background ratio results from a radon exposure of only pCi-h/l. This high sensitivity makes accurate radon measurement possible within one day, even at near background levels of a few tenths pCi/l. The BeO exoelectron dosimeter is also uniquely suited for monitoring occupational exposure to insoluble tritium gas. At one-fifth the maximum permissible concentration, exposure for 8 hours gives a 10:1 signal-to-background exoelectron response to the low energy beta rays. Compensation for any exoelectron response caused by photon radiation can be made by reading the thermoluminescence. The tritium exposure produces negligible thermoluminescence. Progress in these and other applications is now totally dependent on achieving reliability and long-term stability of the exoelectron dosimeter

  20. MiniCNT - A Tabletop Stellarator

    Science.gov (United States)

    Dugan, Chris; Pedersen, Thomas; Berkery, John

    2006-10-01

    MiniCNT is a scaled down version of the Columbia Non-Neutral Torus, a stellarator built to study confinement of non-neutral plasmas on magnetic surfaces. MiniCNT is a glass vacuum chamber capable of holding pressures six orders of magnitude below atmospheric pressure. Unlike CNT, in which plasmas are invisible, MiniCNT allows some collisions with neutrals, causing it to glow. Using two twelve-volt car batteries to power four magnetic coils, MiniCNT generates a 0.02 Tesla magnetic field. While CNT, being larger, is obviously more accurate, there are multiple benefits in MiniCNT. First, it is more flexible and can be adjusted to fit many scenarios easily. The car batteries can be switched for other power sources, the coils can be realigned, and the chamber can be pumped to various pressures of various gases. Also, it is visually accessible; while CNT has glass viewing ports and its plasma is dark, MiniCNT is made of glass and its plasma glows, allowing visualization of the magnetic surfaces.

  1. Mini-Cog and Mini-Mental State Examination: agreement in a cross-sectional study with an elderly sample.

    Science.gov (United States)

    Costa, Diogo; Severo, Milton; Fraga, Sílvia; Barros, Henrique

    2012-01-01

    We aimed to compare the Mini-Mental State Examination (MMSE) with the Mini-Cog, measuring agreement in participants' classification, using a general population sample. Cross-sectional evaluation of 609 community dwellers aged ≥60 years was performed by trained interviewers. Cohen's kappa and 95% confidence intervals (CI) were calculated to assess overall agreement, and Cronbach alphas computed to assess reliability. Two-parameter Item Response Theory models (difficulty and discrimination parameters) were used to assess discrimination. Considering MMSE cut-point for scores Mini-Cog's cut-point score Mini-Cog Mini-Cog Mini-Cog's alpha was 0.2776. Co-calibration according to inherent ability is graphically presented. Agreement between scales seems fragile in our sample. The discriminative and reliability analysis suggests a better performance for subsets of the MMSE compared with the Mini-Cog. Usefulness of calibrated scores is discussed. Copyright © 2012 S. Karger AG, Basel.

  2. Provision of dosimeters by official monitoring services for eye lens dose estimation

    International Nuclear Information System (INIS)

    Engelhardt, J.; Martini, E.

    2013-01-01

    Recent epidemiological studies are implying that the radio sensitivity of the eye lens is much higher than supposed in the past. International recommendations and standards demand to lower down the annual limit of the eye lens organ dose to 20 mSv. Since about 10 years German monitoring services offer partial-body dosimeters fixed on the head or on glasses for monitoring the eye lens dose. These dosimeters are optimized to measure the (surface) personal dose equivalent H p (0,07) from 0,5 mSv up to 10 Sv, which clearly overestimate the organ dose of the eye lens. With special features like different calibrations partial-body dosimeters should be applicable for legal dosimetry to avoid the development of special H p (3) dosimeters. Accepting the right way for wearing these dosimeters it is important to get the right results. Practical experiences are shown with measuring results and the difficulties of rounding the exact measuring values to discrete dose steps. Closing this article we point to still missing legal basis and open questions regarding to type testing procedures. (orig.)

  3. Liquid polymers for using in a holographic ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some liquid polymeric systems for using in the holographic ionizing radiation dosimeter are presented. It is shown that the action of radiation on polymers leads to the destruction of the polymeric chains or to perform them, the both processes being applied in radiation dosimetry. Some advantages of the holographic dosimeter are outlined comparatively with those common used. (author)

  4. MiniDraw

    DEFF Research Database (Denmark)

    2018-01-01

    MiniDraw is a teaching-oriented 2D graphics direct manipulation framework in Java, inspired by JHotDraw. It is used in the book "Flexible, Reliable Software - using Patterns and Agile Development", by Henrik Bærbak Christensen, published by CRC Press 2010.......MiniDraw is a teaching-oriented 2D graphics direct manipulation framework in Java, inspired by JHotDraw. It is used in the book "Flexible, Reliable Software - using Patterns and Agile Development", by Henrik Bærbak Christensen, published by CRC Press 2010....

  5. Mini-grid Policy Tool-kit. Policy and business frameworks for successful mini-grid roll-outs

    International Nuclear Information System (INIS)

    Franz, Michael; Hayek, Niklas; Peterschmidt, Nico; Rohrer, Michael; Kondev, Bozhil; Adib, Rana; Cader, Catherina; Carter, Andrew; George, Peter; Gichungi, Henry; Hankins, Mark; Kappiah, Mahama; Mangwengwende, Simbarashe E.

    2014-01-01

    The Mini-grid Policy Tool-kit is for policy makers to navigate the mini-grid policy design process. It contains information on mini-grid operator models, the economics of mini-grids, and necessary policy and regulation that must be considered for successful implementation. The publication specifically focuses on Africa. Progress on extending the electricity grid in many countries has remained slow because of high costs of gird-extension and limited utility/state budgets for electrification. Mini-grids provide an affordable and cost-effective option to extend needed electricity services. Putting in place the right policy for min-grid deployment requires considerable effort but can yield significant improvement in electricity access rates as examples from Kenya, Senegal and Tanzania illustrate. The tool-kit is available in English, French and Portuguese

  6. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    Science.gov (United States)

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  7. Development of colored alumilite dosimeter

    CERN Document Server

    Obara, K; Yagi, T; Yokoo, N

    2003-01-01

    In the ITER (International Thermonuclear Experimental Reactor), in-vessel components such as blanket and divertor, which are installed in the vacuum vessel of the ITER, are maintained by remote handling equipment (RH equipment). The RH equipment for maintenance is operated under sever environmental conditions, such as high temperature (50 approx 100 degC), high gamma-ray radiation (approx 1 kGy/h) in an atmosphere of inert gas or vacuum; therefore many components of the RH equipment must have a suitable radiation resistance efficiency for long time operation (10 approx 100 MGy). Typical components of the RH equipment have been extensively tested under an intensive gamma-ray radiation. Monitoring of the radiation dose of the components of the RH equipment is essential to control the operation period of the RH equipment considering radiation resistance. However, the maximum measurable radiation dose of the conventional dosimeters, such as ionization chamber, liquid, glass and plastic dosimeters are limited to b...

  8. An assessment of radiotherapy dosimeters based on CVD grown diamond

    International Nuclear Information System (INIS)

    Ramkumar, S.; Buttar, C.M.; Conway, J.; Whitehead, A.J.; Sussman, R.S.; Hill, G.; Walker, S.

    2001-01-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ∼6 Gy. The diamond devices of CVD2 type had a response at low fields ( 1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications

  9. Sensitive color dosimeters using photochromic diarylethenes

    International Nuclear Information System (INIS)

    Irie, Setsuko; Irie, Masahiro

    2008-01-01

    Various types of color dosimeters are conveniently used for estimating absorbed dose in the radiation sterilization of biomedical materials. Diarylethenes with heterocyclic aryl groups are extensively studied for the applications to the optoelectronic devices, such as optical memory media and photowitching devices because of their thermally irreversible and fatigue-resistant properties. The colors of diarylethenes never fade in the dark conditions. The thermally stable dithienylethene derivatives are applied to sensitive color dosimeters. Upon γ-irradiation, polystyrene films containing diarylethene derivatives, such as 1,2-bis(2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene 1 or 1,2-bis(2,5-dimethyl-3-thienyl) perfluorocyclopentene 2, and fluorescent metal complexes turned blue or red. Even if the absorbed dose was as small as 10 Gy, a clear color change was observed. (author)

  10. Effect of pH grade on polymer-gel dosimeter and its brachytherapy application

    International Nuclear Information System (INIS)

    Spevacek, V.; Hrbacek, J.; Dvorak, P.; Cechak, T.; Novotny, J.

    2003-01-01

    To evaluate impact of pH grade on characteristics of polymer-gel dosimeter and its application in dose distribution verification in brachytherapy. A polymer-gel dosimeter based on radiation induced polymerization and crosslinking of acrylic monomers (acrylic acid, N,N' methylen-bis-acrylamide) was investigated with respect to its pH grade. pH grade of a dosimeter was varied by concentration of natrium hydroxide. Afterwards, dosimeter was split into several samples which were uniformly irradiated with Co-60 gamma rays. The range of doses applied was usually from 0 to 50 Gy with the main interest in region up to 20 Gy. Evaluation of dosimeter dose response was performed using MRI (T2). Dose response curves obtained were evaluated with respect to pH grade as a parameter. In parallel, there was studied temperature resistance (melting temperature) of gels with various pH grade. pH grade modified polymer-gel dosimeter was then used to compare dose distribution calculated with brachytherapy treatment planning system for simple irradiation geometry with Ir-192 HDR source. Additionaly, Monte Carlo calculated data were also included in the brachytherapy study. There was observed effect of pH grade on dose-response curve parameters (slope of linear fit, background response, linear range and maximum measurable dose). In general, the lower pH grade the higher sensitivity. Another positive effect of decreased pH grade is significantly higher maximum measurable dose. Maximum melting temperature of a gel was observed with pH grade between 3.5 and 4. For both higher and lower pH grades the melting temperature was lower. Using pH modified polymer-gel dosimeter simple brachytherapy dose distribution was measured and compared with calculated and Monte Carlo simulated data. There was observed strong dependence of dose-response relationship on pH grade of polymer-gel dosimeter resulting in significant improvement of dosimeter characteristics, namely sensitivity, applicable range of

  11. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    Science.gov (United States)

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in

  12. Characterization of MOSFET dosimeters for low‐dose measurements in maxillofacial anthropomorphic phantoms

    Science.gov (United States)

    Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However

  13. Studies on reduction of dosimeter used in the product dose mapping process at Sinagama Plant

    International Nuclear Information System (INIS)

    Sofian Ibrahim; Syuhada Ramli; Cosmos George; Zarina Mohd Nor; Kamarudin Buyong; Shahidan Yob; Nor Ishadi Ismail; Mohd Sidek Othman; Ahsanulkhaliqin Abdul Wahab; Mohd Khairul Azfar Ramli

    2012-01-01

    Product dose mapping is the determination of the best product loading configuration which will be used during routine sterilization. In product dose mapping, dosimeters are placed throughout products at strategic locations to determine the zones of minimum and maximum dose. On previous Sinagama's product dose mapping method, a total of 240 unit's ceric-cerous dosimeter been used for a tote. Based on the data obtained from Irradiator Dose Mapping Report in 2004 and data from recent studies, the number of dosimeter to be used in product dose mapping can be reduced to 28 units without sacrificing precision and accuracy of the dose mapping results. This also led changes of the placing dosimeter method from Plane system to Coordinate system. Reduction of 88 % on dosimeters usage will directly reduce the cost of expenses on dosimeter, time and labor. (author)

  14. The radiographic acromiohumeral interval is affected by arm and radiographic beam position

    Energy Technology Data Exchange (ETDEWEB)

    Fehringer, Edward V.; Rosipal, Charles E.; Rhodes, David A.; Lauder, Anthony J.; Feschuk, Connie A.; Mormino, Matthew A.; Hartigan, David E. [University of Nebraska Medical Center, Department of Orthopaedic Surgery and Rehabilitation, Omaha, NE (United States); Puumala, Susan E. [Nebraska Medical Center, Department of Preventive and Societal Medicine, Omaha, NE (United States)

    2008-06-15

    The objective was to determine whether arm and radiographic beam positional changes affect the acromiohumeral interval (AHI) in radiographs of healthy shoulders. Controlling for participant's height and position as well as radiographic beam height and angle, from 30 right shoulders of right-handed males without shoulder problems four antero-posterior (AP) radiographic views each were obtained in defined positions. Three independent, blinded physicians measured the AHI to the nearest millimeter in 120 randomized radiographs. Mean differences between measurements were calculated, along with a 95% confidence interval. Controlling for observer effect, there was a significant difference between AHI measurements on different views (p<0.01). All pair-wise differences were statistically significant after adjusting for multiple comparisons (all p values <0.01). Even in healthy shoulders, small changes in arm position and radiographic beam orientation affect the AHI in radiographs. (orig.)

  15. Review of mini-clinical evaluation exercise (mini-CEX in a psychiatry clerkship

    Directory of Open Access Journals (Sweden)

    Meresh E

    2018-04-01

    Full Text Available Edwin Meresh,1 David Daniels,2 Aparna Sharma,1 Murali Rao,1 Kaushal Mehta,3 David Schilling1 1Department of Psychiatry and Behavioral Neurosciences, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA; 2Department of Psychiatry, Medstar Georgetown University Hospital, Washington, DC, USA; 3School of Public Health, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL USA Background: Direct observation of medical students with actual patients is important for the assessment of clinical skills including interviewing and counseling skills. This article describes medical students’ experience of mini-clinical evaluation exercise (mini-CEX during their clerkship in consultation psychiatry. Materials and methods: In our center during inpatient consultation psychiatry clerkship, all rotating students are expected to complete one mini-CEX assessment as part of their clinical training. We conducted retrospective analysis of mini-CEX ratings completed from 2013 to 2016. All evaluations took place at inpatient medical setting in patients admitted with medical conditions and psychiatric comorbidities. Results: A total of 113 evaluations were reviewed. The time examiner observed the interaction of a student with the patient was 14.24 minutes (mean, and the time spent in providing feedback to the student was 9.71 minutes. Complexity of problem was rated as low in 0.88% (n=1, moderate in 50.44% (n=57, and high in 48.67% (n=55. Highest ratings were for professionalism, similar to previous reports. Total score calculated by examiner showed no difference by the complexity of the patient; however, we observed a trend in higher counseling score for the high complexity group. Conclusion: Mini-CEX assessment during busy clerkship is feasible with good outcomes. Direct observation of medical trainees with actual patients is important for the assessment of performance-based clinical skills. Hospital psychiatry rotation

  16. Angular dependence of dose equivalent response of an albedo neutron dosimeter

    International Nuclear Information System (INIS)

    Torres, B.A.; Boswell, E.; Schwartz, R.B.

    1994-01-01

    The ANSI provides procedures for testing the performance of dosimetry services. Although neutron dose equivalent angular response studies are not now mandated, future standards may well require that such studies be performed. Current studies with an albedo dosimeter will yield information regarding the angular dependence of dose equivalent response for this type of personnel dosimeter. Preliminary data for bare 252 Cf fluences show a marked decrease in dosimeter reading with increasing angle. The response decreased by an approximate factor of four. For the horizontal orientation, the same response was noted from both positive and negative angles. However, for the vertical orientation, the response was unexplainably assymetric. We are also examining the response of the personnel badge in moderated 252 Cf fluences. Responses from the moderated and unmoderated 252 Cf fields and theoretical calculations of the neutron angular response will be compared. This information will assist in building a data base for future comparisons of neutron angular responses with other neutron albedo dosimeters and phantoms

  17. Development of real time personal neutron dosimeter with two silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Tsujimura, N. [Tohoku Univ., Cyclotron and Radioisotope Center, Aoba, Aramaki, Aoba-ku (Japan); Yamano, T. [Tokyo Factory, Fuji Electric Co. Ltd., Tokyo (Japan)

    1992-07-01

    We developed a real time personal neutron dosimeter by using two types of silicon p-n junction detectors, thermal neutron sensor and fast neutron sensor. The thermal neutron sensor which is {sup 10}B doped n-type silicon with a polyethylene radiator mainly counts neutrons of energy front thermal to I MeV, and the fast neutron sensor which is p-type silicon with a polyethylene radiator is sensitive to neutrons above I MeV. The neutron sensitivity measurements revealed that the dosimeter has a rather flat response for dose equivalent from thermal to 15 MeV, excluding a drop from 50 keV to I MeV. In order to get conversion factor from counts to dose equivalent as accurately as possible, we performed the field test of the dosimeter calibration in several neutron-generating fields. By introducing the two-group dose estimation method, this dosimeter can give the neutron dose equivalent within about 50% errors. (author)

  18. PRESAGE® as a solid 3-D radiation dosimeter: A review article

    Science.gov (United States)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney

    2017-12-01

    Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE® structure and scanning methods. This article attempts to review and reflect on the results of these investigations.

  19. Characteristic evaluation of a real-time silicon dosimeter and measurement of entrance surface dose at radiography

    International Nuclear Information System (INIS)

    Fujibuchi, Toshiou; Kato, Hideyuki; Hashimoto, Masatoshi; Abe, Yukinao; Kikawa, Takashi

    2006-01-01

    It is important to grasp how much radiation exposure has occurred through radiation diagnosis, in respect to patient explanations and radiation protection. In this examination, we used a patient skin dosimeter (PSD) that measures entrance surface dose (ESD) in real time using a fluoroscopy procedure. The PSD has the ability to display results beginning at 1 μGy. We focused our attention on the X-ray detectability of the PSD, and performed a representative evaluation with the X-ray equipment. We measured ESD under various radiographic parameters at our facility. Although the measurements were dependent on energy, we were able to measure ESD to within an accuracy of about a 5% error by putting a calibration value on energy. The PSD can measure ESD easily without requiring preparation. It is important to be aware of the exposure dose to the radiation staff, and the PSD is a very effective radiation dose-measuring tool when daily business is active. (author)

  20. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters

    DEFF Research Database (Denmark)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim

    2017-01-01

    radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. Methods: We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high......-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale...... with our specialist knowledge as occupational physicians. Conclusions: Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support...

  1. Response of TLD-100 LiF dosimeters for X-rays of low energies

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.

    2011-10-01

    In diverse practical applications as the existent in radiological clinics, industrial facilities and research laboratories, the solid state dosimeters are used for the measure of the different types of ionizing radiations. At the present time dosimeters are manufactured with different types of materials that present thermoluminescent properties, to the effects of determining the absorbed radiation dose. Under these conditions, the radiation dose is determined integrated in all the range of energies of the beam of X-rays, since it assumes that the response of these dosimeters is lineal with the energy of the photons or radiant particles. Because interest exists in advancing in the development of a determination method in the way of the X-rays spectrum emitted by a tube of those used in diagnostic or therapy, we have measured the response of TLD-100 LiF dosimeters for low energies, minor at 60 keV, for a several group of these dosimeters. (Author)

  2. Psychometric properties of a sign language version of the Mini International Neuropsychiatric Interview (MINI)

    OpenAIRE

    Øhre, Beate; Saltnes, Hege; von Tetzchner, Stephen; Falkum, Erik

    2014-01-01

    Background There is a need for psychiatric assessment instruments that enable reliable diagnoses in persons with hearing loss who have sign language as their primary language. The objective of this study was to assess the validity of the Norwegian Sign Language (NSL) version of the Mini International Neuropsychiatric Interview (MINI). Methods The MINI was translated into NSL. Forty-one signing patients consecutively referred to two specialised psychiatric units were assessed with a diagnos...

  3. Evaluation of performance of electronic dosimeters for individual monitoring: tests in laboratory

    International Nuclear Information System (INIS)

    Garzon, W.J.; Khoury, H.J.; Barros, V.S.M. de; Medeiros, R.B.

    2015-01-01

    Electronic dosimeters based on direct ion storage technology are being widely used in many countries for individual monitoring in many applications of ionizing radiation. However, their use as routine dosimeter has been established in a few countries due to lack of accreditation or intercomparison programs. The objective of this study is to evaluate the performance of two direct íon storage dosimeters model available in the international market: the Miriom-Instadose-1 and RADOS DIS-1 to be eventually accepted for individual monitoring in Brazil. (author)

  4. iPad mini for dummies

    CERN Document Server

    Baig, Edward C

    2014-01-01

    Find out why the iPad mini has never been bigger This new edition of iPad mini For Dummies covers all the latest tips and tricks for getting an even bigger bang out of your iPad mini. Presented in full-color and written in the straightforward but fun language that has defined the For Dummies brand for more than twenty years, this friendly guide walks you through the multitouch interface, going online, getting connected, packing your iPad mini with apps, games, e-books, photos, music, and movies, synchronizing your data, texting with iMessage, working with Siri, importing pictures and launching

  5. Mini-screw implant or transpalatal arch-mediated anchorage reinforcement during canine retraction: a randomized clinical trial.

    Science.gov (United States)

    Sharma, Mohit; Sharma, Vineet; Khanna, Bharat

    2012-06-01

    To compare mesial movement of upper first molars during maxillary canine retraction using a pre-adjusted edgewise appliance provided by anchorage reinforcement and a transpalatal arch or mini-screw implant. Randomized clinical trial. Department of Orthodontics and Dentofacial Orthopedics, Armed Forces Medical College, Pune, India. From a cohort of subjects requiring the extraction of both upper first premolars and pre-adjusted edgewise appliances to correct their malocclusion, a total of 30 were randomly allocated to receive two different forms of anchorage reinforcement: group A--receiving mini-screw implant and group B--receiving a transpalatal arch Group A subjects received titanium mini-screw implants placed at the start of treatment between the maxillary second premolar and maxillary first molar. Maxillary second premolars were secured to the mini-screw implants using of 0.010-inch stainless steel ligature wire. Group B subjects received a custom-made transpalatal arch which was soldered to maxillary first molar bands. Active canine retraction was initiated in both groups on placement of a 0.019×0.025-inch stainless steel archwire using nickel titanium closed coil springs. Mesial movement of the upper first molars as measured on pre- (T1) and post-treatment (T2) lateral skull radiographs. The results showed that in group A the mean mesial movement of the first molars between T1 and T2 was 0.0 mm (SD 0.02; P = 0.90), whereas in Group B there was a mean forward movement of the first maolars of 2.48 mm (SD 0.71; Pimplants placed prior to levelling and aligning were able to provide absolute anchorage during maxillary canine retraction, in contrast to a transpalatal arch.

  6. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  7. Fast radiographic systems

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1984-08-01

    Industrial radiography can be performed with shorter exposure times, when instead of X-ray film with lead intensifying screens the radiographic paper with fluorescent screen is used. With paper radiography one can obtain lower material, equipment, and labor costs, shorter exposure and processing times, and easier radiation protection. The speed of the radiographic inspection can also be increased by the use of fluorometallic intensifying screens together with a special brand of X-ray film. Before accepting either of the two fast radiographic systems one must be sure that they can produce radiographs of adequate image quality. Therefore an investigation was performed on that subject using ISO wire IQI's and ASTM penetrameters. The radiographic image quality was tested for aluminium and steel up to 30 mm thick using various brands of radiographic paper and X-ray film with fluorometallic screens and comparing them with fast X-ray films with lead screens. Both systems give satisfactory results. (author)

  8. The NRPB's new dosimeter and dose record keeping services

    International Nuclear Information System (INIS)

    Dennis, J.A.; Marshall, T.O.; Shaw, K.B.

    1976-01-01

    A new automated dosimeter and record keeping service which the National Radiological Protection Board (UK) intends to introduce in 1977 is described. The automated system, based on a thermoluminescent dosimeter, will be linked to a fully computerised record keeping system with automatic printing of dose records and Transfer Records operated at its Headquarters at Harwell. The new system will dispense with much manual labour which in the past has introduced inevitable errors and incurred increasing costs. (U.K.)

  9. Validação da versão em português do Mini-Inventário de Fobia Social (Mini-SPIN Validation of the portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN

    Directory of Open Access Journals (Sweden)

    Gustavo José Fonseca D'El Rey

    2009-12-01

    Full Text Available A fobia social (também conhecida como transtorno de ansiedade social é um grave transtorno mental que traz sofrimento e incapacitação. O objetivo deste estudo foi validar para a língua portuguesa o Mini-Inventário de Fobia Social (Mini-SPIN em uma amostra da população. Foi realizado um estudo da validade discriminativa do Mini-SPIN em uma amostra de 644 pessoas (grupo positivo para o Mini-SPIN: n = 218 e grupo controle/negativo: n = 426 de um estudo de prevalência de transtornos de ansiedade na cidade de Santo André (SP. A versão em português do Mini-SPIN (com escore de 6 pontos, sugerido na versão original em inglês demonstrou uma sensibilidade de 95,0%, especificidade de 80,3%, valor preditivo positivo de 52,8%, valor preditivo negativo de 98,6% e taxa de classificação incorreta de 16,9%. Com escores de 7 pontos, foi observado um aumento na especificidade e no valor preditivo positivo (88,6% e 62,7%, sendo que a sensibilidade e o valor preditivo negativo (84,8% e 96,2% mantiveram-se altos. A versão em português do Mini-SPIN apresentou qualidades psicométricas satisfatórias em termos de validade discriminativa. Neste estudo, o ponto de corte igual a 7 mostrou-se mais adequado para a identificação da fobia social generalizada.Social phobia (also known as social anxiety disorder is a severe mental disorder that brings distress and disability. The aim of this study was validate to the Portuguese language the Mini-Social Phobia Inventory (Mini-SPIN in a populational sample. We performed a discriminative validity study of the Mini-SPIN in a sample of 644 subjects (Mini-SPIN positive group: n = 218 and control/negative group: n = 426 of a study of anxiety disorders' prevalence in the city of Santo André-SP. The Portuguese version of the Mini-SPIN (with score of 6 points, suggested in the original English version demonstrated a sensitivity of 95.0%, specificity of 80.3%, positive predictive value of 52.8%, negative predictive

  10. Valine-spectrophotometric readout dosimeter (1 Gy-50 kGy)

    International Nuclear Information System (INIS)

    Nilekani, S.R.; Gupta, B.L.

    2005-01-01

    In this method 20 mg unirradiated/irradiated L-valine powder [(CH 3 ) 2 CH.NH 2 CH.COOH] is dissolved in 10 ml of a solution containing 4x10 -4 mol dm -3 Fe 2+ and 2.5x10 -4 mol dm -3 xylenol orange (XO) in aerated aqueous 0.060 mol dm -3 sulphuric acid (FX). The plot of absorbance at 550 nm against dose is non linear. A dose of 1-50 kGy can be measured. However, dosimeter can be sensitized in the dose range of 1 to 16 kGy by dissolving 50-mg valine powder in 10 ml of a solution which contains 5x10 -4 mol dm -3 Fe 2+ and 3x10 -4 mol dm -3 XO in aerated aqueous 0.065 mol dm -3 sulphuric acid. The plot of absorbance at 549 nm against dose is non-linear. However, dosimeter shows linear response when 500 mg unirradiated/irradiated L-valine powder is dissolved in 10 ml of a solution containing 7.5x10 -4 mol dm -3 Fe 2+ and 3x10 -4 mol dm -3 XO in aerated aqueous 0.25 mol dm -3 sulphuric acid. The plot of absorbance at 557 nm against dose is linear in the dose range of 20-400Gy and doses down to about 1 Gy can be measured using 10-cm path cells. Response of the dosimeter is independent of irradiation temperature in the temperature range 20-50 deg C. Irradiated valine powder is stable for about 1 month. The reproducibility of the method is better than ±2%. This dosimeter is very useful as transfer dosimeter for food irradiation and radiation sterilization

  11. Ionizing radiation M.O.S. dosimeters: sensibility and stability

    International Nuclear Information System (INIS)

    Gessinn, F.

    1993-12-01

    This thesis is a contribution to the study of the ionizing radiation responsivity of P.O.M.S. dosimeters. Unlike the development of processing hardening techniques, our works goal were to increase, on the one hand, the M.O.S. dosimeters sensitivity in order to detect small radiation doses and on the other hand, the stability with time and temperature of the devices, to minimize the absorbed-dose estimation errors. With this aim in mind, an analysis of all processing parameters has been carried out: the M.O.S. dosimeter sensitivity is primarily controlled by the gate oxide thickness and the irradiation electric field. Thus, P.M.O.S. transistors with 1 and 2 μm thick silica layers have been fabricated for our experiments. The radiation response of our devices in the high-field mode satisfactorily fits a D ox 2 power law. The maximum sensitivity achieved (9,2 V/Gy for 2μm devices) is close to the ideal value obtained when considering only an unitary carrier-trapping level, and allows to measure about 10 -2 Gy radiation doses. Read-time stability has been evaluated under bias-temperature stress conditions: experiments underscore slow fading, corresponding to 10 -3 Gy/h. The temperature response has also been studied: the analytical model we have developed predicts M.O.S. transistors threshold voltage variations over the military specifications range [-50 deg. C, + 150 deg. C]. Finally, we have investigated the possibilities of irradiated dosimeters thermal annealing for reusing. It appears clearly that radiation-induced damage annealing is strongly gate bias dependent. Furthermore, dosimeters radiation sensitivity seems not to be affected by successive annealings. (author). 146 refs., 58 figs., 9 tabs

  12. Individual dosimeter for radon and thoron daughters

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Duport, P.; Zettwoog, P.

    1979-01-01

    The dosimeter is designed for the continuous measurement of the concentration of α emitters from the uranium 238 and thorium 232 series. It enables the measurement of, firstly the aerosol concentration of 218 Po (Radium A), 214 Po (Radium C') and 212 Po (Thorium C') and secondly the activity of long-lived α emitters in aerosols coming from ore dusts. One light weight version of this dosimeter is autonomous for 18 hours and is designed to measure individual doses, due to inhalation, for workers employed in uranium mines and ore processing plants. An other version using the same sampling head allows the monitoring of air concentrations in working environments. Living quarters, or free air

  13. Effect of the shape and size of dosimeters on the response of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Fabisiak, Slawomir; Lagunov, Oleg

    2006-01-01

    The influence of the shape and size of dosimeters used in solid state-EPR (SS/EPR) dosimetry on their response is reported. It is shown that for commonly used cylindrical (rod) shaped dosimeters of equal height, prepared of low (ε=<3) dielectric constant materials, linearity between their volume and the EPR response is observed when their diameter varies between 3 and 5mm. Further increase of the dosimeter's diameter is not recommended since the increased penetration of the dosimeter material into the electric component of the microwave field in the EPR cavity increases the dielectric losses and decreases the EPR response. In an attempt to improve the sensitivity of the SS/EPR dosimetry we have prepared and tested new, flat-shaped, dosimeters of low (ε∼2) dielectric constant materials which were found to exhibit: (i) linear EPR response within 1-5mm thickness; (ii) higher sensitivity than cylindrical dosimeters at equal sample volume; (iii) increased by ca. 270% EPR sensitivity at 5mm thickness compared to the cylindrical dosimeters with the same diameter (ca. 1.7 times increased sample volume). Using flat shape dosimeters of suitable size provides 2.7 times higher EPR sensitivity of single estimation

  14. Radiographic imaging. 4 ed.

    International Nuclear Information System (INIS)

    Chesney, D.N.; Chesney, M.O.

    1981-01-01

    This is a revised edition of the textbook previously entitled 'Radiographic Photography' and accords with the current syllabus of training for the Diploma of the Royal College of Radiographers. The aim is a non-mathematical approach to provide a guide for the student to the knowledge and understanding of the theoretical concepts which affect the quality of radiographic image; materials and practices are also reviewed, particularly in relation to the characteristics of the radiographic image, and to processing equipment and processing areas. The subject is dealt with under the following headings: the photographic process, film materials in x-ray departments, sensitometry, storage of film materials and radiographs, intensifying screens and cassettes, film processing, developing, fixing, rinsing, washing, drying, the processing area and equipment, systems for daylight film handling, the radiographic image, management of the quality, presentation of the radiograph, light images and their recording, fluorography, some special imaging processes, e.g. xerography, copying radiographs. (U.K.)

  15. Development study of a quality control for clinical dosimeters of radiotherapy

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria P.A.; Santos, Gelson P.; Vivolo, Vitor

    2011-01-01

    This paper presents the partial results of a scientific initiation which the main objective is the enhancement of the quality system of the dosimeter calibration laboratory (LCI-IPEN) on 60 Co gamma radiation to the International Atomic Energy Agency (IAEA), being this the new protocol denominated Calibration of Reference Dosimeters for External Beam Radiotherapy (Technical Reports Series 469). This paper is an actualization of the protocol Absorbed Dose Determination for External Beam Radiotherapy (Technical Reports Series 398). Therefore, in this paper it will presented the study on the clinical dosimeters composed of electrometer, wires, triaxial connectors, and thimble type ionization chamber - 0.60 cm 3 . (author)

  16. Conceptual design of the SMART dosimeter

    Science.gov (United States)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  17. Mayak Film Dosimeter Response Studies Part III: Application to Worker Dose Assessment

    International Nuclear Information System (INIS)

    Smetanin, Mikhail; Vasilenko, E. K.; Scherpelz, Robert I.

    2007-01-01

    This paper describes the methods used to convert individual dosimeter readings for workers to obtain estimates of worker doses received in Mayak facilities. Film dosimeters were used at Mayak PA for worker monitoring from 1948 until 1992. The method requires a determination of the relationship between the absorbed dose in film emulsion and the dose in air under calibration conditions, then an extension of this relationship to exposures in the actual radiation fields of the workplace. Corrections needed to account for actual workplace exposure conditions were determined by modeling with the Monte-Carlo radiation transport computer code MCNP. Correction factors were developed to convert from dosimeter reading to a realistic worker dose. The method was applied as a basis for individual dose reconstruction using film dosimeters in realistic photon spectra and geometries at Mayak PA work areas

  18. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  19. Is it really not possible to use electronic personal dosimeters in clinical exposure situations?

    International Nuclear Information System (INIS)

    Borowski, M.; Poppe, B.; Looe, H.K.; Boetticher, H. von

    2010-01-01

    Purpose: Due to significant measuring inaccuracies that can occur under certain conditions, the use of electronic personal dosimeters in statutory measurements in X-ray diagnostics is currently legally restricted. The present study investigates the clinically relevant situations in which measurement errors of more then 20 % can be anticipated. Materials and Methods: Four series of experiments were made, comparing the results of the electronic personal dosimeter EPD Mk2.3 to those of reference dosimeters (TLDs and diagnostic dosimeters). On the one hand, personal doses have been determined in the routine operation of controlled areas in various departments. On the other hand, measurements on phantoms have been conducted in extreme but realistic situations under radiation protection. Experiments were conducted in unweakened scattered radiation as well as in unattenuated and attenuated direct radiation. Results: The tested electronic personal dosimeter type meets the requirements regarding measurement accuracy for 'official' personal dosimeters in all of the examined clinically relevant scattered radiation fields. Only if exposed to radiation directly, an underestimation of the dose can occur and can be greater than 90 %. Conclusion: In the range of scattered radiation of diagnostic X-ray equipment, even in pulsed fields, the use of electronic personal dosimeters is reasonable. Considerable measurement errors can only arise in radiation fields that are not realistic under regular conditions and even in connection with most accidents. (orig.)

  20. Fabrication and Optimization of a PAGATA Gel Dosimeter: Increasing the Melting Point of the PAGAT Gel Dosimeter with Agarose Additive

    Directory of Open Access Journals (Sweden)

    Bakhtiar Azadbakht

    2010-12-01

    Full Text Available Introduction: The PAGAT polymer gel dosimeter melts at 30 ˚C and even at room temperature during the summer, so it needs to be kept in a cool place such as a refrigerator. To increase the stability of the PAGAT gel, different amounts of agarose were added to the PAGAT gel composition and the PAGATA gel was manufactured. Material and Methods: The PAGATA gel vials were irradiated using a Co-60 machine. Then, the samples were evaluated using a 1.5 T Siemens MRI scanner. The ingredients of the PAGATA normoxic gel dosimeter were 4.5% N-N' methylen-bis-acrylamide, 4.5% acrylamide, 4.5% gelatine, 5 mM tetrakis (THPC, 0.01 mM hydroquinone (HQ, 0.5% agarose and 86% de-ionized water (HPLC. Results: Melting point and sensitivity of the PAGAT gel dosimeter with addition of 0.0, 0.3, 0.5, 1.0, 1.5 and 2.0% of agarose were measured, in which the melting points were increased to 30, 82, 86, 88, 89 and 90°C and their sensitivities found to be 0.113, 0.1059, 0.125, 0.122, 0.115 and 0.2  respectively. Discussion and Conclusions: Adding agarose increased the sensitivity and background R2 of the evaluated samples. The optimum amount of agarose was found to be 0.5% regarding these parameters and also the melting point of the gel dosimeter. A value of 0.5% agarose was found to be an optimum value considering the increase of sensitivity to 0.125 and melting point to 86°C but at the expense of increasing the background R2 to 4.530.

  1. Spurious RF signals emitted by mini-UAVs

    NARCIS (Netherlands)

    Schleijpen, R.; Voogt, V.; Zwamborn, P.; Oever, J. van den

    2016-01-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to

  2. Australian rural radiographers' perspectives on disclosure of their radiographic opinion to patients

    International Nuclear Information System (INIS)

    Squibb, Kathryn; Bull, Rosalind M.; Smith, Anthony; Dalton, Lisa

    2015-01-01

    The role of Australian rural radiographers in radiographic interpretation, communication and disclosure of their radiographic opinion with a specific focus on plain film radiography was examined in a two phase, exploratory interpretive study. Data were collected using questionnaires and interviews and analysed thematically. This reports one of the key themes identified in the thematic data analysis. ‘Disclosure of Radiographic Opinion to Patients’ comprises the three interrelated sub-themes Acting Ethically, Selective Disclosure and Filtered Truth. It is wholly concerned with the ways in which rural radiographers choose to disclose their radiographic opinion to patients. Without a clear picture of where they stand medico-legally, rural radiographers draw on experience and a strong ethical framework as the basis for these complex decisions. Rural radiographers frame their disclosures to patients in a manner that is governed by the diagnostic, therapeutic and emotional impact the information disclosed may have on the patient. Disclosure to patients was found to be selective, often diagnostically vague and ethically filtered

  3. TH-C-19A-05: Evaluation of a New Reusable 3D Dosimeter

    International Nuclear Information System (INIS)

    Juang, T; Adamovics, J; Oldham, M

    2014-01-01

    Purpose: PRESAGE is a radiochromic plastic which has demonstrated strong potential for high resolution single-use 3D dosimetry. This study evaluates a new PRESAGE formulation (Presage-RU) in which the radiochromic response is reversible (the dosimeter optically clears after irradiation), enabling the potential for reusability. Methods: Presage-RU dose response and optical-clearing rates were evaluated in both small volume dosimeters (1×1×4.5cm) and a larger cylindrical dosimeter (8cm diameter, 4.5cm length). All dosimeters were allowed to fully optically clear in dark, room temperature conditions between irradiations. Dose response was determined by irradiating small volume samples from 0–8.0Gy and measuring change in optical density. The cylindrical dosimeter was irradiated with a simple 4-field box plan (parallel opposed pairs of 4cm×4cm AP-PA beams and 2cm×4cm lateral beams) to 20Gy. High resolution 3D dosimetry was achieved utilizing optical-CT readout. Readings were tracked up to 14 days to characterize optical clearing. Results: Initial irradiation yielded a response of 0.0119△OD/(Gy*cm) while two subsequent reirradiations yielded a lower but consistent response of 0.0087△OD/(Gy*cm). Strong linearity of dose response was observed for all irradiations. In the large cylindrical dosimeter, the integral dose within the high dose region exhibited an exponential decay in signal over time (halflife= 23.9 hours), with the dosimeter effectively cleared (0.04% of the initial signal) after 10 days. Subsequent irradiation resulted in 19.5% lower initial signal but demonstrated that the exponential clearing rate remained consistent. Results of additional subsequent irradiations will also be presented. Conclusion: This work introduces a new re-usable radiochromic dosimeter (Presage-RU) compatible with high resolution (sub-millimeter) 3D dosimetry. Sensitivity of the initial radiation was observed to be slightly higher than subsequent irradiations, but the

  4. Calibration of an ALBEDO termoluminiscent dosimeter for its use in personal dosimetry

    International Nuclear Information System (INIS)

    Diaz Bernal, E.; Molina Perez, D.; Cornejo Diaz, N.; Carrazana Gonzalez, J.

    1996-01-01

    The dosimetric studies began after the Radiological Individuals Surveillance Department from the Radiation Protection and Hygiene Center acquired the albedo thermoluminescent dosimeters model JR1104. This paper reviews the response of those dosimeters to the different spectrums and incidence angles of neutronic radiation

  5. SU-E-T-274: Does Atmospheric Oxygen Affect the PRESAGE Dosimeter?

    Energy Technology Data Exchange (ETDEWEB)

    Alqathami, M; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States); Blencowe, A [The University of South Australia, South Australia, SA (Australia)

    2015-06-15

    Purpose: To experimentally determine the influence of atmospheric oxygen on the efficiency of the PRESAGE dosimeter and its reporting system. Methods: Batches of the reporting system – a mixture of chloroform and leuchomalachite green dye – and PRESAGE were prepared in aerobic and anaerobic conditions. For anaerobic batches, samples were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses using a clinical linear accelerator. Changes in optical density of the dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. In addition, the concentrations of dissolved oxygen were measured using a dissolved oxygen meter. Results: The experiments revealed that oxygen has little influence on the characteristics of PRESAGE, with the radical initiator oxidizing the leucomalachite green even in the presence of oxygen. However, deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ∼ 30% when compared to the non-deoxygenated system. A slight improvement in sensitivity (∼ 5%) was also achieved by deoxygenating the PRESAGE precursor prior to casting. Measurement of the dissolved oxygen revealed low levels (0.4 ppm) in the polyurethane precursor used to fabricate the dosimeters, as compared to water (8.6 ppm). In addition, deoxygenation had no effect on the retention of the post-response absorption value of the PRESAGE dosimeter. Conclusion: The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE system. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of the PRESAGE under the conditions investigated.

  6. Personnel radiation dosimetry laboratory accreditation programme for thermoluminescent dosimeters : a proposal

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Srivastava, J.K.; Iyer, P.S.; Venkatraman, G.

    1993-01-01

    Accreditation for thermoluminescent dosimeters is the process of evaluating a programme intending to use TL personnel dosimeters to measure, report and record dose equivalents received by radiation workers. In order to test the technical competence for conducting personnel dosimetry service as well as to decentralize personnel monitoring service, it has been proposed by Radiological Physics Division (RPhD) to accredit some of the laboratories, in the country. The objectives of this accreditation programme are: (i) to give recognition to competent dosimetry processors, and (ii) to provide periodic evaluation of dosimetry processors, including review of internal quality assurance programme to improve the quality of personnel dosimetry processing. The scientific support for the accreditation programme will be provided by the scientific staff from Radiological Physics Division (RPhD) and Radiation Protection Services Division (RPSD). This paper describes operational and technical requirements for the Personnel Radiation Dosimetry Laboratory Accreditation Programme for Thermoluminescent Dosimeters for Personnel Dosimetry Processors. Besides, many technical documents dealing with the TL Personnel Dosimeter System have been prepared. (author). 5 refs., 2 figs

  7. Development of portable ESR spectrometer as a reader for alanine dosimeters

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.

    1993-01-01

    A prototype portable electron spin resonance (ESR) spectrometer was designed and tested, and its feasibility as a reader of alanine dosimeters was studied from the two standpoints of reproducibility of readings and sensitivity sufficient for dosimetry in the absorbed dose range 1-100 kGy. It has two main components: a permanent magnet and resonator; and a unit box with a microwave and auto-frequency control (AFC) circuit, a sweep controller of magnetic field, display, etc. In the present preliminary study, reproducibility values are measured with the same ESR parameters and alanine-polystyrene (alanine-PS) dosimeter at a dose of 1 kGy: repeatedly measuring without removing dosimeter from the cavity; individual measurement with removing and inserting again into the cavity with readjustment of ESR parameters. Alanine/ESR dosimetry using this spectrometer has a measurable dose range from 1 to 100 kGy with relatively high precision within ± 3% (1σ) as a preliminary result. The portable ESR spectrometer may also be modified as an automatic, more precise, dedicated alanine dosimeter reader. (author)

  8. A radiographic study of mental foramen in intraoral radiographs

    International Nuclear Information System (INIS)

    Sohn, Jeong Ick; Choi, Karp Shik

    1995-01-01

    The purpose of this study was to evaluate the position and shape of mental foramen in periapical radiographs. For this study, periapical radiographs of premolar areas were obtained from the 200 adults. Accordingly, the positional and shape changes of mental foramen were evaluated. The authors obtained radiographs according to changes in radiation beam direction in periapical radiographs of premolar areas, and then evaluated the positional and shape changes of mental foramen. The following results were obtained: 1. Shapes of mental foramen were observed elliptical (34.3%), round or oval (28.0%), unidentified (25.5%) and diffuse (12.2%) type in descending order of frequency. 2, Horizontal positions of mental foramen were most frequently observed at the 2nd premolar area (55.3%), the area between the 1st premolar and 2nd premolar (39.6%), the area between the 2nd premolar and 1st molar (3.4%), the 1st premolar area (1.0%), the area between the canine and 1st premolar (0.7%) in descending order of frequency. 3. Vertical positions of mental foramen were most frequently observed at the inferior to apex (67.1%), and at apex (24.8%), overlap with apex (6.4%), superior to apex (1.7%) in descending order of frequency. 4. Shapes of mental foramen were more obviously observed at the upward 10 degree positioned periapical radiographs. And according to the changes of horizontal and vertical position, they were observed similar to normally positioned periapical radiographs.

  9. Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".

    Science.gov (United States)

    Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly

    2014-06-01

    Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time.

  10. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    International Nuclear Information System (INIS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-01-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with 100 keV, correction factor is required for the gels. • For MV electron, correction factor needed for the gels to

  11. Calibration of gamma cell 220 excel irradiator using Fricke and alanine dosimeters

    International Nuclear Information System (INIS)

    Rushdi, M. A. H.

    2006-06-01

    Using of gamma cell 220 excel irradiators is widely spread in many countries. This type of irradiators is being used for research purposes. Gamma cell 220 excel was provided by the International Atomic Energy Agency (IAEA) to the radiation processing laboratory of Sudan Atomic Energy Commission (SAEC). It is a self-contained gamma irradiator and self shielded, this makes it operates safely. Dose calibration for this cell is important for samples irradiation. In this work, a dosimetry system for the GC220E of SAEC was established using Fricke dosimeter. Fricke dosimeter has a confidence 95% in the rang not exceed 400 Gy. To establish routine dosimetry at high doses up to 5000 Gy, alanine dosimeter was used. This range can demonstrate the ability of GC220E to deliver known controllable doses in reproducible manner for high doses. The irradiation specifications often include a lower and upper limit of absorbed dose or central target dose. Absorbed dose mapping was carried out by both dosimeters to determine the magnitude and locations of D.max and D.min in the irradiation chamber. The results are in good agreement with dose distribution given in the machine manual. A comparison between the tow dosimeters was done and explained.(Author)

  12. Psychometric Evaluation of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID).

    Science.gov (United States)

    Duncan, Laura; Georgiades, Kathy; Wang, Li; Van Lieshout, Ryan J; MacMillan, Harriet L; Ferro, Mark A; Lipman, Ellen L; Szatmari, Peter; Bennett, Kathryn; Kata, Anna; Janus, Magdalena; Boyle, Michael H

    2017-12-04

    The goals of the study were to examine test-retest reliability, informant agreement and convergent and discriminant validity of nine DSM-IV-TR psychiatric disorders classified by parent and youth versions of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID). Using samples drawn from the general population and child mental health outpatient clinics, 283 youth aged 9 to 18 years and their parents separately completed the MINI-KID with trained lay interviewers on two occasions 7 to 14 days apart. Test-retest reliability estimates based on kappa (κ) went from 0.33 to 0.79 across disorders, samples and informants. Parent-youth agreement on disorders was low (average κ = 0.20). Confirmatory factor analysis provided evidence supporting convergent and discriminant validity. The MINI-KID disorder classifications yielded estimates of test-retest reliability and validity comparable to other standardized diagnostic interviews in both general population and clinic samples. These findings, in addition to the brevity and low administration cost, make the MINI-KID a good candidate for use in epidemiological research and clinical practice. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Dose measurements in laboratory of Physics department, University of Khartoum

    International Nuclear Information System (INIS)

    Hamid, Maria Mohammed

    1999-05-01

    Personal monitoring in University of Khartoum is being conducted using thermoluminescent dosimetry. The purpose of the study is to measure the dose of radiation in laboratory of Physics in physics department. TL phosphors LiF: Mg, Ti (card) and LiF Mg, Cu, P (GR-200) and mini-rad dosimeter are used to measure the dose in laboratory. The total dose for students form the laboratory bu using card, GR-200 and mini-rad dosimeter was found to be 2.2μ sv/year. 2.5 μ sv/year and 2.6 μ sv respectively, and for the teacher about 4.0 μ sv/year, 5.8 μ sv/year and 13.6 μ sv/year respectively, and for the dose near junk room about 3.9 μ sv/year, 2.9 μ sv/year and 2.8 μ sv/year by using card, GR-200 and mini-rad dosimeter respectively. There is just a background radiation in the main library and the applied nuclear.(Author)

  14. Towards a new thickness-independent gamma radiation plastic film dosimeter

    International Nuclear Information System (INIS)

    Vieira, Marli Barbosa; Araujo, Patricia L.; Araujo, Elma S.

    2013-01-01

    A 100% national single-use gamma radiation plastic film dosimeter is presented in this work. A new approach for the development of this material allowed a step forward in the performance of poly (methyl metacrylate) films (PMMA) colored with bromothymol blue (BTB) acid-base indicator. We manage to improve dosimeter performance by introducing a gamma radiation insensitive dye to compensate film thickness variations. By doing so, we were able to obtain consistent dose-response correlations within a set of samples presenting 46 to 110 micrometers in thickness. Hence, our PMMA/BTB-P film dosimeter is suitable to measure absorbed dose in the 2-100kGy range even when film thickness undergoes more than 100% of variation. In addition, dose response data remain practically unaltered for four months after the exposure, when dosimeter films are kept in dark conditions and under refrigeration. The radiation effects on the optical properties were evaluated for Ultraviolet-Visible (UV-Vis) spectrophotometric analysis. Data of characteristic dose-response correlation in terms of changes in the maximum UV-Vis absorption due to radiation, and stability in time are also described. This potential new product is a promising tool for industrial radiation facilities, especially in gamma sterilization of medical supplies. (author)

  15. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics.

    Science.gov (United States)

    Signorelli, Luca; Patcas, Raphael; Peltomäki, Timo; Schätzle, Marc

    2016-01-01

    The aim of this study was to determine radiation doses of different cone-beam computed tomography (CBCT) scan modes in comparison to a conventional set of orthodontic radiographs (COR) by means of phantom dosimetry. Thermoluminescent dosimeter (TLD) chips (3 × 1 × 1 mm) were used on an adult male tissue-equivalent phantom to record the distribution of the absorbed radiation dose. Three different scanning modes (i.e., portrait, normal landscape, and fast scan landscape) were compared to CORs [i.e., conventional lateral (LC) and posteroanterior (PA) cephalograms and digital panoramic radiograph (OPG)]. The following radiation levels were measured: 131.7, 91, and 77 μSv in the portrait, normal landscape, and fast landscape modes, respectively. The overall effective dose for a COR was 35.81 μSv (PA: 8.90 μSv; OPG: 21.87 μSv; LC: 5.03 μSv). Although one CBCT scan may replace all CORs, one set of CORs still entails 2-4 times less radiation than one CBCT. Depending on the scan mode, the radiation dose of a CBCT is about 3-6 times an OPG, 8-14 times a PA, and 15-26 times a lateral LC. Finally, in order to fully reconstruct cephalograms including the cranial base and other important structures, the CBCT portrait mode must be chosen, rendering the difference in radiation exposure even clearer (131.7 vs. 35.81 μSv). Shielding radiation-sensitive organs can reduce the effective dose considerably. CBCT should not be recommended for use in all orthodontic patients as a substitute for a conventional set of radiographs. In CBCT, reducing the height of the field of view and shielding the thyroid are advisable methods and must be implemented to lower the exposure dose.

  16. Acceptance Testing of Thermoluminescent Dosimeter Holders.

    Science.gov (United States)

    Romanyukha, Alexander; Grypp, Matthew D; Sharp, Thad J; DiRito, John N; Nelson, Martin E; Mavrogianis, Stanley T; Torres, Jeancarlo; Benevides, Luis A

    2018-05-01

    The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.

  17. The passive radon-thoron discriminative dosimeter for practical use

    International Nuclear Information System (INIS)

    Doi, Masahiro; Kobayashi, Sadayoshi

    1994-01-01

    A passive radon-thoron discriminative dosimeter for practical use has been developed. The body of the practical R-T dosimeter is made of two hemispheric diffusion chambers of carbonized plastic whose diameters are 110 mm and 70 mm, respectively. These diameters are determined to improve the detection efficiency of radon as well as thoron and also the discrimination ratio of radon to thoron. Inner surface of the detector housing is smooth and free from electrified charge to assure the uniform deposition of radon and thoron progeny, because the detector housing is molded out of carbonized plastic as an anti-static material. In addition, structure of an air inlet has improved to contact more tightly with a glass fiber filter to prevent dust from entering the detector housing. The air inlet of the detector housing is also covered with a half-cutted hemispherical windbreak to protect the glass fiber filter from weathering and to stabilize the influence of convectional air flow on the radon and thoron entry rate into two hemispherical diffusion chambers of the dosimeter. The results of calibration exercises showed that the lower detection limit of radon and thoron concentrations were estimated to be 5.1 Bqm -3 and 7.9 Bqm -3 respectively in 2 months exposure. And an interim measurement in the concrete cellar proved that the practical R-T dosimeter has enough specifications to be used in the large-scale radon-thoron discriminative survey. (author)

  18. Medical extrapolation chamber dosimeter model XW6012A

    International Nuclear Information System (INIS)

    Jin Tao; Wang Mi; Wu Jinzheng; Guo Qi

    1992-01-01

    An extrapolation chamber dosimeter has been developed for clinical dosimetry of electron beams and X-rays from medical linear accelerators. It consists of a new type extrapolation chamber, a water phantom and an intelligent portable instrument. With a thin entrance window and a φ20 mm collecting electrode made of polystyrene, the electrode spacing can be varied from 0.2 to 6 mm. The dosimeter can accomplish dose measurement automatically, and has functions of error self-diagnosis and dose self-recording. The energy range applicable is 0.5-20 MeV, and the dose-rate range 0.02-40 Gy/min. The total uncertainty is 2.7%

  19. The 'Mini-Perc' technique of percutaneous nephrolithotomy with a 14-Fr peel-away sheath: 3-year results in 72 patients

    International Nuclear Information System (INIS)

    Sung, Yon Mi; Choo, Sung Wook; Jeon, Seong Soo; Shin, Sung Wook; Park, Kwang Bo; Do, Young Soo

    2006-01-01

    To assess the efficacy and safety of a 'mini-perc' technique of percutaneous nephrolithotomy using a 14-Fr peel-away sheath for the removal of pyelocaliceal stones, and to determine appropriate inclusion criteria. Form July 1999 to June 2002, the medical records and radiographic images of 72 patients who underwent the 'mini-perc' technique of percutaneous nephrolithotomy with a 14-Fr peel-away sheath, were reviewed to determine clinical history, stone characteristics, immediate stone free rate, final stone free rate after additional procedures, complications, and hospital stay. We also analyzed the effect of the longest stone diameter, the cumulative longest diameter of stones, the cumulative stone burden, and the stone density on the immediate stone free rate using a Fisher exact test. The only major complication, arterial bleeding, occurred in a patient with Child A liver cirrhosis and was successfully treated by embolization with coils and a gelatin sponge. The immediate stone free rate was 80.6%, which was significantly influenced by stone diameter but not stone density. The mean hospital stay after the procedure was 3.97 days. The 'mini-perc' technique of percutaneous nephrolithotomy, which uses the 14-Fr peel-away sheath, is a safe and effective modality for treating renal calculi

  20. [Bone remodeling and modeling/mini-modeling.

    Science.gov (United States)

    Hasegawa, Tomoka; Amizuka, Norio

    Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.

  1. Performance evaluation of a colorimetric hydrazine dosimeter

    Science.gov (United States)

    Brenner, Karen P.; Rose-Pehrsson, Susan L.

    1994-06-01

    A dosimeter for real-time, colorimetric detection of hydrazine in air has been developed. The passive badge consists of a dosimeter card containing a vanillin solution coated on a thin paper substrate. The active patch consists of a thick cellulose substrate coated with a vanillin solution. When placed in a plastic sample holder attached to a personnel pump, up to 5 L/min can be drawn through the active badge substrate. Through a condensation reaction, vanillin reacts with hydrazine to form a colored product that absorbs in the visible region. The hydrazone formed in the reaction is yellow; its intensity is proportional to the dose. When exposed passively to hydrazine, the experimental detection limit is less than 20 ppb-hrs. Extrapolated results indicate a detection limit of less than 5 ppb-hrs for long sampling periods. Actively sampling of hydrazine vapors gives an experimental detection limit of less than 100 ppb-L at a sample rate of 5 L/min. Relative humidity effects on badge response were minor. High humidity enhanced the color development on the vanillin badge; while low humidity had no effect on badge response. Interference testing of the dosimeters revealed a tobacco smoke interference. Preliminary shelf life tests indicated no decrease in sensitivity to hydrazine when stored at room temperature for 6 months.

  2. The MiniBooNE Detector

    OpenAIRE

    MiniBooNE Collaboration

    2008-01-01

    The MiniBooNE neutrino detector was designed and built to look for muon-neutrino to electron-neutrino oscillations in the mixing parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.

  3. Radiographers and radiologists reporting plain radiograph requests from accident and emergency and general practice

    International Nuclear Information System (INIS)

    Brealey, S.D.; King, D.G.; Hahn, S.; Crowe, M.; Williams, P.; Rutter, P.; Crane, S.

    2005-01-01

    AIM: To assess selectively trained radiographers and consultant radiologists reporting plain radiographs for the Accident and Emergency Department (A and E) and general practitioners (GPs) within a typical hospital setting. METHODS: Two radiographers, a group of eight consultant radiologists, and a reference standard radiologist independently reported under controlled conditions a retrospectively selected, random, stratified sample of 400 A and E and 400 GP plain radiographs. An independent consultant radiologist judged whether the radiographer and radiologist reports agreed with the reference standard report. Clinicians then assessed whether radiographer and radiologist incorrect reports affected confidence in their diagnosis and treatment plans, and patient outcome. RESULTS: For A and E and GP plain radiographs, respectively, there was a 1% (95% confidence interval (CI) -2 to 5) and 4% (95% CI -1 to 8) difference in reporting accuracy between the two professional groups. For both A and E and GP cases there was an 8% difference in the clinicians' confidence in their diagnosis based on radiographer or radiologist incorrect reports. For A and E and GP cases, respectively, there was a 2% and 8% difference in the clinicians' confidence in their management plans based on radiographer or radiologist incorrect reports. For A and E and GP cases, respectively, there was a 1% and 11% difference in effect on patient outcome of radiographer or radiologist incorrect reports. CONCLUSION: There is the potential to extend the reporting role of selectively trained radiographers to include plain radiographs for all A and E and GP patients. Further research conducted during clinical practice at a number of sites is recommended

  4. A DNA mini-barcode for land plants.

    Science.gov (United States)

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). © 2013 John Wiley & Sons Ltd.

  5. Use of an albedo neutron personnel dosimeter for X- and γ-ray monitoring

    International Nuclear Information System (INIS)

    Gorbics, S.G.; Nash, A.E.; Johnson, T.L.

    1981-01-01

    With a judicious choice of cadmium filter size and thickness, it is possible to use the information from the 7 LiF detectors used in an albedo neutron personnel dosimeter to determine an individual's X-and γ-ray exposure, thus eliminating the need for a separate dosimeter for this purpose. A filter area of 400 mm 2 and a thickness of 0.51 mm is shown to be optimum for a simple, plastic, dosimeter design using detectors held in dental-film size cards. (author)

  6. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  7. Immediate loading of mandibular overdentures supported by one-piece, direct metal laser sintering mini-implants: a short-term prospective clinical study.

    Science.gov (United States)

    Mangano, Francesco G; Caprioglio, Alberto; Levrini, Luca; Farronato, Davide; Zecca, Piero A; Mangano, Carlo

    2015-02-01

    Only a few studies have dealt with immediately loaded, unsplinted mini-implants supporting ball attachment-retained mandibular overdentures (ODs). The aim of this study is to evaluate treatment outcomes of ball attachment-retained mandibular ODs supported by one-piece, unsplinted, immediately loaded, direct metal laser sintering (DMLS) mini-implants. Over a 4-year period (2009 to 2012), all patients referred to the Dental Clinic, University of Varese, and to a private practice for treatment with mandibular ODs were considered for inclusion in this study. Each patient received three or four DMLS mini-implants. Immediately after implant placement, a mandibular OD was connected to the implants. At each annual follow-up session, clinical and radiographic parameters were assessed, including the following outcome measures: 1) implant failures; 2) peri-implant marginal bone loss; and 3) complications. Statistical analysis was conducted using a life-table analysis. A total of 231 one-piece DMLS mini-implants were inserted in 62 patients. After 4 years of loading, six implants failed, giving an overall cumulative survival rate of 96.9%. The mean distance between the implant shoulder and the first visible bone-to-implant contact was 0.38 ± 0.25 and 0.62 ± 0.20 mm at the 1- and 4-year follow-up examinations, respectively. An incidence of 6.0% of biologic complications was reported; prosthetic complications were more frequent (12.9%). Within the limits of this study, it can be concluded that the immediate loading of one-piece, unsplinted, DMLS titanium mini-implants by means of ball attachment-supported mandibular ODs is a successful treatment procedure. Long-term follow-up studies are needed to confirm these results.

  8. The importance of using the dosimeter in medical professionals in the hemodynamic service

    International Nuclear Information System (INIS)

    Melo, Francisca A. de; Victor Filho, Edgard; Silva, Carla V. da; Santos, Tayline T. dos; Guerra, Decio C.

    2014-01-01

    The objective of this study is to evaluate the medical exposure to ionizing radiation of X type in a interventional radiology service, of an university hospital, making a correlation with the importance of using dosimeters for monitoring the effective dose in individuals occupationally exposed (IOE). It was performed an analysis of radiation doses in two stages: the first there was not guidance on the need of using dosimeters; in the second time the professionals performed all procedures carrying the dosimeter. The result showed an average effective dose of professionals / year of 8.60 mSv at first moment, against a dose of 27.41 mSv in the second time after the routine of use the dosimeters, surpassing, in this second phase, the annual dose rate allowed by current radiation protection legislation, which calls for 20 mSv / year for professional. The comparison result in an increase of effective dose of professionals in nearly 300%. It is concluded that the implementation a continuing education project, including awareness of the importance in daily use dosimeter, shows up as a solution for optimizing the dose of these occupationally exposed individuals

  9. Development of based on 89S51 single-chip microcomputer electronic dosimeter

    International Nuclear Information System (INIS)

    Wang Junhua; Zhou Jiachao; Sun Jianghan; Du Xiao

    2009-01-01

    It describes the main design features and basic properties of based on 89S51 single-chip microcomputer electronic dosimeter with wide range and multi purposes. The dosimeter can display dose rate or accumulative dose or the maximum dose rate, record accumulative dose, the maximum dose rate and classes. (authors)

  10. Small is beautiful: SAIC's new dosimeter

    International Nuclear Information System (INIS)

    Benson, R.G.

    1991-01-01

    Science Applications International Corporation (California) has developed an energy-compensated Geiger tube in a package the size of a small pocket pager. In fact, the whole dosimeter measures just 48mm x 72mm x 17mm. The rugged, lightweight unit is sensitive enough to record radiation ranging from low background levels caused by the earth's surface, the sun, or cosmic radiation, to beyond lethal dose levels. The PD-1 provides dose measurement, dose rate measurement, and ''chip'' functions. A chirper sounds each time a specified dose is accumulated, and the chirp increments are defined by the user. A dosimeter reader provides a simple interface for bi-directional communication with host PC. The Geiger tube provides improved accuracy over a wider energy range than current solid state devices. Features such as long battery life, long calibration life (two years or longer), and easy calibration procedure should help to simplify the work of health physicists overseeing dosimetry management programmes. (author)

  11. Human hair as a pollutant dosimeter

    International Nuclear Information System (INIS)

    Al-Hashimi, A.

    1991-01-01

    Human hair has been proved to be a better dosimeter than even blood for tracing most of the heavy metal toxins when they penetrate the biosphere. The high precision of the neutron activation analysis (NAA) enabled researchers to elegantly differentiate between endogenous and exogenous contamination and thoroughly study poisonings caused by these physiologically-unimportant elements. Extensive volume of bench-scale work has been accomplished in these laboratories to show the capacity of INAA to detect the presence of 10 nuclides (or more) with a precision of about 5%. The principal objective of the present study is to employ this assaying power and the tendency of scalp hair to uptake heavy metals from aqueous solutions, to design a dosimeter which can easily be used by the environmentalists. The findings should also be of interest to the waste-management people who are searching for a cost-effective technique to remove these pollutants from relatively large volumes of industrial effluents

  12. Electrochemical development of particle tracks in CR-39 polymer dosimeter

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.; Yang, C.S.; Groeger, J.; Johnson, J.R.; Huang, S.J.

    1985-09-01

    Electrochemical etching of CR-39 polymeric track etch neutron detectors results in proton-recoil tracks can be distinguished from background tracks much better than tracks developed solely by chemical etching. A newly designed and constructed electrochemical etching apparatus allows large numbers of dosimeters to be processed simultaneously with consistent results. Many processing systems have been developed for chemical and electrochemical etching of the track etch dosimeters. Three systems specifically show great promise and are being studied extensively

  13. A design of ambient dose equivalent dosimeter and its dosimetric performance

    International Nuclear Information System (INIS)

    Zhao Shian; Ou Xiangming; Li Kaibao

    1997-01-01

    Objective: To design an ambient dose equivalent dosimeter with digital display for radiation protection, which is based on the definition of the new operational radiation quantity for environmental monitoring-ambient dose equivalent recommended by the International Commission on Radiation Units and Measurements (ICRU) Report 39. Methods: Considering the energy response of the instrument, the inner wall of ionizing chamber is coated with gum graphite added with a bit of metal powder. Results: Using this chamber, measurement of H * (10) for photon radiation with unknown spectrum distribution is possible in the energy range from 47 keV to 230 keV with an uncertainty of better than 5%. The configuration, technology and dosimetric performance of the chamber and automatic functions of the reader are presented. Conclusion: The ambient dose equivalent dosimeter can be used as not only a working reference dosimeter, but also a field dosimeter for radiation protection because the readings are expressed directly in ambient dose equivalent and averaged automatically in the period of measurement. Also, its power is supplied by battery for the portable purpose and the readings are displayed on the screen with light-background for dim field

  14. PRESAGE® as a solid 3-D radiation dosimeter: A review article

    International Nuclear Information System (INIS)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney

    2017-01-01

    Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE ® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE ® structure and scanning methods. This article attempts to review and reflect on the results of these investigations. - Highlights: • Sensitivity and stability can improve with variation in weight fraction of gel. • To overcome star and edge artifacts, Wide-parallel beam optical CT can use in clinic. • Modeling of scatter pattern can be usable to enhance of images.

  15. Photon energy response of an aluminum oxide TLD environmental dosimeter

    International Nuclear Information System (INIS)

    Olsher, R.H.

    1992-01-01

    Because of aluminum oxide's significant advantage in sensitivity (about a factor of 30) over LiF, minimal fading characteristics and ease of processing, aluminum oxide thermoluminescent dosimeters (TLDS) are being phased in at Los alamos for environmental monitoring of photon radiation. The new environmental dosimeter design consists of a polyethylene holder, about 0. 5 cm thick, loaded with a stack of four aluminum oxide TLD chips, each 1 mm thick and 5 mm in diameter. As part of the initial evaluation of the new design, the photon energy response of the dosimeter was calculated over the range from 10 keV to 1 MeV. Specific goals of the analysis included the determination of individual chip response in the stack, assessment of the response variation due to TLD material (i.e., LiF versus A1 2 O 3 ), and the effect of copper filtration in flattening the response

  16. Water equivalency evaluation of PRESAGE® dosimeters for dosimetry of Cs-137 and Ir-192 brachytherapy sources

    Science.gov (United States)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-11-01

    A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.

  17. An environmental BeO-OSL dosimeter for emergency response

    International Nuclear Information System (INIS)

    Woda, Clemens; Kaiser, Jan Christian; Urso, Laura; Greiter, Matthias

    2012-01-01

    A conceptual design is presented to use measurements of localized absorbed dose in inner cities for production of high resolution maps of the radioactive contamination following a nuclear emergency or radiological attack. The doses are derived from luminescent detectors pre-fixed at places of high importance (e.g. public squares). For such an environmental dosimeter, BeO is used, which can be read out using optically stimulated luminescence (OSL). A suitable casing of black Perspex has been developed to give a sufficiently accurate estimate of the air kerma value at the detector position. The dosimeter is characterized according to light tightness, dose response and angular photon energy dependence. A short overview of the approach for map production is also given. - Highlights: ► An inexpensive, environmentally stable BeO based OSL dosimeter has been developed for emergency response. ► The detector enables fast readouts and shows highly favorable dosimetric properties. ► A conceptual design is described to produce maps of radioactive contamination from localized dose measurements in urban areas.

  18. The MiniBooNE detector

    International Nuclear Information System (INIS)

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bartoszek, L.M.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; Djurcic, Z.; Finley, D.A.; Fleming, B.T.; Ford, R.; Garcia, F.G.; Garvey, G.T.; Green, C.; Green, J.A.

    2009-01-01

    The MiniBooNE neutrino detector was designed and built to look for ν μ →ν e oscillations in the (sin 2 2θ,Δm 2 ) parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.

  19. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  20. The radiographic image: A cultural artefact?

    International Nuclear Information System (INIS)

    Strudwick, Ruth M.

    2014-01-01

    This article looks at the role of the radiographic images produced by diagnostic radiographers. An ethnographic study of the workplace culture in one diagnostic imaging department was undertaken using participant observation for four months and semi-structured interviews with ten key informants. One of the key themes; that of the radiographic image as a cultural artefact, is explored in this article. The radiographic image is a cultural artefact which radiographers are protective of and take ownership of. Radiographers are conscious of the quality of their images and the images are an important aspect of their work. Radiographers take criticism of their images personally. The radiographic image is a record of the interaction that occurs between the radiographer and the patient. The way in which radiographic images are viewed, used and judged is an important aspect of the role of diagnostic radiographer

  1. Design guidelines for mini-roundabouts

    CSIR Research Space (South Africa)

    Emslie, I

    1997-03-01

    Full Text Available Guidelines for Traffic Calming. Concepts and principles relating to the use of mini-roundabouts as a form of intersection control and in the traffic calming context are discussed. Warrants for the implementation of mini-roundabouts and design standards...

  2. MiniBooNE Oscillation Results

    International Nuclear Information System (INIS)

    Djurcic, Zelimir

    2009-01-01

    These proceedings summarize the MiniBooNE ν μ → ν e results, describe the first (bar ν) μ → (bar ν) e result, and current analysis effort with the NuMI neutrinos detected in the miniBooNE detector

  3. An improved design of QFE dosimeter charging unit

    International Nuclear Information System (INIS)

    Speight, R.G.; Clifton, J.J.

    1976-02-01

    The availability of commercial charging units for quartz fibre electroscope dosimeters (QFEs) in the United Kingdom has been limited to small battery units intended for use in laboratory conditions. The use of large numbers of QFEs by semi-skilled staff has resulted in damage to many dosimeters, particularly at the charging pins. Difficulties have also been experienced in the viewing of the scale and fibre in non-laboratory lighting conditions. These problems have resulted in the development of a robust charging and viewing unit, which is described in this report. The new unit which is mains electricity powered, is contained in a case 230 x 305 x 150 mm weighing 4.5 kg. (U.K.)

  4. The radiation dosimeter on-board the FY-4 Satellite

    Science.gov (United States)

    Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.

    2017-12-01

    The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.

  5. Immediate versus delayed loading of strategic mini dental implants for the stabilization of partial removable dental prostheses: a patient cluster randomized, parallel-group 3-year trial.

    Science.gov (United States)

    Mundt, Torsten; Al Jaghsi, Ahmad; Schwahn, Bernd; Hilgert, Janina; Lucas, Christian; Biffar, Reiner; Schwahn, Christian; Heinemann, Friedhelm

    2016-07-30

    Acceptable short-term survival rates (>90 %) of mini-implants (diameter implants as strategic abutments for a better retention of partial removable dental prosthesis (PRDP) are not available. The purpose of this study is to test the hypothesis that immediately loaded mini-implants show more bone loss and less success than strategic mini-implants with delayed loading. In this four-center (one university hospital, three dental practices in Germany), parallel-group, controlled clinical trial, which is cluster randomized on patient level, a total of 80 partially edentulous patients with unfavourable number and distribution of remaining abutment teeth in at least one jaw will receive supplementary min-implants to stabilize their PRDP. The mini-implant are either immediately loaded after implant placement (test group) or delayed after four months (control group). Follow-up of the patients will be performed for 36 months. The primary outcome is the radiographic bone level changes at implants. The secondary outcome is the implant success as a composite variable. Tertiary outcomes include clinical, subjective (quality of life, satisfaction, chewing ability) and dental or technical complications. Strategic implants under an existing PRDP are only documented for standard-diameter implants. Mini-implants could be a minimal invasive and low cost solution for this treatment modality. The trial is registered at Deutsches Register Klinischer Studien (German register of clinical trials) under DRKS-ID: DRKS00007589 ( www.germanctr.de ) on January 13(th), 2015.

  6. Initial image interpretation of appendicular skeletal radiographs: A comparison between nurses and radiographers

    International Nuclear Information System (INIS)

    Piper, Keith J.; Paterson, Audrey

    2009-01-01

    Purpose: To examine the effect of a short training programme on nurses and radiographers, exploring differences between their performance before and after training. Method: Twenty-two nurses and 18 radiographers interpreted 20 trauma radiographs of the appendicular skeleton before and after training. Normal and abnormal cases of a discriminatory nature were included. Total score, sensitivity and specificity values were calculated for each participant by comparison with an agreed expected answer. The area under the curve (AUC) was analysed using alternate free-response receiver operating characteristic (AFROC) methodology. Results: Significant differences were demonstrated between the total scores achieved by the two groups (pre-training: p = 0.007, post-training: p = 0.04). After training, the mean score increased significantly for both groups (p < 0.001). No significant difference was found between the radiographers mean pre-training scores and the nurses mean post-training scores (p = 0.66). Sensitivity for both groups increased following training, significantly so for the nurses (nurses: p < 0.001, radiographers: p = 0.06). Specificity reduced significantly after training for the nurses (p < 0.001), and increased for the radiographers but not significantly (p = 0.085). After training, there was no significant difference between the two groups in terms of sensitivity (p = 0.09) but specificity was significantly higher for the radiographers (p < 0.001). The radiographers achieved higher pre-training AUC values than the nurses (p = 0.04), although a difference remained after training this did not achieve statistical significance (p = 0.15). The AUC values increased significantly after training for both groups (nurses: p = 0.012, radiographers: p = 0.004) and again there was no significant difference between the radiographers pre-training performance and the nurses post-training performance (p = 0.62). Conclusion: Improvement after training was seen in both groups

  7. Radiographers and trainee radiologists reporting accident radiographs: A comparative plain film-reading performance study

    International Nuclear Information System (INIS)

    Buskov, L.; Abild, A.; Christensen, A.; Holm, O.; Hansen, C.; Christensen, H.

    2013-01-01

    Aim: To compare the diagnostic accuracy and clinical validity of reporting radiographers with that of trainee radiologists whom they have recently joined in reporting emergency room radiographs at Bispebjerg University Hospital. Materials and methods: Plain radiographs of the appendicular skeleton from 1000 consecutive emergency room patients were included in the study: 500 primarily reported by radiographers and 500 by trainee radiologists. The final reporting was subsequently undertaken by a consultant radiologist in consensus with an orthopaedic surgeon. Two observers classified reports as either true positive/negative or false positive/negative based on the final report, which was considered the reference standard. To evaluate the severity of incorrect primary reports, errors were graded into three categories concerning clinical impact and erroneous reports graded as the most severe category were subsequently analysed. Mann–Whitney and Chi-squared tests were used to compare differences and associations between radiographers versus trainee radiologists regarding film reporting. Results: The sensitivity for correct diagnosis was 99% for reporting radiographers and 94% for trainee radiologists. The specificity was found to be 97% for reporting radiographers and 99% for trainee radiologists. Radiographers missed significantly fewer fractures (n = 2) than trainee radiologists (n = 14; p = 0.006) but had a higher, but not significant, degree of overcalling. No significant difference was found between groups regarding clinical impact of incorrect reporting. Conclusion: Trained radiographers report accident radiographs of the extremities with high accuracy and constitute a qualified resource to help meet increasing workload and demands in quality standards.

  8. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  9. Design characteristics of a three-component AEOI Neutriran Albedo Neutron Personnel Dosimeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1991-01-01

    In establishing a national personnel neutron dosimetry service in Iran, different parameters of the AEOI Neutriran Albedo Neutron Personnel Dosimeter (NANPD) have been optimized. A NANPD was designed with three dosimetry components to measure (a) direct thermal neutrons, (b) direct fast neutrons and (C) direct neutrons by the detection of the albedo neutrons reflected from the body. The dosimeter consists of one or more Lexan polycarbonate and/or CR-39 foils and two 10 B (n,α) 7 Li converters in a cadmium cover so arranged as to efficiently measure the three neutron dose components separately. The boron converter thickness, its position relative to the beam direction and its distance from the PC foil were studied and the results were incorporated into the design. The dose response of the dosimeter, its lower detection limit as well as the correction factors related to the field neutrons and albedo neutrons were also determined for a 238 Pu-Be, an 241 Am-Be and a 252 Cf sources. In this paper, the dosimeter design and its dosimetric characteristics are presented and discussed. (author)

  10. Performance improvement of pentacosa-diynoic acid label dosimeter for radiation processing technology

    Science.gov (United States)

    Abdel-Fattah, A. A.; Soliman, Y. S.

    2017-12-01

    A radiation sensitive material, 10,12-pentacosa-diynoic acid (PCDA), was incorporated into polyvinyl butyral (PVB) films to develop indicators/dosimeters for blood and food irradiation. The present study aims to improve the dosimetric performance of these previously prepared dosimeters and to extend their shelf life by the combination of a radical scavenger, propyl gallate (PG), and a UV absorber, tinuvin-p (TP). The X-ray diffraction (XRD) patterns of the dosimeters were analysed and their dosimetric characteristics were investigated by specular reflectance in the visible spectrum range of 400-700 nm. Upon irradiation, the films turn blue exhibiting two main bands around 670 and 620 nm. Their dose-response functions were fitted by a double exponential growth, 5 parameters, equation. Irradiation temperature influences the dosimeter response at 670 nm without causing thermochromic transition up to 50 °C in poly-PCDA. The useful dose range is 5-4000 Gy depending on the wavelengths of analysis and PCDA content in the films. The overall uncertainty of dose measurement is less than 6% at 2σ.

  11. The shelf life of dyed polymethylmethacrylate dosimeters

    International Nuclear Information System (INIS)

    Bett, R.; Watts, M.F.; Plested, M.E.

    2002-01-01

    The long-term stability of the radiation response of Harwell Red 4034 and Amber 3042 Perspex Dosimeters has been monitored for more than 15 years, and the resulting data used in the justification of their shelf-life specifications

  12. Determination of dose correction factor for energy and directional dependence of the MOSFET dosimeter in an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong; Na, Seong Ho

    2006-01-01

    In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for 60 Co and 137 Cs photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom

  13. Single and multichannel scintillating fiber dosimeter for radiotherapic beams with SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ferri, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria (Italy); Paternoster, G.; Piemonte, C. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Prest, M. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2016-12-01

    The treatment of many neoplastic diseases requires the use of radiotherapy, which consists in the irradiation of the tumor, identified as the target volume, with ionizing radiations generated both by administered radiopharmaceuticals or by linear particle accelerators (LINACs). The radiotherapy beam delivered to the patient must be regularly checked to assure the best tumor control probability: this task is performed with dosimeters, i.e. devices able to provide a measurement of the dose deposited in their sensitive volume. This paper describes the development of two scintillator dosimeter prototypes for radiotherapic applications based on plastic scintillating fibers read out by high dynamic range Silicon PhotoMultipliers. The first dosimeter, consisting of a single-channel prototype with a pair of optical fibers, a scintillating and a white one, read out by two SiPMs, has been fully characterized and led to the development of a second multi-channel dosimeter based on an array of scintillating fibers: this device represents the first step towards the assembly of a “one-shot” device, capable to perform some of the daily quality controls in a few seconds. The dosimeters characterization was performed with a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT).

  14. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    Science.gov (United States)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  15. Dosimetric characterization of the PTW Seven29 dosimeter and Octavius Phantom for IMRT quality control

    International Nuclear Information System (INIS)

    Goncalves, Leandro R.; Habitzreuter, Angela B.; Santos, Gabriela R.; Watanabe, Erica Y.; Silva, Marco A.; Menegussi, Gisela; Rodrigues, Laura N.; Furnari, Laura

    2012-01-01

    Techniques like IMRT, VMAT and tomotherapy has been used to improve dose conformity in the target, while sparing adjacent normal tissues. The complexity of this techniques challenge to correctly verify the dose delivery, in an independent way. Matrix detectors have been used for this purpose. Although, to exactly understand the dosimeter response and to identify his limitations, characterization measurements need to be performed. These dosimeters, for instance, can present angular dependence. Phantoms has been designed to, when used together the detector, eliminate this angular dependence. The aim of this work was to characterize PTW Seven 29 dosimeter and also his use with Octavius Phantom (PTW). The dosimeter showed reproducible with 0.25% the biggest standard deviation, good dose linearity and dose rate independence. Differences for output factors were obtained (<6%), but a clinical case measurement showed that the set can be used for IMRT verification. When used with Octavius Phantom the dosimeter showed low angular dependence. (author)

  16. Diagnostic validity Polish language version of the questionnaire MINI-KID (Mini International Neuropsychiatry Interview for Children and Adolescent).

    Science.gov (United States)

    Adamowska, Sylwia; Sylwia, Adamowska; Adamowski, Tomasz; Tomasz, Adamowski; Frydecka, Dorota; Dorota, Frydecka; Kiejna, Andrzej; Andrzej, Kiejna

    2014-10-01

    Since over forty years structuralized interviews for clinical and epidemiological research in child and adolescent psychiatry are being developed that should increase validity and reliability of diagnoses according to classification systems (DSM and ICD). The aim of the study is to assess the validity of the Polish version of MINI-KID (Mini International Neuropsychiatric Interview for Children and Adolescents) in comparison to clinical diagnosis made by a specialist in the field of child and adolescent psychiatry. There were 140 patients included in the study (93 boys, 66.4%, mean age 11.8±3.0 and 47 girls 33.5%, mean age 14.0±2.9). All the patients were diagnosed by the specialist in the field of child and adolescent psychiatry according to ICD-10 criteria and by the independent interviewer with the Polish version of MINI-KID (version 2.0, 2001). There was higher agreement between clinical diagnoses and diagnoses based on MINI-KID interview with respect to eating disorders and externalizing disorders (κ 0.43-0.56) and lower in internalizing disorders (κ 0.13-0.45). In the clinical interview, there was smaller number of diagnostic categories (maximum 3 diagnoses per one patient) in comparison to MINI-KID (maximum 10 diagnoses per one patient), and the smaller percentage of patients with one diagnosis (65,7%) in comparison to MINI-KID interview (72%). Our study has shown satisfactory validity parameters of MINI-KID questionnaire, promoting its use for clinical and epidemiological settings. The Mini International Neuropsychiatry Interview for Children and Adolescent (MINI-KID) is the first structuralized diagnostic interview for assessing mental status in children and adolescents, which has been translated into Polish language. Our validation study demonstrated satisfactory psychometric properties of the questionnaire, enabling its use in clinical practice and in research projects. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Mini-Sniffer on Lakebed

    Science.gov (United States)

    1974-01-01

    The original Mini-Sniffer on Rogers Dry Lake, adjacent to NASA's Flight Research Center, Edwards AFB. This version of the remotely-piloted vehicle had swept-back wings, tip rudders, nose canards, and an air breathing engine. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.

  18. Visual simulation of radiographs

    International Nuclear Information System (INIS)

    Laguna, G.

    1985-01-01

    A method for computer simulation of radiographs has been added to the LLNL version of the solid modeler TIPS-1 (Technical Information Processing System-1). This new tool will enable an engineer to compare an actual radiograph of a solid to its computer-generated counterpart. The appearance of discrepancies between the two can be an indication of flaws in the solid object. Simulated radiographs can also be used to preview the placement of x-ray sources to focus on areas of concern before actual radiographs are made

  19. An improved dosimeter having constant flow pump

    International Nuclear Information System (INIS)

    Baker, W.B.

    1980-01-01

    A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)

  20. Mini-implant-supported Molar Distalization

    Directory of Open Access Journals (Sweden)

    Amit Goyal

    2012-01-01

    Full Text Available Temporary anchorage devices popularly called mini-implants or miniscrews are the latest addition to an orthodontist′s armamentarium. The following case report describes the treatment of a 16-year-old girl with a pleasant profile, moderate crowding and Angle′s Class II molar relationship. Maxillary molar distalization was planned and mini-implants were used to preserve the anterior anchorage. After 13 months of treatment, Class I molar and canine relation was achieved bilaterally and there was no anterior proclination. Thus, mini-implants provide a viable option to the clinician to carry out difficult tooth movements without any side effects.

  1. Radiographic examination of the equine foot

    International Nuclear Information System (INIS)

    Park, R.D.

    1989-01-01

    A complete radiographic examination of the equine foot consists of properly exposed, processed, and positioned radiographs. For radiographic interpretation, in addition to knowing radiographic signs of disease, a knowledge of normal radiographic anatomy and possible insignificant anatomic variations is necessary

  2. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  3. Fast neutron dosimetry using CaSO4:Dy thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Azorin, N.G.; Salvi, C.R.; Rubio, J.L.; Gutierrez, C.A.

    1980-01-01

    The use of CaSO 4 :Dy phosphor powder in fast neutron dose measurements using the activation of sulphur from the 32 S(n,p) 32 P reaction is described. The thermoluminescence induced during the irradiation and that due to the decay of short-lived activation products, is erased by annealing the dosimeters after a post-irradiation time of 3 days. The self-induced thermoluminescence measured at different intervals of post-irradiation time, gives an estimation of the fast neutron dose to which the dosimeters were exposed

  4. Radiographic testing

    International Nuclear Information System (INIS)

    Kuster, J.

    1978-01-01

    In view of great differencies in X-ray transmission it is more difficult to get optimum radiographs of plastics and especially of reinforced plastics than for example of metals. A procedure will be reported how to get with little effort optimum radiographs especially also in the range of long wave-length radiation corresponding 10 to 25 kV.P. (orig.) [de

  5. The Individual Features Of Indonesian-Chinese Mini-Novels

    Directory of Open Access Journals (Sweden)

    Ma Feng

    2011-11-01

    Full Text Available This article talks about mini-novels in the new period of Indonesian Chinese Literature. Through the overall developing trend of mini-novels’ corpuses, analyzes the individual creative features: firstly, the humor of Mo Mingmiao’s Mini-novels; secondly, the compassion of Xiao Xing’s Mini-novels; thirdly, Yuan Ni’s emotional sonata of The Lost Key-ring. By combination of themes and techniques of the three mini-novels corpuses, the article focuses on the analysis of three writers’ distinctive writing style.

  6. Mini-Sniffer II in Flight

    Science.gov (United States)

    1976-01-01

    This photograph shows the second Mini-Sniffer undergoing flight testing over Rogers Dry Lake in Edwards, California. This version of the Mini-Sniffer lacked the canard of the original version and had wing tips and tail booms added. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.

  7. Orthodontic Protocol Using Mini-Implant for Class II Treatment in Patient with Special Needs

    Directory of Open Access Journals (Sweden)

    Fernando Pedrin Carvalho Ferreira

    2016-01-01

    Full Text Available Improving facial and dental appearance and social interaction are the main factors for special needs (SN patients to seek orthodontic treatment. The cooperation of SN patients and their parents is crucial for treatment success. Objective. To show through a case report the satisfactory results, both functional and esthetic, in patients with intellectual disability, congenital nystagmus, and severe scoliosis. Materials Used. Pendulum device with mini-implants as anchorage unit. Results. Improvement of facial and dental esthetics, correction of Class II malocclusion, and no root resorption shown in the radiographic follow-up. Conclusion. Knowing the limitations of SN patients, having a trained team, motivating and counting on the cooperation of parents and patients, and employing quick and low-cost orthodontic therapy have been shown to be the essential factors for treatment success.

  8. Current Status of the MiniBooNE Experiment

    OpenAIRE

    Ray, H.; collaboration, for the MiniBooNE

    2004-01-01

    MiniBooNE is an experiment designed to refute or confirm the LSND anti-nu_mu -> anti-nu_e oscillation result. MiniBooNE will look for oscillations of nu_mu -> nu_e in a closed-box appearance analysis. MiniBooNE began collecting data in 2002, and is expected to continue data taking through 2005. Current MiniBooNE results are presented.

  9. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  10. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    International Nuclear Information System (INIS)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da; Rosado, P.H.G.; Cunha, P.G.

    2017-01-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  11. Thermoluminescence and phosphate glass dosimeter systems in the low dose range

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1978-06-01

    This report describes a standard test program for TLD and RPL systems worked out by the Working Party on 'Dose Measurement of External Radiation' by the Fachverband fuer Strahlenschutz e.V. to demonstrate the performance of dosimeter systems to be employed in environmental monitoring and in personnel dosimetry. The results of an intercomparison study are outlined in which 17 laboratories from the German speaking countries participated with 43 dosimeter systems. (orig.) [de

  12. A gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters

    International Nuclear Information System (INIS)

    Babic, S; Park, Y S; Schreiner, L J

    2004-01-01

    In this presentation we show results of investigations on gelatin-free dosimeters containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide (named Aqueous Polyacrylamide, APA, dosimeters). The dosimeters were prepared with three different total monomer concentrations (2, 6, and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all three dosimeters, show a continuous degree of polymerization over the range of dose 0.5 - 25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of cross-linked polymer formed at each dose. This model may be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters

  13. Assessment of Radiographic Image Quality by Visual Examination of Neutron Radiographs of the Calibration Fuel Pin

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Up till now no reliable radiographic image quality standards exist for neutron radiography of nuclear reactor fuel. Under the Euratoro Neutron Radiography Working Group (NRWG) Test Program neutron radiographs were produced at different neutron radiography facilities within the European Community...... of a calibration fuel pin. The radiographs were made by the direct, transfer and tracketch methods using different film recording materials. These neutron radiographs of the calibration fuel pin were used for the assessement of radiographic image quality. This was done by visual examination of the radiographs...

  14. Design and Implementation of Accurate and Efficient Pocket Dosimeter

    International Nuclear Information System (INIS)

    Shehata, S.A.; Abdelkhalek, K.L.

    2005-01-01

    It is so important in the field of radiation therapy and radiation protection to have dosimeters to determine the absorbed dose, which is transferred to human body by ionizing radiation. In this paper the design and implementation of a wide-range pocket dosimeter (PKD-1) with high accuracy to measure personal equivalent dose and dose rate of gamma radiation will be presented. This pocket dosimeter is micro controller-based and powered from 9 V rechargeable battery. The overall power consumption is significantly reduced by smart software and hardware design allowing longer time intervals between recharging. The integrated alphanumerical LCD displays not only of the accumulated dose and current dose rate, but also displays alarm messages such as low battery. For reasons of power saving the LCD is activated on demand by pressing the push button or automatically when an alarm occurs. Audible and visual alarms have been added to PKD-1 in order that they cannot be accidentally overlooked or ignored. PKD-1 can be connected to any PC through its serial port (RS232) and User Interface software has been developed for easy displaying and recording of radiation readings over any time period

  15. Quality Assurance Framework for Mini-Grids

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, Mohit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mutiso, Rose [US Department of Energy, Washington, DC (United States); McGregor, Caroline [US Department of Energy, Washington, DC (United States)

    2016-11-01

    Providing clean and affordable energy services to the more than 1 billion people globally who lack access to electricity is a critical driver for poverty reduction, economic development, improved health, and social outcomes. More than 84% of populations without electricity are located in rural areas where traditional grid extension may not be cost-effective; therefore, distributed energy solutions such as mini-grids are critical. To address some of the root challenges of providing safe, quality, and financially viable mini-grid power systems to remote customers, the U.S. Department of Energy (DOE) teamed with the National Renewable Energy Laboratory (NREL) to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The QAF for mini-grids aims to address some root challenges of providing safe, quality, and affordable power to remote customers via financially viable mini-grids through two key components: (1) Levels of service: Defines a standard set of tiers of end-user service and links them to technical parameters of power quality, power availability, and power reliability. These levels of service span the entire energy ladder, from basic energy service to high-quality, high-reliability, and high-availability service (often considered 'grid parity'); (2) Accountability and performance reporting framework: Provides a clear process of validating power delivery by providing trusted information to customers, funders, and/or regulators. The performance reporting protocol can also serve as a robust monitoring and evaluation tool for mini-grid operators and funding organizations. The QAF will provide a flexible alternative to rigid top-down standards for mini-grids in energy access contexts, outlining tiers of end-user service and linking them to relevant technical parameters. In addition, data generated through implementation of the QAF will provide the foundation for comparisons across projects, assessment of impacts, and greater confidence that

  16. Uses of polymer-alanine film/ESR dosimeters in dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfeng; Dai Jinxian; Lu Ting; Chen Ruyi; Yang Hua

    1993-01-01

    Alanine ESR dosimetry is a reliable method, used in a various fields of ionizing radiation. The polymer-alanine film/ESR dosimeters of 0.3 -0.4 mm thickness were prepared and their dosimetric properties were studied for 60 Co γ photons and 3 - 5 MeV electrons in the dose range from 20 Gy to 100 kGy. The results show that under normal conditions the alanine calibration curves are linear in the dose range from 100 Gy to 10kGy. The dose profiles at the electron radiation field were measured with the film alanine dosimeters. The polymer-alanine film dosimeters were used for ion implantation of 400 keV ion implantor. Their dose response and energy dependence were investigated initially. (Author)

  17. Optimization of the obtaining method of CaSO4: Dy + Ptfe dosimeters

    International Nuclear Information System (INIS)

    Galicia A, J.; Rioja Ch, J.; Torijano C, E.; Azorin N, J.

    2012-10-01

    This work contain the obtained results of studying the response when irradiating to different dose of X-rays, dosimeters of CaSO 4 : Dy + Ptfe using different lapses of time in their preparation (a lot of selected dosimeters of an elaboration process of 3 days and another of an elaboration process of 2 hours). For the elaboration of the powdered material, the evaporation method was used; the irradiation were carried out in a lineal accelerator Elekta Synergy property of the National Medical Center, 20 de November. The similarities and differences are shown among the two dosimeters lots together with an analysis of the shine curves and of calibration selecting those that presented a better behaviour and a more rea liable response. (Author)

  18. Model Documentation for the MiniCAM

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, Antoinette L.; Smith, Steven J.; Kim, Son H.; Pitcher, Hugh M.

    2003-07-17

    The MiniCAM, short for the Mini-Climate Assessment Model, is an integrated assessment model of moderate complexity focused on energy and agriculture sectors. The model produces emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) and other radiatively important substances such as sulfur dioxide. Through incorporation of the simple climate model MAGICC, the consequences of these emissions for climate change and sea-level rise can be examined. The MiniCAM is designed to be fast and flexible.

  19. Comparison between two kind of power circuits for personal dosimeter

    International Nuclear Information System (INIS)

    Liu Zhengshan; Deng Changming; Guo Zhanjie

    2002-01-01

    Personal Dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop, Reasonable supply design can protract the battery life. The author introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, the authors carried comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, one can choose method of power circuit

  20. measurement of the supralinearity of 7LiF thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Hancock, I.B.

    1978-04-01

    A study has been made of the supralinearity of the 7 LiF thermoluminesecent dosimeter (T.L.D.) used in the UKAEA personnel criticality dosimeter by exposure to a 60 Co source. the response of the T.L.D. was linear up to approximately 450 rad, above which it became increasingly supralinear, over-reading by about 50% at 2000 rad. The results have been used to produce a correction graph, as a function of apparent dose up to 3500 rad, for routine use in nuclear accident dosimetry. (author)

  1. Radiographic Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J; Yang, S.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This report contains theory, procedure technique and interpretation of radiographic examination and written for whom preparing radiographic test Level II. To determine this baseline of technical competence in the examination, the individual must demonstrate a knowledge of radiography physics, radiation safety, technique development, radiation detection and measurement, facility design, and the characteristics of radiation-producing devices and their principles of operation. (author) 98 figs., 23 tabs.

  2. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  3. Considerations in the application of the electronic dosimeter to dose of record

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1997-12-01

    This report describes considerations for application of the electronic dosimeter (ED) as a measurement device for the dose of record (primary dosimetry). EDs are widely used for secondary dosimetry and advances in their reliability and capabilities have resulted in interest in their use to meet the needs of both primary and secondary dosimetry. However, the ED is an active device and more complex than the thermoluminescent and film dosimeters now in use for primary dosimetry. The user must evaluate the ED in terms of reliability, serviceability and radiations detected its intended application(s). If an ED is selected for primary dosimetry, the user must establish methods both for controlling the performance of the ED to ensure long term reliability of the measurements and for their proper use as a primary dosimeter. Regulatory groups may also want to develop methods to ensure adequate performance of the ED for dose of record. The purpose of the report is to provide an overview of considerations in the use of the ED for primary dosimetry. Considerations include recognizing current limitations, type testing of EDs, testing by the user, approval performance testing, calibration, and procedures to integrate the dosimeter into the users program

  4. Raman vibrational spectra of thymol blue dyed polyvinyl alcohol (PVA) film dosimeters

    International Nuclear Information System (INIS)

    Lepit, A.; Saion, E.B.; Susilawati; Doyan, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation-sensitive dyed polyvinyl alcohol (PVA) film indicators containing chloral hydrate and acid-sensitive thymol blue dye have been studied for routine food irradiation dosimeters. The free standing dyed film dosimeters of different chloral hydrate concentrations (0.1, 0.5, 1.0, 2.0 and 2.5 g) were irradiated with the absorbed dose ranges from 1 kGy to 12 kGy using gamma rays from Co-60 teletherapy. Upon exposure the dosimeters undergo chemical change and become more acidic, resulting in colour change from yellow to red at the critical doses depending on the chloral hydrate concentrations. The radiation-induced change in colour was analysed using UV-Vis spectrometer that the absorption spectra produced two maximal of the visible bands peaking at 445 nm for low doses and 554 nm for high doses. Spectra of inelastic Raman scattering photons corresponding to Raman shift frequency of unirradiated and irradiated films were measured using a dispersive Raman spectrometer. The spectral intensity of C=C, C-0 and S-H molecular vibration peaks for their respective Raman shifts were studied which provide the dose response to the change of dye molecular structure of the dosimeters. (Author)

  5. Angular response characterization of the Martin Marietta Energy Systems, Inc., personnel dosimeter

    International Nuclear Information System (INIS)

    Ahmed, A.B.; McMahan, K.L.; Colwell, D.S.

    1993-08-01

    An evaluation of the Martin Marietta Energy Systems, Inc., personnel dosimeter to radiation incident from non-perpendicular angles was carried out to meet the Department of Energy Laboratory Accreditation Program (DOELAP) requirements. Dosimeters were exposed to six different radiation sources. For each source, dosimeters were rotated about their horizontal and vertical axes at seven different angles each. Raw readings were processed through the dose calculation algorithm used for routine personnel dosimetry to determine dose equivalent values. Dose equivalent responses relative to zero degree incident angle were found to be within ± 20% for M150, K-59 and 137 Cs photons when the incident angle was 60 degree or less. For low-energy photon irradiations (M30 and K-16), responses for angles other than perpendicular incidence are generally unpredictable. Reasons include: (1) failure of dose calculation algorithm to identify the radiation field correctly due to unusual element ratios; and (2) at extreme angles (± 85 degree), the dosimeter design (in relation to the irradiation geometry) becomes the limiting factor in producing reproducible results. Response to 204 Tl beta particles decreases rapidly with increasing angle of incidence

  6. Movimentação de molares inferiores ancorados em mini-parafusos Mandibular molar uprighting, using mini-screw as anchorage

    Directory of Open Access Journals (Sweden)

    Rosana Canteras Di Matteo

    2005-08-01

    Full Text Available Freqüentemente a movimentação ortodôntica exige recursos adicionais de ancoragem. Os mini-parafusos têm-se apresentado como uma possível solução. O propósito deste trabalho foi estabelecer um método para a verticalização de molares inferiores inclinados para mesial, utilizando ancoragem em mini-parafusos colocados na região de linha oblíqüa externa da mandíbula. Foram selecionados três pacientes entre 40 a 48 anos (dois do gênero feminino, um do gênero masculino, com molares inferiores inclinados para mesial e distalmente posicionados às áreas edêntulas. Os pacientes foram tratados ortodonticamente durante um período de 6 a 12 meses, com técnica ortodôntica MD3. Mini-parafusos de titânio foram colocados bilateralmente com anestesia local. Uma incisão sobre a linha oblíqüa externa da mandíbula, medindo aproximadamente 1 cm foi realizada em cada lado, distalmente aos molares inclinados. Após descolamento muco-periosteal, mini-parafusos foram implantados e foram realizadas suturas deixando suas cabeças exteriorizadas. Uma semana após a remoção das suturas, cargas ortodônticas (entre 150 a 200 gramas/força foram aplicadas através de forças elásticas. Verificamos que alguma inflamação foi observada ao redor dos mini-parafusos, mas foi controlada com procedimentos de higienização. O procedimento cirúrgico é simples, podendo ser realizado pelo ortodontista; as formas dimensionais dos mini-parafusos são adequadas e estes são de fácil remoção após uso. Concluímos que o uso de mini-parafusos representa uma alternativa efetiva de ancoragem ortodôntica na verticalização de molares inferiores.Tooth movement frequently requires additional anchorage resources. Mini-screws have been used as a possible solution to this matter. The purpose of this study was to establish a method of mandibular molar uprighting, using mini-screw as anchorage, positioned on the mandibular external oblique line, behind and

  7. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marr, I.; Moos, R., E-mail: functional.materials@uni-bayreuth.de [Department of Functional Materials, University of Bayreuth, Bayreuth 95440 (Germany); Neumann, K.; Thelakkat, M. [Department of Macromolecular Chemistry I, Applied Functional Polymers, University of Bayreuth, Bayreuth 95440 (Germany)

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  8. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Jihye [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Shin, Dongho [Proton Therapy Center, National Cancer Center, Goyang 410-769 (Korea, Republic of); Kwon, Soo-Il, E-mail: sikwon@kyonggi.ac.kr [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of)

    2014-01-21

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  9. Calibration of thin-film dosimeters irradiated with 80-120 kev electrons

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; McEwen, M.

    2004-01-01

    A method for calibration of thin-film dosimeters irradiated with 80-120keV electrons has been developed. The method is based on measurement of dose with a totally absorbing graphite calorimeter, and conversion of dose in the graphite calorimeter to dose in the film dosimeter by Monte Carlo calcul......V electron irradiation. The two calibrations were found to be equal within the estimated uncertainties of +/-10% at 1 s.d. (C) 2004 Elsevier Ltd. All rights reserved....

  10. A passive environmental 222Rn monitor based on the exoelectron dosimeter

    International Nuclear Information System (INIS)

    Gammage, R.B.; Cheka, J.S.; Gesell, T.F.

    1978-01-01

    A high efficiency for BeO ceramic exoelectron dosimeters is demonstrated in the integrated monitoring of Mylar radon at concentrations close to natural background levels. Electrostatic collection of radon daughters onto aluminized mylar foil covering a BeO disk is achieved inside a porous, hemispherical chamber of the type developed by Costa-Ribeiro et al. This application of the exoelectron dosimeter for radon monitoring inside dwellings is a particularly favorable one; the lack of excessively high humidities and the clean conditions inside the hemisphere favor the reliable performance of the exoelectron dosimeter. Radon concentration - exposure times of 3 pCi h/l, or more, can be measured with an accuracy of about +-25% when the temperature and relative humidity are fluctuating. This means that radon concentrations of a few tenths of a pCi/l can be measured using exposure times of only a day or two. (Auth.)

  11. Standardization of the Korean version of Mini-Mental Adjustment to Cancer (K-Mini-MAC) scale: factor structure, reliability and validity.

    Science.gov (United States)

    Kang, Jee In; Chung, Hyun Cheol; Kim, Se Joo; Choi, Hye Jin; Ahn, Joong Bae; Jeung, Hei-Cheul; Namkoong, Kee

    2008-06-01

    Mental adjustment and coping affect the physical outcome and survival as well as quality of life in cancer patients. The Mini-Mental Adjustment to Cancer (Mini-MAC) scale is a new refined, economical and reliable self-rating instrument measuring cognitive and behavioral responses to cancer. The aim of this study was to evaluate the psychometric properties of the Mini-MAC in Korean cancer patients. A total of 208 cancer patients recruited from the Yonsei Cancer Center were assessed with the Mini-MAC and the Hospital Anxiety and Depression Scale (HADS). Principal component analysis with varimax rotation for the Korean version of Mini-MAC (K-Mini-MAC) confirmed four factors. Three had psychometric properties similar to Helpless-Hopeless (HH), Anxious Preoccupation (AP) and Cognitive Avoidance (CA) of the original Mini-MAC. A novel factor, named Positive Attitude, included items of both Fatalism (FA) and Fighting Spirit (FS) from the original version. The five subscales from the original version (AP, HH, FS, FA and CA) and Positive Attitude had acceptable internal reliabilities in our sample (Cronbach's alpha coefficient 0.50-0.86; correlation coefficient of test-retest 0.68-0.88). For the validity, significant interscale correlation was observed in the original five subscales and Positive Attitude. Each subscale including Positive Attitude was also significantly related to Depression and Anxiety of HADS. As a whole, the K-Mini-MAC was a reliable, valid and acceptable tool for Korean cancer patients. These findings can provide information about the cross-cultural validity of Mini-MAC scale's factor structure. Cultural differences were also discussed.

  12. Performance and type testing of selected dosimeters used for individual monitoring

    International Nuclear Information System (INIS)

    Almhena, E. H. Y.

    2010-07-01

    This study describes calibration and performance testing carried out for a set of 14 electronic personal dosimeters (EPDs) and thermoluminescence dosimeters (TLDs ) at the Secondary Standard Dosimetry Laboratory of Sudan. Also the conversion coefficients from air kerma have been determined. Dosimeters tested are belonging to three manufactures representing most commonly used types in Sudan. Calibrations were carried out at three X-ray qualities: 80, 120 and 150 kV, ISO 'narrow' spectra and for ''1''3''7Cs, '' 60 Co gamma rays. The experiments were carried out using ICRU Slab phantom with dimension 30x30x15 cm. Secondary standard ionization chamber was used to measure the personal dose equivalent, Hp(10) as standard dosimetric quantity of interest. parameters tested include: The variation of response with radiation energy and angle of incident in addition to dose rate dependence. The angular dependence factors have been experimentally determined for the same qualities and for different angles (0, ±20, ±40, ±60u) + were performed in accordance to the relevant international standards. Excellent energy, angular and dose rate response was demonstrated for 662 137 Cs, 1250 60 Co beam and (118, 100,65 keV) x-ray beam qualities exception the EPD at PM1203M are slightly larger but still with the acceptable. The response of electronic dosimeters were found to in limits of acceptable performance. For the mean response of all energies is range of EPDs Type RADOS 60, Greatz ED 150, Polimaster PM1203M, TLD were (0.75 ±0.08- 1.13±0.13), (0.83±0.29 -1.06±0.07), (1.08±0.14-1.27±0.09), (0.99±0.05 - 1.14±0.13) respectively. The majority of the dosimeters tested showed good energy and angular response. (Author)

  13. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    2015-01-01

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm 3 solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10 cm 2 field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films

  14. Attitudes of radiographers to radiographer-led discharge: A survey

    International Nuclear Information System (INIS)

    Lumsden, Laura; Cosson, Philip

    2015-01-01

    Background: The traditional role of the Diagnostic Radiographer in image acquisition has gradually been extended through skill-mix, particularly to include abnormality detection. Aims: This research focused on the attitudes of Radiographers to Radiographer-led Discharge (RLD), where Radiographers discharge patients with minor injuries and perform tasks previously undertaken by Accident and Emergency staff. The effects of job role, hospital type, experience and whether RLD was used in the participant's trust were examined. Method: A multiple-indicator online questionnaire assessed attitudes to RLD. Snowball sampling was used with advertisement via emails, posters and cards, containing Quick Response (QR) codes. Statement responses were coded, with reverse coding for negative statements and total scores were calculated. A higher score represented a more positive attitude. Results: 101 questionnaires were completed (an estimated 30% response rate) and the mean total score was 84/115. 95% of participants supported radiographer involvement in abnormality detection, with 46.5% selecting RLD as the preferred system for minor injuries patients vs 48.5% preferring commenting alone. Discussion: Participants were positive about extending their role through RLD and felt confident in their image interpretation abilities, though expressed concern for the legal consequences of the role and adequate pay. Generalization of the results is limited due to the possible low response rate. Conclusion: Overall, participants demonstrated positive attitudes towards RLD but they also indicate the need for appropriate payment for any additional responsibility. These findings are promising for successful implementation of RLD, though larger-scale research including radiologists, business managers, A and E staff and patients would be beneficial. - Highlights: • 101 questionnaires were completed (an estimated 30% response rate). • 95% of participants supported radiographer involvement

  15. Digital image analysis of NDT radiographs

    International Nuclear Information System (INIS)

    Graeme, W.A. Jr.; Eizember, A.C.; Douglass, J.

    1989-01-01

    Prior to the introduction of Charge Coupled Device (CCD) detectors the majority of image analysis performed on NDT radiographic images was done visually in the analog domain. While some film digitization was being performed, the process was often unable to capture all the usable information on the radiograph or was too time consuming. CCD technology now provides a method to digitize radiographic film images without losing the useful information captured in the original radiograph in a timely process. Incorporating that technology into a complete digital radiographic workstation allows analog radiographic information to be processed, providing additional information to the radiographer. Once in the digital domain, that data can be stored, and fused with radioscopic and other forms of digital data. The result is more productive analysis and management of radiographic inspection data. The principal function of the NDT Scan IV digital radiography system is the digitization, enhancement and storage of radiographic images

  16. RADIATION DOSIMETER AND DOSIMETRIC METHODS

    Science.gov (United States)

    Taplin, G.V.

    1958-10-28

    The determination of ionizing radiation by means of single fluid phase chemical dosimeters of the colorimetric type is presented. A single fluid composition is used consisting of a chlorinated hydrocarbon, an acidimetric dye, a normalizer and water. Suitable chlorinated hydrocarbons are carbon tetrachloride, chloroform, trichloroethylene, trichlorethane, ethylene dichioride and tetracbloroethylene. Suitable acidimetric indicator dyes are phenol red, bromcresol purple, and creosol red. Suitable normallzers are resorcinol, geraniol, meta cresol, alpha -tocopberol, and alpha -naphthol.

  17. Quality Assurance Framework for Mini-Grids

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, Sean; Baring-Gould, Ian; Booth, Samuel

    2017-05-04

    To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.

  18. Feasibility study of a photoconductor based dosimeter for quality assurance in radiotherapy

    Science.gov (United States)

    Lee, Y. K.; Kim, S. W.; Kim, J. N.; Kang, Y. N.; Kim, J. Y.; Lee, D. S.; Kim, K. T.; Han, M. J.; Ahn, K. J.; Park, S. K.

    2017-09-01

    With the recent market entries of new types of linear accelerators (LINACs) with a multi leaf collimator (MLC) mounted on them, high-precision radiosurgery applying a LINAC to measure high-dose radiation on the target region has been gaining popularity. Systematic and accurate quality assurance (QA) is of vital important for high-precision radiosurgery because of its increased risk of side effects including life-threatening ones such as overexposure of healthy tissues to high-dose radiation beams concentrated on small areas. Therefore, accurate dose and dose-distribution measurements are crucial in the treatment procedure. The accurate measurement of the properties of beams concentrated on small areas requires high-precision dosimeters capable of high-resolution output and dose mapping as well as accurate dosimetry in penumbra regions. In general, the properties of beams concentrated on small areas are measured using thermos luminescent dosimeters (TLD), diode detectors, ion chambers, diamond detectors, or films, and many papers have presented the advantages and disadvantages of each of these detectors for dosimetry. In this study, a solid-state photoconductor dosimeter was developed, and its clinical usability was tested by comparing its relative dosimetric performance with that of a conventional ion chamber. As materials best-suited for radiation dosimeters, four candidates namely lead (II) iodide (PbI2), lead (II) oxide (PbO), mercury (II) iodide (HgI2), and HgI2/ titanium dioxide (TiO2) composite, the performances of which were proved in previous studies, were used. The electrical properties of each candidate material were examined using the sedimentation method, one of the particle-in-binder (PIB) methods, and unit-cell-type prototypes were fabricated. The unit-cell samples thus prepared were cut into specimens of area 1 × 1 cm2 with 400-μ m thickness. The electrical properties of each sample, such as sensitivity, dark current, output current, rising time

  19. Thyroid dose measurement in patients undergoing to digital orthopantomography using optical stimulation dosimeters

    International Nuclear Information System (INIS)

    Gutierrez M, J. G.; Lopez V, A.; Rivera M, T.; Avalos P, L. Y.

    2016-10-01

    In this paper we present the study of the thyroid equivalent dose in 300 patients undergoing to digital orthopantomography for dental treatment purposes using optical stimulation dosimeters (OSL) as in-vivo dosimeters, in order to verify if this is within acceptable parameters to prevent stochastic risks and to evaluate the possible risks caused by the technique used for this type of study (66 kv, 5 m A, 14.1 s). Three OSL dosimeters were used per patient, which were placed by the physician on the skin above the thyroid gland (using anatomical references and palpation); the information of the patients was divided by neck size and sex, finding a slight increase in the equivalent dose for female and small size patient, this combination being the group that was submitted to a higher dose. The results obtained were compared with similar studies performed on anthropomorphic mannequins with TLD dosimeters obtaining lower results. The equivalent dose found even though is below the threshold stochastic damage must be motorized for radiological protection and registration purposes. (Author)

  20. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    NARCIS (Netherlands)

    Put, L.W.; Lembrechts, J.; van der Graaf, E.R.; Stoop, P.

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested to us that these dosimeters may give

  1. A method for reducing energy dependence of thermoluminescence dosimeter response by means of filters

    International Nuclear Information System (INIS)

    Bapat, V.N.

    1980-01-01

    This work describes the application of the method of partial surface shielding for reducing the energy dependence of the X-ray and γ-ray response of a dosimeter containing a CaSO 4 :Dy thermoluminescent phosphor mixed with KCl. in pellet form. Results are given of approximate computation of filter combinations that accomplish this aim, and of experimental verifications. Incorporation of the described filter combination makes it possible to use this relatively sensitive dosimeter for environmental radiation monitoring. A similar approach could be applied to any type of dosimeter in the form of a thin pellet or wafer. (author)

  2. Direct reading dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1985-01-01

    This invention is a direct reading dosimeter which is light, small enough to be worn on a person, and measures both dose rates and total dose. It is based on a semiconductor sensor. The gate threshold voltage change rather than absolute value is measured and displayed as a direct reading of the dose rate. This is effected by continuously switching the gate of an MOS transistor from positive to negative bias. The output can directly drive a digital readout or trigger an audible alarm. The sensor device can be a MOSFET, bipolar transistor, or MOSFET capacitor which has its electrical characteristics change due to the trapped charge in the insulating layer of the device

  3. Experimental Validation of Ex-Vessel Neutron Spectrum by Means of Dosimeter Materials Activation Method

    Directory of Open Access Journals (Sweden)

    S.A. Santa

    2017-06-01

    Full Text Available Neutron spectrum information in reactor core and around of ex-vessel reactor needs to be known with a certain degree of accuracy to support the development of fuels, materials, and other components. The most common method to determine neutron spectra is by utilizing the radioactivation of dosimeter materials. This report presents the evaluation of neutron flux incident on M3dosimeter sets which were irradiated outside the reactor vessel,as well as the validation of  neutron spectrum calculation. Al capsules containing both dosimeter set covered withCd and dosimeter set without Cd cover have been irradiated during the 35th operational cycle in the M3 ex-vessel irradiation hole position207 cmfrom core centerline at the space between the reactor vessel and the safety vessel. The capsules were positioned at Z=0.0 cm of core midplane. Each dosimeter set consists of Co-Al, Sc, Fe, Np, Nb, Ni, B, and Ta. The gamma-ray spectra of irradiated dosimeter materials were measured by 63 cc HPGe solid-state detector and photo-peak spectra were analyzed using BOB75 code. The reaction rates of each dosimeter materials and its uncertainty were analyzed based on 59Co (n,g 60Co, 237Np (n,f 95Zr-103Ru,  45Sc (n,g 46Sc, 58Fe (n,g 59Fe, 181Ta (n,g 182Ta, and 58Ni (n,p58Co reactions. The measured Cd ratios indicate that neutron spectrum at the irradiated dosimeter sets was dominated by low energy neutron. The experimental result shows that the calculated neutron spectra by DORT code at the ex-vessel positions need correction, especially in the fast neutron energy region, so as to obtain reasonable unfolding result consistent with the reaction rate measurement without any exception. Using biased DORT initial spectrum, the neutron spectrum and its integral quantity were unfolded by NEUPAC code. The result shows that total neutron flux, flux above 1.0 MeV, flux above 0.1 MeV, and the displacement rate of the dosimeter set not covered with Cd were 1.75× 1012 n cm2 s-1, 1

  4. Comparison Study of the Response of Several Passive PDA Based Personal Dosimeter to Gamma and X-Ray Radiation

    International Nuclear Information System (INIS)

    Cohen, S.; Abraham, A.; Pelled, O.; Tubul, Y.; Kresner, E.; Ashkenazi, A.; Yaar, I.

    2014-01-01

    In the case of a radiological terror event or a nuclear accident, there is a need to perform a fast and reliable personal dosimetry measurements for first responders and other intervention forces. The dosimeters should be simple, instant and cumulative readout small and lightweight energy independent (iv) wide dose range (v) withstand intense environments cheap, and disposable. In the last decade, two simple dosimeters were presented for radiological emergencies self-indicating radiation alert dosimeters (SIRAD) and (ii) RADview by J.P Labs and M/s RADeCO, respectively. Both dosimeters contain radio-chromic films based on PDA (poly-di-acetylene) material that change the colors in their active window as a function of radiation dose. In the current study, the dose response of SIRAD and RADview personal dosimeters to 137Cs and M150 X-Ray radiation at the range of 0.01-11 Sv is presented. In addition, the environmental, fading effects and usage effects on the response of these dosimeters is evaluated

  5. The Psychometrics of the Mini-K.

    Science.gov (United States)

    Richardson, George B; Chen, Ching-Chen; Dai, Chia-Liang; Brubaker, Michael D; Nedelec, Joseph L

    2017-01-01

    Many published studies have employed the Mini-K to measure a single fast-slow life history dimension. However, the internal structure of the Mini-K has not been determined and it is not clear that a single higher order K-factor fits the data. It is also not clear that the Mini-K is measurement invariant across groups such as the sexes. To establish the construct validity of K as well as the broader usefulness of applying life history theory to humans, it is crucial that these psychometric issues are addressed as a part of measure validation efforts. Here we report on three studies that used latent variable modeling and data drawn from two college student samples ( ns = 361 and 300) to elucidate the psychometrics of the Mini-K. We found that (a) the Mini-K had a six dimensional first-order structure, (b) the K-factor provided a parsimonious explanation of the associations among the lower order factors at no significant cost to fit, (c) the Mini-K measured the same K-factor across the sexes, (d) K-factor means did not have the same meaning across the sexes and thus the first-order factors should be used in studies of mean sex differences, and finally, (e) the K-factor was only associated with environment and aspects of mating competition in females. Implications and future directions for life history research are discussed.

  6. Pocket atlas of radiographic anatomy

    International Nuclear Information System (INIS)

    Moeller, T.B.; Reif, E.; Stark, P.

    1993-01-01

    The 'Pocket Atlas of Radiographic Anatomy' presents 170 radiographs of the various body regions of adults, showing only the normal radiographic anatomy. Each radiograph is supplemented on the opposite page by a drawing of the particular body region. There is no commenting text, but the drawings are provided with captions in English. The atlas is a useful guide for interpreting radiographs. The pictures are arranged in chapters entitled as follows: Skeletal Imaging (skull, spine, upper extremity), lower extremity; Miscellaneous Plain Films (chest, mammogram, trachea, lung tomograms); Contrast Examinations (gastrointestinal tract, intravenous contrast examinations, arthrography, angiography); Special Examinations (myelograms, lymphangiograms, bronchograms, sialograms). (UWA). 348 figs [de

  7. Locations of criticality alarms and nuclear accident dosimeters at Hanford

    International Nuclear Information System (INIS)

    1992-08-01

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I ampersand ED) Section of Pacific Northwest Laboratory's (PNL's) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite

  8. Development of an alanine dosimeter for gamma dosimetry in mixed environments

    International Nuclear Information System (INIS)

    Vehar, D.W.; Griffin, P.J.

    1992-01-01

    L-αa-Alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance (EPR) spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10 5 Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in 60 Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by calculations in conjunction with CaF 2 :Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including the ACRR and SPR-III reactors

  9. Color-indicator dosimeter for ionizing radiation

    International Nuclear Information System (INIS)

    Panchenkov, G.M.; Kozlov, L.L.; Molin, A.A.; Ershova, Z.F.; Mikhailov, L.M.; Juzvyak, A.G.; Valitov, R.B.; Churov, V.P.; Grinev, M.P.

    1980-01-01

    Colorimetric dosimeter of ionizing radiation, containing 70-100 w % of a thermoplastic polymer, 10-40 w. % of a softener, 0.5-3.0 w. % of stabilizer and two dyes compatible with the polymer is designed. The first dye is chosen among zanthene- polymethine- or pyrazolon dyes, while the other is a triarylmethane- indigo- thiazine- indophenol- indiamine- or indaniline dye. (E.G.)

  10. Radiographic examination of the equine head

    International Nuclear Information System (INIS)

    Park, R.D.

    1993-01-01

    Radiographic examinations of the equine head can be performed with portable x-ray machines. The views comprising the examination depend on the area of the head being examined. With a knowledge of radiographic anatomy and radiographic signs of disease, valuable diagnostic information can be obtained from the radiographic examination. In addition, the radiographic information can also be used to develop a prognosis and determine the most appropriate therapy

  11. Radiation dosimeter utilizing the thermoluminescence of lithium fluoride.

    Science.gov (United States)

    CAMERON, J R; DANIELS, F; JOHNSON, N; KENNEY, G

    1961-08-04

    A dosimeter, with little wavelength dependence and large useful energy range for electromagnetic radiation, which is simple to use and read, has been developed. It appears to have applications in personnel monitoring as well as radiation research.

  12. Rapidly processable radiographic material

    International Nuclear Information System (INIS)

    Brabandere, L.A. de; Borginon, H.A.; Pattyn, H.A.; Pollet, R.J.

    1981-01-01

    A new rapidly processable radiographic silver halide material is described for use in mammography and non-destructive testing of industrial materials. The radiographic material is used for direct exposure to penetrating radiation without the use of fluorescent-intensifying screens. It consists of a transparent support with a layer of hydrophilic colloid silver halide emulsion on one or both sides. Examples of the preparation of three different silver halide emulsions are given including the use of different chemical sensitizers. These new radiographic materials have good resistance to the formation of pressure marks in rapid processing apparatus and they have improved sensitivity for direct exposure to penetrating radiation compared to conventional radiographic emulsions. (U.K.)

  13. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  14. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  15. Evaluation of the radiation-sensitizer/protector and/or antioxidant efficiencies using Fricke and PAG dosimeters

    International Nuclear Information System (INIS)

    Meesat, Ridthee; Jay-Gerin, Jean-Paul; Khalil, Abdelouahed; Lepage, Martin

    2009-01-01

    In this study, our aim is to assess the potential of Fricke and polyacrylamide gel (PAG) dosimeters to quantitatively evaluate the efficiency of potential radiation sensitizers/protectors and antioxidants. These compounds are of importance in radiotherapy as well as in disease prevention and promotion of health. The basic principle of the Fricke dosimeter is the radiation-induced oxidation of Fe 2+ to Fe 3+ in an aerated aqueous 0.4 M H 2 SO 4 . The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. Using this method, we observed that cystamine (one of the best of the known radioprotectors) can prevent oxydation of Fe 2+ from reactive radiolysis species. However, one obvious disadvantage of the Fricke dosimeter is that it operates under highly acidic conditions (pH 0.46), which may degrade biological compounds. In contrast, the pH of the polyacrylamide gel (PAG) dosimeter is almost neutral, such that degradation of compounds is less probable. A change in R 2 -dose sensitivity was observed in the presence of radiosensitizers/radioprotectors and antioxidants. The protective effect of Trolox (a well-known antioxidant) and thiourea (a radioprotector) was readily observed using the PAG dosimeter. Incorporation of iodinated radiation sensitizers such as NaI and an iodine contrast agent led to a quantifiable sensitizer enhancement ratio. These studies suggest that the Fricke and the PAG dosimeters have the potential to evaluate the efficiency of radiation sensitizers/protectors and antioxidants.

  16. Sunna 535-nm photo-fluorescent film dosimeter response to different environmental conditions

    International Nuclear Information System (INIS)

    Murphy, M.K.; Kovacs, A.; McLaughlin, W.L.; Miller, S.D.; Puhl, J.M.

    2003-01-01

    Evaluations on the influence of environmental variabilities on the red fluorescence component of the Sunna Model γ photo-fluorescent dosimeter TM have previously been reported. This present paper describes the environmental effects on the response of the green fluorescence component of the same dosimeter, which is manufactured using the injection molding technique. The results presented include temperature, relative humidity, and light influences both during and after irradiation. The green fluorescence signal shows a significant dependence on irradiation temperature below room temperature at 1%/ deg. C. Above room temperature (approximately 24-60 deg. C), the irradiation temperature effect varies from -0.1%/ deg. C to 1.0%/ deg. C, depending on the absorbed dose level. For facilities with irradiation temperatures between 30 deg. C and 60 deg. C and absorbed dose levels above 10 kGy, irradiation temperature effects are minimal. Light-effects results indicate that the dosimeter is influenced by ultraviolet and blue wavelengths during irradiation as well as during the post-irradiation stabilization period (approximately 22 h), requiring the use of light-tight packaging. Results also show that the dosimeter exhibits negligible effects from ambient moisture during and after irradiation when in the range of 33-95% relative humidity

  17. Determination of personnel exposures in the lower energy ranges of X-ray by photographic dosimeter

    International Nuclear Information System (INIS)

    Ha, C.W.; Kim, J.R.; Suk, K.W.

    1986-01-01

    This paper described an improved technical method required for proper evaluation of personnel exposures by means of the photographic dosimeter developed by KAERI in lower gamma or X-ray energy regions, with which response of the dosimeter varies significantly. With calibration of the dosimeter in the energy range from 30 to 300 keV, the beam spectrum was carefully selected and specified it adequately. The absorber combinations and absorber thickness used to obtain the specified X-ray spectra from a constant potential X-ray machine were determined theoretically and also experimentally. A correlation between the density and exposure for the four separate energies, such as 49 keV eff , 154 keV eff 250 keV eff and 662 keV, is experimentally determined. As a result, it can be directly evaluated the exposure from the measured response of dosimeter. (Author)

  18. Silver dichromate - a suitable dosimeter for radiation processing

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Nguyen Dinh Duong

    1995-01-01

    An aqueous dosimeter system based on solution of silver dichromate in perchloric acid and spectrophotometry analysis was investigated. The optical absorption characteristics of solutions have been studied. The molar extinction coefficients and radiation-yield of the dosimeter solutions were determined. The mechanism of radiation-induced reactions in the solutions is also considered. A formula for calculating the dose based on absorbance measurements is presented. The G-value of dichromate reduction caused by gamma radiation was determined. The value found, 0.397 is close to the values of the other authors. Two solutions with different concentrations of dichromate have been chosen to match two applicable dose ranges. The solution containing 0.5 mM Ag 2 Cr 2 O 7 in 0.1 M HClO 4 is applied to dose range of 1 -12 kGy and the solution with 0.5 mM Ag 2 Cr 2 O 7 and 2.00 mM K 2 Cr 2 O 7 in 0.1 M HClO 4 is applied to dose range of 3 to 50 kGy. It was found that the relationship between net absorbance ΔA and radiation dose, D is essentially linear over expected dose ranges. The calibration curves have been drawn up by using least square method. In routine use for gamma radiation the dosimeter show good accuracy, reproducibility and stability of the response. (author). 10 refs., 4 figs., 3 tabs

  19. Three-dimensional hindfoot alignment measurements based on biplanar radiographs: comparison with standard radiographic measurements

    International Nuclear Information System (INIS)

    Sutter, Reto; Pfirrmann, Christian W.A.; Buck, Florian M.; Espinosa, Norman

    2013-01-01

    To establish a hindfoot alignment measurement technique based on low-dose biplanar radiographs and compare with hindfoot alignment measurements on long axial view radiographs, which is the current reference standard. Long axial view radiographs and low-dose biplanar radiographs of a phantom consisting of a human foot skeleton embedded in acrylic glass (phantom A) and a plastic model of a human foot in three different hindfoot positions (phantoms B1-B3) were imaged in different foot positions (20 internal to 20 external rotation). Two independent readers measured hindfoot alignment on long axial view radiographs and performed 3D hindfoot alignment measurements based on biplanar radiographs on two different occasions. Time for three-dimensional (3D) measurements was determined. Intraclass correlation coefficients (ICC) were calculated. Hindfoot alignment measurements on long axial view radiographs were characterized by a large positional variation, with a range of 14 /13 valgus to 22 /27 varus (reader 1/2 for phantom A), whereas the range of 3D hindfoot alignment measurements was 7.3 /6.0 to 9.0 /10.5 varus (reader 1/2 for phantom A), with a mean and standard deviation of 8.1 ± 0.6/8.7 ± 1.4 respectively. Interobserver agreement was high (ICC = 0.926 for phantom A, and ICC = 0.886 for phantoms B1-B3), and agreement between different readouts was high (ICC = 0.895-0.995 for reader 1, and ICC = 0.987-0.994 for reader 2) for 3D measurements. Mean duration of 3D measurements was 84 ± 15/113 ± 15 s for reader 1/2. Three-dimensional hindfoot alignment measurements based on biplanar radiographs were independent of foot positioning during image acquisition and reader independent. In this phantom study, the 3D measurements were substantially more precise than the standard radiographic measurements. (orig.)

  20. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Science.gov (United States)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  1. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    Science.gov (United States)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  2. MINI-THESAURUS, Energy Data Base Subject Thesaurus Generator

    International Nuclear Information System (INIS)

    Paulk, J.W.

    2003-01-01

    1 - Description of program or function: MINI-THESAURUS allows the user to subset into highly-specialized 'mini-thesauri' the Energy Data Base (EDB) Subject Thesaurus, which contains the standard vocabulary of indexing terms (descriptors) developed and structured by the Office of Scientific and Technical Information (OSTI) for the building and maintenance of the U.S. Department of Energy (DOE) energy information databases. This structured vocabulary reflects the scope of DOE's research, development, and technological programs and encompasses terminology derived not only from the basic sciences but also from the areas of energy, conservation, safety, environmental impact, and regulation. Entire word blocks may be copied from the primary Subject Thesaurus, from another mini-thesaurus, or both, and subsequently modified through the addition of new terms, the deletion of existing terms, and changes to the internal relationships among the word blocks within the mini-thesaurus to create a new, special-purpose thesaurus. MINI-THESAURUS also provides the ability to copy the entire Subject Thesaurus and to treat the copy as a mini-thesaurus, thus allowing one to examine the effects of major changes to the thesaurus structure without having to modify the primary, on-line Thesaurus. The copy operation also optimizes the Subject Thesaurus structure. An interactive user having update privileges for a specific mini-thesaurus and access to the TeX and PostScript proprietary software can produce the mini-thesaurus in printed publication format. Once the mini-thesaurus has been published, periodic supplements may be generated based on date of entry or change maintained by the Thesaurus software. 2 Restrictions on the complexity of the problem: The system enforces the OSTI rules for Thesaurus development

  3. Spurious RF signals emitted by mini-UAVs

    Science.gov (United States)

    Schleijpen, Ric (H. M. A.); Voogt, Vincent; Zwamborn, Peter; van den Oever, Jaap

    2016-10-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to the sensor community. The detection, classification and identification chain can take advantage of different sensor technologies. Apart from the signatures used by radar and electro-optical sensor systems, the UAV also emits RF signals. These RF signatures can be split in intentional signals for communication with the operator and un-intentional RF signals emitted by the UAV. These unintentional or spurious RF emissions are very weak but could be used to discriminate potential UAV detections from false alarms. The goal of this research was to assess the potential of exploiting spurious emissions in the classification and identification chain of mini-UAVs. It was already known that spurious signals are very weak, but the focus was on the question whether the emission pattern could be correlated to the behaviour of the UAV. In this paper experimental examples of spurious RF emission for different types of mini-UAVs and their correlation with the electronic circuits in the UAVs will be shown

  4. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    International Nuclear Information System (INIS)

    Hickman, D.P.; Wysong, A.R.; Heinrichs, D.P.; Wong, C.T.; Merritt, M.J.; Topper, J.D.; Gressmann, F.A.; Madden, D.J.

    2011-01-01

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE

  5. Effects of composition interactions on the response of a turnbull blue radiochromic gel dosimeter

    International Nuclear Information System (INIS)

    Shieh, Jiunn-I; Cheng, Kai-Yuan; Shyu, Huey-Lih; Yu, Yi-Chen; Hsieh, Ling-Ling

    2014-01-01

    In this study, the Taguchi statistical method was used to design experiments for investigating the effects of interactions among compositions on the performance of a Turnbull blue gel (TBG) radiochromic dosimeter. Four parameters were considered as the design factors: (A) concentration of ferric chloride, (B) concentration of potassium ferricyanide, (C) concentration of sulfuric acid, and (D) amount of gelling agent added. Two levels were selected for each factor. The change in optical absorbance at 695 nm under UVA exposures was monitored to determine the response of the dosimeters. The results showed that the contributions of factors A–D on the absorbance were 20.01%, 23.16%, 27.03%, and 0.49%, respectively. The contributions of significant interaction effects were AC (8.60%), BC (5.61%), and ABC (10.56%). This finding indicated that sulfuric acid (C) was the most influential factor, whereas gelling agent (D) was the least influential factor. Sulfuric acid had an important function in two two-way interactions and one three-way interaction in the response of TBG to UV exposure. - Highlights: • Analysis of the composition that influence TBG dosimeters via the design of experiments. • Cross interactions between factors in the TBG dosimeters through multi-factor ANOVA. • Two two-way interactions and one three-way interaction in the TBG dosimeters are significant

  6. Tissue-Equivalent Radiation Dosimeter-On-A-Chip, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many commercially available digital dosimeters are bulky and are unable to properly measure dose for space radiation. The complexity of space flight design requires...

  7. Tissue-Equivalent Radiation Dosimeter-On-A-Chip, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Available digital dosimeters are bulky and unable to provide real-time monitoring of dose for space radiation. The complexity of space-flight design requires...

  8. Radiographic positioning

    International Nuclear Information System (INIS)

    Eisenberg, R.L.; Dennis, C.A.; May, C.

    1989-01-01

    This book concentrates on the routine radiographic examinations commonly performed. It details the wide variety of examinations possible and their place in initial learning and in the radiology department as references for those occasions when an unusual examination is requested. This book provides information ranging from basic terminology to skeletal positioning to special procedures. Positions are discussed and supplemented with a picture of a patient, the resulting radiograph, and a labeled diagram. Immobilization and proper shielding of the patient are also shown

  9. Dosimeter characteristics and service performance requirements

    International Nuclear Information System (INIS)

    Ambrosi, P.; Bartlett, D.T.

    1999-01-01

    The requirements for personal dosimeters and dosimetry services given by ICRP 26, ICRP 35, ICRP 60 and ICRP 75 are summarised and compared with the requirements given in relevant international standards. Most standards could be made more relevant to actual workplace conditions. In some standards, the required tests of energy and angular dependence of the response are not sufficient, or requirements on overall uncertainty are lacking. (author)

  10. Colorimetric gas dosimeter

    International Nuclear Information System (INIS)

    McConnaughey, P.W.; McKee, E.S.

    1984-01-01

    A gas dosimeter comprises a stack of porous sheets, impregnated with a reagent that changes color on contact with the gas to be determined, contained in a housing which has an opening to expose one end of the stack to the atmosphere to be tested. The gas to be determined penetrates by diffusion the layers of porous sheets, causing the sheets in the stack to change color sequentially from the end of the stack exposed to the atmosphere. The degree of penetration through the layers of porous sheets is a function of dosage exposure. The housing may be transparent with each superposed sheet in the stack being larger than the adjacent underlying sheet, so that each sheet is visible through the housing endwall

  11. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  12. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  13. Some properties of commercial dyed plastic as radiation dosimeters

    International Nuclear Information System (INIS)

    Rageh, M.S.I.; El-Assy, N.B.; Ashry, M.

    1986-01-01

    The use of commercial dyed plastics (red and green perspex) as radiation dosimeters in a cobalt-60 sterilizing plant is described. The results are satisfactory and offer advantages over the other dosimeters. The increase in the optical density for red perspex at wavelengths 650 and 750 nm with radiation can be used for absorbed dose measurements over the ranges from 1 to 7.5 KGy and from 5 to 25 KGy correspondingly. The decrease in the optical density for green perspex at 596, 612 and 641 nm with absorbed dose can extend the linear response range up to about 45 KGy. The fading of intensity of the irradiation induced absorption bands in dyed plastics after storage at different temperatures had been investigated

  14. Reproducibility and signal response linearity of Alanine gel dosimeter

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo Silva; Campos, Leticia Lucente

    2008-01-01

    Gel Dosimetry has been studied mainly for medical applications, because it presents signal response in the dose range used in radiotherapy treatments and it can be applied for three dimensional dosimetry. Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. These ferric ions concentration can be measured by spectrophotometry technique. This work aims to study the reproducibility of the alanine gel solutions and the signal response as a function of gamma radiation dose, considering that these two properties are very important for characterizing and standardizing any dosimeter. (author)

  15. Investigations of CR39 dosimeters for neutron routine dosimetry

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    CR-39 is a polymeric nuclear track detector which is widely used for neutron dosimetry. CR-39 detector development was conducted at a number of laboratories throughout the world(1,2) , and was accepted also for routine dosimetry. However, there are shortcomings which must be taken into consideration the lack of a dosimetry grade material which causes batch variations, significant angular dependence and a moderate sensitivity. CR-39 also under-responds for certain classes of neutron spectra (lower energy neutrons from reactors or high energy accelerator-produced neutrons).In order to introduce CR-39 as a routine dosimeter at NRCN, a series of checks were performed. The present work describes the results of some of our checks, to characterize the main properties of CR-39 dosimeters

  16. A CaS : Ce, Sm-based dosimeter for online dosimetry measurement

    International Nuclear Information System (INIS)

    Sun Yurun; Chen Zhaoyang; Fan Yanwei; Yan Shiyou; He Chengfa

    2011-01-01

    A film dosimeter based on optically stimulated luminescence (OSL) material of CaS : Ce, Sm was developed for online irradiation dosimetry measurement. The stimulation is provided by a laser with a wavelength of 980 nm, and the OSL luminescence is collected by a photodiode. Using 60 Co γ-rays, we investigated the dosimetry characteristic of the dosimeter at different dose rates and total doses. The real-time detection results showed that the OSL signals versus total ionizing dose exhibited a good linearity in a dose range of 0.1-185 Gy. (authors)

  17. A design comparison of two kinds power circuit for personal dosimeter

    International Nuclear Information System (INIS)

    Deng Changming; Liu Zhengshan; Guo Zhanjie

    2001-01-01

    Personal dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop. Reasonable supply design can protract the battery life. The paper introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, authors carried through the design comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, you can choose method of power circuit

  18. A radiographic study of the position and shape of mental foramen in panoramic radiographs

    International Nuclear Information System (INIS)

    Choi, Karp Shik; Kim, Dong Youn; Sohn, Jeong Ick; Bae, Yong Chul

    1997-01-01

    The purpose of this study was to evaluate the position and shape of mental foramen in panoramic radiographs. For this study, panoramic radiographs were obtained from the 200 adults and evaluated the position and shape of mental foramen. According to various positional changes in panoramic radiographs of the patients, the author also obtained panoramic radiographs from the 100 adults and then evaluated the positional and shape changes of mental foramen. The following results were obtained : 1. Shapes of mental foramen were observed elliptical (43.3%), round or oval (42.5%), unidentified (7.5%) and diffuse (6.7%) type in descending order of frequency. 2. Horizontal position of mental foramen were most frequently observed at the 2nd premolar area (54.2%), and area between the 1st premolar and 2nd premolar (43.1%), area between the 2nd premolar and 1st molar (2.7%), and at apex (9.7%), overlap with apex (1.9%), superior of apex (0.2%) in descending order of frequency. 4. According to various positional changes in panoramic radiographs of the patients, shape changes of mental foramen were more obviously observed at the forward 10 mm and chin down 10 degree positioned panoramic radiographs, And changes of horizontal and vertical position were observed in similar to compared with normal positioned panoramic radiographs.

  19. Mini-Sniffer III on Lakebed

    Science.gov (United States)

    1976-01-01

    The third remotely-piloted Mini-Sniffer research vehicle rests on the lakebed adjacent to the Dryden Flight Research Center, Edwards, California. This view shows the wing shape, hydrazine engine, and the tail booms. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.

  20. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: wbdamatto@ipen.br, E-mail: mppotiens@ipen.br, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  1. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor

    2013-01-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  2. Feasibility of mini-tablets as a flexible drug delivery tool.

    Science.gov (United States)

    Mitra, Biplob; Chang, Jessica; Wu, Sy-Juen; Wolfe, Chad N; Ternik, Robert L; Gunter, Thomas Z; Victor, Michael C

    2017-06-15

    Mini-tablets have potential applications as a flexible drug delivery tool in addition to their generally perceived use as multi-particulates. That is, mini-tablets could provide flexibility in dose finding studies and/or allow for combination therapies in the clinic. Moreover, mini-tablets with well controlled quality attributes could be a prudent choice for administering solid dosage forms as a single unit or composite of multiple mini-tablets in patient populations with swallowing difficulties (e.g., pediatric and geriatric populations). This work demonstrated drug substance particle size and concentration ranges that achieve acceptable mini-tablet quality attributes for use as a single or composite dosage unit. Immediate release and orally disintegrating mini-tablet formulations with 30μm to 350μm (particle size d 90 ) acetaminophen and Compap™ L (90% acetaminophen) at concentrations equivalent to 6.7% and 26.7% acetaminophen were evaluated. Mini-tablets achieved acceptable weight variability, tensile strength, friability, and disintegration time at a reasonable solid fraction for each formulation. The content uniformity was acceptable for mini-tablets of 6.7% formulations with ≤170μm drug substance, mini-tablets of all 26.7% formulations, and composite dosage units containing five or more mini-tablets of any formulation. Results supported the manufacturing feasibility of quality mini-tablets, and their applicability as a flexible drug delivery tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of the effectiveness of polymer gel dosimeters (Magic ...

    African Journals Online (AJOL)

    demonstrate that the gel dosimeters are best suited for nuclear medicine. Keywords: Magic ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus .... Reaction rate. 2.15E-6.

  4. Performance testing of personnel extremity dosimeters by Korean LiF: Mg, Cu, Na, Si TLD(KLT-300)

    International Nuclear Information System (INIS)

    Kim, J.L.; Lee, J.I.; Chang, S.Y.; Choi, H.S.; Lee, D.H.; Han, S.J.

    2005-01-01

    Full text: As the needs and opportunities for utilization of atomic energy and radiation are increasing, the related industries, medicines, environments are developing and the relevant organizations and companies are also becoming diverse. In result, the types and kinds of the radiation related to occupational environments are becoming diversified. For the whole body dosimeters, the methodology and criteria for the performance evaluation and safety regulations and laws have been prepared in some detail, but for the extremity dosimeters, those are not prepared yet in Korea. The extremity dosimeters are required when the extremity part of our body, such as hand, elbow, and arm below the elbow, the foot, knee, and leg below the knee are exposed to the radiation in specific work environments. The dosimeter irradiation conditions are clearly discriminated between the whole body exposure condition and the extremity exposure condition. By the investigation and analysis of the management status and dose evaluation methods of the extremity dosimeters for the local absorbed dose, the personnel monitoring system of the extremity dosimeter services in Korea can be diagnosed, and the performance testing criteria and procedures can be established. Therefore, this study presents the performance testing results of extremity dosimeters on the finger and arm/leg phantoms by the procedures recommended in the ANSI (American National Standard) N13.32 using KLT-300 TL materials (LiF:Mg,Cu,Nas,Si) which were developed in Korea Atomic Energy Research Institute (KAERI). The results show that the performance index for the two types of phantoms are sufficiently satisfied with the prescribed tolerance level in the all of the test categories listed in the ANSI N13.32. These results and procedures used in this study can be applicable for regulatory body to establish the standard criteria for acceptable performance and testing conditions for personnel extremity dosimeters services in the

  5. Quantitative relations between beta-gamma mixed-field dosimeter responses and dose-equivalent conversion factors according to the testing standard

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1982-08-01

    The conventional two-element personnel dosimeters, usually having two thick TLD (thermoluminescent dosimetry) ribbons, are used extensively for radiation protection dosimetry. Many of these dosimeters are used for the measurement of beta and gamma radiation doses received in mixed beta-gamma fields. Severe limitations exist, however, on the relative magnitudes and energies of these fields that may be measured simultaneously. Moreover, due to a well-known energy dependence of these dosimeters, particularly for the beta-radiations, systematic errors will occur whenever the differences in workplaces and calibration radiation energies exist. A simple mathematical approach is presented to estimate the deep and shallow dose equivalent values at different energies for such dosimeters. The formulae correlate the dosimeter responses and dose equivalent conversion factors at different energies by taking into account the guidelines of the adopted ANSI Standard N13.11 and the dosimetry practices followed by most dosimeter processors. This standard is to be used in a mandatory testing program in the United States

  6. Reduction of radiation exposure for the examiner in angiography using a direct dosimeter

    International Nuclear Information System (INIS)

    Kamusella, Peter; Wissgott, C.; Scheer, F.; Andresen, R.; Wiggermann, P.

    2013-01-01

    Purpose: To evaluate whether a reduction in radiation exposure can be achieved using a direct dosimeter with an acoustic warning signal (model EDD-30, Unfors Instruments, Billdal, Sweden). Materials and Methods: A total of 183 diagnostic and interventional angiographies of the pelvis and lower limbs using a direct dosimeter were analyzed. The vascular interventions were performed either by an experienced examiner (> 5000 interventions), an intermediate examiner (> 1000 interventions) or by a beginner (< 200 interventions). The measuring sensor of the direct dosimeter was attached to the back of the left hand, below the sterile glove, and was worn throughout the examination. If the limit values set on the dosimeter were exceeded, an acoustic signal sounded. At the end of the examination, the mean dose and the mean dose rate could be read off directly. Results: Exposure is clearly dependent on the experience of the examiner. The highest mean dose rate was found for the beginner, followed by the intermediate examiner. The lowest dose rate was shown by the experienced examiner, even though he mostly performed complex interventions. Over the course of 3 months, an improvement in the average dose rate can be shown in the third month for the intermediate examiner. Conclusion: The use of a direct dosimeter with an acoustic warning signal is a practicable tool for sensitizing interventional radiologists to unavoidable radiation exposure, with the aim of reducing the dose. 'Real-time' dosimetry represents a sensible extension of indirect protection of the radiation-exposed examiner in angiography. (orig.)

  7. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, Lori A., E-mail: layoung@uw.edu; Sandison, George [Department of Radiation Oncology, University of Washington, Seattle, Washington 98115 (United States); Yang, Fei [Sylvester comprehensive Cancer Center, University of Miami, Miami, Florida 33124 (United States); Woodworth, Davis [Department of Physics, University of Reno, Reno, Nevada 89557 (United States); McCormick, Zephyr [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2016-01-15

    Purpose: Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. Methods: A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al{sub 2}O{sub 3}:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7 cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0–150 cGy. Results: OSLD measurement uncertainties were lowered to within ±2%–3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer’s recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Conclusions: Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors and

  8. Performance testing of selected types of electronic personal dosimeters used in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Yousif, E.H.; Beineen, A.A.; Yousif, B.E.; Hassan, M.

    2010-01-01

    Measurements were carried out for calibration and performance testing of a set of 10 electronic personal dosimeters (EPDs) at the Secondary Standard Dosimetry Laboratory of Sudan. Calibrations were carried out at three X-ray beam qualities described in ISO standard 4037 in addition to 137 Cs and 60 Co gamma ray beams. The experimental was performed with EPDs mounted on ICRU Slab phantom. X-ray and γ-ray beams were characterized in terms of air kerma free-in-air which were converted to the known delivered personal dose equivalent, H p (10) using appropriate the air kerma to personal dose equivalent conversion coefficients. Dosimeters tested showed excellent energy and angular response and relative error of indication within the recommended limit for photon energies from 65 keV to 1.25 MeV. The study showed encouraging results for using electronic dosimeters in personal dosimetry.

  9. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mattea, F.; Romero, M.; Strumia, M. [Instituto Multidisciplinario de Biologia Vegetal / CONICET, Universidad Nacional de Cordoba, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Quiroga, A. [Centro de Investigacion y Estudios de Matematica / CONICET, Oficina 318 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: fmattea@gmail.com [Instituto de Fisica E. Gaviola / CONICET, LIIFAMIRx, Oficina 102 FaMAF - UNC, 5000 Cordoba (Argentina)

    2014-08-15

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution representing a key factor for most of the therapeutic and diagnostic radiation techniques. Radiation-induced polymerization and crosslinking reactions that take place in the dosimeter have been studied for different monomers like acrylamide and N,N-methylene-bis acrylamide (Bis) and most recently for less toxic monomers like N-isopropylacrylamide and Bis. In this work a novel system based on itaconic acid and Bis is proposed, the radical polymerization or gel formation of these monomers has been already studied for the formation of an hydrogel for non dosimetric applications and their reactivity are comparable with the already mentioned systems. Although the 3D structure is maintained after the dosimeter has been irradiated, it is not possible to eliminate the diffusion of the reacted and monomer species in regions of dose gradients within the gel after irradiation. As a consequence the dose information of the dosimeters loose quality over time. The mobility within the gelatin structure of the already mentioned species is related to their chemical structure, and nature. In this work the effect of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species is studied. One of the acrylic acid groups of the itaconic acid molecule is modified to obtain molecules with similar reactivity but different molecular sizes. Dosimetric systems with these modified species, Bis, an antioxidant to avoid oxygen polymerization inhibition, water and gelatin are irradiated in an X-ray tomography at different doses, and the resulting dosimeters are characterized by Raman spectroscopy and optical absorbance to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the diffusion degree after being irradiated. (Author)

  10. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mattea, F.; Romero, M.; Strumia, M.; Vedelago, J.; Quiroga, A.; Valente, M.

    2014-08-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution representing a key factor for most of the therapeutic and diagnostic radiation techniques. Radiation-induced polymerization and crosslinking reactions that take place in the dosimeter have been studied for different monomers like acrylamide and N,N-methylene-bis acrylamide (Bis) and most recently for less toxic monomers like N-isopropylacrylamide and Bis. In this work a novel system based on itaconic acid and Bis is proposed, the radical polymerization or gel formation of these monomers has been already studied for the formation of an hydrogel for non dosimetric applications and their reactivity are comparable with the already mentioned systems. Although the 3D structure is maintained after the dosimeter has been irradiated, it is not possible to eliminate the diffusion of the reacted and monomer species in regions of dose gradients within the gel after irradiation. As a consequence the dose information of the dosimeters loose quality over time. The mobility within the gelatin structure of the already mentioned species is related to their chemical structure, and nature. In this work the effect of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species is studied. One of the acrylic acid groups of the itaconic acid molecule is modified to obtain molecules with similar reactivity but different molecular sizes. Dosimetric systems with these modified species, Bis, an antioxidant to avoid oxygen polymerization inhibition, water and gelatin are irradiated in an X-ray tomography at different doses, and the resulting dosimeters are characterized by Raman spectroscopy and optical absorbance to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the diffusion degree after being irradiated. (Author)

  11. Quenching effect in an optical fiber type small size dosimeter irradiated with 290 MeV·u{sup -1} carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yuho; Watanabe, Kenichi; Uritani, Akira; Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Koba, Yusuke; Matsufuji, Naruhiro [National Institute of Radiological Sciences, Chiba (Japan)

    2016-09-15

    We are developing a small size dosimeter for dose estimation in particle therapies. The developed dosimeter is an optical fiber based dosimeter mounting an radiation induced luminescence material, such as an OSL or a scintillator, at a tip. These materials generally suffer from the quenching effect under high LET particle irradiation. We fabricated two types of the small size dosimeters. They used an OSL material Eu:BaFBr and a BGO scintillator. Carbon ions were irradiated into the fabricated dosimeters at Heavy Ion Medical Accelerator in Chiba (HIMAC). The small size dosimeters were set behind the water equivalent acrylic phantom. Bragg peak was observed by changing the phantom thickness. An ion chamber was also placed near the small size dosimeters as a reference. Eu:BaFBr and BGO dosimeters showed a Bragg peak at the same thickness as the ion chamber. Under high LET particle irradiation, the response of the luminescence-based small size dosimeters deteriorated compared with that of the ion chamber due to the quenching effect. We confirmed the luminescence efficiency of Eu:BaFBr and BGO decrease with the LET. The reduction coefficient of luminescence efficiency was different between the BGO and the Eu:BaFBr. The LET can be determined from the luminescence ratio between Eu:BaFBr and BGO, and the dosimeter response can be corrected. We evaluated the LET dependence of the luminescence efficiency of the BGO and Eu:BaFBr as the quenching effect. We propose and discuss the correction of the quenching effect using the signal intensity ratio of the both materials. Although the correction precision is not sufficient, feasibility of the proposed correction method is proved through basic experiments.

  12. Calibration results obtained with Liulin-4 type dosimeters

    Czech Academy of Sciences Publication Activity Database

    Dacheva, T.; Tomova, B.; Matviichuka, Y.; Dimitrova, P.; Lemaireb, J.; Gregoirec, G.; Cyamukunguc, M.; Schmitzc, H.; Fujitakad, K.; Uchihorid, Y.; Kitamurad, H.; Reitze, G.; Beaujeanf, R.; Petrovg, V.; Shurshakovg, V.; Benghing, V.; Spurný, František

    2002-01-01

    Roč. 30, č. 4 (2002), s. 917-925 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z1048901 Keywords : CERN high-energy reference field * detector * dosimeter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.448, year: 2002

  13. Laser CT evaluation on normoxic PAGAT gel dosimeter

    International Nuclear Information System (INIS)

    Kumar, D S; Samuel, E J J; Watanabe, Y

    2013-01-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to describe the initial evaluation of a newly fabricated laser CT scanner for 3D gel dosimetry which works using the first generation principle. A normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When a laser passes through the gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor. The scanner motion is controlled by a computer program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software.

  14. Optical CT evaluation on normoxic polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E. James Jebaseelan

    2013-01-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to explicate the initial evaluation of a newly fabricated laser CT scanner for '3D gel dosimetry' which works in the first generation principle. The normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When laser passes through this gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor.The scanner motion is controlled by the program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software. (author)

  15. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Michael, E-mail: mdumas1127@gmail.com [Department of Radiation Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute Detroit, Detroit, Michigan 48201 and Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202 (United States); Rakowski, Joseph T. [Department of Radiation Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute Detroit, Detroit, Michigan 48201 (United States)

    2015-12-15

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of two days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner

  16. Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample.

    Science.gov (United States)

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper B; Allen, Martin; Bjerregaard, Mette; Olsen, Anja; Bentzen, Joan

    2015-09-01

    In 2007, a national skin cancer prevention campaign was launched to reduce the UV exposure of the Danish population. To improve campaign evaluation a questionnaire validation using UV-dosimeters was initiated. To show the feasibility of dosimeters for national representative studies and of smartphones as a data collection tool. Participants were sent a dosimeter which they wore for 7 days, received a short diary questionnaire by text message each day and subsequently a longer questionnaire. Correlation between responses from questionnaire, smartphone diaries and dosimeters were examined. This study shows a 99.5% return rate (n = 205) of the dosimeters by ordinary mail and high response-rates for a smartphone questionnaire dairy. Correlation coefficients for outdoor-time reported through smartphones and dosimeters as average by week 0.62 (0.39-0.77), P questionnaire and dosimeters were 0.42 (0.11-0.64), P = 0.008. The subjective perception of the weather was the only covariate significantly influencing questionnaire estimates of actual outdoor exposure. We showed that dosimeter studies are feasible in national settings and that smartphones are a useful tool for monitoring and collecting UV behavior data. We found diary data reported on a daily basis through smartphones more strongly associated with actual outdoor time than questionnaire data. Our results demonstrate tools and possible considerations for executing a UV behavior questionnaire validation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Mini-marathon groups: psychological "first aid" following disasters.

    Science.gov (United States)

    Terr, L C

    1992-01-01

    Large group counseling sessions for soldiers following battle have been commonly used since World War II. The author conceptualizes and demonstrates how these mini-marathon sessions can be adapted to support all ages and types of civilians involved in disasters. Mini-marathons take about 3 hours and are divided into three sections: story sharing, symptom sharing, and suggestions for self-help, including sharing tales of heroism and survival. After an initial mini-marathon session, a second session may be held emphasizing creativity. The author also describes how mini-marathons can be adapted for therapists who will lead their own sessions.

  18. The use of mini-samples in palaeomagnetism

    Science.gov (United States)

    Böhnel, Harald; Michalk, Daniel; Nowaczyk, Norbert; Naranjo, Gildardo Gonzalez

    2009-10-01

    Rock cores of ~25 mm diameter are widely used in palaeomagnetism. Occasionally smaller diameters have been used as well which represents distinct advantages in terms of throughput, weight of equipment and core collections. How their orientation precision compares to 25 mm cores, however, has not been evaluated in detail before. Here we compare the site mean directions and their statistical parameters for 12 lava flows sampled with 25 mm cores (standard samples, typically 8 cores per site) and with 12 mm drill cores (mini-samples, typically 14 cores per site). The site-mean directions for both sample sizes appear to be indistinguishable in most cases. For the mini-samples, site dispersion parameters k on average are slightly lower than for the standard samples reflecting their larger orienting and measurement errors. Applying the Wilcoxon signed-rank test the probability that k or α95 have the same distribution for both sizes is acceptable only at the 17.4 or 66.3 per cent level, respectively. The larger mini-core numbers per site appears to outweigh the lower k values yielding also slightly smaller confidence limits α95. Further, both k and α95 are less variable for mini-samples than for standard size samples. This is interpreted also to result from the larger number of mini-samples per site, which better averages out the detrimental effect of undetected abnormal remanence directions. Sampling of volcanic rocks with mini-samples therefore does not present a disadvantage in terms of the overall obtainable uncertainty of site mean directions. Apart from this, mini-samples do present clear advantages during the field work, as about twice the number of drill cores can be recovered compared to 25 mm cores, and the sampled rock unit is then more widely covered, which reduces the contribution of natural random errors produced, for example, by fractures, cooling joints, and palaeofield inhomogeneities. Mini-samples may be processed faster in the laboratory, which is of

  19. Possible Using of Tetra Bromo Phenolphthalein Ethyl Ester as a Liquid Dosimeter

    International Nuclear Information System (INIS)

    Rabie, A.M.; Faheem, E.; Moniem, Sh.A.; El Ahdal, M.A.

    2016-01-01

    Aqueous Solution of pH indicator Tetrabromo phenolphthalein ethyl ester (TBPE) containing of chloral hydrate was studied for using as a liquid dosimeter. The useful measuring range was found to be of (0.5-2 kGy) depending on concentration of both dye and chloral hydrate added. The dosimeter has good stability before and after irradiation under different storage conditions. Comparison study between direct irradiation of TBPE containing chloral hydrate and back titration of TBPE through irradiation of chloral hydrate was investigated.

  20. Monte Carlo modeling of a High-Sensitivity MOSFET dosimeter for low- and medium-energy photon sources

    International Nuclear Information System (INIS)

    Wang, Brian; Kim, C.-H.; Xu, X. George

    2004-01-01

    Metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy and diagnostic radiology. While it is difficult to characterize the dosimeter responses for monoenergetic sources by experiments, this paper reports a detailed Monte Carlo simulation model of the High-Sensitivity MOSFET dosimeter using Monte Carlo N-Particle (MCNP) 4C. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. Efforts were made to validate the MCNP model using three experiments: (1) comparison of the simulated dose with the measurement of a Cs-137 source, (2) comparison of the simulated dose with analytical values, and (3) comparison of the simulated energy dependence with theoretical values. Our simulation results show that the MOSFET dosimeter has a maximum response at about 40 keV of photon energy. The energy dependence curve is also found to agree with the predicted value from theory within statistical uncertainties. The angular dependence study shows that the MOSFET dosimeter has a higher response (about 8%) when photons come from the epoxy side, compared with the kapton side for the Cs-137 source

  1. Fast neutron dosimeter with wide base silicon diode

    International Nuclear Information System (INIS)

    Ma Lu

    1986-01-01

    This paper briefly introduces a wide base silicon diode fast neutron dosimeter with wide measuring range and good energy response to fast neutron. It is suitable to be used to detect fast neutrons in the mixed field of γ-ray, thermal neutrons and fast neutrons

  2. Aerated Systems of the Type RH-RCl-Ethanol-Thymolsulphonphthalein Stable Low-Level Chemical Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Dvornik, I.; Zec, U.; Anic, A.; Ranogajec, F. [Institute Ruder Boskovic, Zagreb, Yugoslavia (Croatia)

    1967-03-15

    The characteristic of dosimeters described in this paper is concerned with the very sensitive colorimetric method of dose evaluation giving a fair sensitivity with low G(HC1). In addition, the systems are thermally stable and simple to manufacture. With photocolorimetric or spectrophotometric evaluation of about 100 rad the dosimetric: error can be as low as 1 rad, or lower. The examined technique of visual colorimetric evaluation at the same dose level gives the combined error of 10-20 rad, and up to {+-} 5 or 10% at 500 rad. Owing to the practically unlimited shelf life of dosimeters and visual colorimeters, and to the very low production costs of both devices, such chemical dosimeters could be of special interest for massive use as personal gamma dosimeters for wide populations, or as dosimeters for gamma and fast neutron dosimetric topography of nuclear accidents. With tetrachloroethylene and iso-octane G(HC1) has been found constant (8.4) for temperatures of between -10 and +35 Degree-Sign C and for dose-rates of between 80 and 80 000 rad/h. The upper dose limit of colorimetric evaluation is about 2000 rad. With other components G(HC1) can be lower and the range extends to higher doses. The colorimetric properties of the systems RH-ethanol-thymolsulphonphthalein, as well as some of the most interesting features of the production procedure, are described. The radiation chemical aspects are discussed briefly. (author)

  3. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    Science.gov (United States)

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  4. Suitability of CR-39 dosimeters for personal dosimetry around CANDU reactors

    International Nuclear Information System (INIS)

    Cross, W.G.

    1992-08-01

    The capabilities and limitations of CR-39 damage track detectors have been evaluated for their use as personal neutron dosimeters around CANDU reactors. Since the energy response is a critical characteristic, the neutron energy spectra expected within CANDU containments were studied. In the boiler rooms, around the moderator cooling systems, and in most of the fueling machine vaults, the spectra vary considerably, but the majority of the dose is expected to be delivered by neutrons above 80 keV, the approximate threshold for electrochemically-etched CR-39 detectors. In the Pickering A fueling machine vault, and in areas in other stations to which neutrons from reactors have been multiply scattered, lower energy neutrons may be important. In nearly all areas where people work, it appears that working times will be limited by gamma rays rather than by neutrons. The characteristics of other neutron dosimeters - bubble and superheated drop detectors, albedo detectors, and Si real-time detectors - were also reviewed. For workers who typically receive neutron doses that are small compared with regulatory limits, CR-39 is the most suitable available dosimeter for demonstrating compliance. All single dosimeters have poor angular response over the range 0 to 180 degrees because of the shielding of the body. Albedo and Si detectors have particularly poor energy responses over the energy range of importance. Bubble and superheated drop detectors have the advantages of immediate readout and high sensitivity, but the disadvantages of inability to integrate doses over a long period, temperature dependence, very limited range and higher cost. (Author) (110 refs., 45 figs.)

  5. Comparison of laboratory and in situ evaluation of environmental TL dosimeters

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Osvay, M.

    1996-01-01

    The passive environmental gamma-radiation dosimetry is mainly based on TL (thermoluminescent) dosimetry. This method offers considerable advantages due to its high precision, low cost, wide range, etc.. At the same time its application involves uncertainty caused by the dose collected during the transport from the point of annealing to the place of exposure and back to the place of evaluation. Should an accident occur read-out is delayed due to the need to transport to a laboratory equipped with a TLD reader. A portable reader capable of reading out the TL dosimeter at the place of exposure (in situ TLD reader) eliminates the disadvantages mentioned above. A microprocessor based portable TLD reader was developed by us for monitoring environmental gamma-radiation doses. Using a portable reader for in situ evaluation there are several disadvantages as well. The method requires the transport of the reader instead of dosimeters. The portable reader should be battery operated with low power consumption. Due to this requirement the temperature stabilization of the reader requests different solution as in laboratory type devices. Comparison of recently developed in situ and traditional laboratory evaluation methods of environmental TL dosimeters is given in recent paper. The comparison was made in the same conditions. The most characteristic - for environmental monitoring - numerical TL data (dose range, reproducibility, fading, self dose etc.) are given for manufactured by us CaSO 4 :Dy bulbs (portable reader) and very advantageous, high sensitive Al 2 O 3 :C dosimeters (laboratory evaluation). (author)

  6. Radiographic localization of unerupted mandibular anterior teeth.

    Science.gov (United States)

    Jacobs, S G

    2000-10-01

    The parallax method and the use of 2 radiographs taken at right angles to each other are the 2 methods generally used to accurately localize teeth. For the parallax method, the combination of a rotational panoramic radiograph with an occlusal radiograph is recommended. This combination involves a vertical x-ray tube shift. Three case reports are presented that illustrate: (1) how this combination can accurately localize unerupted mandibular anterior teeth, (2) how a deceptive appearance of the labiolingual position of the unerupted tooth can be produced in an occlusal radiograph, (3) how increasing the vertical angle of the tube for the occlusal radiograph makes the tube shift easier to discern, (4) why occlusal radiographs are preferable to periapical radiographs for tube shifts, and (5) how localization can also be carried out with 2 radiographs at right angles to each other, one of which is an occlusal radiograph taken with the x-ray tube directed along the long axis of the reference tooth.

  7. Clinical and radiological investigations of mandibular overdentures supported by conventional or mini-dental implants: A 2-year prospective follow-up study.

    Science.gov (United States)

    Temizel, Sonay; Heinemann, Friedhelm; Dirk, Cornelius; Bourauel, Christoph; Hasan, Istabrak

    2017-02-01

    Conventional dental implants are not applicable in the mandibular interforaminal region if bone volume is limited. Mini-dental implants offer an alternative means of supporting mandibular overdentures in a narrow residual ridge, without additional surgery. The purpose of this nonrandomized clinical trial was to compare the ability of mini-dental implants with that of conventional dental implants in supporting mandibular overdentures during a 2-year clinical follow-up. Bone quality, bone resorption, implant stability, and oral health were assessed radiographically. A total of 32 participants with edentulism were included. Twenty-two participants (99 implants) received 4 to 5 mini-dental implants (diameter: 1.8-2.4 mm; length: 13-15 mm, study group), and 10 participants (35 implants) received 2 to 4 conventional dental implants (diameter: 3.3-3.7 mm; length: 11-13 mm, control group). The selection of the participants in the study or control group was based on the available bone volume in the mandible. The selection was not randomized. The density of cortical bone thickness was measured in Hounsfield units (HU) from computed tomography data, and patients were followed for 2 years. The participants were examined 3, 6, 12, and 24 months after surgery. Primary stability immediately after the insertion of dental implants (Periotest), secondary stability 6 months after implantation, modified plaque, bleeding on probing indices, and probing depth were measured and analyzed statistically (α=.05). The mean HU value 6 months after implantation in the participants who received mini-dental implants was significantly (P=.035) higher (1250 HU) than that in the participants who received conventional dental implants (1100 HU). The probing depths around the conventional dental implants (1.6 and 1.8 mm, respectively) were significantly higher than those around the mini-dental implants (1.3 and 1.2 mm, respectively) 12 and 24 months after surgery, respectively (Pdental implants were

  8. The influence of thermal annealing on the characteristics of different AL2O3 thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Vincekovic, M.; Knezevic, Z.; Miljanic, S.

    2002-01-01

    The manufacturers of TL detectors usually recommend the annealing temperature and time, however they do not give instructions about the heating and cooling rates. From the aspect of practical routine work, every laboratory has to find the optimum heating and cooling method. In this work the influence of various parameters of annealing on the properties of TL dosimeters (sensitivity, reproducibility, the shape of the glow curve) was investigated. Various Al 2 O 3 :dosimeters were used. The TL dosimeters based on Al 2 O 3 can be used in different dose ranges depending on the crystal structure of the dosimeter material as well as the kind and concentration of the activator. In this work Al 2 O 3 :C 4 and Al 2 O 3 :Mg,Y with 0.5% and 1% of activator were investigated

  9. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    Science.gov (United States)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  10. Heat transfer and pressure drop characteristics of mini-fin structures

    International Nuclear Information System (INIS)

    Jiang Peixue; Xu Ruina

    2007-01-01

    Forced convection heat transfer of air and water in bronze and pure copper mini-fin structures and mini-channel structures was investigated experimentally. The mini-fin dimensions were 0.7 mm x 0.2 mm and 0.8 mm x 0.4 mm. The tests included both staggered diamond-shaped and in-line square mini-fin arrangements. The tests investigated the effects of structures, mini-fin dimensions and arrangement, test section materials, and fluid properties on the convection heat transfer and heat transfer enhancement. For the tested conditions, the convection heat transfer coefficient was increased 9-21 fold for water and 12-38 fold for air in the mini-fin structures compared with an empty plate channel. The friction factor and flow resistance in the mini-channel structures and the in-line square mini-fin arrangement were much less than in the staggered diamond-shaped mini-fin arrangement. For the small channel width, W c = 0.2 mm, the convection heat transfer with the in-line square array structure was more intense than with the staggered diamond-shaped structure, the mini-channel structure or the porous media. For the larger channel width, W c = 0.4 mm, the convection heat transfer in the staggered diamond-shaped array structure was more intense than in the others systems while the in-line square structure had the best overall thermal-hydraulic performance

  11. Producing quality radiographic images

    International Nuclear Information System (INIS)

    Cullinan, A.M.

    1987-01-01

    This book gives an overview of physics, equipment, imaging, and quality assurance in the radiology department. The chapters are laid out with generous use of subheads to allow for quick reference, Points are illustrated with clear, uncluttered line diagrams and well-produced images. The accompanying explanations are miniature lessons by themselves. Inserted at various points throughout the text are important notes that highlight key concepts. The chapter ''Image Evaluation and Application of Radiographic Principles'' present a systematic approach to evaluating radiographs and contains several sample radiographs to illustrate the points made

  12. Stability check source measurements with a secondary standard dosimeter in SSDL-Pakistan

    International Nuclear Information System (INIS)

    Salman, S.; Mahmoud, K.; Orfi, S.D.

    1988-01-01

    The stability check source is an integral part of a Secondary Standard Dosimetry System. The purpose of the stability check source is to confirm that the overall response of the dosimeter has not changed significantly since the instrument was calibrated. In case any change in the sensitivity of the ionization chamber or measuring assembly occurs the same is reflected in the reference check source measurements. Stability check source measurements are taken in a Primary Standard Dosimetry Laboratory (PSDL) at the time of calibration of secondary standard dosimeter and mean time (in seconds) to the reference setting of 50 scale divisions with ambient conditions of air at 20 deg. C, 101.3 kPa and 50% RH is quoted in a calibration certificate. This quoted stability check source time figure is the basis for future confirmation of overall response of the secondary standard dosimeter system. This note presents the results of stability check source measurements carried out in SSDL Pakistan over a period of five years

  13. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B., E-mail: bhsouza@unifesp.b, E-mail: daros.kellen@unifesp.b, E-mail: rbitel-li.ddi@epm.b [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagem; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Servico de Radioterapia

    2011-07-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  14. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    International Nuclear Information System (INIS)

    Cavinato, Christianne C.; Campos, Leticia L.; Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B.; Giordani, Adelmo J.

    2011-01-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  15. Glass fibre sensors for medical applications - fibre-optical dosimeter system. Cooperation project 1991-1994. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    The final report summarizes the results of a cooperation project on the applications of fibre-optical sensors in medical technology. The FADOS dosimeter system is presented which comprises an implantable glass fibre dosimeter. It can be applied in radiotherapy for online dose metering directly at the tumour or in the surrounding healthy tissue. The dosimeter is placed in a tissue-compatible flexible catheter tube and remains inside the body during the radiotherapy treatiment. The measuring principle is based on the effect of radiation-induced damping inside a glass fibre. (DG) [de

  16. Operational aspects of the direct ion storage dosimeter system: 18 months of experience at CERN

    International Nuclear Information System (INIS)

    Carbonez, P.; Kotamaki, E.; Otto, Th.

    2006-01-01

    CERN, the European Organization for Nuclear Research, operates a dosimetry service for external exposure. The service monitors approximately 5000 Staff, scientific visitors and contractors personnel working on the organizations sites with personal dosimeters for personal dose equivalent (Hp(10), Hp(0.07)) from gamma, beta and neutron radiation. The dosimetry service is approved by the Swiss Federal Health Office, the competent authority for radiation protection. In 2004, the R.A.D.O.S. D.I.S. -1 dosemeter has been introduced to CERN as a gamma-beta dosemeter. Technical characteristics of this dosimeter, based on the direct ion storage technology, are high sensitivity, excellent linearity of the personal dose response with respect to radiation energy or dose, and long-term physical storage of personal dose-related information without the risk of fading. One important technical feature of the dosemeter is its 'instant reading' capability: the user himself can evaluate the received personal dose nondestructively on specific reader stations. This information is digitized, centralized by the CERN-wide network and stored in a database. The consequence of the 'instant reading' capability is a break with in the traditional organisation of a dosimetry service. The personal dosimeters are no longer exchanged periodically for evaluation, but a monthly value of personal dose is calculated from the readings initiated by the user. After a wearing period of one year, users are invited to exchange the dosimeter against a new, recently calibrated unit. The introduction of the D.I.S.-1 dosimeter has profoundly changed the type of work in CERN dosimetry service. Technical and laboratory work (development of film dosimeters, densitometric evaluation) have made place for computer-based procedures and database management. (authors)

  17. Radiographic progession of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Siozos, C.D.

    1981-01-01

    The radiographic progression of rheumatoid arthritis can be graded on a 0-IV scala. For this purpose five objective criteria are used: a) destruction, b) osteoporosis, c) narrowing of joint space, d) luxation and e) ankylosis. The grading of the radiographic progression is defined by the extent and the number of the measured alterations. The radiographic progression can be registered yearly. (orig.) [de

  18. Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter

    Science.gov (United States)

    Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min

    2013-09-01

    The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.

  19. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    International Nuclear Information System (INIS)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm 3 ) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  20. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D. [Duke University Medical Physics Graduate Program, Durham, North Carolina 27705 (United States); Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark, E-mail: mark.oldham@duke.edu [Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Rider University, Lawrenceville, New Jersey 08648 (United States)

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  1. Radiographic interpretation of the appendicular skeleton: A comparison between casualty officers, nurse practitioners and radiographers

    International Nuclear Information System (INIS)

    Coleman, Liz; Piper, Keith

    2009-01-01

    Aim: To assess how accurately and confidently casualty officers, nurse practitioners and radiographers, practicing within the emergency department (ED), recognize and describe radiographic trauma within an image test bank of 20 appendicular radiographs. Method: The participants consisted of 7 casualty officers, 13 nurse practitioners and 18 radiographers. All 20 radiographic examinations selected for the image test bank had been acquired following trauma and included some subtle, yet clinically significant abnormalities. The test bank score (maximum 40 marks), sensitivity and specificity percentages were calculated against an agreed radiological diagnosis (reference standard). Alternative Free-response Receiver Operating Characteristic (AFROC) analysis was used to assess the overall performance of the diagnostic accuracy of these professional groups. The variation in performance between each group was measured using the analysis of variance (ANOVA) test, to identify any statistical significant differences in the performance in interpretation between these groups. The relationship between the participants' perceived image interpretation accuracy during clinical practice and the actual accuracy of their image test bank score was examined using Pearson's Correlation Coefficient (r). Results: The results revealed that the radiographers gained the highest mean test bank score (28.5/40; 71%). This score was statistically higher than the mean test bank scores attained by the participating nurse practitioners (21/40; 53%) and casualty officers (21.5/40; 54%), with p < 0.01 and p = 0.02, respectively. When compared with each other, the scores from these latter groups showed no significant difference (p = 0.91). The mean 'area under the curve' (AUC) value achieved by the radiographers was also significantly higher (p < 0.01) in comparison to the AUC values demonstrated by the nurse practitioners and casualty officers, whose results, when compared, showed no significant

  2. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  3. The radiographer's role in child protection: Comparison of radiographers perceptions by use of focus groups

    International Nuclear Information System (INIS)

    Davis, Michaela; Reeves, Pauline

    2006-01-01

    The research presented in this paper is taken from a larger study whose aims were to devise a holistic picture of how diagnostic radiographers approach child protection issues and to explore how radiographers and other professionals see the role of radiographers in the chain of evidence in relation to child protection as this applies to children who present at the Imaging Department with suspected non-accidental injuries (NAI). A focus group methodology was used with focus groups being conducted in the United Kingdom and Republic of Ireland. The results indicated that both United Kingdom and Republic of Ireland radiographers agreed that they had a role in child protection; however, they identified a wide interpretation as to the extent of that role. Although radiographers in the United Kingdom and Republic of Ireland work within different legal systems there were themes identified which were common to both countries. Although radiographers referred to a duty to the child as to all patients, no radiographer specifically mentioned the system and child care law under which it is assumed they operate. This research revealed an area which would benefit from more detailed research using a wider audience. However, the study revealed a need for training in relation to possible NAI indicators and the correct procedure for documenting their suspicions and initiating an NAI referral

  4. Study of the Metrological Characteristics of the FBX Dosimeter in the Photon Beam using a Secondary Standard

    International Nuclear Information System (INIS)

    Moussous, O.; Yahiche, K.; Medjadj, T.

    2008-01-01

    The metrological characteristics of the dosimetric system containing 0.20 m M ferrous ammonium sulphate, 5.0 m M benzoic acid and 0.20 m M xyelenol orange in 0.05 N sulphuric acid. (FBX dosimeter) was investigated. The wavelength and absorbance linearity calibration of the spectrophotometer were checked using NBS Standard Reference Material. The molar absorption coefficient ε of the dosimeter solution was determined using carefully prepared standard solution. The G-value for the ferric-xylenol orange complex when this dosimeter is exposed in air to gamma radiation was determined using a secondary standard (ionization chamber). The dosimetric solutions could be stored for about 2 weeks before irradiations and up to 2 days after irradiations without any significant error in dose estimations. The linearity of the absorbed dose with the increases in absorbance of the dosimeter solution has been checked. For this purpose, the dosimeter solutions were irradiated to a series of different absorbed doses (3 to 11 Gy). The quality data, as judged from the correlation coefficient, demonstrate that the curve is linear in the range investigated. The stability and reproducibility of response are such that this system should be used to measure the low doses. The reproducibility allowed us to determine the lower detection limit of the FBX dosimeter, which is around 5 Gy

  5. Chesneys' radiographic imaging. 5. ed.

    International Nuclear Information System (INIS)

    Ball, J.; Price, T.

    1989-01-01

    This new edition of Chesney and Chesney: Radiographic Imaging has been completely written by two new authors. The book reflects the change in emphasis in radiology from photographic processes towards electronic imaging methods. There is new material on image intensifiers and television imaging, digital imaging and digital subtractions. Analyses of the various characteristics of, and defects in, images on radiographs, xeroradiographs and the television screen are included. The methods, equipment and materials used to record the cathode ray tube image are described and there is new material on the principles of alternative diagnostic imaging techniques such as ultrasound, computed tomography and radionuclide imaging which provide cathode ray tube images. The book is primarily for student radiographers studying for the Diploma of the College of Radiographers, but radiographers studying for postdiplomate qualifications such as the Higher Diploma (HDCR) will also find the book helpful. (author)

  6. Physico-chemical studies for strontium sulfate radiation dosimeter

    Directory of Open Access Journals (Sweden)

    M.A.H. Rushdi

    2015-04-01

    Full Text Available Anhydrous strontium sulfate (SrSO4 has shown a promise candidate as a dosimeter for low dose applications producing unique EPR signals with γ-rays which it has a linear response relationship (r2 = 0.999 in the range of 1–100 Gy. The present study extended to evaluate the properties of strontium sulfate dosimeter in intermediate dose range of technology applications. It was observed that the intensity of the EPR signal at g = 2.01081 increases with a 3rd polynomial function in the range of 0.10–15 kGy. In addition, the radical (SO4− provides a stable signal with a good reproducibility (0.107%. Other physics characteristic including the collision of mass stopping power dependence of the system and the effect of atomic number in different energy regions were investigated. The uncertainty budget for high doses has obtained from the measurement with value of 3.57% at 2σ confidence level.

  7. Modelling the IRSN's radio-photo-luminescent dosimeter using the MCPNX Monte Carlo code

    International Nuclear Information System (INIS)

    Hocine, N.; Donadille, L.; Huet, Ch.; Itie, Ch.

    2010-01-01

    The authors report the modelling of the new radio-photo-luminescent (RPL) dosimeter of the IRSN using the MCPNX Monte Carlo code. The Hp(10) and Hp(0, 07) dose equivalents are computed for different irradiation configurations involving photonic beams (gamma and X) defined according to the ISO 4037-1 standard. Results are compared to experimental measurements performed on the RPL dosimeter. The agreement is good and the model is thus validated

  8. Development of mini-LIA and primary experiments

    International Nuclear Information System (INIS)

    Cheng Cheng; Liao Shuqing; Zheng Shuxin; Lin Yuzheng; Tang Chuanxiang; Jing Xiaobing; Mu Fan; Pan Haifeng; Zhang Kaizhi; Shi Jinshui; Deng Jianjun

    2009-01-01

    Mini-LIA is a miniature of a linear induction accelerator developed by China Academy of Engineering Physics and Tsinghua University in 2007. It has been constructed with a thermionic cathode in an electron injector and a metglas core in the induction accelerator cavities. A double-pulsed electron beam was produced for the first time in China on the Mini-LIA with a thermionic cathode in the electron gun and a metglas core in the induction accelerator cavities. A double-pulsed beam current of more than 1.1A was obtained on condition of 80 kV double-pulsed high voltage produced by pulsed power system supplying to the injector and accelerating modules. Some primary experiments for measuring the parameters of Mini-LIA has been performed, and some beam characterizations of Mini-LIA are presented. Further improvement is underway. (authors)

  9. SU-F-T-17: A Feasibility Study for the Transit Dosimetry with a Glass Dosimeter in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S; Yoon, M [Korea University, Seoul (Korea, Republic of); Chung, W; Chung, M; Kim, D [Kyung Hee University Hospital at Gangdong, Gangdonggu, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Confirming the dose delivered to a patient is important to make sure the treatment quality and safety of the radiotherapy. Measuring a transit dose of the patient during the radiotherapy could be an interesting way to confirm the patient dose. In this study, we evaluated the feasibility of the transit dosimetry with a glass dosimeter in brachytherapy. Methods: We made a phantom that inserted the glass dosimeters and placed under patient lying on a couch for cervix cancer brachytherapy. The 18 glass dosimeters were placed in the phantom arranged 6 per row. A point putting 1cm vertically from the source was prescribed as 500.00 cGy. Solid phantoms of 0, 2, 4, 6, 8, 10 cm were placed between the source and the glass dosimeter. The transit dose was measured each thickness using the glass dosimeters and compared with a treatment planning system (TPS). Results: When the transit dose was smaller than 10 cGy, the average of the differences between measured values and calculated values by TPS was 0.50 cGy and the standard deviation was 0.69 cGy. If the transit dose was smaller than 100 cGy, the average of the error was 1.67 ± 4.01 cGy. The error to a point near the prescription point was −14.02 cGy per 500.00 cGy of the prescription dose. Conclusion: The distances from the sources to skin of the patient generally are within 10 cm for cervix cancer cases in brachytherapy. The results of this preliminary study showed the probability of the glass dosimeter as the transit dosimeter in brachytherapy.

  10. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    International Nuclear Information System (INIS)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-01-01

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10 11 Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410 9 Gy/s within 2% (OSL and TLD) and up to 1510 9 Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  11. Mini lathe machine converted to CNC

    Directory of Open Access Journals (Sweden)

    Alexandru Morar

    2012-06-01

    Full Text Available This paper presents the adaptation of a mechanical mini-lathing machine to a computerized numerical control (CNC lathing machine. This machine is composed of a ASIST mini-lathe and a two-degrees-of-freedom XZ stage designed specifically for this application. The whole system is controlled from a PC using adequate CNC control software.

  12. Interpreting radiographs. 4. The carpus

    International Nuclear Information System (INIS)

    Burguez, P.N.

    1984-01-01

    The complexity of the carpus which has three major joints, seven or eight carpal bones and five adjacent bones, each of which articulates with one or more of the carpal elements, necessitates good quality radiographs for definitive radiographic interpretation may be extremely difficult because of the disparity between radiographic changes and obvious clinical signs and, therefore, must be discussed in the light of a thorough clinical assessment

  13. Investigation of radiological properties and water equivalency of PRESAGE dosimeters

    International Nuclear Information System (INIS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Adamovics, John; Bosi, Stephen; Kim, Jung-Ha; Baldock, Clive

    2011-01-01

    Purpose: PRESAGE is a dosimeter made of polyurethane, which is suitable for 3D dosimetry in modern radiation treatment techniques. Since an ideal dosimeter is radiologically water equivalent, the authors investigated water equivalency and the radiological properties of three different PRESAGE formulations that differ primarily in their elemental compositions. Two of the formulations are new and have lower halogen content than the original formulation. Methods: The radiological water equivalence was assessed by comparing the densities, interaction probabilities, and radiation dosimetry properties of the three different PRESAGE formulations to the corresponding values for water. The relative depth doses were calculated using Monte Carlo methods for 50, 100, 200, and 350 kVp and 6 MV x-ray beams. Results: The mass densities of the three PRESAGE formulations varied from 5.3% higher than that of water to as much as 10% higher than that of water for the original formulation. The probability of photoelectric absorption in the three different PRESAGE formulations varied from 2.2 times greater than that of water for the new formulations to 3.5 times greater than that of water for the original formulation. The mass attenuation coefficient for the three formulations is 12%-50% higher than the value for water. These differences occur over an energy range (10-100 keV) in which the photoelectric effect is the dominant interaction. The collision mass stopping powers of the relatively lower halogen-containing PRESAGE formulations also exhibit marginally better water equivalency than the original higher halogen-containing PRESAGE formulation. Furthermore, the depth dose curves for the lower halogen-containing PRESAGE formulations are slightly closer to that of water for a 6 MV beam. In the kilovoltage energy range, the depth dose curves for the lower halogen-containing PRESAGE formulations are in better agreement with water than the original PRESAGE formulation. Conclusions: Based

  14. Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample

    DEFF Research Database (Denmark)

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper B

    2015-01-01

    studies and of smartphones as a data collection tool. MATERIALS AND METHODS: Participants were sent a dosimeter which they wore for 7 days, received a short diary questionnaire by text message each day and subsequently a longer questionnaire. Correlation between responses from questionnaire, smartphone...... diaries and dosimeters were examined. RESULTS: This study shows a 99.5% return rate (n = 205) of the dosimeters by ordinary mail and high response-rates for a smartphone questionnaire dairy. Correlation coefficients for outdoor-time reported through smartphones and dosimeters as average by week 0.62 (0...... that dosimeter studies are feasible in national settings and that smartphones are a useful tool for monitoring and collecting UV behavior data. CONCLUSION: We found diary data reported on a daily basis through smartphones more strongly associated with actual outdoor time than questionnaire data. Our results...

  15. Total elbow arthroplasty: a radiographic outcome study

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue Susan [University of Washington, Department of Radiology, Box 357115, Seattle, WA (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, Hershey, PA (United States); Ha, Alice S. [University of Washington, Department of Radiology, Box 354755, Seattle, WA (United States)

    2016-06-15

    Total elbow arthroplasty (TEA) is becoming a popular alternative to arthrodesis for patients with end-stage elbow arthrosis and comminuted distal humeral fractures. Prior outcome studies have primarily focused on surgical findings. Our purpose is to determine the radiographic outcome of TEA and to correlate with clinical symptoms such as pain. This is an IRB-approved retrospective review from 2005 to 2015 of all patients with semiconstrained TEA. All available elbow radiographs and clinical data were reviewed. Data analysis included descriptive statistics and Kaplan-Meier survival curves for radiographic and clinical survival. A total of 104 total elbow arthroplasties in 102 patients were reviewed; 75 % were in women and the mean patient age was 63.1 years. Mean radiographic follow-up was 826 days with average of four radiographs per patient. Seventy TEAs (67 %) developed radiographic complications, including heterotopic ossification (48 %), perihardware lucency (27 %), periprosthetic fracture (23 %), hardware subluxation/dislocation (7 %), polyethylene wear (3 %), and hardware fracture/dislodgement (3 %); 56 patients (55 %) developed symptoms of elbow pain or instability and 30 patients (30 %) underwent at least one reoperation. In patients with radiographic complications, 66 % developed elbow pain, compared to 19 % of patients with no radiologic complications (p = 0.001). Of the patients with radiographic complications, 39 % had at least one additional surgery compared to 0 % of patients without radiographic complications (p = 0.056). Radiographic complications are common in patients after total elbow arthroplasty. There is a strong positive association between post-operative radiographic findings and clinical outcome. Knowledge of common postoperative radiographic findings is important for the practicing radiologist. (orig.)

  16. Detection of dementia in primary care: comparison of the original and a modified Mini-Cog Assessment with the Mini-Mental State Examination.

    Science.gov (United States)

    Kamenski, Gustav; Dorner, Thomas; Lawrence, Kitty; Psota, Georg; Rieder, Anita; Schwarz, Franz; Sepandj, Asita; Spiegel, Wolfgang; Strotzka, Stefan

    2009-12-01

    Background Dementia is considered widely under-detected in primary care, and general practitioners (GPs) frequently ask for easy to use tools to assist in its early detection.Aim To determine the degree of correlation between the Mini-Cog Assessment (Mini-Cog) as performed by GPs and the Mini-Mental State Examination (MMSE).Design of study This was a prospective study (2005, 2006) comparing two cognitive screening instruments.Setting Ten general practices in Austria, with patients with a hitherto undiagnosed suspicion of dementia seen consecutively.Method Sensitivity, specificity and positive and negative predictive values (PPVs and NPVs) of the Mini-Cog (applying both a colour-coded and the original rating method) were assessed for degree of correlation with the MMSE. In phase one GPs examined patients suspected of having dementia using the Mini-Cog; in phase two a neurologist retested them applying the MMSE, a clock-drawing test (CDT) and a routine clinical examination. A questionnaire on the practicability of the Mini-Cog was answered by GPs.Results Of the 107 patients who participated 86 completed the whole study protocol. The Mini-Cog, as performed by the ten GPs, displayed a sensitivity of 0.85 (95% CI: 0.71, 0.98), a specificity of 0.58 (95% CI: 0.46, 0.71), a PPV of 0.47 (95% CI: 0.33, 0.61) and an NPV of 0.90 (95% CI: 0.80, 0.99) as against the MMSE carried out by neurologists. The GPs judged the Mini-Cog useful and time saving.Conclusion The Mini-Cog has a high sensitivity and acceptable specificity in the general practice setting and has proved to be a practicable tool for the diagnosis of dementia in primary care.

  17. A study on characteristic of glass dosimeter according to grade change of tube current

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin Hyun; Kim, Seong Ho; Mun, Hyun Jun; Kim, Lyun Kyun; Son, In Hwa; Kim, Young Jun; Min, Jung Whan [Dept. of Radiological Science, Shingu University, Sungnam (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2014-06-15

    This study was evaluated the linearity and reproducibility according to dose, and reproducibility according to delay time by changing tube current amount (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively, which are low energy radiations) using Glass Dosimeter (GD) and piranha semiconductor dosimeter which are used for measuring exposure dose. Measurements of radiation dose were performed using external detector of piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Conditions of measurement were 80 kVp, SSD 100 and exposure region is 10 cm x 10 cm. Glass dosimeter was exposed to radiation. Twenty-four glass dosimeters were divided into six groups (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively), then measured. This study was resulted by measuring the linearity and reproducibility according to change of tube current in low energy field. In dose characteristic of GD, this study could be useful as previous study with regard to dose characteristic according to change of tube voltage in low energy field.

  18. Temperature dependence of gafchromic MD-55 dosimeter

    International Nuclear Information System (INIS)

    Klassen, Norman V.; Zwan, Len van der; Cygler, Joanna

    1997-01-01

    Objective: Gafchromic MD-55 is a fairly new, thin film dosimeter that develops a blue color (λ max = 676 nm) when irradiated with ionizing radiation. The increase in absorbance is nearly proportional to the absorbed dose. MD-55 can be used for high precision dosimetry if care is taken to assure reproducible film orientation in the spectrophotometer as well as temperature control during both irradiation and reading. In order to achieve the maximum sensitivity of this dosimeter the readings of the optical density should be taken at λ max . It was reported for another type of Gafchromic film (DM-1260), that both λ max and ε max decrease with an increase in the temperature of the spectrophotometer. The purpose of this study was to characterize the reading temperature dependence of the new type of Gafchromic film available on the market and to find optimal conditions for using it for high precision dosimetry. Materials and Methods: Irradiations were carried out using 60 Co gamma rays from an Eldorado irradiator. The dosimeters were sandwiched in a lucite phantom with 4.4 mm build-up and irradiated in the center of a 10 cm x 10 cm field at 1 meter from the source. The temperature during irradiations was 22 deg. C. The dose rate was about 0.68 Gy/min. Measurements of optical density were made using a Cary 210 spectrophotometer. A bandpass of 3.5 nm was used. The temperature of the baseplate of the sample holder was regulated to +/-0.05 deg. C and measured by a probe lying on the baseplate. In all cases, values of OD were only recorded after they had come to a constant value, which was reached within 5 minutes of inserting the dosimeter into the sample chamber of the spectrophotometer. Results: The temperature dependence of the OD at 676 nm was measured in 2 studies using 6 dosimeters that had received 0, 1.0, 3.5, 6.2, 14.5 Gy. Readings were taken at 7 temperatures between 18.8 and 28.1 deg. C. By returning to the initial temperature several hours later, it was found

  19. Radiographer commenting of trauma radiographs: a survey of the benefits, barriers and enablers to participation in an Australian healthcare setting

    International Nuclear Information System (INIS)

    Neep, Michael J.; Steffens, Tom; Owen, Rebecca; McPhail, Steven M.

    2014-01-01

    Radiographer abnormality detection systems that highlight abnormalities on trauma radiographs ('red dot' system) have been operating for more than 30 years. Recently, a number of pitfalls have been identified. These limitations initiated the evolution of a radiographer commenting system, whereby a radiographer provides a brief description of abnormalities identified in emergency healthcare settings. This study investigated radiographers' participation in abnormality detection systems, their perceptions of benefits, barriers and enablers to radiographer commenting, and perceptions of potential radiographer image interpretation services for emergency settings. A cross-sectional survey was implemented. Participants included radiographers from four metropolitan hospitals in Queensland, Australia. Conventional descriptive statistics, histograms and thematic analysis were undertaken. Seventy-three surveys were completed and included in the analysis (68% response rate); 30 (41%) of respondents reported participating in abnormality detection in 20% or less of examinations, and 26(36%) reported participating in 80% or more of examinations. Five overarching perceived benefits of radiographer commenting were identified: assisting multidisciplinary teams, patient care, radiographer ability, professional benefits and quality of imaging. Frequently reported perceived barriers included 'difficulty accessing image interpretation education', 'lack of time' and 'low confidence in interpreting radiographs'. Perceived enablers included 'access to image interpretation education' and 'support from radiologist colleagues'. A range of factors are likely to contribute to the successful implementation of radiographer commenting in addition to abnormality detection in emergency settings. Effective image interpretation education amenable to completion by radiographers would likely prove valuable in preparing radiographers for participation in abnormality detection and commenting systems in

  20. Prospects for Antineutrino Running at MiniBooNE

    OpenAIRE

    Wascko, M. O.

    2006-01-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like nuebar oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.