WorldWideScience

Sample records for minerals soft organics

  1. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  2. Analysis of soft rock mineral components and roadway failure mechanism

    Institute of Scientific and Technical Information of China (English)

    陈杰

    2001-01-01

    The mineral components and microstructure of soft rock sampled from roadway floor inXiagou pit are determined by X-ray diffraction and scanning electron microscope. Ccmbined withthe test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.

  3. Soft-tissue mineralization in Werner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Antonio; Costantini, Alessandro Maria; Brigida, Raffaela; Antoniol, Onorina Monica; Bonomo, Lorenzo [Universita Cattolica School of Medicine, Department of Radiology, Rome (Italy); Antonelli-Incalzi, Raffaele [Universita Cattolica School of Medicine, Department of Geriatrics, Rome (Italy)

    2005-01-01

    Werner syndrome is a rare autosomal recessive disorder characterized by clinical signs of premature aging, short stature, scleroderma-like skin changes, endocrine abnormalities, cataracts, and an increased incidence of malignancies. We report on a 48-year-old woman with Werner syndrome associated with intracranial meningiomas who had extensive musculoskeletal manifestations including osteoporosis of the extremities, extensive tendinopathy about the ankles, osteomyelitis of the phalanges of the first left toe, abundant soft-tissue calcification, and two dense ossified soft-tissue masses, with cortical bone and trabeculae arising from the posterosuperior aspect of the calcanei and extending into Kager fat pads. A review of previous descriptions of the radiological abnormalities of Werner syndrome indicates that the presence of soft-tissue calcifications has either not been noted or been mentioned only briefly. Moreover, there is no mention of bony masses associated with Werner syndrome in the world literature, and this would appear to be the first report of this kind. (orig.)

  4. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    Science.gov (United States)

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  5. Livers, guts and gills: mapping the decay profiles of soft tissues to understand authigenic mineral replacement.

    Science.gov (United States)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2016-04-01

    The hard mineralised parts of organisms such as shells, teeth and bones dominate the fossil record. There are, however, sites around the world where soft-tissues are preserved often through rapid replacement of original tissue by rapidly-precipitating authigenic minerals. These exceptionally well-preserved soft-bodied fossils are much more informative about the anatomy, physiology, ecology and behaviour of ancient organisms as well as providing a more inclusive picture of ecosystems and evolution throughout geological time. However, despite the wealth of information that soft-bodied fossils can provide they must first be correctly interpreted as the processes of both decay and preservation act to modify the carcass from its in vivo condition. Decay leads to alteration of the appearance and topology of anatomy, and ultimately to loss. Preservation is selective with some anatomical features being more likely to be captured than others. These problems are especially germane to the interpretation of deep-time and/or enigmatic fossils where no modern analogue exist for comparative anatomical analysis. It is therefore of vital importance to understand the processes carcasses undergo during the fossilisation process, , in order to interpret the anatomical remains of fossils and thus extract true evolutionary presence or absence of anatomy from absence due to taphonomic biases. We have designed a series of novel experiments to investigate, in real time, how decay processes affect the fossilisation potential of soft-tissues - especially of internal anatomy. Our data allow us to unravel both the timing and sequence of anatomical decay of different organs. At the same time through measuring Eh and pH in selected organs we can predict when anatomical features will fall in to the window of authigenic mineralization and thus potentially become preserved. We can also place constraints on which minerals will operate to capture tissues. Our findings are applied to the fossil record

  6. Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Rysgaard, S.; Christensen, P.B.; Sørensen, Martin Vinther

    2000-01-01

    Organic carbon mineralization was studied in a shallow-water (4 m), sandy sediment and 2 comparatively deep-water (150 and 300 m), soft sediments in Disko Bay, West Greenland. Benthic microalgae inhabiting the shallow-water locality significantly affected diurnal O-2 conditions within the surface...... is regulated primarily by the availability of organic matter and not by temperature. The shallow-water sediment contained a larger meiofauna population than the deep-water muddy sediments. Crustacean nauplia dominated the upper 9 mm while nematodes dominated below. A typical interstitial fauna of species...... layers of the sediment. Algal photosynthetic activity and nitrogen uptake reduced nitrogen effluxes and denitrification rates. Sulfate reduction was the most important pathway for carbon mineralization in the sediments of the shallow-water station. In contrast, high bottom-water NO3- concentrations...

  7. An Organization's Extended (Soft) Competencies Model

    Science.gov (United States)

    Rosas, João; Macedo, Patrícia; Camarinha-Matos, Luis M.

    One of the steps usually undertaken in partnerships formation is the assessment of organizations’ competencies. Typically considered competencies of a functional or technical nature, which provide specific outcomes can be considered as hard competencies. Yet, the very act of collaboration has its specific requirements, for which the involved organizations must be apt to exercise other type of competencies that affect their own performance and the partnership success. These competencies are more of a behavioral nature, and can be named as soft-competencies. This research aims at addressing the effects of the soft competencies on the performance of the hard ones. An extended competencies model is thus proposed, allowing the construction of adjusted competencies profiles, in which the competency levels are adjusted dynamically according to the requirements of collaboration opportunities.

  8. Minerals with metal-organic framework structures.

    Science.gov (United States)

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  9. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  10. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA).

    Science.gov (United States)

    Manning, Phillip L; Morris, Peter M; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H S; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I; van Dongen, Bart E; Buckley, Mike; Wogelius, Roy A

    2009-10-07

    An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).

  11. Organic Minerals in the Origin of Life

    Science.gov (United States)

    Benner, S.; Biondi, E.; Kim, H. J.

    2017-12-01

    Models for the origin of life are plagued by fundamental problems that, due to their difficulty, are called "paradoxes". One of these, known to anyone who has ever worked in a kitchen, is that organics, when given energy and left to itself, does not generate life. Rather, organics devolve to give tarry mixtures that become increasingly complex and increasingly less likely to support life (like asphalt). However, even if those mixtures escape devolution to create something useful for Darwinism, like building blocks for RNA, the water in which they must work is corrosive, leading to their destruction. Even if RNA is created, it is itself easily degraded. One current trend to manage those paradoxes turns to minerals in environments on early Earth. Inorganic minerals containing borate have now been shown to prevent the destruction of ribose (the R in RNA) and other carbohydrates essential for early Earth. Evaporite desert basins supplied with aqueous runoff from tourmaline-containing basalts are ideal environments for forming borate minerals, especially if they are made alkaline by serpentinizing peridotite. In the evaporite environments, drying cycles mitigate the destructive capability of water. Further, we have shown that phosphate is segregated from calcium (avoiding formation of relatively unreacted apatites) if magnesium and borate are present. Further, a common magnesium borophosphate (luneburgite) not only makes phosphate available for prebiotic synthesis, but selectively phosphorylates RNA building blocks as it releases borate to stabilize them against further degradation. Finally, a variety of minerals bind and stabilize RNA itself. Research in this area has also discovered organic minerals that might have been relevant to the origins of life on Earth. Such minerals are scarce on Earth today, since they are easily consumed by microbial communities. However, on a prebiotic Earth, organic minerals could have stored organic species as intermediates towards our

  12. Mineral composition of organically grown tomato

    Science.gov (United States)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  13. Inorganic and organic trace mineral supplementation in weanling pig diets

    Directory of Open Access Journals (Sweden)

    MARIA C. THOMAZ

    2015-06-01

    Full Text Available A study was conducted to evaluate the effects of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix; 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements; 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements; 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements; and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements. Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.

  14. Effect of hard and soft water on mineral concentration of food items

    International Nuclear Information System (INIS)

    Khan, M.H.; Hafeez, M.

    2006-01-01

    The present study was undertaken with special reference to the change occurs in concentration of essential elements present in food items on cooking in hard and soft water. Fourteen water and 08 vegetable samples were collected from various selected sites of Muzaffarabad city and around. The parameters such as pH, conductivity and TDS of water samples were determined. The concentration of Ca and Mg being major minerals in both water and vegetable samples were determined before and after cooking by employing AAS technique. It was found that Ca has increased in vegetable samples cooked in hard water type, while in most cases it decreased when soft water was used. Magnesium has decreased in vegetables samples after cooking with hard water types. The extraction of Mg was more pronounced when soft water was used for cooking purpose. The role of Ca and Mg in human body as essential elements has been discussed. (author)

  15. Threshold value of enamel mineral solubility and dental erosion after consuming acidic soft drinks

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2011-09-01

    Full Text Available Background: Dental erosion is irreversible and can caused by acidic soft drink consumption. Dental erosion prevention had already been done, but it still has not been satisfying since the consumption of acidic soft drink is still high. There is still no explanation about the threshold value of enamel mineral solubility and the occurance of dental erosion after consuming acidic soft drink. Purpose: This research is aimed to find the threshold value of enamel mineral solubility and dental erosion before and after consuming acidic soft drinks. Methods: Subjects of the research are saliva and enamel of 12 rabbits, which have some criteria such as age > 70 days, body weight > 600 grams, and teeth considered to be healthy. The sample devided equally into 4 groups. Each of those marmooths was given a drink as much as 2.5 cc/consumption (there are 1, 2 and 3× per day by using syringe without injection needle. Salivary minerals then were examined by using atomic absorption spectrophotometric (ASS, while dental erosion was examined using scanning electron microscop (SEM. The data were analyzed by using Paired t-test. Results: It is known that the threshold value of enamel mineral solubility (K, Na, Fe, Mg, Cl, P, Ca, F, C has significant difference (p < 0.05 after being exposed to folic acid. Meanwhile, Fe did not have significant difference (p = 0.090 after being exposed to citric acid. Similarly, C did not have significant difference (p = 0.063 after being exposed to bicarbonate acid. Furthermore, it is also known that the threshold time value of dental erosion are on the 105th day for folic acid, on the 111th day for citric acid, and on the 117th day for bicarbonate acid. Conclusion: Threshold value of enamel mineral solubility before and after consuming soft drinks containing acid is different. Based on the threshold value of dental erosion, it is known that folic acid is the most erosive acid.Latar belakang: Erosi gigi bersifat irreversible

  16. Migration of Phthalates from Plastic Containers into Soft Drinks and Mineral Water

    Directory of Open Access Journals (Sweden)

    Jasna Bošnir

    2007-01-01

    Full Text Available The aim of this study was to determine the level of phthalate migration from plastic containers to soft drinks and mineral water and to identify a possible relationship between the amount and type of phthalate migration, type of preservative used, and the pH of the sample. The analysis included 45 samples of products packed in containers made from polyethylene terephthalate. The samples were divided into 5 groups: group 1 (N=9, soft drinks preserved with orthophosphoric acid; group 2 (N=14, soft drinks preserved with Na-benzoate; group 3 (N=5, soft drinks preserved with K-sorbate; group 4 (N=8, soft drinks preserved with a combination of Na-benzoate and K-sorbate; and group 5 (N=9, mineral water without preservatives. The samples were analyzed by the method of gas chromatography, with a detection limit of 0.005 μg/L. The mean pool phthalate level and mean pH value were 91.67 μg/L and 2.82±0.30 in group 1; 116.93 μg/L and 2.75±0.32 in group 2; 819.40 μg/L and 2.88±0.15 in group 3; 542.63 μg/L and 2.82±0.54 in group 4; and 20.22 μg/L and 5.82±1.26 in group 5, respectively. The highest rate of migration to soft drinks was recorded for dimethyl phthalate, ranging from 53.51 to 92.73 %, whereas dibutyl phthalate and diethylhexyl phthalate showed highest rate of migration to the mineral water (56.04 and 43.42 %, respectively. The highest level of phthalate migration from plastic containers to soft drinks was found in the products preserved with K-sorbate. The rate of phthalate migration appears to be influenced also by the drink pH, i.e. the lower the pH value, the greater the phthalate migration. Dimethyl phthalate showed highest migration to preserved drinks as an acidic medium, which might stimulate modification in the composition of plastic containers according to the type and composition of the product. Additional studies in a greater number of samples are needed. Although the phthalate levels measured in these samples pose no risk for

  17. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  18. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  19. Probing the rhizosphere to define mineral organic relationships

    Science.gov (United States)

    Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.

    2016-12-01

    Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.

  20. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Institute of Scientific and Technical Information of China (English)

    Giovanna B.MELAS; Oriol ORTIZ; Josep M.ALACA(N)IZ

    2017-01-01

    Biochar could help to stabilize soil organic (SOM) matter,thus sequestering carbon (C) into the soil.The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter (SOM)mineralization in an artificial soil,proposed by the Organization for Economic Co-operation and Development (OECD),amended with glucose and ii) to measure the amount of labile organic matter (glucose) that can be sorbed and thus be partially protected in the same soil,amended or not amended with biochar.A factorial experiment was designed to check the effects of three single factors (biochar,nutrients,and glucose) and their interactions on whole SOM mineralization.Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass,and then they were incubated in the dark at 21 ℃ for 619 d.Periodical measurements of C mineralized to carbon dioxide (CO2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools.The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract.Two different models,the Freundlich and Langmuir models,were selected to assess the equilibrium isotherms of glucose sorption.The CO2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil.The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately.Furthermore,a significant amount of glucose can be sorbed on the biochar-amended soil,suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.

  1. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  2. National soft science research task item-organization and implementation

    International Nuclear Information System (INIS)

    Zhang Yiming

    2014-01-01

    International Thermonuclear Experimental Reactor (ITER) project, as the most large-scale science project and research cooperation plan in the human history, has brought together major world-wide scientific and technological achievements in current controlled magnetic confinement fusion research. The project is aiming at validating the scientific and technological feasibility of the peaceful use of fusion energy, laying a science and technology foundation for the realization of the fusion energy commercialization. Promoted by the ITER project, the nuclear fusion frontier science researches and experiments in China have made a deep development, and have made remarkable achievements. Based on this situation, the Fusion Information Division of the Southwestern Institute of Physics (SWIP) has undertaken the soft science research task item -Prediction of Nuclear Fusion Energy Research and Development Technology in China,issued by the Ministry of Science and Technology of China. The research team has gone through these processes such as documentation collection and investigation, documentation reading and refining, outline determination, the first draft writing, content analysis and optimization for the draft, and the internal trial within the research team, review and revise from the experts at SWIP and out of SWIP, evaluation from China International Nuclear Fusion Energy Program Execution Center (ITER China DA), as well as evaluation from the famous experts in domestic fusion community by means of letters and mail. Finally, the research team has completed the research report successfully. In this report, the fusion development strategies of the world's leading fusion research countries and organizations participating in ITER project have been described. Moreover, some comparisons and analysis in this report have been made in order to provide scientific and technological research, analysis base, as well as strategic decision references for exploring medium and long term

  3. Estimated intake of the sweeteners, acesulfame-K and aspartame, from soft drinks, soft drinks based on mineral waters and nectars for a group of Portuguese teenage students.

    Science.gov (United States)

    Lino, C M; Costa, I M; Pena, A; Ferreira, R; Cardoso, S M

    2008-11-01

    In a survey of levels of acesulfame-K and aspartame in soft drinks and in light nectars, the intake of these intense sweeteners was estimated for a group of teenage students. Acesulfame-K was detected in 72% of the soft drinks, with a mean concentration of 72 mg l(-1) and aspartame was found in 92% of the samples with a mean concentration of 89 mg l(-1). When data on the content of these sweeteners in soft drinks were analysed according to flavour, cola drinks had the highest mean levels for both sweeteners with 98 and 103 mg l(-1) for acesulfame-K and aspartame, respectively. For soft drinks based on mineral water, aspartame was found in 62% of the samples, with a mean concentration of 82 mg l(-1) and acesulfame-K was found in 77%, with a mean level of 48 mg l(-1). All samples of nectars contained acesulfame-K, with a mean concentration of 128 mg l(-1) and aspartame was detected in 80% of the samples with a mean concentration of 73 mg l(-1). A frequency questionnaire, designed to identify adolescents having high consumption of these drinks, was completed by a randomly selected sample of teenagers (n = 65) living in the city of Coimbra, in 2007. The estimated daily intakes (EDI) of acesulfame-K and aspartame for the average consumer were below the acceptable daily intakes (ADIs). For acesulfame-K, the EDI was 0.7 mg kg(-1) bw day(-1) for soft drinks, 0.2 mg kg(-1) bw day(-1) for soft drinks based on mineral waters, and 0.5 mg kg(-1) bw day(-1) for nectars, representing 8.0%, 2.2%, and 5.8% of the ADI, respectively. A similar situation was observed for aspartame. In this way, the EDI for soft drinks was 1.1 mg kg(-1) day(-1), representing only 2.9% of the ADI. In respect of nectars, the EDI was 0.2 mg kg(-1) bw day(-1), representing 0.5% of the ADI. Soft drinks based on mineral waters showed the lowest EDI values of 0.3 mg kg(-1) bw day(-1), accounting for 0.7% of the ADI.

  4. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  5. Biochar effect on the mineralization of soil organic matter

    Directory of Open Access Journals (Sweden)

    Sander Bruun

    2012-05-01

    Full Text Available The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM. In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.

  6. Leiomyosarcoma: A rare soft tissue cancer arising from multiple organs

    Directory of Open Access Journals (Sweden)

    Zorawar Singh

    2018-03-01

    Full Text Available Leiomyosarcoma (LMS, a smooth muscle connective tissue tumor, is a rare form of cancer which accounts for 5–10% of soft tissue sarcomas. This type of cancer is highly unpredictable. LMS is a resistant type of cancer and can remain in the dormant state for long time. It can recur in the later stages of life. LMS has been reported in different animals including humans. A wide literature search was done. The PubMed database was used to search for journal articles on the occurrence of LMS in different organs from 1950 to 2016. LMS has been reported to be associated with different organs, including esophagus, stomach, intestine, anus and uterus. In this article, an attempt has been made to review the studies based on occurrence of LMS with respect to the organs affected and frequency of publications. Finding the organ-associated occurrence of LMS may be useful in assessing the overall risk and formulating future cancer preventive strategies.

  7. Organic matter dynamics and N mineralization in grassland soils

    OpenAIRE

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly and can be used in soil organic matter models, iii) to develop a model that predicts the long-term dynamics of soil organic matter, iv) to develop a simple model that can be used by farmers and advi...

  8. Organic-mineral binder for molybdenum concentrate granulation

    International Nuclear Information System (INIS)

    Guro, Vitaliy P.; Ibragimova, Matluba A.; Safarov, Edgorjon T.

    2016-01-01

    Process of pyrite cinders production from Mo middlings consists of molybdenite concentrate granulation, firing to oxidize sulfide minerals and to recover Re-oxide. If kaolin binder is used a pyrite cinders dilution with Mo takes place. So, the development of organic binding agents, alternative to kaolin, is an actual issue. The approach is based on the comparison of the hydrophilic, strength and technological features of the hydrometallurgical processing of pellets. The new batch is developed. It differs from the traditional mixture by polymer burning and minimizing Mo dilution, thus aiming to maximize Re, Au, Ag recovery. The composition of the new organic-mineral batch is as follows: 97.3 % of molybdenite concentrate, 2 % of kaolin and 0.7 % of SK polymer. Keywords: molybdenum middlings, binder, organic additive, batch, granulation.

  9. POTENTIAL USE OF ORGANIC MINERAL AS MINERAL SOURCE FOR DIET OF JUVENILE VANNAMEI SHRIMP, Penaeus vannamei

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2015-06-01

    Full Text Available The use of organic mineral (OM has been recently introduced in aquaculture both as feed supplement and water quality improvement. A feeding experiment was conducted to evaluate a response dose of OM on growth, survival, and mineral content in whole the body and carapace of vannamei shrimp (Penaeus vannamei. Three diets were supplemented with different levels of organic mineral at 1 (OM1, 2 (OM2 and 4 (OM4 g/100 g diet. Positive control was a diet without OM inclusion but supplemented with commercial mineral mixture at level of 4 g/100 g diet. Juvenile vannamei shrimp with average initial body weight of 3.5±0.1 g were stocked into 12 tanks with a capacity of 200 L. After 75 days feeding trial, highly significant weight gains was observed in shrimp fed OM at all levels compared to the positive control. However, no significant differences were found among dietary OM groups. The growth response was clearly shown by the same values of SGRs in the three OM supplemented groups (1.1%/d and only differed significantly from positive control. Increasing of dietary OM significantly improved survival rate of shrimp where the highest was observed in group fed OM1 and the lowest was in control diet. Effect of dietary OM on whole body Ca and P were quite similar while whole body Ca and P content of OM1 group was slightly high and tended to decrease in two groups with higher level dietary OM. However, no significant differences among the treatment groups. A clear response of supplementing OM in diet was detected on whole body Zn content. Increase of dietary OM resulted in an increase of Zn content in whole body. The effect was clearly shown when diet contained 2% and 4% OM. Carapace Ca content was highly significant when diet contained 2% OM. Similar to whole body Zn content, there was also a linear trend of response dose of dietary OM on carapace Zn content which the highest was found in dietary OM4. Based on growth, survival rate, and Zn

  10. Mineral surface–organic matter interactions: basics and applications

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted–Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  11. Microbial mineralization of organic nitrogen forms in poultry litters.

    Science.gov (United States)

    Rothrock, Michael J; Cook, Kimberly L; Warren, Jason G; Eiteman, Mark A; Sistani, Karamat

    2010-01-01

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.

  12. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.

  13. The Nanomechanics of Biomineralized Soft-Tissues and Organic Matrices

    Science.gov (United States)

    Bezares-Chavez, Jiddu

    The research reported on in this dissertation is concerned with the macro-molecular constitution and geometrical organization of the soft-tissue comprising the matrix of the nacreous portion of the shell of Haliotis rufescens, the Red abalone. Nacre is one of literally legions of intricate biomineralized structures that exist in nature and has long served as a paradigm for elegant and optimized structural de-sign. Biomineralization involves, inter alia, the uptake and synthesis of elements and compounds from the environment and their incorporation into highly optimized functional structures. Nacre has a structure described as a brick wall like with a matrix of biopolymer layers that are preformed and serve as a template into which nanocrystalline tiles of CaCO3 precipitate. The matrix, or what are known as inter-lamellar layers, are of particular interest as they impart both toughness and strength to the composite ceramic nacre structure. The work first involved a histochemical mapping of the macromolecular structure of the interlamellar layers; this revealed the locations of proteins and functional molecular groups that serve as nucleation sites for the ceramic tiles. Parallel studies on the nacre of Nautilus pompilius, the Chambered Nautilus, revealed the generality of the findings. Of particular interest was determining both the content and layout of chitin within these layers. In fact it was determined that chitin was organized as mostly unidirectional architecture of fibrils, with a certain fraction of fibrils laying at cross directions. Most remarkably, it was found that the fibrils possessed a very long range connectivity that spanned many tiles. This was determined by systematic atomic force (afm) and analytical optical histochemical microscopy. These findings were further verified by a unique form of mechanical testing whereby tensile testing was conducted on groups of interlamellar layers extracted from nacre. Mechanical testing led to a quantitative

  14. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  15. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  16. Determination of total organic phosphorus in samples of mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  17. The influence of organic substances type on the properties of mineral-organic fertilizers

    Science.gov (United States)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites

  18. Sugars, organic acids, minerals and lipids in jabuticaba

    Directory of Open Access Journals (Sweden)

    Annete de Jesus Boari Lima

    2011-06-01

    Full Text Available The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed of the Paulista (Plinia cauliflora and Sabará (Plinia jaboticaba jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.

  19. Methylene blue adsorption in clay mineral dealt with organic cation

    International Nuclear Information System (INIS)

    Silva, T.L.; Lemos, V.P.

    2011-01-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  20. Aspergillus: a rare primary organism in soft-tissue infections.

    Science.gov (United States)

    Johnson, M A; Lyle, G; Hanly, M; Yeh, K A

    1998-02-01

    Nonclostridial necrotizing soft-tissue infections are usually polymicrobial, with greater than 90 per cent involving beta-hemolytic streptococci or coagulase-positive staphylococci. The remaining 10 per cent are usually due to Gram-negative enteric pathogens. We describe the case of a 46-year-old woman with bilateral lower extremity fungal soft tissue infections. She underwent multiple surgical debridements of extensive gangrenous necrosis of the skin and subcutaneous fat associated with severe acute arteritis. Histopathological examination revealed Aspergillus niger as the sole initial pathogen. Despite aggressive surgical debridement, allografts, and intravenous amphotericin B, her condition clinically deteriorated and she ultimately died of overwhelming infection. Treatment for soft-tissue infections include surgical debridement and intravenous antibiotics. More specifically, Aspergillus can be treated with intravenous amphotericin B, 5-fluorocytosine, and rifampin. Despite these treatment modalities, necrotizing fascitis is associated with a 60 per cent mortality rate. Primary fungal pathogens should be included in the differential diagnosis of soft-tissue infections.

  1. [Levels of bone mineral matrix organization and the mechanisms determining parameters of its formation].

    Science.gov (United States)

    Avrunin, A S; Tikhilov, R M; Abolin, A B; Shcherbak, I G

    2005-01-01

    Authors suggest to regard bone mineral matrix as the four-level structure. The first level is represented by an internal structure of a mineral, the second--by mineral morphological structure, the third--by coplanar association of minerals, and the fourth--by macroassociation of minerals in a single complex inside each bone. The most probable mechanisms determining stability of reproduction of mineral matrix parameters on each of these levels are shown. As a result of their functioning, the variants of bone mineral matrix structures are formed that are the programmed reflection of specificity of the given site of organic structures.

  2. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  3. The Role Of Soft Law Acts In The Mechanism Of Functioning Of International Organizations

    Directory of Open Access Journals (Sweden)

    Olga N. Shpakovych

    2014-12-01

    Full Text Available Present article focuses on the norms of soft law in the framework of international organizations. Today majority of scientists become an interesting phenomenon decision of international organizations which are increasingly sound as a category of "soft law" and its influence on the development of international law in general. International organizations cease to be the "second" subject of international law, and if you have not won the first place, it is only a matter of time. In the article the role of soft law in the mechanism of international organizations functioning are shown, the legal nature and impact of these acts on the member states. In our opinion, norms of "soft law", as a rule, contained in resolutions of international organizations are non-binding and do not formally bind member states. Norms of "soft law" are often adheres by the states and moreover are implemented into the national legal systems by incorporating similar in content standards into the national legislation. This is due to the fact that norms of "soft law" has a weight of moral and political significance and, as a rule, are created by organizations that have a considerable authority. Jurists generally distinguish two kinds of acts of recommendatory force: model acts (laws and recommended acts which are not model, adopted in the framework of international organizations. In this connection the question of each mentioned method influence on the legislation of state. In our opinion, one of distinguishing features of the model recommendatory acts has is quite limited influence on the law of states and a narrow scope. At the same time, recommendatory acts of some specialized international organizations have a more complex effect on the development of national legislation, contain the highest level of standards, and as well develop international treaty provisions.

  4. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.

    Science.gov (United States)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana

    2017-04-01

    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop

  5. Probabilistic-Stochastic Model of Distribution of Physical and Mechanical Properties of Soft Mineral Rocks

    Directory of Open Access Journals (Sweden)

    O.O. Sdvizhkova

    2017-12-01

    Full Text Available The physical and mechanical characteristics of soils and soft rocks obtained as a result of laboratory tests are important initial parameters for assessing the stability of natural and artificial slopes. Such properties of rocks as adhesion and the angle of internal friction are due to the influence of a number of natural and technogenic factors. At the same time, from the set of factors influencing the stability of the slope, the most significant ones are singled out, which to a greater extent determine the properties of the rocks. The more factors are taken into account in the geotechnical model, the more closely the properties of the rocks are studied, which increases the accuracy of the scientific forecast of the landslide danger of the slope. On the other hand, an increase in the number of factors involved in the model complicates it and causes a decrease in the reliability of geotechnical calculations. The aim of the work is to construct a statistical distribution of the studied physical and mechanical properties of soft rocks and to substantiate a probabilistic statistical model. Based on the results of laboratory tests of rocks, the statistical distributions of the quantitative traits studied, the angle of internal friction φ and the cohesion, were constructed. It was established that the statistical distribution of physical mechanical properties of rocks is close to a uniform law.

  6. Nitrogen mineralization in a simulated rhizosphere as influenced by low molecular weight organic substances

    OpenAIRE

    Begum, Shamim Ara; Kader, MD Abdul; Sleutel, Steven; De Neve, Stefaan

    2012-01-01

    Rhizodeposits consist of over 200 organic compounds, mainly low-molecular-weight organic substances (LMWOS) such as amino acids (AA), carbohydrates (CH) and carboxylic acids (CA), lipids and phenols. Those LMWOS influence nutrient turnover, particularly N turnover. However, the exact influence of these organic substances on nitrogen mineralization is yet unknown. Therefore, the stimulatory effects of low molecular weight organic substances on nitrogen mineralization in the rhizosphere of a si...

  7. Relationship between Mineral and Organic Matter in Shales: The Case of Shahejie Formation, Dongying Sag, China

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2018-05-01

    Full Text Available Types of organic matter and mineral associations and microstructures of shales can reflect the depositional mechanism and sedimentary environment. Therefore, analysis of organic matter and mineral associations is a prerequisite for research on fine-grained sedimentary rocks. Shales from the Eocene Shahejie Formation in the Dongying Sag of China were selected to classify their lithofacies and to investigate the characteristics of their organic matter and mineral associations. This analysis identified six lithofacies (e.g., laminated shales and massive mudstones; in all the lithofacies, clay minerals exhibit a positive correlation with detrital minerals, thus indicating that they were derived from the same source. The comprehensive analysis of mineral and organic matter associations reveals that detrital minerals were deposited with low-hydrogen index (HI OM. The deposition of detrital minerals was mainly a physical process. Clay minerals can undergo deposition in one of two ways due to their surface charge: they can either aggregate with high-HI OM via chemical deposition, thus forming organic-rich laminae, or they can be deposited together with low-HI OM via physical deposition, thus forming clay-rich laminae or a massive matrix. Carbonate minerals, which often coexist with high-HI OM, are biological sediments. The analysis of the sedimentary characteristics of these organic matter and mineral associations indicates that the sedimentary processes differ between various lithofacies: e.g., the discontinuous laminated shale represents the product of biophysical processes. Differences in depositional mechanisms are also present in each sub-member. Therefore, it is important to analyze the properties of minerals and organic matter, as well as their associations, to more deeply understand the classification of lithofacies and the depositional processes of shales and mudstones.

  8. Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil

    Science.gov (United States)

    Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.

    2017-12-01

    Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering

  9. Minerals

    Science.gov (United States)

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  10. Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens.

    Science.gov (United States)

    Katzer, Tatiele; Chaves, Paula; Bernardi, Andressa; Pohlmann, Adriana R; Guterres, Silvia S; Beck, Ruy C R

    2014-03-01

    The non-invasive ophthalmic therapy has a drawback: low residence time in the eye socket. Nanoparticles and contact lenses have been studied as promising ocular drug delivery systems. To develop a nanoemulsion and evaluate its compatibility with a soft contact lens as a potential strategy for ocular delivery. The formulations were developed by spontaneous emulsification and fully characterized. Two drops of nanoemulsion were instilled on the surface of a commercial contact lens and its transparency was measured using a UV-Vis spectrophotometer. Before and after the instillation of the drops, the morphology (scanning electron microscopy - SEM) and ion permeability of the lenses were analyzed. The formulations had a mean particle size of 234 nm, polydispersity below 0.16, zeta potential of -8.56 ± 3.49 mV, slightly acid pH, viscosity ≈1.2 mPa s(-1) and spherical-shaped particles. Nanoemulsion was non-irritant (hen's egg test-chorioallantoic membrane), which was confirmed by the cytotoxicity studies in the SIRC cell cultures. After instillation, SEM analysis showed nanodroplets inside and on the surface of the lenses, although their transparency remained near 100%. No significant differences were found between lens ion permeability coefficients before and after instillation. Formulations presented appropriate physicochemical characteristics and suitability for ocular application. The contact lens remained transparent and ion-permeable after association with the formulation.

  11. Integration of organic nanofibers by soft transfer techniques and nanostenciling

    DEFF Research Database (Denmark)

    Tavares, Luciana

    , the application of an AC voltage to the transistor gate electrode causes sequential injection of holes and electrons into the organic material with subsequent strongly localized light emission upon charge carrier recombination. Their morphology enables the nanofibers to function as optical waveguides and part......Self-assembled semiconductor nanostructures are foreseen to have great impact on next generation miniaturized electronic and photonic devices. So far, submicron optoelectronic devices such as multicolor LEDs, lasers, and photodetectors have almost exclusively been demonstrated using inorganic...... nanowires due their excellent and well-behaved electrical properties combined with a decent mechanical strength that enables easy manipulation of these materials without damage. Organic semiconductors based on small molecules have several advantages over inorganic materials including lower cost, flexibility...

  12. DETERMINATION OF MINERAL CONTAIN AND BACTERIA CONTAMINANT ON ORGANIC AND NONORGANIC FRESH VEGETABLES

    Directory of Open Access Journals (Sweden)

    Harsojo Harsojo

    2010-06-01

    Full Text Available The determination of mineral content and bacteria contaminant on fresh vegetable of long bean (Vegan ungulate Wall., white cabbage (Basic tolerance L., and lettuce (Lectuca sativa L. that cultivated by organic and nonorganic system have been done. The mineral content has been analyzed using neutron activation analysis and atomic absorption spectroscopy method, while bacteria contaminant by total plate count number using Nutrient Agar, Mac Conkey Agar, Baird Parker medium, and Salmonella using selective medium. The results showed that there are some essential mineral such as Fe, Zn, Ca, Co, and nonessential mineral Cd. There is tendency that fresh vegetable that cultivated by organic system contained Fe, Zn, Ca, Co and Cd mineral less than nonorganic. The Zn mineral content in nonorganic of fresh vegetable were higher than the limit of threshold number from Health Department, Republic of Indonesia (2004, while Cd mineral in organic or nonorganic of fresh vegetable were greater then threshold number from Codex Alimentarius Commision. The measurement of bacteria contaminant on organic and nonorganic of fresh vegetables contained aerob, coli, and Staphylococcus bacteria in organic of fresh vegetables were less compared to nonorganic of fresh vegetables.   Keywords: mineral, bacteria aerob, coli, Staphylococcus, Salmonella, organic, and nonorganic vegetable, neutron activation

  13. Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    David Domínguez

    2017-10-01

    Full Text Available Substituting fishmeal (FM with vegetable meal (VM can markedly affect the mineral composition of feeds, and may require additional mineral supplementation. Their bioavailability and optimal supplementation levels depend also on the form of delivery of minerals. The aim of the study was to determine the effect of different delivery forms of three major trace elements (Zn, Mn and Se in a marine teleost. Gilthead sea bream juveniles of 22.5 g were fed a VM-based diet for 12 weeks that was either not supplemented with these minerals or supplemented with inorganic, organic, or encapsulated inorganic forms of minerals in triplicate and compared to a FM-based diet. Our results showed that mineral delivery form significantly affected the biochemical composition and morphology of posterior vertebrae. Supplementation of VM-based diets with inorganic forms of the target minerals significantly promoted growth, increased the vertebral weight and content of ash and Zn, enhanced bone mineralization and affected the vertebral shape. Conversely, encapsulation of inorganic minerals reduced fish growth and vertebral mineral content, whereas supplementation of organic minerals, enhanced bone osteogenesis by upregulating bone morphogenetic protein 2 (bmp2 gene and produced vertebrae with a larger length in relation to height. Furthermore, organic mineral forms of delivery downregulated the expression of oxidative stress related genes, such as Cu/Zn superoxide dismutase (Cu/Zn sod and glutathione peroxidase 1 (gpx-1, suggesting thus that dietary minerals supplemented in the organic form could be reasonably considered more effective than the inorganic and encapsulated forms of supply.

  14. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  15. Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.

    Science.gov (United States)

    Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon

    2018-04-30

    Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  17. Possibility of organic mineral water 'Naftusia Zbrutschanska' helps in correction of immune system with of

    International Nuclear Information System (INIS)

    Raksha-Slyusareva, E.A.; Slyusarev, A.A.; Malygina, V.D.

    2005-01-01

    Changing of hemato-immunological state of Chernobyl clean uppers, and conventional heals population, living in Donbass eco crisis region under influence of organic mineral water 'Naftusia Zbrutschanska' was detected. It was registries that including of organic mineral water 'Naftusia Zbrutschanska' in to the complex treatment of Chernobyl clean uppers or for immune correction of conventional heals population corrected not only red and white blood, but immunological state too. Especial after course of the organic mineral water 'Naftusia Zbrutschanska' the considers of lymphocyte populations, restarted to normal date or with tendency to norm

  18. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    Science.gov (United States)

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  19. A Biogeotechnical approach to Stabilize Soft Marine Soil with a Microbial Organic Material called Biopolymer

    Science.gov (United States)

    Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.

    2017-12-01

    The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.

  20. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø, Lasse Arnt

    2016-02-02

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  1. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø , Lasse Arnt; Saleem, Qasim; Hansen, Michael Ryan

    2016-01-01

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  2. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Science.gov (United States)

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  3. Effect of combined application of organic and mineral nitrogen and ...

    African Journals Online (AJOL)

    The problem is more severe in the Zone due to soil erosion and nutrient ... 46 kg P2O5 ha-1) and no fertilizer application (control) in randomized complete block ... of food barley over the application of 100% mineral NP alone and the control.

  4. Characterizing morphology in organic systems with resonant soft X-ray scattering

    International Nuclear Information System (INIS)

    Carpenter, Joshua H.; Hunt, Adrian; Ade, Harald

    2015-01-01

    Highlights: • A brief history of the development of R-SoXS for studying soft matter systems. • A theoretical background and an overview of analysis methodology. • Applications to block copolymers, organic electronics, and biological systems. • A discussion of emerging applications and an outlook on the future of R-SoXS. - Abstract: Resonant soft X-ray scattering (R-SoXS) has proven to be a highly useful technique for studying the morphology of soft matter thin films due to the large intrinsic contrast between organic materials and the anisotropic nature of the resonant electronic state transitions from which the contrast originates. This allows R-SoXS users to measure spatial composition correlations from crystalline and amorphous phases in heterogeneous organic samples, infer relative domain purity, and determine average local molecular ordering correlations. R-SoXS has been used to study the morphology of organic photovoltaics, organic thin film transistors, biological systems, and block copolymer engineering applications. The mesoscopic morphological information compliments molecular packing information determined with hard X-rays, so that complex structure–property relationships can be elucidated over a large range of length scales. Extensions of R-SoXS have also emerged that make use of more advanced sample setups or different experimental geometries than normal transmission, such as θ–2θ reflectivity or grazing incidence.

  5. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Science.gov (United States)

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  6. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  7. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany.

    Science.gov (United States)

    Briggs, Derek E G; Moore, Rachel A; Shultz, Jeffrey W; Schweigert, Günter

    2005-03-22

    A remarkable specimen of Mesolimulus from the Upper Jurassic (Kimmeridgian) of Nusplingen, Germany, preserves the musculature of the prosoma and associated microbes in three dimensions in calcium phosphate (apatite). The musculature of Mesolimulus conforms closely to that of modern horseshoe crabs. Associated with the muscles are patches of mineralized biofilm with spiral and coccoid forms. This discovery emphasizes the potential of soft-bodied fossils as a source for increasing our knowledge of the diversity of fossil microbes in particular settings.

  8. Power efficiency of mineral and organic fertilizers application in crop rotations

    OpenAIRE

    BOSAK V.M.

    2009-01-01

    In researches on sod podzolic light loamy soil the application of mineral and organic fertilizers has provided high indicators of agronomic and power efficiency. Entering of mineral fertilizers has raised efficiency of field crop rotations on 19,9-30,3 tha -1 of f.u., as well as entering of organic fertilizers on 5,2-10,8 tha -1 of f.u. at a recoupment of 1 ton of manure of 65,0-131,3 f.u. and 1 kg of NPK of 8,1-9,7 f.u. Power return of application of mineral fertilizers in crop rotations has...

  9. A retail market study of organic and conventional potatoes (Solanum tuberosum): mineral content and nutritional implications.

    Science.gov (United States)

    Griffiths, Andrea M; Cook, David M; Eggett, Dennis L; Christensen, Merrill J

    2012-06-01

    Whether or not all foods marketed to consumers as organic meet specified standards for use of that descriptor, or are nutritionally different from conventional foods, is uncertain. In a retail market study in a Western US metropolitan area, differences in mineral composition between conventional potatoes and those marketed as organic were analysed. Potatoes marketed as organic had more copper and magnesium (p potatoes. Comparison of individual mineral concentrations between foodstuffs sold as organic or conventional is unlikely to establish a chemical fingerprint to objectively distinguish between organic and conventional produce, but more sophisticated chemometric analysis of multi-element fingerprints holds promise of doing so. Although statistically significant, these differences would only minimally affect total dietary intake of these minerals and be unlikely to result in measurable health benefits.

  10. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  11. Enhancing the design and management of a local organic food supply chain with Soft Systems Methodology

    DEFF Research Database (Denmark)

    Tavella, Elena; Hjortsø, Carsten Nico Portefée

    2012-01-01

    not adequately consider major aspects of local organic food supply chains such as ethics, sustainability and human values. Supply chain design and management approaches suita-ble to small-scale, local organic food enterprises are lacking and need to be developed. The aim of this paper is to suggest Soft Systems......Supply chain partners for local organic food face uncertainties such as poor collaboration and communication that cannot be reduced through the application of traditional supply chain design and management techniques. Such techniques are known to improve supply chain coordination, but they do...... Methodology (SSM) as a new and suitable ap-proach to design and manage local organic food supply chains. We illustrate how SSM can be used to reduce uncertainties within local organic food supply chains based on a German case. This illustration serves to identify the benefits of using SSM, compared with ad...

  12. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  13. Nutrition and growth of potted gerbera according to mineral and organic fertilizer

    Directory of Open Access Journals (Sweden)

    Francielly Torres Santos

    2015-08-01

    Full Text Available In order to meet the growing market of gerbera, it is necessary to develop studies that maximize its production, especially using organic fertilizer. In order to assess the nutrition and growth of potted gerbera conducted with mineral and organic fertilization, an experiment in a greenhouse was done, located at Western Paraná State University, Brazil. The experimental design was made in randomized blocks, with four replications and five treatments. The treatments were defined according to the source of fertilization, mineral (NPK or organic. The organic fertilization were obtained by diluting in water four organic compost of poultry slaughter waste, obtained from in the composting process, in order to adjust electrical conductivity. The solution of the compost was used as organic fertigation, making the organic treatments. The liquid organic fertilizer, as well as irrigation of mineral treatment, was performed manually once a day. At the end of vegetative and reproductive periods, the levels of N, P, K, Ca, Mg and Fe were quantified in the plant tissue. At the same time, biometric parameters were assessed (number of leaves, plant diameter, leaf area, dry matter of aerial parts, number of heads, inflorescence dry matter, stem height, head diameter and diameter stem. The liquid organic fertilizers, obtained by composting procession of poultry slaughter waste, can be used as alternative source for potted gerbera nutrition, since they provide better or higher culture growth than the mineral fertilizer.

  14. Investigation of Ageing Effects on Organic Binders used for Mineral Wool Products

    DEFF Research Database (Denmark)

    Zafar, Ashar

    mainly due to hydrolyzation of urea containing groups. On the other hand, XPS and ToF-SIMS characterization of alkanol amine-acid anhydride binder coated mineral fibres consistently showed that the surface chemical composition of the organic components of these samples did not change appreciably during......Phenol-Urea-Formaldehyde (PUF) binder based mineral wool products’ mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while mineral wool products based on a newly developed alkanol amine-acid anhydride binder exhibited better ageing properties...... for the same duration of ageing. The main purpose of the present work is to examine the chemical changes occurring in the phenol-urea-formaldehyde binder based mineral fibres due to ageing, which cause deterioration of the mechanical properties of mineral wool products. This has been done using surface...

  15. Aerobic mineralization of selected organic nutrient sources for soil ...

    African Journals Online (AJOL)

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  16. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    Science.gov (United States)

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (ppotassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Højberg, Ole; Sørensen, Kristina Ulrich

    2014-01-01

    Acidification of slurry through dietary manipulation of urinary pH is a means of mitigating nitrogen emission from pig production, but long-term effects of diet acidification on bone mineralization and mineral balance is less investigated. The objective was therefore to study the long-term effects...... of feeding benzoic acid (BA) and calcium chloride (CaCl2) on the mineral balance and microbial activity in the gastrointestinal tract of pigs. Four diets containing the combinations of 0 or 10 g/kg BA and 0 or 20 g/kg CaCl2 were fed to 24 pigs in a factorial design. For the diets without CaCl2, calcium...... carbonate (CaCO3) was added to provide equimolar levels of Ca. The pigs were fed the diets from 36 kg until slaughter at 113 kg BW, and they were housed in balance cages for 12 d from 60 to 66 kg BW. Supplementation of BA and/or CaCl2 had only minor effect on accumulation of digesta organic acids (acetate...

  18. Modeling of Possible Conditions for Origin of First Organic Forms in hot Mineral Water

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2014-01-01

    The composition of water, its temperature and pH value was analyzed in experiments with modelling of primary hydrosphere and possible conditions for origin of first organic forms in hot mineral water. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria by IR-spectrometry (DNES-method). As model systems were used cactus juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza tuberculata. It was considered the reactions of condensation and deh...

  19. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  20. The Oslo Health Study: A Dietary Index Estimating Frequent Intake of Soft Drinks and Rare Intake of Fruit and Vegetables Is Negatively Associated with Bone Mineral Density

    Science.gov (United States)

    Høstmark, Arne Torbjørn; Søgaard, Anne Johanne; Alvær, Kari; Meyer, Haakon E.

    2011-01-01

    Background. Since nutritional factors may affect bone mineral density (BMD), we have investigated whether BMD is associated with an index estimating the intake of soft drinks, fruits, and vegetables. Methods. BMD was measured in distal forearm in a subsample of the population-based Oslo Health Study. 2126 subjects had both valid BMD measurements and answered all the questions required for calculating a Dietary Index = the sum of intake estimates of colas and non-cola beverages divided by the sum of intake estimates of fruits and vegetables. We did linear regression analyses to study whether the Dietary Index and the single food items included in the index were associated with BMD. Results. There was a consistent negative association between the Dietary Index and forearm BMD. Among the single index components, colas and non-cola soft drinks were negatively associated with BMD. The negative association between the Dietary Index and BMD prevailed after adjusting for gender, age, and body mass index, length of education, smoking, alcohol intake, and physical activity. Conclusion. An index reflecting frequent intake of soft drinks and rare intake of fruit and vegetables was inversely related to distal forearm bone mineral density. PMID:21772969

  1. Effect of Combined Application of Organic and Mineral Nitrogen and ...

    African Journals Online (AJOL)

    mite

    fertilizers is not sufficient to maintain the present levels of crop productivity of ...... Proceedings of the First Barley Review work shop, 16- 19 October 1993. ... Life. Science Journal, 4 (2): 82-87. Iyamuremye, F & Dick, R.P. 1996. Organic .... inorganic fertilizer application on soil physico-chemical properties and nutrient balance.

  2. The effects of mineral and liquid organic fertilizers on some ...

    African Journals Online (AJOL)

    süreyya

    2012-03-22

    Mar 22, 2012 ... Full Length Research Paper. The effects ... The economical effect of liquid organic fertilizer on agriculture may be a factor in the extension of its .... trays (200 ml each cell) at the cotyledonary leaf stage; soil ... electrical conductivity (EC) was 0.088%. ... Number of main stem-shoot on each plant was limited to.

  3. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  4. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    Science.gov (United States)

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  5. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars.

    Science.gov (United States)

    Gainey, Seth R; Hausrath, Elisabeth M; Adcock, Christopher T; Tschauner, Oliver; Hurowitz, Joel A; Ehlmann, Bethany L; Xiao, Yuming; Bartlett, Courtney L

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe 3+ with small amounts of aqueous Mg 2+ . Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  6. Maghemite Formation via Organics and the Prospect for Maghemite as a Biomarker Mineral on Mars

    Science.gov (United States)

    Bishop, Janice; Mancinelli, R. L.; Madsen, M. B.; Zent, A. P.

    2000-01-01

    One of the major questions on Mars is the origin of the magnetic component in the surface material. Our work on maghemite formation suggests that alteration of femhydrite in the presence of organics would provide a plausible formation scenario for this magnetic soil component and further suggests that maghemite might be an important biomarker mineral on Mars. Identification of biomarker minerals is an important aspect of Astrobiology . The iron oxide mineral maghemite is thought to be one of the magnetic components in the Martian surface material; however, it is a rare mineral on the Earth and requires a reducing agent for synthesis. Organic material serves as a reductant in maghemite formation during forest fires on Earth and may play an important role in maghemite formation on Mars through low-temperature heating (e.g., volcanism, impacts). This study involves analysis of magnetite, maghemite and hematite formation under Martian environmental conditions from femhydrite in the presence and absence of organics. A dehydrated version of the mineral femhydrite is thought to be present in Martian soil/dust grains and could have formed at an earlier time on Mars when water was present. Our work indicates that low-temperature alteration of femhydrite in the presence of organic material could be an important mechanism on Mars.

  7. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Gainey, Seth R.; Hausrath, Elisabeth M.; Adcock, Christopher T.; Tschauner, Oliver; Hurowitz, Joel A.; Ehlmann, Bethany L.; Xiao, Yuming; Bartlett, Courtney L. (CIW); (UNLV); (CIT); (SBU)

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  8. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  9. Sulfate minerals: a problem for the detection of organic compounds on Mars?

    Science.gov (United States)

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A

    2015-03-01

    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  10. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    Science.gov (United States)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of

  11. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  12. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.

    Science.gov (United States)

    Keith, Alexandra; Singh, Balwant; Singh, Bhupinder Pal

    2011-11-15

    Biochar is considered as an attractive tool for long-term carbon (C) storage in soil. However, there is limited knowledge about the effect of labile organic matter (LOM) on biochar-C mineralization in soil or the vice versa. An incubation experiment (20 °C) was conducted for 120 days to quantify the interactive priming effects of biochar-C and LOM-C mineralization in a smectitic clayey soil. Sugar cane residue (source of LOM) at a rate of 0, 1, 2, and 4% (w/w) in combination with two wood biochars (450 and 550 °C) at a rate of 2% (w/w) were applied to the soil. The use of biochars (~ -36‰) and LOM (-12.7‰) or soil (-14.3‰) with isotopically distinct δ(13)C values allowed the quantification of C mineralized from biochar and LOM/soil. A small fraction (0.4-1.1%) of the applied biochar-C was mineralized, and the mineralization of biochar-C increased significantly with increasing application rates of LOM, especially during the early stages of incubation. Concurrently, biochar application reduced the mineralization of LOM-C, and the magnitude of this effect increased with increasing rate of LOM addition. Over time, the interactive priming of biochar-C and LOM-C mineralization was stabilized. Biochar application possesses a considerable merit for long-term soil C-sequestration, and it has a stabilizing effect on LOM in soil.

  13. On some investigation features of sorption of flotation reagents labelled by soft β-emitters on mineral surface

    International Nuclear Information System (INIS)

    Korobochkin, V.P.; Gladyshev, V.P.; Latypova, O.A.

    1983-01-01

    A correction for self-absorption, taking into account concrete dimensions of mineral grain during sorption of flotation reagents on mineral surface is deduced. On the basis of the regularity obtained problems of the sensitivity of the determination method of reagent activity sorbed by minerals which are labelled by radioactive isotopes are considered. Improved technique is described and statistical analysis of the experimental data obtained is carried out

  14. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, Pamela S [ORNL

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  15. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  16. Cross calibration of QDR-2000 and QDR-1000 dual-energy X-ray densitometers for bone mineral and soft-tissue measurements

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Gram, J; Hansen, T. B.

    1995-01-01

    ) and fan beam (FB) modes (n = 40-62) as a quality control measure. A total of 83 subjects (79 females and four males) with a wide range of bone mineral densities (BMD) were studied. There was a linear relationship between results with the QDR-1000W and QDR-2000 in SB mode, and between SB and FB mode...... device. Soft-tissue composition with FB (enhanced analysis protocol) on the QDR-2000 differed greatly from that obtained using SB (standard protocol). Lean tissue mass was 4 kg lower and fat mass 4 kg higher in FB mode.(ABSTRACT TRUNCATED AT 250 WORDS)...

  17. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  18. Flotation separation of arsenopyrite from several sulphide minerals with organic depressants

    Institute of Scientific and Technical Information of China (English)

    Wang Fuliang; Wang Ligang; Sun Chuanyao

    2008-01-01

    In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic)was discussed,and the functioning mechanism of those organic depressants was dis-cussed.The experimental results of monomineral flotation indicated that both guergum and sodium humic have depress-ing effect on arsenopyrite in the presence of ethyl xanthate.Guergum and sodium humic showed different depressing a-bility to pyrite,chalcopyrite and galena,and the higher the pH value in pulp,the stronger the depressing ability.Ultra-violet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been de-sorbed by the two organic depressants,and the selective desorption of the collector layer was found from different miner-als.The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough.For artificially-mixed minerals,the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants.And sodium humic had been used successfully to decrease arsenic content in sulphide concentr ates in a commercial Lead-Zinc concentrator.

  19. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  20. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  1. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Science.gov (United States)

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  2. Optimal Inference of Modelling Parameters to Simulate Complex Trends across Soft Boundaries : A Case Study in Heavy Mineral Sands

    NARCIS (Netherlands)

    Wambeke, T.; Benndorf, J.

    2014-01-01

    A risk-robust development of a heavy mineral resource requires an assessment of the geological uncertainty and spatial variability of the key factors impacting the mining and processing operation. Attributes of interest are the total heavy mineral grade, the slime content and the amount of oversized

  3. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Science.gov (United States)

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  4. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Science.gov (United States)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  5. Soft skills: an important asset acquired from organizing regional student group activities.

    Science.gov (United States)

    de Ridder, Jeroen; Meysman, Pieter; Oluwagbemi, Olugbenga; Abeel, Thomas

    2014-07-01

    Contributing to a student organization, such as the International Society for Computational Biology Student Council (ISCB-SC) and its Regional Student Group (RSG) program, takes time and energy. Both are scarce commodities, especially when you are trying to find your place in the world of computational biology as a graduate student. It comes as no surprise that organizing ISCB-SC-related activities sometimes interferes with day-to-day research and shakes up your priority list. However, we unanimously agree that the rewards, both in the short as well as the long term, make the time spent on these extracurricular activities more than worth it. In this article, we will explain what makes this so worthwhile: soft skills.

  6. Peat-based organic growbags as a solution to the mineral wool waste problem

    Directory of Open Access Journals (Sweden)

    O. Grunert

    2008-09-01

    Full Text Available The vast amount of solid waste produced each year is one of the greatest problems associated with greenhouse horticulture in some European countries. In particular, the disposal of used growing media arising from the soil-less cultivation of vegetables in mineral wool creates serious difficulties. The non-biodegradability of these mainly inorganic substrates causes environmental concern and has prompted the search for alternative growing media such as cocos derivatives, perlite and resin foam (Fytocell®. Organic substrates in combination with biodegradable material such as plastic, rope and clippings have the advantage that re-use or recycling of the waste is easier, cheaper and more environmentally friendly than for mineral wool. However, the differing physical and chemical characteristics of the alternative substrates may affect yield significantly. Substrates based respectively on peat and peat with cocos derivatives were tested against a mineral wool control for the production of tomato in three consecutive years. Both organic substrates were placed in biodegradable plastic bags. Greenhouse experiments demonstrated that plants grown in the pure peat substrate rooted more easily than plants grown in the peat-cocos substrate or mineral wool, and that they developed less blossom-end rot in both peat substrates than in mineral wool. Due to the buffering capacity of the organic substrates, the electrical conductivity of the draining water appeared to be more stable during cultivation. The total yield of tomato fruits was similar for all substrates, and no differences between substrates could be observed in the quality of the fruits produced. On the other hand, flavour tests demonstrated that plants grown on peat substrate produced more tasty fruits under certain conditions. The results of this study show that organic growbags are promising and competitive alternatives to mineral wool.

  7. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.

    Science.gov (United States)

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-06-01

    Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.

  8. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  9. Organic and mineral fertilization of squash plant with application of 1'5N staple isotope

    International Nuclear Information System (INIS)

    El-Sherbiny, A.E.; Dahdouh, S.M.; Galal, Y.G.M.; Habib, A.A.M.

    2012-01-01

    A field experiment was conducted on virgin sand soil under drip irrigation system using squash fertilized with ammonium sulfate fertilizer, commercial compost locally manufactured in Egypt and artificial compost prepared fertilizer were applied either completely (100%) of mineral or of organic; or 50%: 50% (mineral: organic) by the authors at the Atomic Energy Authority of Egypt. All fertilization treatments were either inoculated or not inoculated with Azospirillum. Inoculation increased roots fresh weight. This was more pronounced with application of 50% mineral fertilizer plus 50% commercial compost, 100% artificial compost and 100% commercial compost. Similar trends, but to high extent were noticed with shoot fresh weight as affected by microbial inoculation and different organic composts. The 50%: 50% treatments as well as 100% artificial compost treatment gave high root and shoot dry weights. Inoculation and 50%: 50% fertilization treatments were more effective on N uptake. Higher N uptake was by shoots than roots. Portion and absolute value of N derived by roots from mineral fertilizer were significantly affected by combined fertilization treatments. Nitrogen derived from air (Ndfa) was positively affected by addition of organic compost and bacterial inoculation. Reversible trend was noticed with N derived from soil (Ndfa) which decreased when treated with compost and bacterial inoculation. All measurements were high in shoots than roots

  10. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Directory of Open Access Journals (Sweden)

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  12. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  13. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  14. A computational investigation of adsorption of organics on mineral surfaces: Implications for organics delivery in the early solar system

    Science.gov (United States)

    Asaduzzaman, A. M.; Zega, T. J.; Laref, Slimane; Runge, K.; Deymier, P. A.; Muralidharan, Krishna

    2014-12-01

    The adsorption of simple organic compounds onto minerals that are known to occur in the early solar nebula such as olivine, spinel and water-ice, is examined using first-principles density functional theory. The calculations show that electron-rich organics and organics containing cyanide, amine and carboxylic functional groups can strongly bind to low-index surfaces of olivine and spinel. Based on the surface coverage as obtained from these calculations, it can be inferred that an estimated amount of 1013 kg of organics could have been delivered to early Earth via direct adsorption mechanisms, thereby providing an endogenous source of planetary organics. In addition, adsorption of organic compounds on magnesite, a carbonate phase believed to have formed via aqueous processes on asteroidal bodies, is also studied. The adsorption behavior of the organics is observed to be similar in both cases, i.e., for minerals that formed during the earliest stages of nebular evolution through condensation (spinel and olivine) or other processes and for those that formed via hydration processes on asteroidal bodies (magnesite). These results suggest that direct incorporation via adsorption is an important delivery mechanism of organics to both asteroidal bodies and terrestrial planets.

  15. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at MineralOrganic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  16. Adubação orgânica e mineral em melissa Organic and mineral fertilization in lemon balm

    Directory of Open Access Journals (Sweden)

    Ana Carolina B Sodré

    2013-03-01

    Full Text Available A melissa (Melissa officinalis é uma planta medicinal comumente usada como calmante e ingerida na forma de chá. Para otimizar sua produção, este trabalho objetivou avaliar o efeito de diferentes doses de esterco bovino, com relação ao fertilizante mineral na produção de biomassa foliar e teor de óleo essencial. O experimento foi conduzido na Universidade Federal de Uberlândia e no Instituto Agronômico de Campinas. O delineamento estatístico foi de blocos casualisados com seis tratamentos (0, 1, 2, 4, 8 kg m-2 de esterco bovino e 30 g m-2 de NPK 4-14-8, em quatro repetições. O óleo essencial foi extraído por hidrodestilação em equipamento tipo Clevenger modificado. As doses de esterco bovino influenciaram a altura de plantas, massa fresca total e massa seca foliar por planta e por hectare. As duas formas de adubação foram superiores à testemunha para praticamente todas as variáveis, exceto em relação ao comprimento e largura foliar, teor de óleo na matéria seca e fresca foliar. Conclui-se que a melissa responde à adubação orgânica com esterco bovino e adubação mineral para produção de biomassa.Lemon balm (Melissa officinalis is a medicinal plant commonly used as a sedative and ingested as a tea. Studies on agricultural practices are required to optimize its yield. To optimize its production, this study evaluated the effect of different doses of organic fertilizer (cow manure in comparison to mineral fertilizer on biomass production and essential oil yield. The experiment was carried out at the Federal University of Uberlândia, Minas Gerais state, Brazil, and at the Agronomic Institute of Campinas, São Paulo state, Brazil. The experimental design was randomized blocks with six treatments (0, 1, 2, 4, 8 kg m-2 of manure and 30 g m-2 of NPK 4-14-8, and four replications. Hydro-distillation was done with a modified Clevenger distiller for essential oil extraction. Cattle manure influenced plant height, total fresh

  17. Mineral capacity of peat soils organic matter and entry of Cs137 into perennial grasses

    International Nuclear Information System (INIS)

    Tsybulko, N.N.; Shapsheeva, T.P.; Arastovich, T.V.; Zajtsev, A.A.

    2010-01-01

    The results of the study of peat soils organic substance structure with various peat ash content are given. Contents of active organic substance and carbon of microbial biomass in peat and boggy soil with 20% peat ash content is 3.0-3.5 and 1.6-1.8 times higher correspondingly, than thus in peaty-gley soil with 70% peat ash content. At peat and boggy soil with low peat ash content Cs137 transition into hay is minimal. 14 times higher than at peaty-gley soil with 70% peat ash content. Application of fertilizers at peat and boggy soil reduces Cs137 transition factor 4.7-6.4 times if compared to peaty-gley soil (2.1-4.7 times). Close positive interconnection between Cs137 transition factors from soil into the plants and organic carbon soil contents, absolute contents of potentially mineralized carbon and mineralization degree

  18. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Directory of Open Access Journals (Sweden)

    M. A. Tolbert

    2007-08-01

    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  19. Effect of organic and conventional rearing system on the mineral content of pork.

    Science.gov (United States)

    Zhao, Yan; Wang, Donghua; Yang, Shuming

    2016-08-01

    Dietary composition and rearing regime largely determine the trace elemental composition of pigs, and consequently their concentration in animal products. The present study evaluates thirteen macro- and trace element concentrations in pork from organic and conventional farms. Conventional pigs were given a commercial feed with added minerals; organic pigs were given a feed based on organic feedstuffs. The content of macro-elements (Na, K, Mg and Ca) and some trace elements (Ni, Fe, Zn and Sr) in organic and conventional meat samples showed no significant differences (P>0.05). Several trace element concentrations in organic pork were significantly higher (Ppork: Cr (808 and 500μg/kg in organic and conventional pork, respectively), Mn (695 and 473μg/kg) and Cu (1.80 and 1.49mg/kg). The results showed considerable differences in mineral content between samples from pigs reared in organic and conventional systems. Our results also indicate that authentication of organic pork can be realized by applying multivariate chemometric methods such as discriminant analysis to this multi-element data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  1. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  2. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  3. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  4. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  5. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    International Nuclear Information System (INIS)

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  6. Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    Directory of Open Access Journals (Sweden)

    Elena Blume

    2014-06-01

    Full Text Available The expansion of area under maize (Zea mays L. and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment were applied to the plots and the seeds treatment (with and without Trichoderma spp. in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot.

  7. Deposition and benthic mineralization of organic carbon: A seasonal study from Faroe Islands

    Science.gov (United States)

    á Norði, Gunnvør; Glud, Ronnie N.; Simonsen, Knud; Gaard, Eilif

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for rates were associated to the spring bloom. The dynamics in the benthic solute exchange were governed by stratification that isolated the bottom water during summer and intensified sediment resuspension during winter. The POC export from the euphotic zone could not sustain the benthic mineralization rate (10.8 mol C m- 2 yr- 1) and the calculated burial rate (9.8 mol C m- 2 yr- 1) of organic material in the central basin. This indicated considerable focusing of material in the central part of the fjord. This was supported by the fact that the measured benthic mineralization rate - in contrast to most investigations - actually increased with increasing water depth. In August, when mineralization was at its maximum, the dissolved inorganic carbon (DIC) release from the sediment increased by 2.2 mmol m- 2 d- 1 for every m increase in water depth at 30-60 m depth. Due to sediment focusing, the OC burial in the deepest part of the fjord was 9.8 mol C m- 2 yr- 1. This was 2.4 times higher than the average OC burial in the fjord, estimated from the total sedimentation, and benthic mineralization accounting for the water depth related changes in activity. The study in Kaldbaksfjørður underscore that fjords are important sites for long time OC burial, but emphasize the need for accounting for spatial variations when extrapolating results from a single or few stations to the scale of the entire fjord.

  8. Influence of natural organic matter and mineral surfaces upon the radionuclide speciation in an environmental context

    International Nuclear Information System (INIS)

    Janot, N.

    2011-01-01

    This study deals with interactions occurring in a ternary europium(III)/humic acid(HA)/α-Al 2 O 3 system, depending on solution conditions (pH, ionic strength, organic concentration). These interactions were studied at a macroscopic scale - quantifying Eu(III) and/or HA adsorption onto the mineral surface - and using time-resolved luminescence spectroscopy. The presence of HA modifies Eu(III) behavior toward the mineral surface. Analysis showed a Eu(III)-HA complexation in the ternary system, in all the conditions studied. However, Eu(III) complexation with the mineral surface is occurring at high pH and ionic strength only. Spectrophotometric titrations were validated as a method to study HA reactivity at environmental relevant concentrations. They have been used to determine modifications of HA reactivity after adsorption onto the alumina surface depending on initial HA concentration. These results have then be used to model Eu(III) speciation in the ternary system, using the CD-MUSIC and NICA-Donnan models for mineral and organic complexation, respectively. (author) [fr

  9. Soft tissue organ masses of Beagles as a function of age

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Gillett, N.A.; Gerlach, R.F.

    1988-01-01

    Beagle dogs have been used for the past 30 yr for radio toxicological studies in several Department of Energy laboratories. Since the animals are maintained for their life span, it is important to recognize the potential importance of age-related changes in organ masses, particularly as they relate to dosimetry. To determine the extent and magnitude of soft-tissue organ mass changes relative to age and gender of Beagle dogs, groups of three male and three female dogs at ages 2.7, 6.0, 8.8, 11.7, and 14.0 yr were sacrificed. The resulting organ mass data were analyzed by linear regression both in terms of gross mass and mass normalized to whole-body mass. The results indicated that very little change in masses could be detected in this population over the age range studied, which includes the median life span of dogs In this colony. The rate of change of masses was shown to have an insignificant effect on the calculation of radiation dose, even over long time periods. (author)

  10. Soft tissue organ masses of Beagles as a function of age

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R A; Gillett, N A; Gerlach, R F

    1988-12-01

    Beagle dogs have been used for the past 30 yr for radio toxicological studies in several Department of Energy laboratories. Since the animals are maintained for their life span, it is important to recognize the potential importance of age-related changes in organ masses, particularly as they relate to dosimetry. To determine the extent and magnitude of soft-tissue organ mass changes relative to age and gender of Beagle dogs, groups of three male and three female dogs at ages 2.7, 6.0, 8.8, 11.7, and 14.0 yr were sacrificed. The resulting organ mass data were analyzed by linear regression both in terms of gross mass and mass normalized to whole-body mass. The results indicated that very little change in masses could be detected in this population over the age range studied, which includes the median life span of dogs In this colony. The rate of change of masses was shown to have an insignificant effect on the calculation of radiation dose, even over long time periods. (author)

  11. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  12. Effect of organic sources of minerals on fat-corrected milk yield of dairy cows in confinement

    Directory of Open Access Journals (Sweden)

    Tiago Antonio Del Valle

    2015-03-01

    Full Text Available This study evaluated the effects of organic and inorganic sources of minerals in diets for mid-lactation dairy cows on milk yield and composition, intake and total apparent digestibility of dry matter and nutrients, blood parameters, microbial protein synthesis, and energy and protein balances. Twenty Holstein cows averaging 146.83±67.34 days in milk and weighing 625.30±80.37 kg were used. The experimental design was a crossover. Diets were composed of corn silage (50%, ground grain corn, and soybean meal, differing with regard to the sources of trace minerals, plus an organic and inorganic mix. The organic mineral source increased milk fat and fat-corrected milk yield without changing milk yield, intake, or total apparent digestibility. Blood parameters, microbial protein synthesis, and energy and protein balances were not affected by the sources of minerals. Organic sources of minerals improve milk fat yield without affecting other parameters.

  13. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  14. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Science.gov (United States)

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  15. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  16. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    Science.gov (United States)

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  17. Efficacy Study of Metho-Chelated Organic Minerals preparation Feeding on Milk Production and Fat Percentage in dairy cows

    Directory of Open Access Journals (Sweden)

    Somkuwar A.P.1

    2011-02-01

    Full Text Available The objective of the study was to compare the effect of feeding different mineral based formulation on dairy cow production performance, namely milk yield and fat percentage. The trial was conducted with dairy cows across various stages of lactation (Early, Mid and Late stage with 30 cows per stage. The experimental treatments included: Bestmin Gold (Metho-chelated organic minerals, given 30 gms per day, Inorganic mineral preparation (Inorg. Mineral, @ 50 gms/day/ cow and control. The study lasted from 0 to 40 days. Milk yield and fat percentage of cows were measured individually on Days 0, 5, 10, 15, 20, 25, 30 and 40. The Bestmin Gold treated group (Metho-chelated organic minerals improved the milk yield, net gain in milk and the milk fat percentage of animals across the various stages of lactation as compared to in control and inorganic mineral treated group of animals. [Veterinary World 2011; 4(1.000: 19-21

  18. Critical Success Factors for the Implementation of PeopleSoft Enterprise Resource Planning in a Public Organization

    Science.gov (United States)

    Mukkamala, Hemanth K.

    2013-01-01

    Organizations of different sizes are changing their information technology (IT) strategies in order to achieve efficiency and effectiveness in today's global economy and to integrate their internal and external information by implementing PeopleSoft Enterprise Resource Planning (ERP) systems. The literature has case studies of successful and…

  19. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  20. The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.

    Science.gov (United States)

    Jilling, A.; Grandy, S.; Keiluweit, M.

    2017-12-01

    Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids

  1. The roles of organic anion permeases in aluminium resistance and mineral nutrition.

    Science.gov (United States)

    Delhaize, Emmanuel; Gruber, Benjamin D; Ryan, Peter R

    2007-05-25

    Soluble aluminium (Al(3+)) is the major constraint to plant growth on acid soils. Plants have evolved mechanisms to tolerate Al(3+) and one type of mechanism relies on the efflux of organic anions that protect roots by chelating the Al(3+). Al(3+) resistance genes of several species have now been isolated and found to encode membrane proteins that facilitate organic anion efflux from roots. These proteins belong to the Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE) families. We review the roles of these proteins in Al(3+) resistance as well as their roles in other aspects of mineral nutrition.

  2. Interaction of Natural Organic Matter with Layered Minerals: Recent Developments in Computational Methods at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Jeffery A. Greathouse

    2014-06-01

    Full Text Available The role of mineral surfaces in the adsorption, transport, formation, and degradation of natural organic matter (NOM in the biosphere remains an active research area owing to the difficulties in identifying proper working models of both NOM and mineral phases present in the environment. The variety of aqueous chemistries encountered in the subsurface (e.g., oxic vs. anoxic, variable pH further complicate this field of study. Recently, the advent of nanoscale probes such as X-ray adsorption spectroscopy and surface vibrational spectroscopy applied to study such complicated interfacial systems have enabled new insight into NOM-mineral interfaces. Additionally, due to increasing capabilities in computational chemistry, it is now possible to simulate molecular processes of NOM at multiple scales, from quantum methods for electron transfer to classical methods for folding and adsorption of macroparticles. In this review, we present recent developments in interfacial properties of NOM adsorbed on mineral surfaces from a computational point of view that is informed by recent experiments.

  3. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  4. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  5. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  6. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  7. Stabilization of organic matter in soils: role of amorphous mineral phases

    Science.gov (United States)

    Zewde Tamrat, Wuhib; Rose, Jérôme; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2016-04-01

    Soil organic matter (SOM) globally contributes the largest portion of continental carbon stock. One major issue concerning this large C pool includes its instability by mineralization and erosion due to land use. The main hypothesis of this work is that physicochemical stabilization of SOM is mainly driven by interactions of organic compounds, not with mineral surfaces as classically considered, but with amorphous polymers continuously formed by the alteration of soil minerals(1-3). Our objective is to understand how nano-organomineral complexes (nCOMx) are structured at the nanoscale, assess mechanisms of their formation, and quantify the effects of their occurrence on SOM turnovers. Due to inherent high complexity of natural samples, our methodology is based on the formation of nCOMx from both synthetic systems and natural mineral-weathered components. For the mineral component, biotite (from Bancroft, Canada) was selected. For the organic component, 3,4-Dihydroxy-L-phenylalanine, an amino acid with hydroxyl (pKa=9.95), carboxyl (pKa=2,58), amino (pKa=9,24) and an aromatic functions was chosen. The methodology aimed at developing conditions that generate biotite dissolution and nCOMx precipitation. The second step of the experiment consisted of the precipitation of nCOMx by slowly increasing pH over 3 to 12 hours of hydrolysis. Three final pH conditions were tested (4.2, 5 and 7) with Metal/Carbon ratios of 0.01, 0.1, 1, 10 and 'No Carbon'. The first results of dissolution rates and congruency, AFM imaging, ICPMS, HR-TEM and XRD as well as XAS characterizations (transmission and florescence mode at the Fe K-edge) of nCOMx will be presented. Experiments and analysis techniques were designed to study these synthetic phases with regard to Si, Al, Fe and OM proportions to increase the OM proportion (as in natural soil phases) and also increase the stability of the OM phase (as in increased residence time of OM in the soil). We will focus particularly on the Fe state

  8. Organic cattle products: Authenticating production origin by analysis of serum mineral content.

    Science.gov (United States)

    Rodríguez-Bermúdez, Ruth; Herrero-Latorre, Carlos; López-Alonso, Marta; Losada, David E; Iglesias, Roberto; Miranda, Marta

    2018-10-30

    An authentication procedure for differentiating between organic and non-organic cattle production on the basis of analysis of serum samples has been developed. For this purpose, the concentrations of fourteen mineral elements (As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se and Zn) in 522 serum samples from cows (341 from organic farms and 181 from non-organic farms), determined by inductively coupled plasma spectrometry, were used. The chemical information provided by serum analysis was employed to construct different pattern recognition classification models that predict the origin of each sample: organic or non-organic class. Among all classification procedures considered, the best results were obtained with the decision tree C5.0, Random Forest and AdaBoost neural networks, with hit levels close to 90% for both production types. The proposed method, involving analysis of serum samples, provided rapid, accurate in vivo classification of cattle according to organic and non-organic production type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Physiochemical Influence of Soil Minerals on the Organic Reduction of Soil Chromium

    International Nuclear Information System (INIS)

    Njoku, P.C.; Nweze, C.A.

    2009-01-01

    The physiochemical influence of soil minerals (Bentonite, Kaolinite, Diatomite,Rutile and Ferrihydrite) on the organic reduction ofchromium (VI) has been investigated with Oxalic acid as the organic reductant. The effect of pH and particle sizes of the soil minerals were also investigated. Results showed that with 0.1mol/dm3 concentration of Oxalic acid, the concentration of chromium(VI) remaining was 0.28, 0.34,0.38, 0.46 and 0.52mg/kgfor Bentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite respectively whereas at 0.5mol/dm3of oxalic acid, the concentration of chromium reduced to 0.20,0.26, 0.30, 0.38, and0.44mg/kg for Bentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite. Increasedconcentration of oxalic acid increased the reduction of chromium(VI) to chromium(III). At pH 5.0, the concentration of chromium(VI)left was 0.28, 0.34, 0.38,0.46 and 0.52mg/kg forBentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite while at pH 2.5, concentration was0.16, 0.22, 0.26, 0.34 and 0.43mg/kg respectively. At particle size of 47-42 microns, concentration of chromium(VI) was 0.28, 0.34,0.38, 0.46, 0.52mg/kg for the same order ofthe soil minerals. At micron sizes of33-29 and 28-25 ranges the concentration ofchromium(VI) left was 0.23, 0.29, 0.33,0.41 and 0.47mg/kg for both micron sizes and corresponding minerals as well. These results showed that above 33-29 micron sizes, the influence of particle size was negligible. (author)

  10. Organic nitrogen storage in mineral soil: Implications for policy and management

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Andrew H., E-mail: drew_bingham@nps.gov [Air Resources Division, National Park Service, P.O. Box 25287, Denver, CO 80225 (United States); Cotrufo, M. Francesca [Department of Soil and Crop Sciences and Natural Resources Ecology Laboratory, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 (United States)

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. - Highlights: • We review the current framework for long-term nitrogen stabilization in soils. • We highlight the most important factors according to this framework. • We discuss how these factors may influence management and policy decisions.

  11. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  12. Mineral composition of pulp and production of the yellow passion fruit with organic and conventional fertilizers.

    Science.gov (United States)

    Pacheco, Anália Lúcia Vieira; Pagliarini, Mateus Francisco; de Freitas, Gilberto Bernardo; Santos, Ricardo Henrique Silva; Serrão, José Eduardo; Zanuncio, José Cola

    2017-02-15

    The use of organic foods has been increased in the world. Organic fertilizers, like cattle manure, have emerged as an important component of the organic system production. The production, mass, size, and mineral composition of passion fruit pulp were evaluated when treated with a mineral fertilizer (control) (MIN) or cattle manure at a single dose equivalent to potassium fertilizer (ORG) or double dose (2×ORG). The production and the numbers of fruits of plants treated with MIN and 2×ORG was higher than with ORG. The level of nitrogen (N), phosphorus (P), zinc (Zn), iron (Fe), and copper (Cu) in the fruit pulp was similar with all three fertilizers, but the calcium (Ca) and magnesium (Mg) was higher with ORG and 2×ORG. The number and weight of the fruits of passion fruit treated with 2×ORG were similar to those with MIN fertilizer, but they contained more Ca and Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds.

    Science.gov (United States)

    Khan, Eakalak; Wirojanagud, Wanpen; Sermsai, Nawarat

    2009-01-30

    The mineralization and biodegradability increase and their combination of two traditional and two relatively new organic contaminants by Fenton reagents with three different types of iron, Fe(2+), Fe(3+), and Fe(0) were investigated. The traditional contaminants examined were trichloroethene (TCE) and 2,4-dichlorophenol (2,4-DCP) while 1,4-dioxane (1,4-D) and 1,2,3-trichloropropane (TCP) were studied for the relatively new contaminants. The mineralization and biodegradability were represented by dissolved organic carbon (DOC) reduction and the ratio of biodegradable dissolved organic carbon and DOC, respectively. For all four contaminants, Fenton reagent using Fe(2+) was more effective in the DOC reduction than Fenton reagents using Fe(3+) and Fe(0) in most cases. The types of Fe that provided maximum biodegradability increase were not the same for all four compounds, Fe(3+) for TCE, Fe(0) for 2,4-DCP, Fe(2+) for 1,4-D, and Fe(3+) for TCP. When the combination of DOC elimination and biodegradability increase (least refractory fraction) was considered, Fe(2+) was the best choice except for 2,4-DCP which was susceptible to Fe(0) catalyzed Fenton reagent the most. The least refractory fractions remaining after 120 min of reaction were 20-25% for TCE, 2,4-DCP, and TCP and 30-40% for 1,4-D. The iron type in Fenton reaction also affected the type of mineralization kinetics of TCE, 2,4-DCP, and TCP as well as the types of degradation by-products of these contaminants. Some of the by-products found, such as isopropanol and propionic aldehyde, which were produced from Fe(0) catalyzed Fenton degradation of TCP, have not been previously reported.

  14. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R [Forschungszentrum Karlsruhe, Institute for Meteorology and Climate Research, 76021 Karlsruhe (Germany); Schneider, J; Walter, S [Max Planck Institute for Chemistry, 55128 Mainz (Germany); Ebert, V; Wagner, S [University of Heidelberg, Institute for Physical Chemistry, 69120 Heidelberg (Germany)], E-mail: Ottmar.Moehler@imk.fzk.de

    2008-04-15

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m{sup 3} aerosol vessel and either directly transferred into the 84 m{sup 3} cloud simulation chamber or coated before with the semi-volatile products from the reaction of {alpha}-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 {mu}m acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics.

  15. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    International Nuclear Information System (INIS)

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R; Schneider, J; Walter, S; Ebert, V; Wagner, S

    2008-01-01

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m 3 aerosol vessel and either directly transferred into the 84 m 3 cloud simulation chamber or coated before with the semi-volatile products from the reaction of α-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 μm acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics

  16. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Science.gov (United States)

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Influence of organic surface coatings on the sorption of anticonvulsants on mineral surfaces.

    Science.gov (United States)

    Qu, Shen; Cwiertny, David M

    2013-10-01

    Here, we explore the role that sorption to mineral surfaces plays in the fate of two commonly encountered effluent-derived pharmaceuticals, the anticonvulsants phenytoin and carbamazepine. Adsorption isotherms and pH-edge experiments are consistent with electrostatics governing anticonvulsant uptake on metal oxides typically found in soil and aquifer material (e.g., Si, Al, Fe, Mn, and Ti). Appreciable, albeit limited, adsorption was observed only for phenytoin, which is anionic above pH 8.3, on the iron oxides hematite and ferrihydrite. Adsorption increased substantially in the presence of cationic and anionic surfactants, species also commonly encountered in wastewater effluent. For carbamazepine, we propose the enhanced uptake results entirely from hydrophobic interactions with apolar tails of surfactant surface coatings. For phenytoin, adsorption also arises from the ability of surfactants to alter the net charge of the mineral surface and thereby further enhance favorable electrostatic interactions with its anionic form. Collectively, our results demonstrate that although pristine mineral surfaces are likely not major sinks for phenytoin and carbamazepine in the environment, their alteration with organic matter, particularly surfactants, can considerably increase their ability to retain these emerging pollutants in subsurface systems.

  18. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  19. The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle.

    Science.gov (United States)

    Rey-Crespo, F; López-Alonso, M; Miranda, M

    2014-04-01

    This study was designed to assess the value of seaweeds from the Galician coast as a source of minerals (especially iodine (I) but also other micro-minerals) in organic dairy cattle. It was conducted in an organic dairy farm in the Lugo province that typically represents the organic milk production in NW Spain. The animal's diet consisted mainly of local forage (at pasture or as hay and silage in the winter) and 5 kg of purchased concentrate/day per animal (representing 23.5% of feed intake). Based on the mineral composition of the diet, the physiological requirements and the EU maximum authorised levels in feed, a supplement composed by Sea Lettuce (Ulva rigida) (as flakes, 80%), Japanese Wireweed (Sargasum muticum) (flakes, 17.5%) and Furbelows (Saccorhiza polyschides) (powder, 2.5%) was formulated to give 100 g/animal per day. Sixteen Holstein Friesian lactating cows were randomly selected and assigned to the control (n=8) and algae-supplemented groups (n=8). Both groups had exactly the same feeding and management with the exception of the algae supplement, which was mixed with the concentrate feed and given to the animals at their morning milking for 10 weeks. Heparinised blood (for plasma analysis) and milk samples were collected at 2-week intervals and analysed for toxic and trace element concentrations by inductively coupled plasma-mass spectrometry or inductively coupled plasma-optical emission spectrometry. The algae supplement significantly improved the animals' mineral status, particularly I and selenium that were low on the farm. However, the effect of the algae supplement on the molybdenum status in cattle needs further investigation because of its great relevance on copper metabolism in ruminants. The I supply deserves special attention, since this element is at a very high concentration in brown-algae species and it is excreted in the milk proportionally to its concentration in plasma concentrations (mean ± s.e. in the algae-supplemented and control

  20. Soft X-ray photoemission study of organic conductors BEDT-TTF and BEDO-TTF salts

    International Nuclear Information System (INIS)

    Tsunekawa, M.; Sekiyama, A.; Imada, S.; Saita, T.; Maesato, M.; Yamochi, H.; Saito, G.; Suga, S.

    2005-01-01

    We have performed a soft X-ray photoemission (PES) study of quasi-two-dimensional organic conductors BEDT-TTF (ET) and BEDO-TTF (BO) salts. We have clarified the difference in the electronic states between the bulk and surface insulating layers. The difference of the electronic states between ET and BO molecules is also found. On the other hand, the spectral weight in the vicinity of Fermi level is suppressed as reported by the low-energy PES

  1. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords......, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also...

  2. Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization.

    Science.gov (United States)

    Gladish, James C; Duncan, Donald D

    2017-01-20

    Herein, we discuss the remote assessment of the subwavelength organizational structure of a medium. Specifically, we use spectral imaging polarimetry, as the vector nature of polarized light enables it to interact with optical anisotropies within a medium, while the spectral aspect of polarization is sensitive to small-scale structure. The ability to image these effects allows for inference of spatial structural organization parameters. This work describes a methodology for revealing structural organization by exploiting the Stokes/Mueller formalism and by utilizing measurements from a spectral imaging polarimeter constructed from liquid crystal variable retarders and a liquid crystal tunable filter. We provide results to validate the system and then show results from measurements on a mineral sample.

  3. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles.

    Science.gov (United States)

    Campi, G; Cristofaro, F; Pani, G; Fratini, M; Pascucci, B; Corsetto, P A; Weinhausen, B; Cedola, A; Rizzo, A M; Visai, L; Rea, G

    2017-11-16

    The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At the molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using scanning micro X-ray diffraction and scanning micro X-ray fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit heterogeneous and self-organizing dynamics. At the same time the possibility of controlling the differentiation kinetics, through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine.

  4. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China

    Science.gov (United States)

    Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our

  5. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    Science.gov (United States)

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-04-01

    The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis

  6. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  7. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization

    International Nuclear Information System (INIS)

    Gatiboni, Luciano Colpo; Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz; Pandolfo, Carla Maria; Veiga, Milton

    2013-01-01

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha -1 year -1 of moist poultry litter; 4) 60 m 3 ha -1 year -1 of liquid cattle manure and 5) 40 m 3 ha -1 year -1 of liquid swine manure. The 31 P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  8. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    Science.gov (United States)

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P BMAT) were not related to changes in BMD.

  9. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    Science.gov (United States)

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    International Nuclear Information System (INIS)

    Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-01-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  11. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  12. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    Science.gov (United States)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  13. A non-classical view of the modulation of mineral precipitation by organic additives

    Science.gov (United States)

    Ruiz-Agudo, Encarnacion; Ruiz-Agudo, Cristina; Burgos-Cara, Alejandro; Putnis, Christine; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2016-04-01

    Questions persist on the mechanisms of crystallization of sparingly soluble minerals such as calcium carbonate, calcium oxalate or barium sulphate. Compared to CaCO3, the mechanisms of nucleation and growth in the CaC2O4-H2O or BaSO4-H2O systems have received less attention. These phases are important due to their relevance as biominerals and/or unwanted mineral deposits in technological applications. Growing evidence suggests that sparingly soluble salts form by non-classical nucleation and growth pathways, where pre-nucleation ion associates and amorphous (solid or liquid) precursor phase(s) play a critical role (e.g. Rodríguez-Navarro et al. (2015), Ruiz-Agudo et al. (2015)). Indeed the identification of pre-nucleation species in these systems and their strong interactions with organic compounds (Verch et al. 2011) raises the possibility that the control of organics on biomineralization may begin even earlier than previously thought. A sound knowledge of the physical mechanisms by which acidic macromolecules affect nucleation and early growth may offer general insights concerning the molecular control of biomineralization, as well as being critical for improving strategies to control unwanted mineral deposition or for the synthesis of biomimetic materials. Here we present investigations on the initial stages of the precipitation of these relevant minerals in organic-free solutions to identify the precipitation pathway and to look for any potential precursor phase(s) to the final, crystalline polymorph. As well, we explore the effects that several acidic organic compounds have on the different precipitation stages identified. We find that organic additives such as citric acid, polyacrilic acid or a commercial copolymer of maleic acid/allyl sulfonic acid with phosphonate groups can be active at modifying pre-nucleation stages (destabilizing of pre-nucleation species or hampering the aggregation and growth of pre-nucleation associates) and subsequently strongly

  14. Soft-Cliff Retreat, Self-Organized Critical Phenomena in the Limit of Predictability?

    Science.gov (United States)

    Paredes, Carlos; Godoy, Clara; Castedo, Ricardo

    2015-03-01

    The coastal erosion along the world's coastlines is a natural process that occurs through the actions of marine and subaerial physico-chemical phenomena, waves, tides, and currents. The development of cliff erosion predictive models is limited due to the complex interactions between environmental processes and material properties over a wide range of temporal and spatial scales. As a result of this erosive action, gravity driven mass movements occur and the coastline moves inland. Like other studied earth natural and synthetically modelled phenomena characterized as self-organized critical (SOC), the recession of the cliff has a seemingly random, sporadic behavior, with a wide range of yearly recession rate values probabilistically distributed by a power-law. Usually, SOC systems are defined by a number of scaling features in the size distribution of its parameters and on its spatial and/or temporal pattern. Particularly, some previous studies of derived parameters from slope movements catalogues, have allowed detecting certain SOC features in this phenomenon, which also shares the recession of cliffs. Due to the complexity of the phenomenon and, as for other natural processes, there is no definitive model of recession of coastal cliffs. In this work, various analysis techniques have been applied to identify SOC features in the distribution and pattern to a particular case: the Holderness shoreline. This coast is a great case study to use when examining coastal processes and the structures associated with them. It is one of World's fastest eroding coastlines (2 m/yr in average, max observed 22 m/yr). Cliffs, ranging from 2 m up to 35 m in height, and made up of glacial tills, mainly compose this coast. It is this soft boulder clay that is being rapidly eroded and where coastline recession measurements have been recorded by the Cliff Erosion Monitoring Program (East Riding of Yorkshire Council, UK). The original database has been filtered by grouping contiguous

  15. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis essential oil

    Directory of Open Access Journals (Sweden)

    Ana Carolina B. Sodré

    2011-10-01

    Full Text Available Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L. essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

  16. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis essential oil

    Directory of Open Access Journals (Sweden)

    Ana Carolina B. Sodré

    2012-02-01

    Full Text Available Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L. essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

  17. ADUBAÇÃO MINERAL E ORGÂNICA DA ABÓBORA HÍBRIDA: CRESCIMENTO MINERAL AND ORGANIC FERTILIZER OF THE HYBRID SQUASH: GROWTH

    Directory of Open Access Journals (Sweden)

    Antônio Américo Cardoso

    2007-09-01

    Full Text Available

    Com finalidade de avaliar a resposta da abóbora híbrida cv. Tetsukabuto à adubação orgânica e mineral, foram realizados sete experimentos em Ponte Nova, Minas Gerais, em solo podzólico vermelho-amarelo câmbico fase terraço. Cada experimento constituiu uma época de amostragem, que foi iniciada aos 21 dias e encerrada aos 105 dias após a semeadura, com intervalos regulares de 14 dias. Nestes experimentos foram testados cinco tratamentos de adubação mais um tratamento controle (sem adubação. Nos tratamentos de adubação, definidos por meio de um corte em diagonal de um fatorial completo, foram aplicadas as doses de 0; 3; 6; 9 e 12 t/ha (base seca de composto orgânico de resíduo de suínos e bagaço de cana, juntamente com 0,772; 0,579; 0,386; 0,193 e 0 t/ha de adubo mineral NPK 4-14-8, respectivamente, em quatro repetições, no delineamento de blocos ao acaso. A substituição de parte da adubação mineral pela orgânica aumentou o número de nós da rama principal, o comprimento total da ramificação e os pesos das matérias secas da parte aérea, da parte reprodutiva e do fruto. A maior porcentagem de matéria seca no fruto e o menor crescimento vegetativo, aos 105 dias após a semeadura, foram obtidos quando toda a adubação mineral foi substituída pela orgânica.

    PALAVRAS-CHAVE: Moranga híbrida; Cucurbita maxima x C. moschata; crescimento.

    In order to evaluate the response of hybrid squash cv. Tetsukabuto to mineral (NPK and organic compost, seven experiments were carried out in Ponte Nova, State of Minas Gerais, Brazil, on a yellow-red cambic podsoil. Each experiment constituted one sampling date, which began at the 21st  day and ended at the 105th day after sowing, with 14 days intervals. In these experiments five

  18. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    Science.gov (United States)

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  19. Organic-mineral and organic fertilization in the strawberry (Fragaria x Ananasa Duch. crop under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Carlos Osvaldo Romero Romano

    2012-09-01

    Full Text Available A good combination of organic fertilizers and mineral fertilizers may allow a reduction in the use of agrochemicals, to benefit the environment and health of consumers, to obtained crops and safe products with lower content of chemical residues. In this paper, we assess the effect of organic fertilization and organic mineral in the cultivation of strawberries cv. Festival, in a factorial treatment designin 3x23 with 24 treatments in an experimental design in randomized blocks with four replicates under greenhouse conditions in Atlixco, Puebla. The factors and levels of study: chemical fertilization (FQ, three levels of N-P2O5-K2O 0-0-0, 45-20-20 and 90-35-35 kg ha-141 3 con un total de 24 commercial organic nutrient (Activator QFprepared fulvic acid (AF at a concentration of (13.58% with two levels 0 and 450 ml ha-1,growth regulator (RCcommercial vegetable (Biozyme®, whit 78.87% of plant extracts and phytohormones, and 1.86% of microelements at evels of 0 and 20 l ha-1 and vermicompost (V of cattle manure at 50 and 100 g / pot. The experiment was divided into two periods from February to May and June to September 2011. The treatments applications were edafic (FQ and V and foliar (AF and RC in both stages of treatment applications were made at 10, 40 and 60 days after transplantation. The variables analyzed were number of stolons, stolon length, diameter and length fruit, number and weight of fruit per week, period, and the total of the two periods. Two twice a week the number of ripe fruits was counted, the diameter and length fruit and weight was measured. Every eight days after the formation of the first stolons, counted and measured. Statistical analysis was performed using the SAS program. In the period from February-May treatment FQ50-AF1-RC1-V50 showedstatistically different (Tukey, p = 0.05 %. for variables length fruit (2.95 cm, diameter fruit (3.76 cm, weight of fruit perweek (11.31 g and period (135.69 g. In the period from June

  20. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  1. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.

    Science.gov (United States)

    Abidi, Haider; Gerboni, Giada; Brancadoro, Margherita; Fras, Jan; Diodato, Alessandro; Cianchetti, Matteo; Wurdemann, Helge; Althoefer, Kaspar; Menciassi, Arianna

    2018-02-01

    For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. Simulations and experiments show the efficacy of the proposed soft robot. Copyright © 2017 John Wiley & Sons, Ltd.

  2. DEFINITION, DEVELOPMENT, ASSESSMENT OF SOFT SKILLS AND THEIR ROLE FOR THE QUALITY OF ORGANIZATIONS AND ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Barbara Cimatti

    2016-03-01

    Full Text Available Soft Skills is a very popular term nowadays, used to indicate personal transversal competences such as social aptitudes, language and communication capability, friendliness and ability of working in team and other personality traits that characterize relationships between people. Soft Skills are traditionally considered complementary of Hard Skills, which are the abilities to perform a certain type of task or activity. Soft Skills are strategic to be successful in personal and professional life then are essential for a candidate when he tries to obtain any kind of job. Enterprises generally hire new employees, in particular recent graduates, taking more in consideration their Soft Skills than their Hard Skills. This happens also for technical professions, such as engineers, because the company, in order to be competitive, needs to create good and effective teams and a collaborative working atmosphere. The quality of products provided by any industry then doesn't only base on the materials chosen and on the technology used, neither only on the expertise of workers who contribute to their fabrication, but also on the quality of the enterprise in its whole. And this quality strongly depends from the human resources involved and their capability of positively interacting to achieve a common aim: the company success.

  3. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  4. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.

    Science.gov (United States)

    Zhang, Weihua; Huang, Xinchen; Jia, Yanming; Rees, Frederic; Tsang, Daniel C W; Qiu, Rongliang; Wang, Hong

    2017-04-01

    Pyrolyzing sludge into biochar is a potentially promising recycling/disposal solution for municipal wastewater sludge, and the sludge-derived biochar (SDBC) presents an excellent sorbent for metal immobilization. As SDBC is composed of both mineral oxides and carbonized organic compartment, this study therefore compared the sorption behaviour of Pb and Zn on SDBC to those of individual and mixture of activated carbon (AC) and amorphous aluminium oxide (Al 2 O 3 ). Batch experiments were conducted at 25 and 45 °C, and the metal-loaded sorbents were artificially aged in the atmosphere for 1-60 days followed by additional sorption experiments. The Pb sorption was generally higher than Zn sorption, and the co-presence of Pb reduced Zn sorption on each studied sorbent. Higher sorption capacities were observed at 45 °C than 25 °C for SDBC and AC, while the opposite was shown for Al 2 O 3 , indicating the significance of temperature-dependent diffusion processes in SDBC and AC. Nevertheless, metal sorption was more selective on Al 2 O 3 that showed a greater affinity towards Pb over Zn under competition, correlating with the reducible fraction of sequential extraction. Furthermore, significant amounts of Pb and Zn were additionally sorbed on SDBC following 30-day ageing. The X-ray diffraction revealed the formation of metal-phosphate precipitates, while the X-ray photoelectron spectroscopy showed a larger quantity of metal-oxygen bonding after 30-day ageing of metal-loaded SDBC. The results may imply favourable long-term transformation and additional sorption capacity of SDBC. In conclusion, SDBC resembles the sorption characteristics of both organic and mineral sorbents in different aspects, presenting an appropriate material for metal immobilization during soil amendment.

  5. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  6. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  7. Environmental assessment of applicability of mineral-organic composite for landfill area rehabilitation

    Science.gov (United States)

    Mizerna, Kamila; Król, Anna; Mróz, Adrian

    2017-10-01

    This paper undertakes an assessment of the impact of a mineral-organic composite on the environment as well as the potential for its application for land rehabilitation purposes. The analysis involves the release of the leachable contaminations from the material subjected to testing. This material was formed by a composite manufactured on the basis of communal bottom ash and stabilized sewage sludge. The sludge resulting from wastewater treatment was subjected to stabilization and dehydration in waste pounds at the phase of pre-watering until 20% of dry mass is obtained. Subsequently, they were mixed with bottom ash, which was obtained from selective waste collection, in a 1:1 mass ratio. The analysis involved the leaching of inorganic contaminants in the form of heavy metals, sulphates (VI), chlorides, and fluorides as well as organic compounds in the form of organic carbon solution under the effect of leachant with a various level of pH. The analysed components were characterized by various leaching behaviour depending on the leachant pH. On the basis of the results, it was able to assess the potential hazard posed by the examined material on the environment as a consequence of its application for landfill area rehabilitation.

  8. Environmental assessment of applicability of mineral-organic composite for landfill area rehabilitation

    Directory of Open Access Journals (Sweden)

    Mizerna Kamila

    2017-01-01

    Full Text Available This paper undertakes an assessment of the impact of a mineral-organic composite on the environment as well as the potential for its application for land rehabilitation purposes. The analysis involves the release of the leachable contaminations from the material subjected to testing. This material was formed by a composite manufactured on the basis of communal bottom ash and stabilized sewage sludge. The sludge resulting from wastewater treatment was subjected to stabilization and dehydration in waste pounds at the phase of pre-watering until 20% of dry mass is obtained. Subsequently, they were mixed with bottom ash, which was obtained from selective waste collection, in a 1:1 mass ratio. The analysis involved the leaching of inorganic contaminants in the form of heavy metals, sulphates (VI, chlorides, and fluorides as well as organic compounds in the form of organic carbon solution under the effect of leachant with a various level of pH. The analysed components were characterized by various leaching behaviour depending on the leachant pH. On the basis of the results, it was able to assess the potential hazard posed by the examined material on the environment as a consequence of its application for landfill area rehabilitation.

  9. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    Science.gov (United States)

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  10. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter

    Science.gov (United States)

    Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel

    2017-07-01

    The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment

  11. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals.

    Science.gov (United States)

    Stefanello, C; Santos, T C; Murakami, A E; Martins, E N; Carneiro, T C

    2014-01-01

    This study was carried out with the purpose of evaluating the effect of supplementing hens' diets with trace minerals from inorganic or organic sources on the productive performance, eggshell quality, and eggshell ultrastructure of laying hens. Three hundred sixty Hy-Line W36 laying hens between 47 to 62 wk of age were used and distributed in a completely randomized experimental design with 9 treatments, 5 replicates, and 8 birds for each experimental unit. The treatments consisted of a control diet without supplementation of the trace minerals Mn, Zn, and Cu; 4 supplementation levels of these trace minerals from an inorganic source; and the same levels of supplementation from an organic source (proteinates). The supplementation levels in milligrams per kilogram for Mn, Zn, and Cu, were, respectively, 35-30-05, 65-60-10, 95-90-15, and 125-120-20. There was no effect of supplementation of trace minerals on the rate of posture, feed intake, feed conversion, specific weight, and Haugh unit of eggs. However, there was a quadratic effect (P < 0.05) of the levels of trace mineral supplementation on average egg weight and egg mass; the results did not differ regarding the source used. The increase in the levels of supplementation of Mn, Zn, and Cu provided a linear increase (P < 0.05) in the breaking strength and the percentage of eggshell. There was a linear decrease (P < 0.05) in the egg loss and the number of mammillary buttons in the shell. The best results were obtained using diets supplemented with trace minerals from an organic source because these diets provided lower egg loss, higher thickness, and increased strength of the shell. Structurally, organic Mn, Zn, and Cu provided higher thickness of the palisade layer and lower mammillary density. The trace mineral supplementation improved the structural characteristics and the quality of the eggshells.

  12. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  13. Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive

    Directory of Open Access Journals (Sweden)

    Bülent Özdalyan

    2018-06-01

    Full Text Available The heat values of waste mineral oils are equal to the heat value of the fuel oil. However, heat value alone is not sufficient for the use of waste minerals oils as fuel. However, the critical physical properties of fuels such as density and viscosity need to be adapted to the system in order to be used. In this study, the engine oils used in the first 10,000 km of the vehicles were used as waste mineral oil. An organic-based Mn additive was synthesized to improve the properties of the waste mineral oil. It was observed that mixing the Mn additive with the waste mineral oil at different doses (4, 8, 12, and 16 ppm improves the viscosity of the waste oil and the flash point. The resulting fuel was evaluated for emission using different loads in a 5 kW capacity generator to compare the fuel with standard diesel fuel and to determine the effect of Mn addition. In the experimental study, it was observed that the emission characteristics of the fuel obtained from waste mineral oil were worse than diesel fuel, but some improvement was observed with Mn addition. As a result, we found that the use of waste mineral oils in engines in fuel standards was not appropriate, but may be improved with additives.

  14. Bottom-up self-organization in supramolecular soft matter principles and prototypical examples of recent advances

    CERN Document Server

    Parisi, Jürgen

    2015-01-01

    This book presents the general concepts of self-organized spatio-temporal ordering processes. These concepts are demonstrated via prototypical examples of recent advances in materials science. Particular emphasis is on nanoscale soft matter in physics, chemistry, biology and biomedicine. The questions addressed embrace a broad spectrum of complex nonlinear phenomena, ranging from self-assembling near the thermodynamical equilibrium to dissipative structure formation far from equilibrium. Their mutual interplay gives rise to increasing degrees of hierarchical order. Analogues are pointed out, differences characterized and efforts are made to reveal common features in the mechanistic description of those phenomena.  .

  15. Predicting bi-decadal organic carbon mineralization in northwestern European soils with Rock-Eval pyrolysis

    Science.gov (United States)

    Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric

    2017-04-01

    The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic

  16. Mineralization of Organically Bound Nitrogen in Soil as Influenced by Plant Growth and Fertilization

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1982-01-01

    A loam soil containing an organic fraction labelled with15N was used for pot experiments with spring barley, rye-grass and clover. The organically bound labelled N was mineralized at a rate corresponding to a half-life of about 9 years. Fertilization with 106 and 424 kgN/ha of unlabelled N...... in the form of KNO3 significantly increased uptake of labelled N from the soil in barley and the first harvest of rye-grass crops. The fertilized plants removed all the labelled NH4 and NO3 present in the soil, whereas the unfertilized plants removed only about 80%. The second, third and fourth harvests...... of the unfertilized rye-grass took up more labelled N than the fertilized rye-grass. The total uptake in the four harvests was similar whether the plants were fertilized or not. Application of KCl to barley plants in amounts equivalent to that of KNO3 resulted in a small but insignificant increase in uptake...

  17. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems.

    Science.gov (United States)

    Grunert, Oliver; Hernandez-Sanabria, Emma; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar H; Perneel, Maaike; Van Labeke, Marie-Christine; Reheul, Dirk; Boon, Nico

    2016-01-05

    The choice of soilless growing medium for plant nutrition, growth and support is crucial for improving the eco-sustainability of the production in horticultural systems. As our current understanding of the functional microbial communities inhabiting this ecosystem is still limited, we examined the microbial community development of the two most important growing media (organic and mineral) used in open soilless horticultural systems. We aimed to identify factors that influence community composition over time, and to compare the distribution of individual taxa across growing media, and their potential functionality. High throughput sequencing analysis revealed a distinctive and stable microbial community in the organic growing medium. Humidity, pH, nitrate-N, ammonium-N and conductivity were uncovered as the main factors associated with the resident bacterial communities. Ammonium-N was correlated with Rhizobiaceae abundance, while potential competitive interactions among both Methylophilaceae and Actinobacteridae with Rhizobiaceae were suggested. Our results revealed that soilless growing media are unique niches for diverse bacterial communities with temporal functional stability, which may possibly impact the resistance to external forces. These differences in communities can be used to develop strategies to move towards a sustainable horticulture with increased productivity and quality.

  18. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake.

    Science.gov (United States)

    Lepot, K; Compère, P; Gérard, E; Namsaraev, Z; Verleyen, E; Tavernier, I; Hodgson, D A; Vyverman, W; Gilbert, B; Wilmotte, A; Javaux, E J

    2014-09-01

    spheres interpreted as coccoidal bacteria may represent fossils of intracellular calcification. These organo-mineral associations support organically driven nanocarbonate crystallization and stabilization, hence providing potential markers for microbial calcification in ancient rocks. © 2014 John Wiley & Sons Ltd.

  19. In situ synthesis of fluorescent magnetosomes using an organic membrane as a soft template.

    Science.gov (United States)

    Ke, Wenjing; Zhang, Juhua; An, Xueqin; Zhang, Bo

    2017-05-04

    A novel approach was presented for the in situ synthesis of fluorescent magnetosomes by biological mineralization and carbonization processes for the first time. The surface structures, magnetism and fluorescence were studied, and the cytotoxicity tests and fluorescent trace in liposomes were probed. The fluorescent magnetosomes exhibit not only unique fluorescence and ferromagnetic properties but also low toxicity and superior imaging capability.

  20. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Science.gov (United States)

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  1. Effect of Gamma Irradiation, Organic and Mineral Fertilizers on Growth, Yield and Fruit Quality of Sweet Pepper

    International Nuclear Information System (INIS)

    Fath El-Bab, T.Sh.

    2014-01-01

    Field experiment was carried out for two successive seasons 2011 and 2012, on sweet pepper ( Capsicum annuum L. ) cv. California wonder in the Research Station of Atomic Energy Authority at Inshas, Egypt. This research aimed to evaluate response of sweet pepper to chemical and organic manure (poultry or sheep) fertilizers. Organic manures were treated with gamma rays at the dose of 10 KGy to keep it free from pathogenic organism pests and weed seeds. Growth characters such as plant height, num - ber of leaves, number of stems and dry weight per plant in the two seasons were significantly respond to tested factors. The highest vegetative growth characters were induced by 100% mineral fertilizer. Meanwhile, the lowest vegetative growth characters were recorded by using 100% organic manure as compared to mineral fertilizer. On the other hand dry weight of plants treated with organic manure treatment significantly decreased as compared to mineral fertilizer in the two seasons. Furthermore, using organic manure had enhanced or improved the quality of sweet pepper fruits. In conclusion, mineral fertilizers combined with organic fertilizers were the best treatment resulted in the highest vegetative growth, yield and fruit quality of sweet pepper. This treatment resulted in not only higher total chlorophyll in leave content compared to control plants, but also the highest chemical properties values of fruits, total soluble solids, acidity, vitamin C. and carotenoids in the two seasons. Nitrogen, phosphorus and potassium content non significantly increased with all treatments except that of 100% chemical fertilizer. The improvement of plant growth and production recorded with the irradiated organic manure as compared to the unirradiated one. All parameters were higher in sweet pepper fertilized with poultry manure as compared to that fertilized with sheep manure. Although the treatment of organic manure only gave to some extent, less total yield, it has great impact on the

  2. Responses of milk quality to roasted soybeans, calcium soap and organic mineral supplementation in dairy cattle diets

    Directory of Open Access Journals (Sweden)

    Adawiah

    2006-12-01

    Full Text Available Milk quality is affected by feed nutrient either macronutrient or micronutrient. Roasted soayabeans and calcium soap were to increase supply by pas protein and fat to dairy cattle. Thus, organic mineral was to increase bioavailability of feed mineral to animal. The objective of this study was to evaluate roasted soybean, mineral soap and organic mineral supplementation on milk quality of dairy cattle. Twenty lactating Frisian Holstein cows (initial weight 361.4 ± 40.39 kg were assigned into a randomized complete block design with 5 treatments and 4 blocks. The treatments were A: basal diet, B: A + roasted soybean, C: B + calcium soap of corn oil, D: C + calcium soap of corn oil, E: C + calcium soap of fish oil. The experimental diets were offered for 9 and 2 weeks preliminary. The results of the experiment showed that milk protein and lactose were not affected by diets. Milk dry matter of cows fed A, B, and D diets were higher (P<0.05 than those of fed C and E diets. Milk fat of cows fed A, B and D diets were higher (P<0.05 than those of fed C and E diets. Milk density of cows fed B and E diets were higher (p<0.05 than those of fed A, C and D diets. Milk TPC of cows fed B diet were higher (0.05 than those of fed A, C, D, and E diets. It is concluded that milk quality especially milk protein and lactose concentration are not affected by roasted soyabeans, Ca-soap, and organic mineral. Calcium soap of fish oil and organic mineral decrease population of milk bacteria.

  3. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data

    NARCIS (Netherlands)

    Ros, G.H.

    2012-01-01

    Extractable organic matter (EOM) fractions have been used to assess the capacity of soils to supply nitrogen (N), but their role in N mineralization and their potential to improve agricultural fertilizer management are still under debate. This paper shows evidence that the relationship between EOM

  4. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  5. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  6. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    International Nuclear Information System (INIS)

    Capelli, R.; Koshmak, K.; Giglia, A.; Mukherjee, S.; Nannarone, S.; Mahne, N.; Doyle, B. P.; Pasquali, L.

    2016-01-01

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  7. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, R.; Koshmak, K.; Giglia, A.; Mukherjee, S.; Nannarone, S. [IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Mahne, N. [Elettra, s.s. 14, km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Doyle, B. P. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Pasquali, L., E-mail: luca.pasquali@unimore.it [IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Dipartimento di Ingegneria “Enzo Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy)

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  8. Development of soft ionization using direct current pulse glow discharge plasma source in mass spectrometry for volatile organic compounds analysis

    Science.gov (United States)

    Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki

    2018-01-01

    This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.

  9. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  10. Effect of organic mineral supplementation on the egg quality of semi-heavy layers in their second cycle of lay

    Directory of Open Access Journals (Sweden)

    ESPB Saldanha

    2009-12-01

    Full Text Available This study was carried out to evaluate the effects of dietary trace mineral levels and sources on egg quality parameters of second-cycle semi-heavy layers. A number of 360 72-week-old layers were submitted to forced molting. Upon return of lay (83 weeks of age, birds were distributed according to a completely randomized experimental design of six treatments with six replicates of 10 birds each. The control treatment consisted of 0.10% dietary supplementation of trace minerals from inorganic sources, which was proportionally replaced by five levels (110, 100, 90, 80, 70% of an organic trace mineral supplement containing 30, 30, 40, 6, 0.61, and 0.3 g/kg product of Zn, Fe, Mn, Cu, I, and Se, respectively. All diets contained equal protein, energy, and amino acid levels. Every 28 days of the experimental period (112 days four eggs per replicate were collected for egg quality evaluation. The following parameters were evaluated: specific gravity, yolk, albumen and eggshell percentages, yolk index, Haugh units, and eggshell thickness and breaking strength. One sample per replicate, consisting of the pool of the yolks of three eggs collected at the end of each experimental period, was used to assess protein and mineral (Ca, P, Cu, Fe, Mn, and Zn contents. The results were submitted to ANOVA, and means to the test of Tukey at 5% significance level. The evaluated trace mineral levels and sources did not influence any of the studied egg quality parameters. It was concluded that reducing organic trace mineral supplementation in up to 70% relative to 100% inorganic trace mineral supplementation does not affect egg parameters and therefore, can be applied to the diet of semi-heavy layers in their second cycle of lay.

  11. Adsorption and Desorption of Cesium in Clay Minerals: Effects of Natural Organic Matter and pH

    Science.gov (United States)

    Yoon, Hongkyu; Ilgen, Anastasia; Mills, Melissa; Lee, Moo; Seol, Jeung Gun; Cho, Nam Chan; Kang, Hyungyu

    2017-04-01

    Cesium (Cs) released into the environment (e.g., Fukushima accident) poses significant environmental concerns and remediation challenges. A majority of Cs in the environment have remained within the surface soils due to the strong adsorption affinity of Cs towards clay minerals. Different clay minerals have different bonding sites, resulting in various adsorption mechanisms at nanometer scale. For example, the illite commonly has a basal spacing of 1.0 nm, but becomes wider to 1.4 nm once other cations exchange with K in the interlayer site. Cs adsorbs into these expanded wedged zone strongly, which can control its mobility in the environment. In addition, natural organic matter (NOM) in the surface soils can interact with clay minerals, which can modify the mechanisms of Cs adsorption on the clay minerals by blocking specific adsorption sites and/or providing Cs adsorption sites on NOM surface. In this work, three representative clay minerals (illite, vermiculite, montmorillonite) and humic acid (HA) are used to systematically investigate the adsorption and desorption behavior of Cs. We performed batch adsorption experiments over a range of Cs concentrations on three clay minerals with and without HA, followed by sequential desorption batch testing. We tested desorption efficiency as a function of initial adsorbed Cs concentration, HA content, sodium concentration, and pH. The sequential extraction results are compared to the structural changes in clay minerals, measured using extended X-ray absorption fine structure spectroscopy (EXAFS) and aberration-corrected (scanning) transmission electron microscopy (TEM) - energy dispersive X-ray spectroscopy (EDX). Hence, this work aims to identify the mechanisms of Cs fixation at the nanometer (or atomic-) scale as a function of the clay mineral properties (e.g. expandability, permanent surface charge) and varying organic matter content at different pH values and to enhance our atomic-scale mechanistic understanding of

  12. The effects of using of mineral and organic toxin absorbents on broiler performance and internal organs weight in experimental aflatoxicosis

    Directory of Open Access Journals (Sweden)

    Behnam Heidarpour

    2016-04-01

    Full Text Available Introduction The occurrence of mycotoxins in foods and feeds is a problem of major concern in all over the world. Profitability of poultry production can be greatly affected due to the frequency of feed contamination and the detrimental effects of these toxins on the performance. Aflatoxins, a group of closely related and biologically active mycotoxins, are produced by strains of Aspergillus flavus and Aspergillus parasiticus. They commonly occur as natural contaminant of poultry feeds. Domestic animal species such as chickens, ducks, cattle and turkeys consuming sublethal doses of aflatoxins for several days developed a toxic syndrome in which liver damage was the most significant change. The biological effects of aflatoxins could be categorized into two groups, long term and short term effects. Long term effects included chronic toxicity, cancer, birth defects and genetic alterations. Aflatoxins affected all poultry species, although they generally take relatively high levels to cause mortality, low levels can be detrimental if continually fed. Material and Methods This study was conducted to determine the efficacy of mineral, organic toxin absorbents, humic acid and yeast cell wall on performance and internal organs weight of broilers in experimental aflatoxicosis. This study was conducted in a completely randomize design with 432 Ross-308 broilers with 9 treatments, 4 replicates and 12 broilers in each replicate. Treatments included diet without aflatoxin, 2: diet contaminated with aflatoxin, 3: diet contaminated with aflatoxin and supplemented with 0.20 Humic acid, 4: diet contaminated with aflatoxin and supplemented with 0.40 Humic acid, 5: diet contaminated with aflatoxin and supplemented with 0.60 Humic acid, 5: diet contaminated with aflatoxin and supplemented with 0.80 Humic acid, 6: diet contaminated with aflatoxin and supplemented with 0.80 Humic acid, 7: diet contaminated with aflatoxin and supplemented with 1.00 Humic acid, 8: diet

  13. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  14. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.

    Science.gov (United States)

    Wang, Peng; Liu, Yunjia; Menzies, Neal W; Wehr, J Bernhard; de Jonge, Martin D; Howard, Daryl L; Kopittke, Peter M; Huang, Longbin

    2016-11-01

    Arsenic (As) is commonly associated with Cu ore minerals, with the resultant risk that As can be released offsite from mine tailings. We used synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide in situ, laterally-resolved speciation of As within tailings which differed in magnetite content (5-12%) and organic matter content (0-5%). Although the total As content was lower in tailings with low magnetite (LM), the soluble (pore water) As was actually 7-times higher in LM tailings than in high magnetite (HM) tailings. Additionally, amendment with 5% sugarcane mulch residues (SMR) (for revegetation) further increased soluble As due to the dissolution and oxidation of arsenopyrite or orpiment. Indeed, in HM tailings, arsenopyrite and orpiment initially accounted for 88% of the total As, which decreased to 48% upon the addition of SMR - this being associated with an increase in As V -ferrihydrite from 12% to 52%. In LM tailings, the pattern of As distribution and speciation was similar, with As as As V -ferrihydrite increasing from 57% to 75% upon the addition of SMR. These findings indicate that changes in ore processing technology, such as the recovery of magnetite could have significant environmental consequences regarding the As mobilisation and transformation in mine tailings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique.

    Science.gov (United States)

    Magaia, Telma; Uamusse, Amália; Sjöholm, Ingegerd; Skog, Kerstin

    2013-12-01

    The harvesting, utilization and marketing of indigenous fruits and nuts have been central to the livelihoods of the majority of rural communities in African countries. In this study we report on the content of dietary fiber, minerals and selected organic acids in the pulps and kernels of the wild fruits most commonly consumed in southern Mozambique. The content of soluble fiber in the pulps ranged from 4.3 to 65.6 g/100 g and insoluble fiber from 2.6 to 45.8 g/100 g. In the kernels the content of soluble fiber ranged from 8.4 to 42.6 g/100 g and insoluble fiber from 14.7 to 20.9 g/100 g. Citric acid was found in all fruits up to 25.7 g/kg. The kernels of Adansonia digitata and Sclerocarya birrea were shown to be rich in calcium, iron, magnesium and zinc. The data may be useful in selecting wild fruit species appropriate for incorporation into diets.

  16. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P arbuscular mycorrhizal colonization of roots.

  17. Study of environmental radioactivity in three important Italian rivers using sediment mineral organic detritus indicator

    International Nuclear Information System (INIS)

    Fontana, C.; Aebischer, M.L.; Musumeci, R.G.; Sogni, R.; Borio, R.; Bucci, S.; Giannardi, C.; Magnoni, M.; Margini, G.

    1997-01-01

    When studying radionuclides introduced into the environment because of accidental spillage of radioactive substances from the atmosphere into running water and rivers, as in the accident at Chernobyl, a series of measurements and a knowledge of appropriate indicators are needed in order to best use the information. Radionuclides enter the water in the following way: they fall directly onto the surface of the water and then spread and sink, forming sediment on the river bed. S.M.O.D., sediments mineral organic detritus, is an important matrix for research on contaminants present in running water.This has been demonstrated in Italy where repeated research was done in various portions of the Po River. The studies have shown that S.M.O.D. is a good indicator for many radionuclides, both of fission as in Cs-137, Cs-134, Sb-125, Ru-106, and activation as in Mn-54 and Co-60. S.M.O.D. reveals the spatial radio contamination both of a diffuse source present in the river as in the case of fall-out from the nuclear power plant at Chernobyl or of a specific source as in spillage from a nuclear power plant or from hospital or industrial waste.It has been shown that S.M.O.D. is also an efficient indicator for other kinds of containments like heavy metals and pesticides. The work carried out on three major rivers: the Po, the Arno and the Tiber. (authors)

  18. Study of the organic -15N mineralization in an Oxisol and its absorption by a grass (Melinis minutiflora Beauv.)

    International Nuclear Information System (INIS)

    Urquiaga C, S.; Libardi, P.L.; Reichardt, K.; Padovese, P.P.; Moraes, S.O.; Victoria, R.L.

    1982-01-01

    Mineralization of organic-N to soil samples of an Oxisol as 15 N-labeled bean straw, with and without N from fertilizer (urea) was studied, as well as the effect of expanded vermiculite in the production and absorption of the mineralized-N by a grass. The experiment was conducted in plastic pots. The fertilizer urea (46,64%N) utilized was labelled (5,2% of 15 N) atoms). All experimental pots received 150 ppm of P and K as simple superphosphate (18% P 2 O 5 ) and 26% CaO) and potassium sulphate (60% K 2 O), respectively. The grass was planted by putting 8 small pieces by pot. The aerial part was harvested at 30 days intervals. Grass production was a function of the N available and bean straw behaved as an important N source for the plants; at 30 days (first sampling) the production N extraction and efficiency of utilization of the organic N were at their maximum, decreasing (p=0,01) at each following harvest; after the first sampling the mineralization rate of organic N was very low, decreasing significantly the grass production; N fertilizer favoured significantly the mineralization and the efficiency of utilization of the organic-N applied; vermiculite did not affect either production or the N extraction by the grass; in the soil mineral-N, after the culture, the percentage of N from labelled sources was two times that of the total-N and lower than in the plant in the final harvest. (Author) [pt

  19. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  20. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  1. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xuejun; ZHOU Guoyi; HUANG Zhongliang; ZHOU Cunyu; LI Jiong; SHI Junhui; ZHANG Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Gnangdong Province, China). The soils were incubated at 25℃ for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4+-N and NO3--N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and

  2. Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758)

    OpenAIRE

    Domínguez, David; Rimoldi, Simona; Robaina, Lidia E.; Torrecillas, Silvia; Terova, Genciana; Zamorano, María J.; Karalazos, Vasileios; Hamre, Kristin; Izquierdo, Marisol

    2017-01-01

    Substituting fishmeal (FM) with vegetable meal (VM) can markedly affect the mineral composition of feeds, and may require additional mineral supplementation. Their bioavailability and optimal supplementation levels depend also on the form of delivery of minerals. The aim of the study was to determine the effect of different delivery forms of three major trace elements (Zn, Mn and Se) in a marine teleost. Gilthead sea bream juveniles of 22.5 g were fed a VM-based diet for 12 weeks that was eit...

  3. Leaf litter and roots as sources of mineral soil organic matter in temperate deciduous forest with and without earthworms

    Science.gov (United States)

    Fahey, T.; Yavitt, J. B.

    2012-12-01

    We labeled sugar maple trees with 13C to quantify the separate contributions of decaying leaf litter and root turnover/rhizosphere C flux to mineral soil organic matter (SOM). Labeled leaf litter was applied to forest plots with and without earthworms and recovery of the label in SOM was quantified over three years. In parallel, label recovery was quantified in soils from the labeling chambers where all label was supplied by belowground C flux. In the absence of earthworms about half of the label added as leaf litter remained in the surface organic horizons after three years, with about 3% recovered in mineral SOM. The label was most enriched on silt + clay surfaces, representing precipitation of DOC derived from litter. Earthworms mixed nearly all the leaf litter into mineral soil within one year, and after two years the label was most enriched in particulate organic matter held within soil aggregates produced by worms. After three years 15-20% of the added label was recovered in mineral SOM. In the labeling chambers over 75% of belowground C allocation (BCA) was used in root and rhizosphere respiration in the first year after labeling. We recovered only 3.8% of estimated BCA in SOM after 3 years; however, expressed as a proportion of fine root production plus rhizosphere C flux, this value is 15.4%, comparable to that for leaf litter in the presence of earthworms. In conclusion, both roots and leaf litter contribute significantly to the formation of stabilized mineral SOM in temperate deciduous forests, and this process is profoundly altered by the invasion of lumbricid earthworms.

  4. Mechanochemical transformation of an organic ligand on mineral surfaces: The efficiency of birnessite in catechol degradation

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Paola, E-mail: pdileo@imaa.cnr.it [Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l' Analisi Ambientale, C.da S. Loja, Zona Industriale, 85050 Tito Scalo (PZ) (Italy); Pizzigallo, Maria Donata Rosa [Dipartimento di Biologia e Chimica Agroforestale e Ambientale, Universita di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari (Italy); Ancona, Valeria [Consiglio Nazionale delle Ricerche - Istituto di Ricerca sulle Acque, Via F. De Blasio 5, 70132 Bari (Italy); Di Benedetto, Francesco [Dipartimento di Chimica, Universita di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Mesto, Ernesto; Schingaro, Emanuela; Ventruti, Gennaro [Dipartimento di Scienze della Terra e Geoambientali, Universita di Bari Aldo Moro, Via Orabona, 4, 70125 Bari (Italy)

    2012-01-30

    grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO{sub 6} layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn{sup 2+} ions production.

  5. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    Science.gov (United States)

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Magnetic properties of Cobalt thin films deposited on soft organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)]. E-mail: i.bergenti@bo.ismn.cnr.it; Riminucci, A. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Arisi, E. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Murgia, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Cavallini, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Solzi, M. [Dipartimento di Fisica dell' Universita di Parma and CNISM, Parco Area delle Scienze 7/A, Parma 43100 (Italy); Casoli, F. [IMEM-CNR Parco Area delle Scienze 37/A, Parma 43100 (Italy); Dediu, V. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)

    2007-09-15

    Magnetic and morphological properties of Cobalt thin films grown by RF sputtering on organic Alq3 layers were investigated by magneto-optical Kerr effect (MOKE) technique and atomic force microscopy (AFM). The AFM images indicate a template growth of Co layers on top of Alq3, the magnetic film 'decorates' the surface of organic material. This peculiar morphology induces a strong uniaxial magnetic anisotropy in the Co films, as detected by MOKE measurements. Results are important for the operation of a new class of devices-vertical organic spin valves.

  7. DESIGNING A DATA GOVERNANCE MODEL BASED ON SOFT SYSTEM METHODOLOGY (SSM) IN ORGANIZATION

    OpenAIRE

    Hanung Nindito Prasetyo; Kridanto surendro

    2015-01-01

    Today, many emerging various models of data governance like DAMA, DGI and the latest is a model from IBM. Model DAMA International is a data governance model designed by industry associations. The model requires the fulfillment of the entire artifact in a matrix that has been determined that too many components that must be built in data governance in an organization. While the data governance model is built from the data DGI consulting organization which requires the development of data gove...

  8. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Directory of Open Access Journals (Sweden)

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  9. Investigations on the transformation of N-fertilizer and the mineralization of organic N using 15N Pt. 1

    International Nuclear Information System (INIS)

    Latkovics, Gy.-ne

    1979-01-01

    A composting experiment was set up on chernozem-type brown forest soil to investigate the transformation of nitrogen fertilizer and the mineralization of organic N. For the average soil sample from the ploughed layer the pH value was 7.1, the mineral N content 2.85 mg, the fixed ammonium content 15.98 mg and the total N 140.8 mg100/g soil. The humus content was 1.91%. In the experiment 15 N labelled ammonium nitrate was used, and, as 15 N labelled organic matter, ground, air-dried rye-grass and bean stalks and with approximately the same N content as the 0.4% of the soil quantity measured. The values obtained by chemical methods and isotope indication show that the N-loss during composting was negligible and that the methods tested are suitable for the investigation of the transformation processes of nitrogen. (author)

  10. The study of the sorption capacity of mineral kasongan and sand mixture of the waste of uranium organic phase

    International Nuclear Information System (INIS)

    Budiyono, M. E.; Sardjono, D.; Sukosrono

    1996-01-01

    An experimental investigation on the sorption capacity of mineral Kasongan and sand of Progo of the waste of uranium organic phase which to be connected with a backfill material which can be used to carried out of waste transportation from uncertain unit of the wastes to process of the wastes. The aim of the investigation wastes transportation must be conducted of the anticipation, that of the wastes with safe to unit management of wastes. Therefore must be investigated of the uranium organic wastes. This investigations which influence sorption ability, so an experimental investigation on its absorbability is necessary since this nuclide can not be dispersed to the environment. This investigation was carried out by varying some parameters which influence the sorption ability or sorptive capacity of the mineral Kasongan and the sand of Progo. The variables investigated were the grains size of the backfill material. Also the composition of mineral Kasongan/sand of Progo. The grains size were varied from 10-200 mesh and the composition were varied from 100/0 to 0/100 by weight. The sorption capacity of the maximum results was also determined. It can be concluded that the sorption capacity of the mineral Kasongan was the best at the grains of size about 80 mesh. The sorption capacity was 58 x 10 -2 ml/g and the grains size of the sand of Progo about 20 to 80 mesh was 30 x 10 -2 ml/g. The best sorption capacity of 58 x 10 -2 ml/g was gained at the composition of 100 % mineral Kasongan and 0% sand Progo. (author)

  11. 3D reconstruction of pentacene structural organization in top-contact OTFTs via resonant soft X-ray reflectivity

    Science.gov (United States)

    Capelli, Raffaella; Nardi, Marco Vittorio; Toccoli, Tullio; Verucchi, Roberto; Dinelli, Franco; Gelsomini, Carolina; Koshmak, Konstantin; Giglia, Angelo; Nannarone, Stefano; Pasquali, Luca

    2018-01-01

    Herein, we describe the use of soft X-ray reflectivity at the carbon K-edge to study the molecular organization (orientation, structure, and morphology) of pentacene active films in a top-contact transistor geometry. This technique is not affected by sample charging, and it can be applied in the case of insulating substrates. In addition, the sampling depth is not limited to the near-surface region, giving access to buried device interfaces (metal/organic and dielectric/organic). Spectral lineshape simulations, based on ab-initio calculations using a realistic 3D layer-by-layer model, allow us to unravel the details of the molecular organization in all the specific and crucial areas of the active film, overcoming the limitations of conventional approaches. The tilt angle of the long molecular axis in the whole film is found to progressively decrease with respect to the substrate normal from 25° to 0° with the increasing film thickness. A full vertical alignment, optimal for in-plane charge hopping, is reached only after the complete formation of the first five monolayers. Remarkably, starting from the first one in contact with the dielectric substrate, all the monolayers in the stack show a change in orientation with the increasing thickness. On the other hand, at the buried interface with a gold top-contact, the molecules assume a flat orientation that only propagates for two or three monolayers into the organic film. Top-contact devices with the highest performances can thus be obtained using films of at least ten monolayers. This explains the observed thickness dependence of charge mobility in pentacene transistors.

  12. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  13. Soft Skills : An Important Asset Acquired from Organizing Regional Student Group Activities

    NARCIS (Netherlands)

    De Ridder, J.; Meysman, P.; Oluwagbemi, O.; Abeel, T.

    2014-01-01

    Contributing to a student organization, such as the International Society for Computational Biology Student Council (ISCB-SC) and its Regional Student Group (RSG) program, takes time and energy. Both are scarce commodities, especially when you are trying to find your place in the world of

  14. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  15. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  16. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Science.gov (United States)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  17. Investigation of Organic Matters and their Roles in Deposition and Phosphate Mineralization in the Kuh-e-Sefid Deposit, Ramhormoz

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb

    2017-07-01

    Full Text Available Introduction It has been recently stated that phosphorite deposits are in fact marine biogenic materials, due to bacterial activity producing bio-apatite. In addition, Phosphorites contain 15–20 wt.% P2O5 (Tzifas et al., 2014. In this deposit, phosphate mineralization has occurred as phosphorite lenses with Eocene age within the Pabdeh Formation, with thickness up to 1.5 meters and width of 15 meters and its hosted rock is black shale. According to the presence of indices of fossils such as Globorotalia, Hantkenina, its age can be attributed to the middle Eocene. The Pabdeh formation is a very rich organic matter in addition to the presence of phosphate (Damiri, 2011. The formation due to planktonic foraminifera rich in organic matter is like the hydrocarbon source rock (Daneshian et al., 2012. In marine basins where upwelling and productivity are limited, phosphates may develop outside of microbial cells and also within bacterial cellular structures, formed by slow bacterial assimilation of phosphorus from assaying organic matter in areas of restricted sedimentation (O’Brine et al., 1981. It is therefore suggested that the upwelling currents did that in the recycling of phosphorus from dead organisms such as fishes and other marine vertebrates. The aim of this study is investigation of organic matter’s species and their roles in deposition and phosphate mineralization in the Kuh-e-Sefid phosphate deposit using XRD, FTIR and Rock-Eval pyrolysis. Materials and methods In field observations, 12 samples were selected and they were taken from units of phosphate and shale host rock in the Kuh-e-Sefid phosphate ore deposit. Ten cross sections were studied by conventional microscopic methods. Rock-Eval analysis was used in order to determine the organic carbon in the geology Department of the Shahid Chamran University of Ahvaz. The Phosphorite samples were determined by XRD at the Kansaran Binaloud Company in the Science and Technology campus in

  18. Improving mining technology and organization of labor in the light of medical-biological aspects of physical health of miners

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, P.V.; Nirenburg, K.G.; Davydova, N.N.; Dyatlova, L.A. (Kuzbasskii Politekhnicheskii Institut (USSR))

    1991-12-01

    Transfer to a contract-bonus system in mines of the Severokuzbassugol' and Leninskugol' associations (USSR) increased coal mining productivity by 42.2-54.4%, but, at the same time, problems concerning miners' health were noted. Presents data on the productivity and labor conditions of contract teams working at coal mining and in development faces. The influence of noise and vibration induced stresses on organisms of underground workers is analyzed. Investigations showed that 3 stages of exhaustion are likely to develop and that the most vulnerable are the cardiovascular system and the respiratory tract. The 3 stages of exhaustion and ability to recover were studied on mining machine operators and drivers of heading machines. Data showed that during the 1985-89 period, 972 miners received disability certificates; the rate of disability was 2.6 miners per 1 Mt of coal; 40.5% of miners over 40 years working on labor-intensive jobs had three or more chronic diseases which could cause permanent disability. In the structure of disability, cardio-vascular system cases accounted for 25%, osseous-muscular system cases for 20% and pulmonary diseases for 13%. Stresses the need for every mine to maintain its own medical center equipped with inhalation therapy, psychological relief, acupuncture and physiotherapy facilities.

  19. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  20. The optical constants of the organic thin films in the case of xanthats adsorption at the surface of semiconductors minerals

    International Nuclear Information System (INIS)

    Todoran, Radu; Todoran, Daniela

    2008-01-01

    The paper present the determinations of some kinetic parameters that characterize the kinetics of the adsorption phenomenon of some organic xanthate molecule on the surface of some natural semiconductor mineral (galena, sphalerite) in order to understand the inward mechanism of this phenomenon. Among the methods of inquiry that allow kinetics determination in situ the optical ones were chosen relying on the change of the liquid-mineral semiconductor interface, and permitting continuous inquires without disturbing the inward development of the processes. Into the computation, we took into the consideration the physical values which feature the roughness of the solid surface, the diffusion into liquid media and the energetic non-homogeneities of the surface. The R s /R p =f(θ) characteristic helps us to establish the thickness of the adsorbed layer, as well as to determine the optical parameters of the thin film. the experimental results allow us to get some information on the mineral and mineral-solution of xanthate, as well allow us to get some information on the parameters which, in correlation with other proportions experimentally determined - could had as to estimations of the dynamic of the surface of a semiconductor solid body. (Author)

  1. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  2. Healthy nutrition and health-washing corporate discourses across three organizations in the fast food and soft drinks industry

    Directory of Open Access Journals (Sweden)

    Mara Stan

    2017-08-01

    Full Text Available The study inquires about the means by which corporate discourse formulates, invokes and challenges scientific research by examining three case studies of organizations in the fast food and soft drinks industry. Critical discourse analysis carried out on corporate sections dedicated to healthy lifestyles reveals all three explored discursive streams acknowledge customers’ changing needs and consumption patterns. They introduce healthy lifestyles up on the corporate agenda, as cornerstone for their identity and governance strategy of fast-food and soft drinks producers. As overall discursive pattern, corporate public relations jargon constantly employs disclaimers and generic terms such as “evolution”, “development”, “strategy”, “partnership”, “transparency”, without providing specific assessment criteria to map down the intended intervention. The article provides rhetoric illustrations enacted through omission, disclaimers, backgrounding and reframing effects. The overriding discursive rationale implies that healthy diets are still low-priority for leading food and drinks producers. The documented companies indicate in their PR communication two strategies of fighting against the scientifically proven negative impact of their traded products: the individual choice paradigm and the social compensation strategy or health-washing. The article highlights some of the inconsistencies of discourses on healthy food that apparently are counter-intuitive enough to undermine corporate interests, while such discourses peddle on the idea of sincerity, transparency and ethical conduct. All three case studied corporations strive to safeguard their threatened reputation across discursive practices by acknowledging their weaknesses as sign of honesty. Further reflection on critical discourse analysts’ mandate and implications for practice are explored.

  3. Performance Estimation of Organic Rankine Cycle by Using Soft Computing Technics

    Directory of Open Access Journals (Sweden)

    Tuğba Kovacı

    2017-10-01

    Full Text Available In this study, the thermal efficiency values of Organic Rankine cycle system were estimated depending on the condenser temperature and the evaporator temperatures values by adaptive network fuzzy interference system (ANFIS and artificial neural networks system (ANN. Organic Rankine cycle (ORC fluids of R365-mfc and SES32 were chosen to evaluate as the system fluid. The performance values of ANN and ANFIS models are compared with actual values. The R2 values are determined between 0.97 and 0.99 for SES36 and R365-mfc, and this is satisfactory. Although it was observed that both ANN and ANFIS models obtained a good statistical prediction performance through coefficient of determination variance, the accuracies of ANN predictions were usually imperceptible better than those of ANFIS predictions.

  4. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography

    Science.gov (United States)

    Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin, J.

    2003-07-01

    Perovskite-type organic/inorganic hybrid layered compound (C 6H 5C 2H 4NH 3) 2PbI 4 was synthesized. The patterning of (C 6H 5C 2H 4NH 3) 2PbI 4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 μm) have been obtained. The structure and optical properties of (C 6H 5C 2H 4NH 3) 2PbI 4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C 6H 5C 2H 4NH 3) 2PbI 4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.

  6. Oxygen consumption during mineralization of organic compounds in water samples from a small sub-tropical reservoir (Brazil

    Directory of Open Access Journals (Sweden)

    Cunha-Santino Marcela Bianchessi da

    2003-01-01

    Full Text Available Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid to 71.5 mg.l-1 (glucose. The highest deoxygenation rate (kD was observed for mineralization of tannic acid (0.321 day-1 followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively. From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid to 2.55 (sucrose.

  7. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc : a column experiment

    NARCIS (Netherlands)

    Refaey, Y.; Jansen, B.; Parsons, J.R.; de Voogt, P.; Bagnis, S.; Markus, A.; El-Shater, A.-H.; El-Haddad, A.-A.; Kalbitz, K.

    2017-01-01

    Infiltration of heavy metal (HM) polluted wastewater can seriously compromise soil and groundwater quality. Interactions between mineral soil components (e.g. clay minerals) and dissolved organic matter (DOM) play a crucial role in determining HM mobility in soils. In this study, the influence of

  8. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  9. Implications of silica on biorefineries – interactions with organic material and mineral elements in grasses

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole

    2015-01-01

    their problems with silica in different ways. High pH and co-precipitation with mineral elements are some common ways of alleviating silica problems. Reviewing the literature for the fundamentals of silica revealed a complex chemistry that is not yet fully understood. Much is still to be learned about...

  10. Organic horizon and mineral soil mercury along three clear-cut forest chronosequences across the northeastern USA.

    Science.gov (United States)

    Richardson, Justin B; Petrenko, Chelsea L; Friedland, Andrew J

    2017-12-01

    Mercury (Hg) is a globally distributed pollutant trace metal that has been increasing in terrestrial environments due to rising anthropogenic emissions. Vegetation plays an important role in Hg sequestration in forested environments, but increasing tree removal for biofuels and wood products may affect this process. The long-term effect of clear-cutting on forest soil Hg remains uncertain, since most studies are limited to measuring changes for event. The chronosequence approach, which substitutes space for time using forest stands of different ages since clear-cutting, allows for investigation of processes occurring over decades to centuries. Here, we utilized three clear-cut forest soil chronosequences across the northeastern USA to understand Hg accumulation and retention over several decades. Total Hg concentrations and pools were quantified for five soil depth increments along three chronosequences. Our results showed Hg concentrations and pools decreased in the initial 20 years following clear-cutting. Mineral soil Hg pools decreased 21-53% (7-14 mg m -2 ) between 1-5-year-old stands and 15-25-year-old stands but mineral soil Hg pools recovered in 55-140-year-old stands to similar values as measured in 1-5-year-old stands. Our study is one of the first to demonstrate a decrease and recovery in Hg pool size. These changes in Hg did not correspond with changes in bulk density, soil C, or pH. We utilized a simple two-box model to determine how different Hg fluxes affected organic and mineral soil horizon Hg pools. Our simple model suggests that changes in litterfall and volatilization rates could have caused the observed changes in organic horizon Hg pools. However, only increases in leaching could reproduce observed decreases to mineral soil Hg pools. Further studies are needed to determine the mechanism of Hg loss from forest soils following clear-cutting.

  11. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.

    Science.gov (United States)

    Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K

    2007-01-01

    Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.

  12. On the nature of data collection for soft-tissue image-to-physical organ registration: a noise characterization study

    Science.gov (United States)

    Collins, Jarrod A.; Heiselman, Jon S.; Weis, Jared A.; Clements, Logan W.; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2017-03-01

    In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of resampling strategies.

  13. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  14. Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil

    Energy Technology Data Exchange (ETDEWEB)

    Hybholt, Trine K.; Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-05-15

    The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of {sup 14}C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm{sup 3}. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 x 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates. - Highlights: > Geostatistics were applied at the centimeter scale. > Glucose and benzoic acid mineralization showed little spatial variation. > PAH mineralization was highly variable at the sub-centimeter scale. > High spatial heterogeneity may be caused by low functional redundancy. - This study supports the hypothesis that specialized xenobiotic degraders may show high spatial heterogeneity in soil due to low functional redundancy.

  15. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    Science.gov (United States)

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  16. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    International Nuclear Information System (INIS)

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs

  17. Cover plants and mineral nitrogen: effects on organic matter fractions in an oxisol under no-tillage in the cerrado

    Directory of Open Access Journals (Sweden)

    Isis Lima dos Santos

    2014-12-01

    Full Text Available Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation. The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L. Millsp; and Sorghum bicolor (L. Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.

  18. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  19. Mineral-associated organic matter: are we now on the right path to accurately measuring and modelling it?

    Science.gov (United States)

    Cotrufo, M. F.

    2017-12-01

    Mineral-associated organic matter (MAOM) is the largest and most persistent pool of carbon in soil. Understanding and correctly modeling its dynamic is key to suggest management practices that can augment soil carbon storage for climate change mitigation, as well as increase soil organic matter (SOM) stocks to support soil health on the long-term. In the Microbial Efficiency Mineral Stabilization (MEMS) framework we proposed that, contrary to what originally thought, this form of persistent SOM is derived from the labile components of plant inputs, through their efficient microbial processing. I will present results from several experiments using dual isotope labeling of plant inputs that largely confirm this opinion, and point to the key role of dissolved organic matter in MAOM formation, and to the dynamic nature of the outer layer of MAOM. I will also show how we are incorporating this understanding in a new SOM model, which uses physically defined measurable pools rather than turnover-defined pools to forecast C cycling in soil.

  20. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    Science.gov (United States)

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  1. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  2. ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms

    International Nuclear Information System (INIS)

    Bodin, Nathalie; Budzinski, Helene; Le Menach, Karyn; Tapie, Nathalie

    2009-01-01

    Since lipids are depleted in 13 C relative to proteins and carbohydrates, variations in lipid composition among species and within individuals significantly influence δ 13 C and may result in misleading ecological interpretations. Whereas lipid extraction before IRMS analysis constitutes a way of stable isotope result lipid-normalisation, such a procedure was given up because of the un-controlled effects of the methods used (i.e., 'Bligh and Dyer', Soxhlet, etc.) on δ 15 N. The aim of this work was to develop a simple, rapid and efficient lipid extraction method allowing for simultaneous C and N stable isotope analysis in the biological soft tissues of aquatic organisms. The goal was to be free from the lipid influence on δ 13 C values without interfering with δ 15 N values. For that purpose, the modern automated pressurized liquid extraction technique ASE (accelerated solvent extraction) was selected. Eel muscles representative of a broad range of fat contents were extracted via ASE by using different semi-polar solvents (100% dichloromethane and 80% n-hexane/20% acetone) and by operating at different temperature (ambient temperature and 100 deg. C) and pressure (750 and 1900 psi) conditions. The results were discussed in terms of lipid extraction efficiency as well as δ 13 C and δ 15 N variability.

  3. Recommendations for the organization of mental health services for children and adolescents in Belgium: use of the soft systems methodology.

    Science.gov (United States)

    Vandenbroeck, Philippe; Dechenne, Rachel; Becher, Kim; Eyssen, Marijke; Van den Heede, Koen

    2014-02-01

    The prevalence of mental health problems among children and adolescents in Western countries is high. Belgium, like many other Western countries, struggles with the set-up of a coherent and effective strategy for dealing with this complex societal problem. This paper describes the development of a policy scenario for the organization of child and adolescent mental health care services (CAMHS) in Belgium. The development process relied on Soft Systems Methodology including a participatory process with 66 stakeholders and a review of the existing (inter-)national evidence. A diagnostic analysis illustrated that the Belgian CAMHS is a system in serious trouble characterized by fragmentation and compartmentalization. A set of 10 strategic recommendations was formulated to lay down the contours of a future, more effective CAMHS system. They focus on mastering the demands made on scarce and expensive specialized mental health services; strengthening the range of services - in particular for those with serious, complex and multiple mental health problems - and strengthening the adaptive capacity of and the ethical guidance within the future CAMHS system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A Novel Real-Time Coal Miner Localization and Tracking System Based on Self-Organized Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wang Yang

    2010-01-01

    Full Text Available With the development of information technology, we envision that the key of improving coal mine safety is how to get real-time positions of miners. In this paper, we propose a prototype system for real-time coal miner localization and tracking based on self-organized sensor networks. The system is composed of hardware and software platform. We develop a set of localization hardware devices with the Safety Certificate of Approval for Mining Products include miner node, wired fixed access station, and base with optical port. On the software side, we develop a layered software architecture of node application, server management, and information dissemination and broadcasting. We also develop three key localization technologies: an underground localization algorithm using received signal strength indication- (RSSI- verifying algorithm to reduce the influence of the severe environment in a coal mine; a robust fault-tolerant localization mechanism to improve the inherent defect of instability of RSSI localization; an accurate localization algorithm based on Monte Carlo localization (MCL to adapt to the underground tunnel structure. In addition, we conduct an experimental evaluation based on a real prototype implementation using MICA2 motes. The results show that our system is more accurate and more adaptive in general than traditional localization algorithms.

  5. 77 FR 59287 - National Organic Program (NOP); Sunset Review (2012) for Nutrient Vitamins and Minerals

    Science.gov (United States)

    2012-09-27

    ...) from creating certification programs to certify organic farms or handling operations unless the State.... Pursuant to the OFPA (7 U.S.C. 6507(b)(2)), a State organic certification program may contain additional... the State and for the certification of organic farm and handling operations located within the State...

  6. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  7. 17-β estradiol and testosterone mineralization and incorporation into organic matter in broiler litter-amended soils.

    Science.gov (United States)

    Durant, Michelle B; Hartel, Peter G; Cabrera, Miguel L; Vencill, William K

    2012-01-01

    The presence of the hormones estradiol and testosterone in the environment is of concern because they adversely affect vertebrate sexual characteristics. Land spreading broiler litter introduces these hormones into the environment. We conducted two studies. The first study determined the mineralization of C-labeled estradiol and testosterone at three water potentials and three temperatures in four broiler litter-amended soils. With a few exceptions, the mineralization of each hormone either stayed the same or increased with increasing water content (both hormones) and increasing (estradiol) or decreasing (testosterone) temperature. Mineralization was dependent on soil type. The second study determined the incorporation of C-labeled estradiol and testosterone into (i) three soil organic matter (SOM) fractions (fulvic acid, humic acid, and humin) at two water potentials, two temperatures, and one sampling time, and (ii) at one water potential, one temperature, and seven sampling times. As time increased, higher temperature and water potential decreased percentages of C estradiol and testosterone in water- and acetone-soluble fractions and increased percentages in SOM fractions. However, the distribution of the two hormones in SOM fractions differed. For estradiol, higher temperature and water potential increased the percentage in all three SOM fractions. For testosterone, higher temperature and water potential increased the percentage of hormone in fulvic acid and humin. Although the mineralization studies suggest the potential for these hormones to still have environmental effects, the incorporation of the two hormones into SOM suggest that land spreading these hormones may actually be less of an environmental concern. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea)

    Science.gov (United States)

    Golubkov, Sergey; Golubkov, Mikhail; Tiunov, Alexei; Nikulina, Vera

    2017-07-01

    The Neva Estuary situated in the eastern part of the Gulf of Finland is one of the largest estuaries of the Baltic Sea. At present, heavy nutrient and organic matter loading, mainly from the Neva River and point sources in the upper estuary are the most serious environmental problem for the Neva Estuary and adjacent parts of the eastern Gulf of Finland. Long-term studies of mid-summer primary production and mineralization of organic matter were conducted in upper and middle parts of the Neva Estuary. A considerable increase of production and biomass of phytoplankton was observed in the middle part of the estuary during the last decades mainly due to an increase in biomass of cyanobacteria. However, they are mostly concentrated in the upper water layers and only a small part of them reached the near bottom water layers and may be used as a food by zoobenthos. The mineralization of organic matter in the water column was twice higher than primary production that indicates the importance of allochthonous organic matter in the carbon budget of the both parts of the estuary. The carbon isotope signature of seston and most of the zoobenthic species in the upper part of the estuary was close to the signature of allochthonous carbon leaking from watershed (- 27‰). Higher values of δ13C of seston in the upper mix layer of the Middle estuary indicate intensive primary production in mid-summer. The carbon isotopic signature of zoobenthos in this part of the estuary was also in general lower than in the Neva Bay reflected higher importance of autochthonous organic matter in food webs of the estuary.

  9. Interactions Between Snow-Adapted Organisms, Minerals and Snow in a Mars-Analog Environment, and Implications for the Possible Formation of Mineral Biosignatures

    Science.gov (United States)

    Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.

    2015-12-01

    Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated

  10. Using 15N in studies on the uptake of mineral and organic nitrogen by plants

    International Nuclear Information System (INIS)

    Mitovska, R.

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen ( 15 N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N

  11. Using /sup 15/N in studies on the uptake of mineral and organic nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitovska, R. (Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Pochvoznanie)

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen (/sup 15/N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N.

  12. The organization of mineral exploitation and the relationship to urban structures and local business development

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte; Jørgensen, Ulrik

    2013-01-01

    The paper explores relations between mining and urban structures as these are decisive for involving the local workforce and developing local businesses. A major challenge for Greenland is the on-going decoupling between existing settlements and the main export industry based on marine living...... also for the surrounding community. The paper explores if a different and long-term organisation of exploitation of mineral resources with establishment of flexible settlements creates an attractive and sustainable alternative with a reasonable population and economic diversity....

  13. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon ratios

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Knadel, Maria; Møldrup, Per

    2016-01-01

    The ratios of mineral fines (carbon (OC), consisting of the n-ratio (i.e., the clay/OC ratio) and m-ratio (i.e., the fines/OC ratio) have recently been used to analyze and predict soil functional properties such as tilth conditions, clay dispersibility, degree...... from seven Danish and one Greenlandic fields, with a large textural range (clay: 0.027–0.355 kg kg−1; OC: 0.011–0.084 kg kg−1; n-ratio: 0.49–16.80; m-ratio: 1.46–32.14), were analyzed for texture and OC and subsequently scanned with a vis-NIR spectrometer from 400 to 2500 nm. The spectral data were...

  14. Organic matter in North Bohemian Tertiavy and Cretaceous sediments with uranium mineralization

    International Nuclear Information System (INIS)

    Simanek, V.

    1979-01-01

    Significant variability was found in the qualitative and the quantitative compositions of dispersed organic matter in Tertiary rocks with uranium ore content between hundredths and units of percentage of the rocks. In Cretaceous rocks with similar proportion of uranium in w.% the variability is much smaller. In rocks with higher organic carbon and uranium levels the organic matter is in a more advanced stage of carbonification metamorphosis than in rocks with lower levels of the components. A statistical correlation test showed free positive correlation between the levels of uranium and organic carbon and the levels of uranium and strongly carbonified organic components and negative correlation between uranium level and humic substances on one hand and the uranium level and bitumens on the other. In Cretaceous sediments, the individual organic compounds were analytically determined in addition to the total level of organic carbon, the strongly carbonified organic components, humic substances and bitumens. Higher fatty acids in ppm concentrations were also found. Their distribution corresponds to the usual distribution in sediments. Rocks with lower contents of organic matter and uranium usually contain phenol aldehydes bound to glycosides while those with higher contents of uranium and organic carbon contain higher amounts of free phenol aldehydes. The composition of amino acids indicates genetic links to the microbial activity. (author)

  15. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Final report, June 31, 1990--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-12-31

    Funds were received from the United States Department of Energy to study the effects of soil mineral phases on the rates of abiotic degradation of tetraphenylborate (TPB) and diphenylboronic acid (DPBA). In addition to kaolinite and montmorillonite clay minerals, the role of goethite, corundum, manganite, and rutile in the degradation of organoborates was also evaluated. The effects of DPBA, argon, molecular dioxygen (O{sub 2}), temperature, and organic matter on the degradation of organoborates were also measured. The results indicated that TPB and DPBA degraded rapidly on the mineral surfaces. The initial products generated from the degradation of TPB were DPBA and biphenyl; however, further degradation resulted in the formation of phenylboric acid and phenol which persisted even after TPB disappeared. The data also showed that the rate of TPB degradation was faster in kaolinite, a 1:1 clay mineral, than in montmorillonite, a double layer mineral. The initial degradation of TPB by corundum was much higher than goethite, manganite and rutile. However, no further degradation by this mineral was observed where as the degradation of TPB continued by goethite and rutile minerals. Over all, the degradation rate of TPB was the highest for goethite as compared to the other metal oxide minerals. The degradation of TPB and DPBA was a redox reaction where metals (Fe, Al, Ti, Mn) acted as Lewis acids. DPBA and argon retarded the TPB degradation where as molecular oxygen organic matter and temperature increased the rate of TPB disappearance.

  16. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Science.gov (United States)

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  17. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  18. DETERMINATION OF MINERAL COMPOSITION OF ORGANIC AND CONVENTIONAL BEVERAGES BY DISPERSIVE ENERGY X-RAY FLUORESCENCE SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    L. CONSOLI

    2012-11-01

    Full Text Available Fruits are natural sources of minerals whose ingestion is recommended in a balanced diet. The increasing consumption of fruit-based beverages demands the development of rapid methods to evaluate their quality parameters. X-ray fluorescence spectrometry is an analytical-nuclear technique that is gaining space in the environmental and geological fields, and has been explored modestly in the food field. The main objective of this work was to develop a methodology to determine the mineral content of fruit-based beverages by applying this technique. Beverages manufactured from organic and conventional fruit varieties were evaluated, aiming to compare their nutritional value. The research was divided into three steps: in the first step, a direct measurement of the samples was made, that is, without prior preparation; in the second, standard curves were prepared with the elements of calcium and potassium, based on the category of ‘fine samples’. Lastly, these curves were used to determine concentrations of calcium and potassium in the samples of juices and pulps prepared as ‘fine samples’. The fine sample measurements showed results more exact compared to that obtained from the direct measurements. From the data evaluated, it was not possible to attribute better nutritional quality to either the organic or conventional samples.

  19. Effect on light intensity and mineral nutrition on carbohydrate and organic acid content in leaves of young coffee plants

    International Nuclear Information System (INIS)

    Georgiev, G.; Vento, Kh.

    1975-01-01

    Young coffee plants (Coffea arabica, L., var. Caturra) were grown under different conditions of mineral nutrition (1/8 N-P-K, N-P-K, 3 N-P-K, N 1/2-P-K and N-2P-K) and illumination (directly in the sunlight or shaded) with the aim of studying the effect of light and mineral nutrition on carbohydrate and organic acid content of the leaves. For determining these compounds 14 CO 2 was used. Sugars were separated after the method of paper chromatography. The results obtained showed that the incorporation of 14 C in sugars and organic acids was more intensive in plants grown directly in the sunlight, while in starch 14 C was incorporated more intensively in the shaded plants. Carbohydrate content rose parallel to the increase of nitrogen in the nutrient solution. Changingthe rate of phosphorus from 1/2P to two doses exerted highest effect on 14 C incorporation in starch and in hemicellulose. (author)

  20. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers.

    Science.gov (United States)

    Sinkovič, Lovro; Demšar, Lea; Žnidarčič, Dragan; Vidrih, Rajko; Hribar, Janez; Treutter, Dieter

    2015-01-01

    Chicory (Cichorium intybus L.) is a typical Mediterranean vegetable, and it shows great morphological diversity, including different leaf colours. Five cultivars commonly produced in Slovenia ('Treviso', 'Verona', 'Anivip', 'Castelfranco', 'Monivip') were grown in pots under controlled conditions in a glasshouse, with organic and/or mineral fertilizers administered to meet nitrogen requirements. HPLC analysis was carried out to study the phenolic compositions of the leaves. A total of 33 phenolic compounds were extracted from these chicory leaves and were quantitatively evaluated in an HPLC-DAD-based metabolomics study. Among the cultivars, the highest TPC was seen for 'Treviso' (300.1 mg/100 g FW), and the lowest, for 'Castelfranco' (124.9 mg/100g FW). Across the different treatments, the highest TPC was in the control samples (254.3 mg/100 g FW), and the lowest for the organic (128.6 mg/100 g FW) and mineral fertilizer (125.5 mg/100 g FW) treatments. The predominant phenolic compounds in all of the samples were hydroxycinnamic acids, including chlorogenic and cichoric acid. Fertilizer administration provides a discriminant classification of the chicory cultivars according to their phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Carbon dynamics in no-till soil due to the use of industrial organic waste and mineral fertilizer

    Directory of Open Access Journals (Sweden)

    Jucimare Romaniw

    Full Text Available ABSTRACTThe use of organic waste from industrial processes in agriculture is a strategy not only for improving soil properties but also for promoting the utilization of recycled nutrients by market crops and for reducing environmental impact. The aim of this study was to evaluate the effects of using organic waste from pork and poultry slaughterhouses (OWS applied alone or in combination with mineral fertilizer (MF on the dynamics of soil organic matter (SOM compartments. The experimental design adopted was that of completely randomized blocks with six treatments and three replicates. The treatments consisted of a general control (T1 without the addition of MF and OWS, the application of MF alone at 100% of the recommended fertilizer levels for the crops (T2,the application of OWS alone at a fixed dose of 2 Mg ha-1 (T3, and the following three combinations of MF and OWS: 75% MF + 25% OWS (T4; 50% MF + 50% OWS (T5; and 25% MF + 75% OWS (T6. The application of OWS promoted increase in the labile fractions extracted by potassium permanganate (C-OXP and hot water (C-HW compared with using MF alone. Using OWS in the combination of 50% MF + 50% OWS increased the content and stock of total organic carbon (TOC in the 0-20 cm layer and of particulate organic C (POC and C-OXP in the 0-5 cm layer.

  2. Complementary Enzymes Activities in Organic Phosphorus Mineralization and Cycling by Phosphohydrolases in Soils

    Science.gov (United States)

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...

  3. Ammonia and Mineral Losses on Dutch Organic Farms with Pregnant Sows

    NARCIS (Netherlands)

    Ivanova-Peneva, S.G.; Aarnink, A.J.A.; Verstegen, M.W.A.

    2006-01-01

    The main objective of this study was to quantify ammonia emissions from organically raised pregnant sows and to compare them with emissions from conventional pig production. A second objective was to quantify the nutrients deposited in the paddock in organic pig grazing systems. Measurements were

  4. Changes in subchondral bone mineral density and collagen matrix organization in growing horses.

    Science.gov (United States)

    Holopainen, Jaakko T; Brama, Pieter A J; Halmesmäki, Esa; Harjula, Terhi; Tuukkanen, Juha; van Weeren, P René; Helminen, Heikki J; Hyttinen, Mika M

    2008-12-01

    The effects of growth and maturation on the mineral deposition and the collagen framework of equine subchondral bone (SCB) were studied. Osteochondral specimens (diameter 6 mm) from the left metacarpophalangeal joint of 5-(n=8), 11-(n=8) and 18-month-old (n=6) horses were investigated at two differently loaded sites (Site 1 (S1): intermittent peak loading; Site 2 (S2): habitual loading). The SCB mineral density (BMD) was measured with peripheral quantitative computer tomography (pQCT), and the data were adjusted against the volume fraction (Vv) of the bone extracellular matrix (ECM). Polarised light microscopy (PLM) was used to analyze the Vv, the collagen fibril parallelism index and the orientation angle distribution in two fractions (1 mm/fraction) beneath the osteochondral junction of the SCB. PLM analysis was made along two randomly selected perpendicularly oriented vertical sections to measure the tissue anisotropy in the x-, y-, and z-directions. The BMD of SCB at S1 and S2 increased significantly during maturation. At the same time, the Vv of the ECM increased even more. This meant that the Vv-adjusted BMD decreased. There were no significant differences between sites. The basic collagen fibril framework of SCB seems to be established already at the age of 5 months. During maturation, the extracellular matrix underwent a decrease in collagen fibril parallelism but no changes in collagen orientation. The variation was negligible in the collagen network estimates in the two section planes. Growth and maturation induce significant changes in the equine SCB. The BMD increase in SCB is primarily due to the growth of bone volume and not to any increase in mineral deposition. An increase in weight-bearing appears to greatly affect the BMD and the volume of the extracellular matrix. Growth and maturation induce a striking change in collagen fibril parallelism but not in fibril orientation. The structural anisotropy of the subchondral bone is significant along the

  5. In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships

    Science.gov (United States)

    Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.

    2012-01-01

    Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.

  6. Influence of organic matter and clay minerals in migration of derivative compounds of hydrocarbons; Influencia da materia organica e argilominerais na migracao de compostos derivados de hidrocarbonetos

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Denize Gloria Barcellos; Mendonca Filho, Joao Graciano de; Polivanov, Helena [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Geociencias. Dept. de Geologia]. E-mail: denize@geologia.ufrj.br; graciano@geologia.ufrj.br; helena@acd.ufrj.br

    2003-07-01

    Soil samples from the Guanabara Bay in Duque de Caxias city (RJ) were submitted to mineralogical and organic geochemistry analyses. This proceeding was used mainly to determine a possible interaction of hydrocarbons contaminants with the organic matter and the clay minerals presents in this mangrove. The sampling was carried out using Direct Push techniques. Thus, the mainly clay minerals characterizes were: gibbsite, illite, caulinite and smectite. The compositional analysis of organic constituents showed a predominance of amorphous material (degraded cuticles), followed of wood material and sporomorphs constituents, suggesting that the biological degradation occurred in situ. (author)

  7. Effect of organic manure on nitrogen mineralization, nitrogen accumulation, nitrogen use efficiency and apparent nitrogen recovery of cauliflower (Braccica oleracea L., var. Botrytis)

    NARCIS (Netherlands)

    Beah, A.A.; Norman, P.E.; Scholberg, J.M.S.; Lantinga, E.A.; Conteh, A.R.

    2015-01-01

    Aims: The main aim of the study was to assess the effects of organic manure on nitrogen mineralization, uptake, use and recovery of cauliflower.
    Methodology: Nitrogen is one of the major yield limiting nutrients in cauliflower production. However, organic manure is applied to supplement soil

  8. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  9. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    Science.gov (United States)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together

  10. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-01-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We investig......Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We...

  11. Edible Giblets and Bone Mineral Characteristics of Two Slow-Growing Chicken Genotypes Reared in an Organic System

    Directory of Open Access Journals (Sweden)

    E Eleroğlu

    Full Text Available ABSTRACT This study was conducted to compare edible giblets weight, tibial bone mineral density (BMD, and bone mineral content (BMC of two slow-growing broiler genotypes (Hubbard S757; S757 and Hubbard Grey Barred JA; GB-JA reared with outdoor access, and to determine the relationship between these variables. Day-old chicks (straight-run of the genotypes S757 (n=120 and GB-JA (n=120 were housed for 98 days. Each genotype was assigned to six pens of 20 birds each. Birds were reared in indoor floor pens and moving shelters with outdoor access (during daylight hours. Absolute body (BW, heart (HW, spleen (SW, liver (LW, gizzard (GW, and abdominal fat pad (AFW weights of the genotype S757 and male birds were statistically higher than that of the genotype GB-JA and female birds. Genotype statistically affected relative HW, whereas sex affected relative GW. Although BMD values were not influenced by genotype or sex, S757 birds and males presented statistically higher tibial BMC, lean, lean+BMC, total mass values (g and area (cm2 compared with GB-JA birds and females. BW, HW, SW, LW, GW and AFW were positively correlated with BMC obtained by DXA. In conclusion, the measured traits influenced by genetic strain and sex. The use of the Hubbard S757 genotype in organic production systems with outdoor access is recommend.

  12. Physiological Studies On Response Of Grape Transplants To Mineral And Irradiated Organic Fertilizers

    International Nuclear Information System (INIS)

    Mohamed, M.F.A.

    2013-01-01

    This work was conducted during two successive seasons throughout 2008, 2009 and 2010 years under green house conditions. Three factorial experiments were included the 1st was dealing with investigating the effect of soil added compost rate (0.0, 5.0, 10.0 and 20.0 %) and gamma irradiated compost dose (0.0, 5.0, 10.0 and 15.0 KGy). Where, two other experiments were devoted for studying the effect of soil applied compost (irradiated or un-irradiated) from one hand and the rate of either N (urea/ ammonium sulphate) or K (K 2 SO 4 ) fertilization rates from the other for 2nd and 3rd experiments, respectively. Obtained results could be summarized as follows: 1- Application of compost, in particular irradiated one at 10.0% was the most promising treatment in the 1st experiment, improved significantly all growth, leaf chlorophyll, stem total carbohydrates and leaf mineral composition especially macro elements (N, P and K). 2- All N or K soil applied reflected positively on the above mentioned measurements of Thompson seedless rooted cuttings with a relative tendency of variance occurred from one N or K treatment to another. 3- It can be concluded that compost application to coarse-textured soil improved it and reflected on plants. Irradiating compost with effective dose (10 KGy) greatly increased compost efficiency which could be reached the double.

  13. Soft valves in plants

    Science.gov (United States)

    Park, Keunhwan; Tixier, Aude; Christensen, Anneline; Arnbjerg-Nielsen, Sif; Zwieniecki, Maciej; Jensen, Kaare

    2017-11-01

    Water and minerals flow from plant roots to leaves in the xylem, an interconnected network of vascular conduits that spans the full length of the organism. When a plant is subjected to drought stress, air pockets can spread inside the xylem, threatening the survival of the plant. Many plants prevent propagation of air by using hydrophobic nano-membranes in the ``pit'' pores that link adjacent xylem cells. This adds considerable resistance to flow. Interestingly, torus-margo pit pores in conifers are open and offer less resistance. To prevent propagation of air, conifers use a soft gating mechanism, which relies on hydrodynamic interactions between the xylem liquid and the elastic pit. However, it is unknown exactly how it is able to combine the seemingly antagonist functions of high permeability and resistance to propagation of air. We conduct experiments on biomimetic pores to elucidate the flow regulation mechanism. The design of plant valves is compared to other natural systems and optimal strategies are discussed. This work was supported by a research Grant (13166) from VILLUM FONDEN.

  14. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  15. Mineralization Rate Constants, Half-Lives and Effects of Two Organic

    African Journals Online (AJOL)

    INTRODUCTION. Low soil fertility is one the ... important for maintenance of fertility of tropical soils. ... soil N. Thus, total N in the soil and the amount released for plant uptake depend on its content of organic ... capacity for productivity, nutrient cycling, filtering and buffering ... (Steel and Torrie, 1981) and, thereafter, Fischer's.

  16. Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.).

    NARCIS (Netherlands)

    Ding, X.; Fu, L.; Liu, C.; Chen, F.; Hoffland, E.; Shen, J.; Zhang, F.; Feng, G.

    2011-01-01

    Abstract To test the hypothesis that rhizosphere acidification would enhance the hydrolyzation of organic phosphates by increasing phosphatase activity. A Petri dish experiment with sterile agar and a pot experiment with a low P soil were used. In the Petri dish experiment, roots of each plant were

  17. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Science.gov (United States)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  18. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    Science.gov (United States)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  19. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  20. Process and device for liquid organic waste processing by sulfuric mineralization

    International Nuclear Information System (INIS)

    Aspart, A.; Gillet, B.; Lours, S.; Guillaume, B.

    1990-01-01

    In a chemical reactor containing sulfuric acid are introduced the liquid waste and nitric acid at a controlled flow rate for carbonization of the waste and oxidation of carbon on sulfur dioxide, formed during carbonization, regenerating simultaneously sulfuric acid. Optical density of the liquid is monitored to stop liquid waste feeding above a set-point. The liquid waste can be an organic solvent such as TBP [fr

  1. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    International Nuclear Information System (INIS)

    Gu, B.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO 4 ) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO 4 - and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO 4 - from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study

  2. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption-desorption and ATR-FTIR study.

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Kookana, Rai S; Farrell, Mark; Sparks, Donald L; Johnston, Cliff T

    2014-10-15

    Batch experiments were conducted to evaluate the sorption-desorption behaviour of (14)C-labelled carboxylic acids (citric and oxalic) and amino acids (glutamic, alanine, phenylalanine and lysine) on pure minerals (kaolinite, illite, montmorillonite, ferrihydrite and goethite). The sorption experiments were complemented by ATR-FTIR spectroscopy to gain possible mechanistic insight into the organic acids-mineral interactions. In terms of charge, the organic solutes ranged from strongly negative (i.e., citric) to positively charged solutes (i.e., lysine); similarly the mineral phases also ranged from positively to negatively charged surfaces. In general, sorption of anionic carboxylic and glutamic acids was higher compared to the other compounds (except lysine). Cationic lysine showed a stronger affinity to permanently charged phyllosilicates than Fe oxides. The sorption of alanine and phenylalanine was consistently low for all minerals, with relatively higher sorption and lower desorption of phenylalanine than alanine. Overall, the role of carboxylic functional groups for the sorption and retention of these carboxylic and amino acids on Fe oxides (and kaolinite) and of amino group on 2:1 phyllosilicates was noticeable. Mineral properties (surface chemistry, specific surface area), chemistry of the organic compounds (pKa value, functional groups) and the equilibrium pH of the system together controlled the differences in sorption-desorption patterns. The results of this study aid to understand the effects of mineralogical and chemical factors that affect naturally occurring low molecular weight organic compounds sorption under field conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    Science.gov (United States)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  4. Structural effects of C60+ bombardment on various natural mineral samples-Application to analysis of organic phases in geological samples

    International Nuclear Information System (INIS)

    Siljestroem, S.; Lausmaa, J.; Hode, T.; Sundin, M.; Sjoevall, P.

    2011-01-01

    Organic phases trapped inside natural mineral samples are of considerable interest in astrobiology, geochemistry and geobiology. Examples of such organic phases are microfossils, kerogen and oil. Information about these phases is usually retrieved through bulk crushing of the rock which means both a risk of contamination and that the composition and spatial distribution of the organics to its host mineral is lost. An attractive of way to retrieve information about the organics in the rock is depth profiling using a focused ion beam. Recently, it was shown that it is possible to obtain detailed mass spectrometric information from oil-bearing fluid inclusions, i.e. small amounts of oil trapped inside a mineral matrix, using ToF-SIMS. Using a 10 keV C 60 + sputter beam and a 25 keV Bi 3 + analysis beam, oil-bearing inclusions in different minerals were opened and analysed individually. However, sputtering with a C 60 + beam also induced other changes to the mineral surface, such as formation of topographic features and carbon deposition. In this paper, the cause of these changes is explored and the consequences of the sputter-induced features on the analysis of organic phases in natural mineral samples (quartz, calcite and fluorite) in general and fluid inclusions in particular are discussed. The dominating topographical features that were observed when a several micrometers deep crater is sputtered with 10 keV C 60 + ions on a natural mineral surface are conical-shaped and ridge-like structures that may rise several micrometers, pointing in the direction of the incident C 60 + ion beam, on an otherwise flat crater bottom. The sputter-induced structures were found to appear at places with different chemistry than the host mineral, including other minerals phases and fluid inclusions, while structural defects in the host material, such as polishing marks or scratches, did not necessarily result in sputter-induced structures. The ridge-like structures were often covered

  5. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  6. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    Science.gov (United States)

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  8. Productivity and accumulation of nutrients in plants of jambu, under mineral and organic fertilizationProdutividade e acúmulo de nutrientes em plantas de jambu, sob adubação orgânica e mineral

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The organic production is a system that allows achieving good levels of productivity, while avoiding the risks of chemical contamination of farmers, consumers and the environment. Because jambu plant is widely used as alternative medicine and cosmetics industries, has been increasing interest in its cultivation. The aim of this study was to analyze the biomass, accumulation of nutrient, productivity and determine the pesticide residue in plant jambu when grown under organic and mineral fertilization. The experiment was conducted at the Experimental Farm São Manuel, FCA / UNESP. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. The characteristics evaluated were plant height, fresh and dry weight, nutrients of accumulation in shoots and productivity. Mineral fertilizer gave higher biomass, productivity and accumulation of N and K in relation to organic fertilizer used. It is recommended the dose of 90g m-2 of urea as appropriate to obtain these results. However the organic fertilization favored the accumulation of phosphorus in plants jambu in relation the mineral fertilizer, and the dose of 10 kg m-2 of cattle manure recommended to achieve this result in plants jambu. We did not detect the presence of phosphorous and carbamate on leaves of jambu under organic and mineral fertilization. However, we observed the presence of chlorine in the leaves used for the two fertilizations.A produção orgânica é um sistema que permite alcançar bons níveis de produtividade, evitando ao mesmo tempo os riscos de contaminação química do agricultor, dos consumidores e do meio ambiente. Pelo fato da planta de jambu ser bastante utilizada como medicamento alternativo e por indústrias de cosméticos, vem aumentando o interesse pelo seu cultivo. Assim, o

  9. Interactions between organic resources and mineral inputs in the context of conservation agriculture

    International Nuclear Information System (INIS)

    Vanlauwe, B.; Bationo, A.

    2003-01-01

    Lots of efforts are currently being implemented to demonstrate and disseminate conservation agriculture (CA) in various areas in the tropics, and specifically in Central America and SSA. These efforts are usually not backstopped by a clear understanding of the functioning and relative importance of the impacts of the 3 principles on the farming systems. Issues that should receive special attention are (i) the interactions between water and nutrient use efficiencies, (ii) soil organic matter (SOM) dynamics and the impacts of an enhanced SOM status on functions regulating crop growth, (iii) niches for implementation of CA taking into account variability in biophysical and socio-economic conditions at the farm and community level, and (iv) impact of CA on the abundance and composition of belowground biota

  10. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  11. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    Science.gov (United States)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  12. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  13. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  14. AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Freeland, Samuel L.

    2012-01-01

    We analyzed the soft X-ray light curves from the Geostationary Operational Environmental Satellites over the last 37 years (1975-2011) and measured with an automated flare detection algorithm over 300,000 solar flare events (amounting to ≈5 times higher sensitivity than the NOAA flare catalog). We find a power-law slope of α F = 1.98 ± 0.11 for the (background-subtracted) soft X-ray peak fluxes that is invariant through three solar cycles and agrees with the theoretical prediction α F = 2.0 of the fractal-diffusive self-organized criticality (FD-SOC) model. For the soft X-ray flare rise times, we find a power-law slope of α T = 2.02 ± 0.04 during solar cycle minima years, which is also consistent with the prediction α T = 2.0 of the FD-SOC model. During solar cycle maxima years, the power-law slope is steeper in the range of α T ≈ 2.0-5.0, which can be modeled by a solar-cycle-dependent flare pile-up bias effect. These results corroborate the FD-SOC model, which predicts a power-law slope of α E = 1.5 for flare energies and thus rules out significant nanoflare heating. While the FD-SOC model predicts the probability distribution functions of spatio-temporal scaling laws of nonlinear energy dissipation processes, additional physical models are needed to derive the scaling laws between the geometric SOC parameters and the observed emissivity in different wavelength regimes, as we derive here for soft X-ray emission. The FD-SOC model also yields statistical probabilities for solar flare forecasting.

  15. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    Science.gov (United States)

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  16. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Science.gov (United States)

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  17. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  18. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  19. Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea.

    NARCIS (Netherlands)

    Vuuren, van M.M.I.; Berendse, F.

    1993-01-01

    The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been

  20. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  1. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.

    Science.gov (United States)

    de Carvalho, Rodrigo Tomazetto; Salgado, Leonardo Tavares; Amado Filho, Gilberto Menezes; Leal, Rachel Nunes; Werckmann, Jacques; Rossi, André Linhares; Campos, Andrea Porto Carreiro; Karez, Cláudia Santiago; Farina, Marcos

    2017-06-01

    Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs. © 2017 Phycological Society of America.

  2. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  3. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  4. Histologic Appearance After Preoperative Radiation Therapy for Soft Tissue Sarcoma: Assessment of the European Organization for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group Response Score

    International Nuclear Information System (INIS)

    Schaefer, Inga-Marie; Hornick, Jason L.; Barysauskas, Constance M.; Raut, Chandrajit P.; Patel, Sagar A.; Royce, Trevor J.; Fletcher, Christopher D.M.; Baldini, Elizabeth H.

    2017-01-01

    Purpose: To critically assess the prognostic value of the European Organization for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) response score and define histologic appearance after preoperative radiation therapy (RT) for soft tissue sarcoma (STS). Methods and Materials: For a cohort of 100 patients with STS of the extremity/trunk treated at our institution with preoperative RT followed by resection, 2 expert sarcoma pathologists evaluated the resected specimens for percent residual viable cells, necrosis, hyalinization/fibrosis, and infarction. The EORTC response score and other predictors of recurrence-free survival (RFS) and overall survival (OS) were assessed by Kaplan-Meier and proportional hazard models. Results: Median tumor size was 7.5 cm; 92% were intermediate or high grade. Most common histologies were unclassified sarcoma (34%) and myxofibrosarcoma (25%). Median follow-up was 60 months. The 5-year local recurrence rate was 5%, 5-year RFS was 68%, and 5-year OS was 75%. Distribution of cases according to EORTC response score tiers was as follows: no residual viable tumor for 9 cases (9% pathologic complete response); <1% viable tumor for 0, ≥1% to <10% for 9, ≥10% to <50% for 44, and ≥50% for 38. There was no association between EORTC-STBSG response score and RFS or OS. Conversely, hyalinization/fibrosis was a significant independent favorable predictor for RFS (hazard ratio 0.49, P=.007) and OS (hazard ratio 0.36, P=.02). Conclusion: Histologic evaluation after preoperative RT for STS showed a 9% pathologic complete response rate. The EORTC-STBSG response score and percent viable cells were not prognostic. Hyalinization/fibrosis was associated with favorable outcome, and if validated, may become a valid endpoint for neoadjuvant trials.

  5. Histologic Appearance After Preoperative Radiation Therapy for Soft Tissue Sarcoma: Assessment of the European Organization for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group Response Score

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Inga-Marie; Hornick, Jason L. [Department of Pathology, Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Barysauskas, Constance M. [Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Raut, Chandrajit P. [Division of Surgical Oncology, Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Patel, Sagar A.; Royce, Trevor J. [Department of Radiation Oncology, Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Fletcher, Christopher D.M. [Department of Pathology, Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Baldini, Elizabeth H., E-mail: ebaldini@partners.org [Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2017-06-01

    Purpose: To critically assess the prognostic value of the European Organization for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) response score and define histologic appearance after preoperative radiation therapy (RT) for soft tissue sarcoma (STS). Methods and Materials: For a cohort of 100 patients with STS of the extremity/trunk treated at our institution with preoperative RT followed by resection, 2 expert sarcoma pathologists evaluated the resected specimens for percent residual viable cells, necrosis, hyalinization/fibrosis, and infarction. The EORTC response score and other predictors of recurrence-free survival (RFS) and overall survival (OS) were assessed by Kaplan-Meier and proportional hazard models. Results: Median tumor size was 7.5 cm; 92% were intermediate or high grade. Most common histologies were unclassified sarcoma (34%) and myxofibrosarcoma (25%). Median follow-up was 60 months. The 5-year local recurrence rate was 5%, 5-year RFS was 68%, and 5-year OS was 75%. Distribution of cases according to EORTC response score tiers was as follows: no residual viable tumor for 9 cases (9% pathologic complete response); <1% viable tumor for 0, ≥1% to <10% for 9, ≥10% to <50% for 44, and ≥50% for 38. There was no association between EORTC-STBSG response score and RFS or OS. Conversely, hyalinization/fibrosis was a significant independent favorable predictor for RFS (hazard ratio 0.49, P=.007) and OS (hazard ratio 0.36, P=.02). Conclusion: Histologic evaluation after preoperative RT for STS showed a 9% pathologic complete response rate. The EORTC-STBSG response score and percent viable cells were not prognostic. Hyalinization/fibrosis was associated with favorable outcome, and if validated, may become a valid endpoint for neoadjuvant trials.

  6. Histologic Appearance After Preoperative Radiation Therapy for Soft Tissue Sarcoma: Assessment of the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group Response Score.

    Science.gov (United States)

    Schaefer, Inga-Marie; Hornick, Jason L; Barysauskas, Constance M; Raut, Chandrajit P; Patel, Sagar A; Royce, Trevor J; Fletcher, Christopher D M; Baldini, Elizabeth H

    2017-06-01

    To critically assess the prognostic value of the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) response score and define histologic appearance after preoperative radiation therapy (RT) for soft tissue sarcoma (STS). For a cohort of 100 patients with STS of the extremity/trunk treated at our institution with preoperative RT followed by resection, 2 expert sarcoma pathologists evaluated the resected specimens for percent residual viable cells, necrosis, hyalinization/fibrosis, and infarction. The EORTC response score and other predictors of recurrence-free survival (RFS) and overall survival (OS) were assessed by Kaplan-Meier and proportional hazard models. Median tumor size was 7.5 cm; 92% were intermediate or high grade. Most common histologies were unclassified sarcoma (34%) and myxofibrosarcoma (25%). Median follow-up was 60 months. The 5-year local recurrence rate was 5%, 5-year RFS was 68%, and 5-year OS was 75%. Distribution of cases according to EORTC response score tiers was as follows: no residual viable tumor for 9 cases (9% pathologic complete response); <1% viable tumor for 0, ≥1% to <10% for 9, ≥10% to <50% for 44, and ≥50% for 38. There was no association between EORTC-STBSG response score and RFS or OS. Conversely, hyalinization/fibrosis was a significant independent favorable predictor for RFS (hazard ratio 0.49, P=.007) and OS (hazard ratio 0.36, P=.02). Histologic evaluation after preoperative RT for STS showed a 9% pathologic complete response rate. The EORTC-STBSG response score and percent viable cells were not prognostic. Hyalinization/fibrosis was associated with favorable outcome, and if validated, may become a valid endpoint for neoadjuvant trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    Science.gov (United States)

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  8. Differential chemical fractionation of dissolved organic matter during sorption by Fe mineral phases in a tropical soil from the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Plante, A. F.; Coward, E.; Ohno, T.; Thompson, A.

    2017-12-01

    Fe-bearing mineral phases contribute substantially to adsorption and stabilization of soil organic matter (SOM), due largely to their high specific surface area (SSA) and reactivity. While the importance of adsorption onto mineral surfaces has been well-elucidated, selectivity of various mineral and organic phases remains poorly understood. The goals of this work were to: 1) quantify the contributions of Fe-minerals of varying crystallinity to dissolved organic matter (DOM) sorption, and 2) characterize the molecular fractionation of DOM induced by reactions at the mineral interface, using a highly-weathered Oxisol from the Luquillo Critical Zone Observatory (LCZO). Three selective dissolution experiments targeting Fe-mineral phases were followed by specific surface area (SSA) analysis of the residues and characterization of extracted DOM by high resolution mass spectrometry (FT-ICR-MS). Fe-depleted extraction residue samples, untreated control soil samples, and Fe-enriched ferrihydrite-coated soil samples were then subjected to a batch sorption experiment with litter-derived DOM. Results of selective dissolution experiments indicated that a substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures. Sorbed C concentrations were well correlated with Fe contents induced by treatments, and thus SSA. Molecular characterization of the DOM post-sorption indicated that poorly crystalline Fe phases preferentially adsorbed highly unsaturated aromatic compounds, and higher-crystallinity Fe phases were associated with more aliphatic compounds. These findings suggests that molecular fractionation via organomineral complexation may act as a physicochemical filter of DOM released to the critical zone.

  9. Using Spent Mushroom Substrate as the Base for Organic-Mineral Micronutrient Fertilizer – Field Tests on Maize

    Directory of Open Access Journals (Sweden)

    Łukasz Tuhy

    2015-07-01

    Full Text Available Spent mushroom substrate (SMS is a noxious byproduct of the mushroom industry. The aim of this work was to convert SMS into organic-mineral micronutrient (Zn(II, Mn(II, and Cu(II fertilizer via biosorption and examine the effect of its application in field tests on maize compared to commercial reference micronutrient fertilizer. Crop yield and crop quality were assessed, and multielemental analysis of grains was conducted for the evaluation of the fertilization effect on maize grains and to assess bioavailability of nutrients from fertilizers. Grain yield for maize treated with micronutrients delivered with SMS was noticeably higher (11.5% than the untreated group and the NPK (nitrogen, phosphorus, potassium fertilizer treated only group (2.8%. Bioavailability (TF of micronutrients from SMS were comparable with reference micronutrient fertilizer (7% Zn, 4% Mn, and 2.3% Cu. The new product has the potential to be used as a micronutrient fertilizer. Satisfactory results of grain yield (6.4 Mg ha-1, high content of micronutrients (Zn 1.6%, Mn 1.2%, and Cu 1.8%, and macronutrients (P 1.0%, S 3.1%, Ca 8.2%, and K 0.2% were observed. The bioavailability suggests that enriched SMS could be a good alternative to fertilizers in the present market.

  10. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Juha, Libor; Kuba, J.; Cihelka, Jaroslav; Hájková, Věra; Koptyaev, Sergey; Krása, Josef; Velyhan, Andriy; Bergh, M.; Caleman, C.; Hajdu, J.; Bionta, R.M.; Chapman, H.; Hau-Riege, S.P.; London, R.A.; Jurek, M.; Krzywinski, J.; Nietubyc, R.; Pelka, J. B.; Sobierajski, R.; Meyer-ter-Vehn, J.; Tronnier, A.; Sokolowski-Tinten, K.; Stojanovic, N.; Tiedtke, K.; Toleikis, S.; Tschentscher, T.; Wabnitz, H.; Zastrau, U.

    2007-01-01

    Roč. 15, č. 10 (2007), s. 6036-6042 ISSN 1094-4087 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528; GA AV ČR KAN300100702 Grant - others:GA MŠk(CZ) 1K05026 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40400503 Keywords : free-electron laser * soft X-rays * focusing * beam profile * ablation threshold * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007

  11. Nature, Origin and Transfers of SPM (Mineral, Organic, and Biological) in Hydrosystems : a New Methodological Approach by Morphogranulometry

    Science.gov (United States)

    Viennet, D.; Fournier, M.; Copard, Y.; Dupont, J. P.

    2017-12-01

    Source to sink is one of the main concepts in Earth Sciences for a better knowledge of hydrosystems dynamics. Regarding this issue, the present day challenge consists in the characterization by in-situ measurements of the nature and the origin of suspended particles matters (SPM). Few methods can fully cover such requirements and among them, the methodology using the form of particles deserves to be developed. Indeed, morphometry of particles is widely used in sedimentology to identify different sedimentary stocks, source-to-sink transport and sedimentation mechanisms. Currently, morphometry analyses are carried out by scanning electron microscope coupled to image analysis to measure various size and shape descriptors on particles like flatness, elongation, circularity, sphericity, bluntness, fractal dimension. However, complexity and time of analysis are the main limitations of this technique for a long-term monitoring of SPM transfers. Here we present an experimental morphometric approach using a morphogranulometer (a CCD camera coupled to a peristaltic pump). The camera takes pictures while the sample is circulating through a flow cell, leading to the analysis of numerous particles in a short time. The image analysis provides size and shape information discriminating various particles stocks according to their nature and origin by statistical analyses. Measurements were carried out on standard samples of particles commonly found in natural waters. The size and morphological distributions of the different mineral fractions (clay, sand, oxides etc), biologic (microalgae, pollen, etc) and organic (peat, coal, soil organic matter, etc) samples are statistically independent and can be discriminated on a 4D graph. Next step will be on field in situ measurements in a sink-spring network to understand the transfers of the particles stocks inside this simple karstic network. Such a development would be promising for the characterisation of natural hydrosystems.

  12. Effect of mineral and organic fertilization on grey water footprint in a fertirrigated crop under semiarid conditions.

    Science.gov (United States)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana

    2016-04-01

    The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). In semiarid scenarios with low water quality, where the irrigation is necessary to maintain production, green WF is zero because the effective rainfall is negligible. As well as blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. The major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study is focused in assessment mineral and organic fertilization on grey WF in a fertirrigated melon crop under semiarid conditions, which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12

  13. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies

    Directory of Open Access Journals (Sweden)

    Davide Francioli

    2016-09-01

    Full Text Available Soil management is fundamental to all agricultural systems and fertilization practices have contributed substantially to the impressive increases in food production. Despite the pivotal role of soil microorganisms in agro-ecosystems, we still have a limited understanding of the complex response of the soil microbiota to organic and mineral fertilization in the very long-term. Here we report the effects of different fertilization regimes (mineral, organic and combined mineral and organic fertilization, carried out for more than a century, on the structure and activity of the soil microbiome. Organic matter content, nutrient concentrations and microbial biomass carbon were significantly increased by mineral, and even more strongly by organic fertilization. Pyrosequencing revealed significant differences between the structures of bacterial and fungal soil communities associated to each fertilization regime. Organic fertilization increased bacterial diversity, and stimulated microbial groups (Firmicutes, Proteobacteria and Zygomycota that are known to prefer nutrient-rich environments, and that are involved in the degradation of complex organic compounds. In contrast, soils not receiving manure harbored distinct microbial communities enriched in oligotrophic organisms adapted to nutrient-limited environments, as Acidobacteria. The fertilization regime also affected the relative abundances of plant beneficial and detrimental microbial taxa, which may influence productivity and stability of the agroecosystem. As expected, the activity of microbial exoenzymes involved in carbon, nitrogen and phosphorous mineralization were enhanced by both types of fertilization. However, in contrast to comparable studies, the highest chitinase and phosphatase activities were observed in the solely mineral fertilized soil. Interestingly, these two enzymes showed also a particular high biomass-specific activities and a strong negative relation with soil pH. As many soil

  14. The mineralization and transformation of both added organic nitrogen and native soil N in red soils from four different ecological conditions

    International Nuclear Information System (INIS)

    Ye Qingfu; Zhang Qinzheng; He Zhenli; Xi Haifu; Wu Gang; Wilson, M.J.

    1998-01-01

    The NH 4 + -N, microbial biomass-N, humus-N, and extractable organic N derived from the added 15 N-labelled ryegrass and soil indigenous pool were measured separately with 15 N tracing techniques. Based on the recovery of NH 4 + - 15 N and lost- 15 N (mainly as NH 3 ), more than 30% of the added ryegrass 15 N was mineralized in 15 d. The amount of mineralized N increased with time up to 90 d for all soils except for the upland soil in which it decreased slightly. The mineralization of ryegrass N and incorporation of ryegrass- 15 N into microbial biomass was greatest in upland soil. The transformation of ryegrass 15 N into humus 15 N occurred rapidly in 15 d, with higher humus 15 N occurring in the upland or tea-garden soil than the paddy and unarable soil. The addition of ryegrass caused additional mineralization of soil indigenous organic N and enhanced the turnover of both microbial biomass N and stable organic N in soils

  15. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, Jonatan, E-mail: jonatan.klaminder@emg.umu.se [Department of Ecology and Environmental Science, Umea University, 90187 Umea (Sweden); Farmer, John G. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); MacKenzie, Angus B. [Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, Scotland (United Kingdom)

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ({sup 206}Pb/{sup 207}Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ({sup 206}Pb/{sup 207}Pb = 1.170 {+-} 0.002; mean {+-} SD) overlapped with that of the peat ({sup 206}Pb/{sup 207}Pb = 1.16 {+-} 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ({sup 206}Pb/{sup 207}Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by {sup 206}Pb/{sup 207}Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: {yields} We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. {yields} Ombrotrophic peat

  16. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    International Nuclear Information System (INIS)

    Klaminder, Jonatan; Farmer, John G.; MacKenzie, Angus B.

    2011-01-01

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ( 206 Pb/ 207 Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ( 206 Pb/ 207 Pb = 1.170 ± 0.002; mean ± SD) overlapped with that of the peat ( 206 Pb/ 207 Pb = 1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ( 206 Pb/ 207 Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by 206 Pb/ 207 Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: → We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. → Ombrotrophic peat cores were used as records of atmospheric inputs of Pb.

  17. A Boiling-Water-Stable, Tunable White-Emitting Metal-Organic Framework from Soft-Imprint Synthesis.

    Science.gov (United States)

    He, Jun; Huang, Jian; He, Yonghe; Cao, Peng; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao

    2016-01-26

    A new avenue for making porous frameworks has been developed by borrowing an idea from molecularly imprinted polymers (MIPs). In lieu of the small molecules commonly used as templates in MIPs, soft metal components, such as CuI, are used to orient the molecular linker and to leverage the formation of the network. Specifically, a linear dicarboxylate linker with thioether side groups reacted simultaneously with Ln(3+) ions and CuI, leading to a bimetallic net featuring strong, chemically hard Eu(3+) -carboxylate links, as well as soft, thioether-bound Cu2 I2 clusters. The CuI block imparts water stability to the host; with the tunable luminescence from the lanthanide ions, this creates the first white-emitting MOF that is stable in boiling water. The Cu2 I2 block also readily reacts with H2 S, and enables sensitive colorimetric detection while the host net remains intact. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influences upon the lead isotopic composition of organic and mineral horizons in soil profiles from the National Soil Inventory of Scotland (2007–09)

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, John G., E-mail: J.G.Farmer@ed.ac.uk [School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF Scotland (United Kingdom); Graham, Margaret C. [School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF Scotland (United Kingdom); Eades, Lorna J. [School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ Scotland (United Kingdom); Lilly, Allan; Bacon, Jeffrey R. [James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland (United Kingdom)

    2016-02-15

    Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon {sup 206}Pb/{sup 207}Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon {sup 206}Pb/{sup 207}Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of {sup 208}Pb/{sup 207}Pb vs. {sup 208}Pb/{sup 206}Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The {sup 206}Pb/{sup 207}Pb ratio of the organic top horizon in (ii) was unrelated to the {sup 206}Pb/{sup 207}Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the {sup 206}Pb/{sup 207}Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m{sup −2} were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean {sup 206}Pb/{sup 207}Pb ratio ~ 1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column. - Highlights: • Pb isotope ratios were determined for 644

  19. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    International Nuclear Information System (INIS)

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-01-01

    The addition of exogenous inorganic carbon (CaCO 3 ) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, 14 C-labeled rice straw addition, 14 C-labeled CaCO 3 addition, and a combination of 14 C-labeled rice straw and CaCO 3 . Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both 14 C-rice straw and Ca 14 CO 3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of 14 C-rice straw and Ca 14 CO 3 addition on positive priming effects of SOC mineralization. • Inorganic C is involved in soil C cycling with the participation of soil microbial

  20. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shuzhen [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Huang, Yuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Ge, Yunhui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Su, Yirong [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Xu, Xinwen; Wang, Yongdong [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); He, Xunyang, E-mail: hbhpjhn@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China)

    2016-11-15

    The addition of exogenous inorganic carbon (CaCO{sub 3}) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, {sup 14}C-labeled rice straw addition, {sup 14}C-labeled CaCO{sub 3} addition, and a combination of {sup 14}C-labeled rice straw and CaCO{sub 3}. Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition on positive priming effects of SOC mineralization. • Inorganic C is involved in

  1. Some aspects of miners' exposure to radon in Poland in view of international organizations recommendations and European Union directives

    International Nuclear Information System (INIS)

    Chruscielewski, W.; Liniecki, J.; Jankowski, J.

    1999-01-01

    Exposure of miners to natural radiation in which radon-222 plays the major role has been studied in Poland since the end of the nineteen sixties. The work environment measurements and personal monitoring methods have been developed for monitoring the exposure. A quite wide range of doses resulting from big differences in radon concentrations in mines is characteristic of miners' exposure. It was estimated that about 16% of miners received doses above 5 mSv per year. This group of miners should be provided with individual dosimetry. In this paper methodological and legal aspects of the situation in mines are analyzed. A large number of Polish recommendations and legal regulations must be changed in order to harmonize them with the directives of the European Union. (author)

  2. Spatial distribution of the coffee-leaf-miner (Leucoptera coffeella) in an organic coffee (Coffea arabica L.) field in formation

    OpenAIRE

    Scalon, João Domingos; Universidade Federal de Lavras; Freitas, Gabriela Alves; DEX/UFLA; Avelar, Maria Betania Lopes; DEX/UFLA; Zacarias, Mauricio Sérgio; EPAMIG/EcoCentro

    2011-01-01

    Coffee production has been one of the economy pillars of many tropical countries. Unfortunately, this crop is susceptible to infestation by the coffee-leaf-miner (Leucoptera coffeella (Guérin-Mèneville & Perrottet, 1842)) which causes severe damage to coffee plantations with losses that may reach 80% of the total production. In recent years, researchers have been trying to develop practices for minimizing the use of pesticides in the coffee-leaf-miner control. It is well known that the un...

  3. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Soft lubrication

    Science.gov (United States)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  5. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

    Science.gov (United States)

    Chen, Chunmei; Thompson, Aaron

    2018-01-16

    Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

  6. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize.

    Science.gov (United States)

    Prinsi, Bhakti; Espen, Luca

    2015-04-03

    Glutamine synthetase (GS) catalyzes the first step of nitrogen assimilation in plant cell. The main GS are classified as cytosolic GS1 and plastidial GS2, of which the functionality is variable according to the nitrogen sources, organs and developmental stages. In maize (Zea mays L.) one gene for GS2 and five genes for GS1 subunits are known, but their roles in root metabolism are not yet well defined. In this work, proteomic and biochemical approaches have been used to study root GS enzymes and nitrogen assimilation in maize plants re-supplied with nitrate, ammonium or both. The plant metabolic status highlighted the relevance of root system in maize nitrogen assimilation during both nitrate and ammonium nutrition. The analysis of root proteomes allowed a study to be made of the accumulation and phosphorylation of six GS proteins. Three forms of GS2 were identified, among which only the phosphorylated one showed an accumulation trend consistent with plastidial GS activity. Nitrogen availabilities enabled increments in root total GS synthetase activity, associated with different GS1 isoforms according to the nitrogen sources. Nitrate nutrition induced the specific accumulation of GS1-5 while ammonium led to up-accumulation of both GS1-1 and GS1-5, highlighting co-participation. Moreover, the changes in thermal sensitivity of root GS transferase activity suggested differential rearrangements of the native enzyme. The amino acid accumulation and composition in roots, xylem sap and leaves deeply changed in response to mineral sources. Glutamine showed the prevalent changes in all nitrogen nutritions. Besides, the ammonium nutrition was associated with an accumulation of asparagine and reducing sugars and a drop in glutamic acid level, significantly alleviated by the co-provision with nitrate. This work provides new information about the multifaceted regulation of the GS enzyme in maize roots, indicating the involvement of specific isoenzymes/isoforms, post

  7. From Soft Sculpture to Soft Robotics: Retracing a Physical Aesthetics of Bio-Morphic Softness

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2017-01-01

    Soft robotics has in the past decade emerged as a growing subfield of technical robotics research, distinguishable by its bio-inspired design strategies, interest in morphological computation, and interdisciplinary combination of insights from engineering, computer science, biology and material...... science. Recently, soft robotics technology has also started to make its way into art, design, and architecture. This paper attempts to think an aesthetics of softness and the life-like through an artistic tradition deeply imbricated with an interrogation of softness and its physical substrates, namely...... the soft sculpture that started proliferating in the late 1960s. Critical descriptions of these works, interestingly, frequently emphasize their similarities with living organisms and bodies as a central tenet of their aesthetics. The paper seeks to articulate aspects of a contiguity between softness...

  8. Characterization of the causal organism of blackleg and soft rot of potato, and management of the disease with balanced fertilization

    International Nuclear Information System (INIS)

    Ali, H.F.; Bibi, A.; Ahmad, M.; Junaid, M.; Ali, A.; Alam, S.

    2014-01-01

    Based upon colony morphology, physio-biochemical tests and polymerase chain reaction (using species or subspecies-specific primers) studies, 20 isolates (out of a total of 42) were found to be Erwinia carotovora subspecies atroseptica (Eca), 19 were identified as Erwinia carotovora subspecies carotovora (Ecc), and 3 as Erwinia chrysanthemi (Ech). Results of the subspecies-differentiating biochemical tests indicated that majority of the candidate Ecc isolates did not produce acid from methyle glucoside (as expected) but their reaction to the production of reducing substances from sucrose was variable. Likewise, some of our Eca and Ecc strains (unexpectedly) were sensitive to erythromycin. Also, most of our Eca strains unexpectedly grew at 36 degree C. Our strains slightly deviate from the standard description in some of their minor characteristics but they still remain the valid members of the Eca, Ecc or Ech group as similar variations in minor characteristics have been found by other workers. The occurrence of intermediate forms of Eca and Ecc (sharing some of the characteristics of both the groups) indicates variability happening among these strains. This variability indicates the potential ability of the pathogen to break the resistance of the host. The results of the effect of balanced nutrition in controlling blackleg and soft rot of potatoes indicated that the fertilizer combination of N3P1K3 (262/252/262 kg.ha-1) which is slightly higher than the normally practiced dose (247/247/247 kg.ha-1) was the best in bringing the disease to a minimum and subsequently increasing the yield. (author)

  9. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  10. Natural nanoparticles in soils and their role in organic-mineral interactions and cooloid-facilitated transport

    NARCIS (Netherlands)

    Regelink, I.C.

    2014-01-01

    Mineral nanoparticles are naturally present in the soil and play an important role in several soil processes. This thesis uses a combination of novel analytical techniques, among which Field-Flow-Fractionation, to study nanoparticles in soil and water samples. The results show that nanoparticles

  11. Pre- and Postoperative Chemotherapy in Localized Extremity Soft Tissue Sarcoma: A European Organization for Research and Treatment of Cancer Expert Survey.

    Science.gov (United States)

    Rothermundt, Christian; Fischer, Galina F; Bauer, Sebastian; Blay, Jean-Yves; Grünwald, Viktor; Italiano, Antoine; Kasper, Bernd; Kollár, Attila; Lindner, Lars H; Miah, Aisha; Sleijfer, Stefan; Stacchiotti, Silvia; Putora, Paul Martin

    2018-04-01

    The management of localized extremity soft tissue sarcomas (STS) is challenging and the role of pre- and postoperative chemotherapy is unclear and debated among experts. Medical oncology experts of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group were asked to participate in this survey on the use of pre- and postoperative chemotherapy in STS. Experts from 12 centers in Belgium, France, Germany, Great Britain, Italy, Switzerland, and The Netherlands agreed to participate and provided their treatment algorithm. Answers were converted into decision trees based on the objective consensus methodology. The decision trees were used as a basis to identify consensus and discrepancies. Several criteria used for decision-making in extremity STS were identified: chemosensitivity, fitness, grading, location, and size. In addition, resectability and resection status were relevant in the pre- and postoperative setting, respectively. Preoperative chemotherapy is considered in most centers for marginally resectable tumors only. Yet, in some centers, neoadjuvant chemotherapy is used routinely and partially combined with hyperthermia. Although most centers do not recommend postoperative chemotherapy, some offer this treatment on a regular basis. Radiotherapy is an undisputed treatment modality in extremity STS. Due to lacking evidence on the utility of pre- and postoperative chemotherapy in localized extremity STS, treatment strategies vary considerably among European experts. The majority recommended neoadjuvant chemotherapy for marginally resectable grade 2-3 tumors; the majority did not recommend postoperative chemotherapy in any setting. The management of localized extremity soft tissue sarcomas (STS) is challenging and the role of pre- and postoperative chemotherapy is unclear and debated among experts. This study analyzed the decision-making process among 12 European experts on systemic therapy for STS. A wide range of

  12. Soft electronics for soft robotics

    Science.gov (United States)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  13. New set-up for high-quality soft-X-ray absorption spectroscopy of large organic molecules in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Holch, Florian; Huebner, Dominique [Universitaet Wuerzburg, Experimentelle Physik VII, Am and Roentgen Reasearch Center for Complex Materials (RCCM) Hubland, 97074 Wuerzburg (Germany); Fink, Rainer [Universitaet Erlangen-Nuernberg, ICMM and CENEM, Egerlandstrasse 3, 91058 Erlangen (Germany); Schoell, Achim, E-mail: achim.schoell@physik.uni-wuerzburg.de [Universitaet Wuerzburg, Experimentelle Physik VII, Am and Roentgen Reasearch Center for Complex Materials (RCCM) Hubland, 97074 Wuerzburg (Germany); Umbach, Eberhard [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)

    2011-11-15

    Highlights: {yields} We present a new set-up for x-ray absorption (NEXAFS) on large molecules in the gas-phase. {yields} The cell has a confined volume and can be heated. {yields} The spectra can be acquired fast, are of very high quality with respect tosignal-to-noise ratio and energy resolution. {yields} This allowsthe analysis of spectroscopic details (e.g. solid state effects by comparing gas- and condensed phase data). - Abstract: We present a new experimental set-up for the investigation of large (>128 amu) organic molecules in the gas-phase by means of near-edge X-ray absorption fine structure spectroscopy in the soft X-ray range. Our approach uses a gas cell, which is sealed off against the surrounding vacuum and which can be heated above the sublimation temperature of the respective molecular compound. Using a confined volume rather than a molecular beam yields short acquisition times and intense signals due to the high molecular density, which can be tuned by the container temperature. In turn, the resulting spectra are of very high quality with respect to signal-to-noise ratio and energy resolution, which are the essential aspects for the analysis of fine spectroscopic details. Using the examples of ANQ, NTCDA, and PTCDA, specific challenges of gas phase measurements on large organic molecules with high sublimation temperatures are addressed in detail with respect to the presented set-up and possible ways to tackle them are outlined.

  14. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Science.gov (United States)

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of

  16. International mineral economics

    International Nuclear Information System (INIS)

    Gocht, W.R.; Eggert, R.G.

    1988-01-01

    International Mineral Economics provides an integrated overview of the important concepts. The treatment is interdisciplinary, drawing on the fields of economics, geology, business, and mining engineering. Part I examines the technical concepts important for understanding the geology of ore deposits, the methods of exploration and deposit evaluation, and the activities of mining and mineral processing. Part II focuses on the economic and related concepts important for understanding mineral development, the evaluation of exploration and mining projects, and mineral markets and market models. Finally, Part III reviews and traces the historical development of the policies of international organizations, the industrialized countries, and the developing countries. (orig.)

  17. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  18. Incidência do míldio em cebola sob adubação mineral e orgânica Incidence of downy mildew in onion growing under mineral and organic fertilization

    Directory of Open Access Journals (Sweden)

    Paulo Antônio de S. Gonçalves

    2004-09-01

    Full Text Available Analisou-se a relação entre adubação mineral e orgânica sobre a incidência de míldio (Peronospora destructor em cebola (Allium cepa. O trabalho constituiu-se de dois experimentos localizados em Ituporanga, conduzidos entre agosto e dezembro de 1998. O experimento 1, com fontes orgânicas, constou dos tratamentos: esterco de suínos, esterco de aves, composto, esterco de peru e húmus, na dosagem de 75 kg/ha de N; esterco de suínos, na dosagem de 37,5 kg/ha de N; adubação mineral, 30-120-60 kg/ha de N-P2O5-K2O; 60-240-120 kg/ha de N-P2O5-K2O e testemunha sem adubação. O experimento 2 constou dos tratamentos: fontes minerais, 30-120-60 kg/ha de N-P2O5-K2O; 90-360-180 kg/ha de N-P2O5-K2O; 75 kg/ha de N; 225 kg/ha de N; 80 kg/ha de P2O5; 240 kg/ha de P2O5; 60 kg/ha de K2O; 180 kg/ha de K2O; esterco de suínos + fosfato natural, em três combinações, 7,9+0,1, 15,7+0,2 e 47,2+0,6 t/ha, respectivamente; testemunha sem adubação. Não houve diferença entre as fontes mineral e orgânica sobre a incidência de míldio. A relação entre nutrientes e doença foi variável entre datas de amostragem e distinta para fontes minerais e orgânicas.The incidence of downy mildew, Peronospora destructor Berk. Casp., in onion growing in chemical and organic fertilized plots was evaluated in Ituporanga, Santa Catarina State, Brazil. Two experiments were carried out between August to December 1998. The treatments in the first experiment with organic sources were: 75.0 kg/ha of N (swine manure; poultry manure; compost; turkey manure; humus; 37.5 kg/ha of N (swine manure half dose; control (NPK, 30-120-60 kg/ha of N-P2O5-K2O and double rate of NPK (60-240-120 kg/ha of N-P2O5-K2O; and unfertilized control. In mineral fertilization experiment, the mineral levels were 1 and 3 times the recommended rates based on soil analysis: 30-120-60 kg/ha of N-P2O5-k2O; 90-360-180 kg/ha of N-P2O5-K2O; 75.0 kg/ha of N; 225.0 kg/ha of N; 80.0 kg/ha of P2O5; 240.0 kg/ha of

  19. Soft plasma processing of organic nanowires: a route for the fabrication of 1D organic heterostructures and the template synthesis of inorganic 1D nanostructures.

    Science.gov (United States)

    Alcaire, Maria; Sanchez-Valencia, Juan R; Aparicio, Francisco J; Saghi, Zineb; Gonzalez-Gonzalez, Juan C; Barranco, Angel; Zian, Youssef Oulad; Gonzalez-Elipe, Agustin R; Midgley, Paul; Espinos, Juan P; Groening, Pierangelo; Borras, Ana

    2011-11-01

    Hierarchical (branched) and hybrid metal-NPs/organic supported NWs are fabricated through controlled plasma processing of metalloporphyrin, metallophthalocyanine and perylene nanowires. The procedure is also applied for the development of a general template route for the synthesis of supported metal and metal oxide nanowires.

  20. "PROCESS and UVolution: photochemistry experiments in Low Earth Orbit": investigation of the photostability of organic and mineral material exposed to Mars surface UV radiation conditions

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Person, Alain; Chaput, Didier; Raulin, Francois; Cottin, Hervé

    The harsh martian environment could explain the lack of organics and minerals such as car-bonates by destroying them: i) no organic molecule has been found at the two different landing sites of the Viking landers within the detection limits of the instruments onboard, ii) to date, no large deposits of carbonates have been detected and their detection is specific of local ar-eas and in very low amounts. In this context several experimental and numerical modelling studies were led to evaluate the possibility for the destruction or evolution of the organics and carbonates under the martian surface environmental conditions. The presence of UV radiation has been proposed to explain the photodecomposition of such material. This is the reason why, to investigate the nature, abundance, and stability of organic and mineral material that could survive under such environmental conditions, we exposed in low Earth orbit organic molecules and carbonates (also biominerals) with martian relevance to solar UV radiation ¿ 200 nm, in the frame of the experiment UVolution, onboard the BIOPAN ESA module which was set outside a Russian Foton automated capsule and exposed to space condition during 12 days in September 2007, and the experiment PROCESS (hervé peux tu rajouter quelques infos sur le temps exact d'exposition stp) which was set outside the International Space Station (ISS). Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Preliminary results indicate that that no organic sample seems to resist to the solar UV radiation if directly exposed to it. Conversely our results show that the exposed carbonates seem to be stable to the solar UV radiation if directly exposed to it. Moreover, the stability of the biominerals strengthens the interest to explore deeper their potential as life records at Mars. Hence they should be considered as primary targets for in situ analyses during future missions.

  1. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; hide

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  2. Effect of an Organic Trace Mineral Premix on the Semen Quality, Testicular Morphology and Gene Expression Related to Testosterone Synthesis of Male Broiler Breeders

    Directory of Open Access Journals (Sweden)

    T Shan

    Full Text Available ABSTRACT In order to investigate the effect of organic trace minerals premix (OTM on the reproductive performance of breeder roosters, a total of 240 San Huang roosters (23 weeks of age were randomly divided into two treatments with six replicates of 20 roosters each. The first group (n = 120 was fed a basal diet containing an inorganic trace minerals premix (ITM and the other group (n = 120 was fed the basal diet in which ITM was replaced by OTM. The experiment period was 22 weeks. Semen from one randomly-selected rooster per replicate was collected two weeks after the beginning of the experiment and other 10 times every two weeks. Another rooster per replicate was randomly selected at 30, 35, and 45 weeks of age, and sacrificed. Results showed that OTM did not affect relative organ weights. There was a significant increase in semen parameters in OTM group (p<0.05, such as semen volume, semen density, and semen motility from 31 to 35 weeks. OTM-fed roosters presented higher serum testosterone levels at 45 weeks of age, as well as higher testicular mRNA expression of the genes 3-beta dehydrogenase 2 (HSD3B2 and cytochrome P450 17A1 (CYP17A1 in the OTM-fed group at 45 weeks of age compared with those fed ITM (p<0.05. Considering the results of the present study, it was concluded that feeding organic instead of inorganic trace minerals to male broilers breeders improves semen quality, which may be attributed to their better testicular development and higher expression of enzymes related to testosterone synthesis.

  3. Adubação mineral e orgânica e a densidade populacional de Thrips tabaci Lind. (Thysanoptera: Thripidae em cebola Mineral and organic fertilization and onion thrips, Thrips tabaci Lind. (Thysanoptera: Thripidae population density

    Directory of Open Access Journals (Sweden)

    Paulo Antonio de Souza Gonçalves

    2004-08-01

    Full Text Available O efeito da adubação mineral e orgânica sobre a densidade populacional de Thrips tabaci Lind. em cebola, Allium cepa L., foi avaliado na Estação Experimental de Ituporanga, SC (Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, entre agosto e dezembro de 1998. Os tratamentos foram níveis de adubação mineral com N, P2O5 e K2O em dose recomendada e três vezes a recomendada, adubação orgânica e a testemunha foi a ausência de adubação. Os tratamentos foram as seguintes doses de nutrientes: 1 30 + 120 + 60kg ha-1 de NPK; 2 90 + 360 + 180kg ha-1 de NPK; 3 75kg ha-1 de N; 4 225kg ha-1 de N; 5 80kg ha-1 de P2O5; 6 240kg ha-1 de P2O5; 7 60kg ha-1 de K2O; 8 180kg ha-1 de K2O; 9 75kg ha-1 de N + 80kg ha-1 de P2O5 (esterco de suíno + fosfato natural; 10 225kg ha-1 de N + 240kg ha-1 de P2O5 (esterco de suíno + fosfato natural; 11 37,5kg ha-1 de N + 40kg ha-1 de P2O5 (esterco de suíno + fosfato natural; testemunha sem adubação. Nenhuma das fontes e níveis de adubação apresentaram nível populacional de T. tabaci superior à testemunha sem adubo.The effect of the mineral and organic fertilization on onion thrips, Thrips tabaci Lind., population density was evaluated at Ituporanga Experiment Station, EPAGRI, Santa Catarina State, Brazil, between August and December 1998. The treatments were different levels of mineral fertilization with N, P2O5 and K2O at recommended rate and three times recommended rate, the organic fertilization and without fertilization was check. The treatments in nutrient rate were: 30 + 120 + 60kg NPK ha-1; 90 + 360 + 180kg NPK ha-1; 75kg N ha-1; 225kg N ha-1; 80kg P2O5 ha-1; 240kg P2O5 ha-1; 60kg K2O ha-1; 180kg K2O ha-1; 75kg N ha-1 + 80kg P2O5 ha-1 (swine manure + phosphate rock; 225kg N + 240kg P2O5 ha-1 (swine manure + phosphate rock; 37,5kg N + 40kg P2O5 ha-1 (swine manure + phosphate rock; check without fertilizer. The onion thrips population density was similar among treatments with

  4. Soft options. Sanfte Alternativen

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, R

    1981-01-01

    This collection of contributions made by supporters of the ''soft approach'' is intended to provide an insight into a conceivable future which is quite different from traditional ideas on social and economic developments based on the usual economic thinking and conventional energy sources. The chapter entitled ''The new world view'' shows the way from a machine-like paradigm to a living example in science. In the chapter entitled ''Women are organizing their future'' female perspectives and concepts of solutions are described. In the chapter ''Eco-tecture'' examples of living architecture and of environment formation are presented. In the chapter ''Soft technology'' approaches to an ecology-oriented technology are discussed, and in the chapter ''Network and future workshops'' novel forms of organization and communication are described.

  5. Improved high-frequency soft magnetic properties of FeCo films on organic ferroelectric PVDF substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Wang, Zhen; Han, Xuemeng; Li, Yue; Guo, Xiaobin; Zuo, Yalu; Xi, Li, E-mail: xili@lzu.edu.cn

    2015-02-01

    FeCo films with various thicknesses were fabricated by direct-current magnetron sputtering on corning glass and organic ferroelectric PVDF substrates at the same time with 5 nm Ru seed layer and 5 nm Ta protective layer. The in-plane uniaxial anisotropy field of FeCo on glass substrate increases from 24 to 36 Oe with the increase of FeCo film thickness from 5 to 100 nm. However, a large in-plane anisotropy field of FeCo on PVDF substrate increases with FeCo thickness from 5 to 20 nm and gradually decreases with the FeCo thickness further increasing. Atomic force microscope images of FeCo on glass show quite smooth surface with root-mean-square roughness around 0.5 nm and have none visible granules on the surface for all samples. While, AFM images of FeCo on PVDF show quite rough surface with RMS roughness around 25 nm and have visible granules with the smallest granules appearing at the FeCo thickness of 20 nm. The permeability spectra show the typical ferromagnetic resonance phenomenon and can be well fitted by the LLG equation with the obtained experimental parameters. The ferromagnetic resonance frequency can reach 7.0 GHz for the 20 nm FeCo film on PVDF. Moreover, the quality factor of this sample can respectively reach 26, 12 and 7 at 1.0, 2.0, and 3.0 GHz, indicating the potential real 3G application for high-frequency devices. - Highlights: 1.Magnetic and morphological properties of FeCo films on PVDF substrates are studied. 2.The large anisotropy field of FeCo films on PVDF is obtained. 3.Improved high frequency properties of FeCo films on flexible substrates are obtained. 4.The origin of improved high frequency properties of FeCo films on PVDF is studied.

  6. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

    Directory of Open Access Journals (Sweden)

    Joseph E Peterson

    Full Text Available BACKGROUND: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. METHODOLOGY/PRINCIPAL FINDINGS: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. CONCLUSIONS/SIGNIFICANCE: Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

  7. The application of soft X-ray microscopy to the in-situ analysis of sporopollenin/sporinite in a rank variable suite of organic rich sediments

    Energy Technology Data Exchange (ETDEWEB)

    Cody, G.D.; Botto, R.E. [Argonne National Lab., IL (United States). Chemistry Div.; Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Wirick, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1997-07-01

    Soft X-ray imaging and carbon near edge absorption fine structure spectroscopy (C-NEXAFS) has been used for the in-situ analysis of sporinite in a rank variable suite of organic rich sediments extending from recent up to high volatile A bituminous coal. The acquisition of chemically based images (contrast based on the 1s - 1{pi}* transition of unsaturated carbon), revealed a homogeneous chemical structure in the spore exine. C-NEXAFS microanalysis indicates chemical structural evolution in sporopollenin/sporinite with increases in maturation. The most significant change in the C-NEXAFS spectrum is an increase in unsaturated carbon, presumably aromatic, with rank. The rate of aromatization in sporinite exceeds that of the surrounding vitrinite. Increases in the concentration of unsaturated carbon are compensated by losses of aliphatic and hydroxylated aliphatic carbon components. Carboxyl groups are present in low and variable concentrations. Absorption due to carboxyl persists in the most mature specimen in this series, a high volatile A rank coal. The reactions which drive sporopollenin chemical structural evolution during diagenesis presumably involve dehydration, Diels-Alder cyclo-addition, and dehydrogenation reactions which ultimately lead to a progressively aromatized bio/geopolymer.

  8. EFFECTS OF THE APPLICATION OF A MINERAL-AND-ORGANIC FERTILISER PRODUCED FROM BROWN COAL ON THE OCCURRENCE AND INFECTIOUS POTENTIAL OF ENTOMOPATHOGENIC FUNGI IN SOIL

    Directory of Open Access Journals (Sweden)

    Anna Majchrowska-Safaryan

    2017-05-01

    Full Text Available This study compared the species composition and rate of entomopathogenic fungi occurrence in cultivable soil following the application of a mineral-and-organic fertiliser produced from brown coal. The material for testing consisted of soil samples collected in the second year of the experiment on two dates in 2015 (spring and autumn. The experiment was carried out on the following plots: control plot (no fertilisation; a plot fertilised with mineral fertilisers NPK presowing + N60 for top dressing; a plot fertilised with NPK presowing + manure; a plot fertilised with a fertiliser produced from brown coal at a dose of 1 t/ha NPK presowing + N20 for top dressing; and a plot fertilised with a fertiliser produced from brown coal at a dose of 5 t/ha NPK presowing + N40 for top dressing. Entomopathogenic fungi were isolated from soil of particular fertilisation experiment plots using insect traps (Galleria mellonella larvae as well as a selective medium. Three species of entomopathogenic fungi, i.e. Beauveria bassiana, Metarhizium anisopliae s.l. and Isaria fumosorosea, were isolated using two methods, from the soil samples collected from particular fertilisation experiment plots on two dates, i.e. spring and autumn. Fungus M. anisopliae s.l. proved to be the predominant species in the tested soil samples. The addition of the mineral-and-organic fertiliser, produced based on brown coal, to the soil at both applied doses contributed to an increase in the number of infectious units (CFUs of entomopathogenic fungi formed in relation to the control plot.

  9. Multiscale organisation of organic matter associated with gold and uranium minerals in the Witwatersrand basin, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Smieja-Krol, Beata; Duber, Stanislaw [Faculty of Earth Science, University of Silesia, 60 Bedzinska St., 41-200 Sosnowiec (Poland); Rouzaud, Jean-Noel [Laboratoire de Geologie, Ecole Normale Superieure, 24, rue Lhomond, 75231 Paris Cedex 5 (France)

    2009-03-01

    Organic matter from the northern part of the Early Proterozoic Witwatersrand basin (Carbon Leader reef) was investigated using optical (OM) and transmission electron (TEM) microscopes, completed by XRD analysis. The multiscale organization (texture, microtexture, structure) of the organic matter was observed in order to gain information about the processes which affected organic material after its deposition in sediments. In the micrometre scale (optical microscope), the shape and size of the Reflectance Indicating Surface (RIS) of the organic matter were determined. The organic matter reveals a prevailing biaxial symmetry. The size of RIS is generally dependent on uranium and increases with increasing uranium concentration. Furthermore, it appears that more than one RIS is present within the scale of a single sample, each with a different symmetry and size. The presence of domains differing in organisation of the aromatic framework was confirmed by TEM observation in the DF mode. The aromatic skeleton of organic matter is composed of short, often crumpled, mostly isolated (non-stacked) polyaromatic layers whose fringe length corresponds to 3-16 aromatic rings. The data indicate reorganization of the polyaromatic organic matter structure under stress in high pressure and relatively low temperature conditions. The organic matter was in a solid state within the rocks before the pressure event. (author)

  10. Deuterohemin-Peptide Enzyme Mimic-Embedded Metal-Organic Frameworks through Biomimetic Mineralization with Efficient ATRP Catalytic Activity.

    Science.gov (United States)

    Jiang, Wei; Wang, Xinghuo; Chen, Jiawen; Liu, Ying; Han, Haobo; Ding, Yi; Li, Quanshun; Tang, Jun

    2017-08-16

    An enzyme mimic harboring iron porphyrin (DhHP-6) embedded in zeolite imidazolate framework-8 (ZIF-8) was constructed through a biomimetic mineralization approach to obtain composite DhHP-6@ZIF-8. The composite was then used as a catalyst in the atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA 500 ) in which poly(PEGMA 500 ) could be synthesized with monomer conversion of 76.1% and M n of 45 900 g/mol, stronger than that obtained when using free DhHP-6 as a catalyst. More importantly, it could efficiently overcome the drawbacks of free DhHP-6 and achieve the easy separation of DhHP-6 from the catalytic system and the elimination of iron residues in the synthesized polymer. In addition, it exhibited an enhanced recyclability with monomer conversion of 75.7% after five cycles and favorable stability during the ATRP reaction with mimic-ZIF-8 composite developed through biomimetic mineralization can be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications.

  11. [The isolation of organic compounds from hydrosulfuric mineral waters with the use of the extractive freezing-out technique with centrifugation].

    Science.gov (United States)

    Bekhterev, V N; Kabina, E A

    The mineral waters, enriched with organic substances find extensive application in balneotherapy. The fast and efficient methods for the identification and quantitative measurement of organic compounds (in the first place, organic acids) in such waters need to be developed for the estimation of their quality and biological activity. The objective of the present study was to elaborate a gas chromatographic method for the determination of monobasic carbonic acids in sulfide-containing mineral waters by means of extractive freezing-out in combination with the application of the centrifugal forces for the elucidation of the metrological characteristics of the compounds of interest. The secondary objective was to estimate the prospects for the application of the method of interest for determining the dissolved organic compounds in mineral waters. The following carbonic acids were used for the purposes of the study: acetic acid (analytical grade), Russia; propionic grade (extra pure), Ferak, Germany; butyric acid (pure), Russia; valeric acid (pure), Russia; caproic acid (pure), Russia; oenanthic acid (pure), Russia; and caprylic acid (pure), Russia). Acetonitrile («O» grade), Russia, was used as the extracting agent. The LV-210 analytical balance (Russia) was used to prepare the model and standard solutions of the organic compounds and to determine their mass. The extracts and standard mixture were investigated by the gas chromatographic technique with the use of the Kristallyuks apparatus («Meta-Khrom», Russia) equipped with the flame ionization detector and the capillary column. Extractive freezing-out in the combination with centrifugation was performed with the laboratory installation for this purpose. Under the model conditions, a single extractive freezing-out procedure with the centrifugation of the sample made it possible to reach the 22-37-fold concentration of C2-C8 monobasic carbonic acids during their transfer from water into acetonitrile. The

  12. Sorption behavior of bensulfuron-methyl on andisols and ultisols volcanic ash-derived soils: Contribution of humic fractions and mineral-organic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Jeannette; Fuentes, Edwar [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile); Baez, Maria E., E-mail: mbaez@ciq.uchile.c [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile)

    2009-12-15

    Bensulfuron-methyl sorption was studied in Andisol and Ultisol soils in view of their characteristic physical and chemical properties, presenting acidic pH and variable charge. Humic and fulvic acids (HA and FA) and humin (HUM) contributions were established. Sorption was studied by using two synthetic sorbents, an aluminum-silicate with iron oxide coverage and the same sorbent coated with humic acid. Freundlich model described Bensulfuron-methyl behavior in all sorbents (R{sup 2} 0.969-0.998). K{sub f} for soils (8.3-20.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}) were higher than those reported in the literature. Organic matter, halloysite or kaolinite, and specific surface area contributed to the global process. The highest K{sub f} for HA, FA and HUM were 539.5, 82.9, and 98.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}. Model sorbents described the participation of variable charge materials with high adsorption capacity. The constant capacitance model was used to assess effects of Bensulfuron-methyl adsorption on the distribution of SOH, SOH{sub 2}{sup +} and SO{sup -} sites of sorbents. - Organic matter, phyllosilicates, variable charge minerals and organo-mineral complexes contribute to bensulfuron-methyl sorption on volcanic ash-derived soils.

  13. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  14. Miners' welfare

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C

    1984-06-13

    The Miners' Welfare Committee (MWC) was formed in Britain in 1921 and initiated building programmes to provide welfare amenities for miners and families, using architecture to improve the quality of a miner's working and leisure time. The article reviews the MWC's work, and assesses the design and architecture at the Selby Coalfield. (7 refs.)

  15. Response Of Guava Trees (Psidium Guajava To Soil Applications Of Mineral And Organic Fertilisers And Biofertilisers Under Conditions Of Low Fertile Soil

    Directory of Open Access Journals (Sweden)

    Shukla Sushil Kumar

    2014-12-01

    Full Text Available The goal of this study was to assess the influence of different organic fertilisers - vermicompost, mulching, Azotobacter, phosphate solubilising microbes (PSM and Trichoderma harzianum added each year to mineral fertilisers containing NPK and to farmyard manure (FYM on leaf nutrient status, tree growth, fruit yield and quality of guava grown in low fertile soil. The results revealed that vermicompost, bio-fertilisers and organic mulching resulted in yield and fruit quality boosters, as compared to application of NPK and FYM as the only organic fertiliser. Significant differences in plant height, canopy spread and stem girth of guava plants were obtained in combination, where Azotobacter, T. harzianum, PSM and organic mulching were applied. The leaf nutrient contents (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn were within sufficient ranges. Fruit yields and quality were highest in combination, where vermicompost, Azotobacter, T. harzianum, PSM and organic mulching was applied. Fruit quality parameters viz. soluble solid concentration, titratable acidity, total sugars and ascorbic acid showed positive correlation with the available macro- and micronutrients in the soil.

  16. Methylene blue adsorption in clay mineral dealt with organic cation; Sorcao de azul de metileno em argila esmectitica tratada com cation organico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T.L. [Universidade Federal do Para (UFPA), Maraba, PA (Brazil). Faculdade de Engenharia de Materiais; Lemos, V.P., E-mail: tls1981@hotmail.com [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias

    2011-07-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  17. AN EXPERIMENTAL STUDY REGARDING THE BIOLOGICAL EFFECTS OF MINERAL WATER FROM SPRING 3 IN BĂILE TUŞNAD ON SOME ORGANS AFTER ETHYL ALCOHOL ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    Gabriela Dogaru

    2016-02-01

    Full Text Available Hepatobiliary and renal disorders are currently on the increase, being favored by increasing environmental pollution, alcohol consumption and synthesis drugs. Mineral water from spring 3 in Băile Tuşnad, with a total mineralization of 3351.0 mg/l, is recommended in chronic liver, gallbladder, pancreas diseases, kidney diseases and stones. This study aimed to assess potential changes in the liver, kidney, pancreas and stomach following ethyl alcohol administration in rats, as well as to monitor anatomopathological differences between animals that drank tap water and those that drank Tușnad mineral water, after cessation of ethyl alcohol administration. The study was carried out on 25 white Wistar rats over a period of 100 days. The animals were divided into 3 groups: group I, negative control group – 5 animals; group II, positive control group – 6 animals; group III, experimental group – 14 animals. The animals of group I received tap water (50-75 ml/day/animal throughout the experiment, and those of groups II and III were administered ethyl alcohol 12% (12-15 ml/day/animal during the first 70 days. During the last 30 days of the experiment, the animals of group II received tap water (50-75 ml/day/animal, and those of group III were administered Tuşnad mineral water (50-75 ml/day/animal. On experimental day 70, 5 animals were euthanized (2 of group I, 1 of group II and 2 of group III, and on day 100, the rest of 20 animals were euthanized. Fragments in the form of 4 mm thick slices from the liver, kidneys, pancreas and stomach of the euthanized animals were collected for histological investigations. The only changes detectable by optical microscopy were present in the liver. The rest of the studied organs did not show lesion aspects detectable by optical microscopy. The structural changes found in the liver were represented by mild to moderate fibrosis around the centrilobular venule in about 50% of the lobules. In the outer third of

  18. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdelraheem, Wael H.M. [Chemistry Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); He, Xuexiang; Duan, Xiaodi [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus)

    2015-01-23

    Graphical abstract: - Highlights: • UV-254 nm/H{sub 2}O{sub 2} AOP was utilized for the degradation and mineralization of PBSA and BSA. • Promotion of k{sub obs} with [H{sub 2}O{sub 2}]{sub 0} ≤ 4 mM and inhibition at higher [H{sub 2}O{sub 2}]{sub 0} were observed. • The S and N were released and monitored as SO{sub 4}{sup 2−} and NH{sub 4}{sup +}, respectively. • Br{sup −} inhibited both the degradation and mineralization much more significantly than Cl{sup −}. • There was an increase in [NH{sub 4}{sup +}] at higher [H{sub 2}O{sub 2}]{sub 0} and its further destruction at higher UV fluence. - Abstract: Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254 nm/H{sub 2}O{sub 2} advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0 mM [H{sub 2}O{sub 2}]{sub 0}, a complete removal of 40.0 μM parent PBSA and 25% decrease in TOC were achieved with 190 min of UV irradiation; SO{sub 4}{sup 2−} was formed and reached its maximum level while the release of nitrogen as NH{sub 4}{sup +} was much lower (around 50%) at 190 min. Sulfate removal was strongly enhanced by increasing [H{sub 2}O{sub 2}]{sub 0} in the range of 0–4.0 mM, with slight inhibition in 4.0–12.0 mM. Faster and earlier ammonia formation was observed at higher [H{sub 2}O{sub 2}]{sub 0}. The presence of Br{sup −} slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl{sup −}. Our study provides important technical and fundamental results on the HO{sup ·} based degradation and

  19. FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization?

    Directory of Open Access Journals (Sweden)

    Guilhem Lignon

    2017-05-01

    Full Text Available Background and objective:FAM20A gene mutations result in enamel renal syndrome (ERS associated with amelogenesis imperfecta (AI, nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects.Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM, Energy Dispersive Spectroscopy (EDS, X-Ray Diffraction (XRD, and X-Ray Fluorescence (XRF.Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel. XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin.Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.

  20. FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization?

    Science.gov (United States)

    Lignon, Guilhem; Beres, Fleur; Quentric, Mickael; Rouzière, Stephan; Weil, Raphael; De La Dure-Molla, Muriel; Naveau, Adrien; Kozyraki, Renata; Dessombz, Arnaud; Berdal, Ariane

    2017-01-01

    Background and objective: FAM20A gene mutations result in enamel renal syndrome (ERS) associated with amelogenesis imperfecta (AI), nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects. Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF). Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction) displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel). XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin. Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.

  1. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  2. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content

    International Nuclear Information System (INIS)

    West, L. Jeanine A.; Li, Karen; Greenberg, Bruce M.; Mierle, Greg; Smith, Ralph E.H.

    2003-01-01

    Selenastrum capricornutum was grown in two lake waters of differing dissolved organic carbon content (1.8 vs. 9.1 mg DOC l -1 ) to determine the responses of population dynamics and photosynthesis to Cu, and to assess the modifying effects of varying ultraviolet radiation (UVR) exposure. In the absence of UVR, the mean EC 50 for Cu effect on population growth rate was 2.3-2.6 μg l -1 in the low DOC water and 17.4-26.2 μg l -1 in the high DOC water. The variable chlorophyll a fluorescence ratio, F v /F m , decreased approximately in parallel with the diminished growth rates. Exposure of the higher DOC lake water to full spectrum artificial radiation caused an increase of Cu 2+ concentration, compared to samples held in darkness or in photosynthetically active radiation (PAR) only. Full spectrum exposures also resulted in a lower (although not significantly so) EC 50 for Cu effect on growth rate, consistent with response to the moderately elevated Cu 2+ concentration. Cu 2+ concentration was unaffected by radiation exposure in the low DOC water, and EC 50 s for growth were also unaffected except in the most severe UVR treatment, which was >40% inhibited even in the absence of added Cu. Using F v /F m as an end-point, there was no evidence of interactions between UVR and Cu under the relatively low PAR exposures used here. Algal growth and photosynthesis was extremely sensitive to Cu in these soft lake waters, with EC 50 s close to current water quality standards in the low DOC water

  3. Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride

    Science.gov (United States)

    Chanpiwat, Penradee; Hanh, Hoang Thi; Bang, Sunbaek; Kim, Kyoung-Woong

    2017-06-01

    In order to assess the effects of phosphate, silicate and natural organic matter (NOM) on arsenic removal by ferric chloride, batch coprecipitation experiments were conducted over a wide pH range using synthetic hard and soft groundwaters, similar to those found in northern Vietnam. The efficiency of arsenic removal from synthetic groundwater by coprecipitation with FeCl3 was remarkably decreased by the effects of PO4 3-, SiO4 4- and NOM. The negative effects of SiO4 4- and NOM on arsenic removal were not as strong as that of PO4 3-. Combining PO4 3- and SiO4 4- increased the negative effects on both arsenite (As3+) and arsenate (As5+) removal. The introduction of NOM into the synthetic groundwater containing both PO4 3- and SiO4 4- markedly magnified the negative effects on arsenic removal. In contrast, both Ca2+ and Mg2+ substantially increased the removal of As3+ at pH 8-12 and the removal of As5+ over the entire pH range. In the presence of Ca2+ and Mg2+, the interaction of NOM with Fe was either removed or the arsenic binding to Fe-NOM colloidal associations and/or dissolved complexes were flocculated. Removal of arsenic using coprecipitation by FeCl3 could not sufficiently reduce arsenic contents in the groundwater (350 μg/L) to meet the WHO guideline for drinking water (10 μg/L), especially when the arsenic-rich groundwater also contains co-occurring solutes such as PO4 3-, SiO4 4- and NOM; therefore, other remediation processes, such as membrane technology, should be introduced or additionally applied after this coprecipitation process, to ensure the safety of drinking water.

  4. ADUBAÇÃO MINERAL E ORGÂNICA DA ABÓBORA HÍBRIDA: ESTADO NUTRICIONAL E PRODUÇÃO MINERAL AND ORGANIC FERTILIZER OF THE HYBRID SQUASH: NUTRITIONAL STATE AND PRODUCTION

    Directory of Open Access Journals (Sweden)

    Francisco Affonso Ferreira

    2007-09-01

    nutrientes; nível crítico; Cucurbita maxima x C. Moschata.

    In order to evaluate the response of hybrid squash cv. Tetsukabuto to organic compost and mineral fertilizer (NPK, seven experiments were carried out on a cambic yellow-red Podzol soil under field conditions at Ponte Nova, Minas Gerais State. Each experiment constituted one sampling date, that begun at the 21st day and ended at the 105th day after planting, with 14 days intervals. In these experiments five fertilizing treatments were tested plus a control (no treatment. In the fertilizing treatments, defined by a diagonal section of a complete factorial, rates of 0, 3, 6, 9 and 12 t/ha (dry basis of organic compound, associated were applied with rates of 0.772, 0.579, 0.386, 0.193 and 0 t/ha of NPK (4-14-8, respectively, with four replications in a randomized blocks design. The NPK and organic compost association increased the plant leaf number, the main branch length and the fruit yield. The maximum yield and maximum economical efficiency, 13.596 and 13.368 t/ha, were obtained with the rates 6.402 t/ha of organic compost and 0.360 t/ha of NPK and with 5.247 t/ha of compost and 0.434 t/ha of NPK, respectively. At the 49th day after sowing, the concentrations of N, P, K, S, Ca and Mg, in the leaf blade dry matter, associated with the maximum economic return, were: 38.8; 5.2; 27.5; 2.5; 21.3 and 3.8 g/kg, respectively. These data, at the 63rd day after sowing, were: 43.8; 4.7; 24.4; 2.5; 18.3 and 5.3 g/kg, respectively. At 105th after sowing, the estimated contents of N, P, K, S, Ca and Mg in the aerial part and expressed in g/plant were 27.8; 4.7; 26.7; 1.8; 10.1 and 4.8, respectively.

    KEY-WORDS: Hybrid squash; organic compost; nutrient content; mineral fertilizer.

  5. In vitro action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on matrix organization and mineral distribution in rabbit growth plate.

    Science.gov (United States)

    Plachot, J J; Du Bois, M B; Halpern, S; Cournot-Witmer, G; Garabedian, M; Balsan, S

    1982-01-01

    Growth plates of 18-day-old rabbits were incubated in a protein-free synthetic medium, either without any additive, with 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] (10(-10) M), with 24,25-dihydroxycholecalciferol [24,25-(OH)2D3] (10(-10) M and 10(-9) M), with both metabolites, or with the ethanol solvent alone. Cartilages, before and after 5 days of incubation, were studied by light and electron microscopy. The intracellular calcium distribution was analyzed by the potassium pyroantimonate method, and the calcium content was verified by x-ray microprobe analysis. When compared to nonincubated samples the cartilages incubated for 5 days without any additive as well as the cartilages incubated with the solvent alone showed excessive hydratation and hypertrophy of the chondrocytes, which had lost their columnar arrangement. The matrix and the cells were devoid of mineral. The ultrastructure of the cells was well preserved. These changes were largely prevented by the presence of both vitamin D3 metabolites. With regard to calcium distribution, 1,25-(OH)2D3 maintained calcium in mitochondria and crystals in matrix vesicles, whereas 24,25-(OH)2D3 only partly maintained mitochondrial mineral. In the chondrocytes incubated with this latter metabolite, small calcium granules were seen in the cytoplasm; most vesicles were devoid of crystals, and amorphous precipitates were seen in the matrix. These data demonstrate the in vitro influence of vitamin D3 metabolites on the organization and mineralization of the cartilage matrix and on the distribution of intracellular calcium in chondrocytes. Furthermore, they support the hypothesis that the in vitro action of 1,25-(OH)2D3 is different from that of 24,25-(OH)2D3 in that 1,25-(OH)2D3 may influence calcium storage in mitochondria and matrix vesicles, whereas 24,25-(OH)2D3 is likely to be involved in calcium transport and release.

  6. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaitan, Hicham, E-mail: hicham.zaitan@usmba.ac.ma [Laboratory LCMC, Faculty of Sciences and Techniques, University Sidi Mohamed BenAbdellah, B.P. 2202, Fez (Morocco); Korrir, Abdelhamid; Chafik, Tarik [Laboratory LGCVR, Faculty of Sciences and Techniques, University Abdelmalek Essaadi, B.P. 416, Tangier (Morocco); Bianchi, Daniel [Institut de Recherche sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256 CNRS, University Claude Bernard Lyon I, Bat. Chevreul, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France)

    2013-11-15

    Highlights: • The adsorption of dMB on natural minerals and commercial oxides was evaluated. • The adsorption capacities were discussed considering the adsorbents cost and the bed size. • The adsorption capacity of bentonite is higher than other adsorbents. • Langmuir model provide best correlation of the experimental data. • The isotherms data allow determination of isosteric heat of adsorption. -- Abstract: This study is dedicated to the investigation of the potential of volatile organic compounds (VOC) adsorption over low cost natural minerals (bentonite and diatomite). The performances of these solids, in terms of adsorption/desorption properties, were compared to commercial adsorbents, such as silica, alumina and titanium dioxide. The solids were first characterized by different physico-chemical methods and di-methyl benzene (dMB) was selected as model VOC pollutant for the investigation of adsorptive characteristics. The experiments were carried out with a fixed bed reactor under dynamic conditions using Fourier Transform InfraRed spectrometer to measure the evolution of dMB concentrations in the gaseous stream at the outlet of the reactor. The measured breakthrough curves yields to adsorbed amounts at saturation that has been used to obtain adsorption isotherms. The latters were used for determination of the heat involved in the adsorption process and estimation of its values using the isosteric method. Furthermore, the performances of the studied materials were compared considering the adsorption efficiency/cost ratio.

  7. Electric properties of organic and mineral electronic components, design and modelling of a photovoltaic chain for a better exploitation of the solar energy

    International Nuclear Information System (INIS)

    Aziz, A.

    2006-11-01

    The research carried out in this thesis relates to the mineral, organic electronic components and the photovoltaic systems. Concerning the mineral semiconductors, we modelled the conduction properties of the structures metal/oxide/semiconductor (MOS) strongly integrated in absence and in the presence of charges. We proposed a methodology allowing characterizing the ageing of structures MOS under injection of the Fowler Nordheim (FN) current type. Then, we studied the Schottky diodes in polymers of type metal/polymer/metal. We concluded that: The mechanism of the charges transfer, through the interface metal/polymer, is allotted to the thermo-ionic effect and could be affected by the lowering of the potential barrier to the interface metal/polymer. In the area of photovoltaic energy, we conceived and modelled a photovoltaic system of average power (100 W). We showed that the adaptation of the generator to the load allows a better exploitation of solar energy. This is carried out by the means of the converters controlled by an of type MPPT control provided with a detection circuit of dysfunction and restarting of the system. (author)

  8. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides

    International Nuclear Information System (INIS)

    Zaitan, Hicham; Korrir, Abdelhamid; Chafik, Tarik; Bianchi, Daniel

    2013-01-01

    Highlights: • The adsorption of dMB on natural minerals and commercial oxides was evaluated. • The adsorption capacities were discussed considering the adsorbents cost and the bed size. • The adsorption capacity of bentonite is higher than other adsorbents. • Langmuir model provide best correlation of the experimental data. • The isotherms data allow determination of isosteric heat of adsorption. -- Abstract: This study is dedicated to the investigation of the potential of volatile organic compounds (VOC) adsorption over low cost natural minerals (bentonite and diatomite). The performances of these solids, in terms of adsorption/desorption properties, were compared to commercial adsorbents, such as silica, alumina and titanium dioxide. The solids were first characterized by different physico-chemical methods and di-methyl benzene (dMB) was selected as model VOC pollutant for the investigation of adsorptive characteristics. The experiments were carried out with a fixed bed reactor under dynamic conditions using Fourier Transform InfraRed spectrometer to measure the evolution of dMB concentrations in the gaseous stream at the outlet of the reactor. The measured breakthrough curves yields to adsorbed amounts at saturation that has been used to obtain adsorption isotherms. The latters were used for determination of the heat involved in the adsorption process and estimation of its values using the isosteric method. Furthermore, the performances of the studied materials were compared considering the adsorption efficiency/cost ratio

  9. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  10. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  11. GROUNDWATER N SPECIATION AND REDOX CONTROL OF ORGANIC N MINERALIZATION BY O2 REDUCTION TO H2O2

    Science.gov (United States)

    Samples were collected from one spring and one well that were selected to reflect agricultural impacts, and a spring and a well that were considered to show little to no evidence of agricultural impact. These samples were characterized for fixed N species and dissolved organic N...

  12. The effect of humus on biological cleaning of soils - association of harmful organic substances from mineral oil contaminators

    International Nuclear Information System (INIS)

    Richnow, H.H.; Seifert, R.; Michaelis, W.

    1993-01-01

    The association of organic harmful substances and particularly their metabolites with the humin fraction is a process which has great ecological importance. The knowledge of the type and extent of such associations of harmful substances with the humin fraction of the soil plays a central part in the assessment of loading by harmful substances or the success of biological cleaning up measures. (orig.) [de

  13. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter

    Czech Academy of Sciences Publication Activity Database

    Angst, Gerrit; Mueller, K.E.; Kögel-Knabner, I.; Freeman, K.H.; Mueller, C.W.

    2017-01-01

    Roč. 132, č. 3 (2017), s. 307-324 ISSN 0168-2563 Institutional support: RVO:60077344 Keywords : incubation * physical fractionation * GC/MS * C-13 NMR * CuO * soil organic matter Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 3.428, year: 2016

  14. Organic Fertilization Changes the Response of Mycelium of Arbuscular Mycorrhizal Fungi and Their Sporulation to Mineral NPK Supply

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Hršelová, Hana; Vosátka, M.; Votruba, Jaroslav; Klír, J.

    2001-01-01

    Roč. 6, č. 46 (2001), s. 540-542 ISSN 0015-5632 R&D Projects: GA ČR GA526/00/1276 Institutional research plan: CEZ:AV0Z5020903 Keywords : organic * fertilization * changes Subject RIV: EE - Microbiology, Virology Impact factor: 0.776, year: 2001

  15. The Use of Organic vs. Chemical Fertilizer with a Mineral Losses Tax: The Case of Dutch Arable Farmers

    NARCIS (Netherlands)

    Feinerman, E.; Komen, M.H.C.

    2005-01-01

    The paper focuses on farm-level nitrogen fertilization strategies of Dutch arable farmers for analyzing the substitution of organic fertilizers (manure) with chemical fertilizers. The model developed investigates the impact of the major parameters affecting the inferiority of manure compared with

  16. PRODUÇÃO E COMPOSIÇÃO MINERAL DE CENOURA ADUBADA COM RESÍDUOS ORGÂNICOS YIELD AND MINERAL COMPOSITION OF CARROTS FERTILIZAED WITH ORGANIC RESIDUES

    Directory of Open Access Journals (Sweden)

    MARIA APARECIDA NOGUEIRA SEDIYAMA

    1998-01-01

    Full Text Available Este trabalho objetivou avaliar o estado nutricional, a produção e a qualidade de raízes de cenoura, cultivar Brasília, influenciados pelos seguintes tratamentos: sete tipos de compostos orgânicos produzidos com dejeto de suínos na forma líquida e material palhoso (bagaço de cana-de-açúcar, capim-napier e palha de café, com o bagaço de cana-de-açúcar contendo ou não gesso ou superfosfato triplo; um tratamento com dejeto seco de suínos; um com adubação mineral e uma testemunha, sem adubação. O experimento foi realizado em 3 de maio a 23 de agosto de 1994, em condições de campo, no delineamento de blocos casualizados com quatro repetições, na Fazenda Experimental da EPAMIG, em Ponte Nova (MG. De modo geral, a maior altura de planta e a produção de parte aérea foram obtidas nos tratamentos com compostos orgânicos e dejeto seco de suínos. Os tratamentos com compostos produzidos com palha de café mais dejeto líquido, bagaço de cana-de-açúcar mais dejeto líquido mais superfosfato triplo e capim-napier mais palha de café mais dejeto líquido proporcionaram produções totais de raízes superiores a 50 t.ha-1. O composto produzido com palha de café e dejeto líquido proporcionou a maior produção de raízes total e comerciável. O enriquecimento do composto, bagaço de cana-de-açúcar mais dejeto líquido, com gesso ou superfosfato triplo, não alterou a produção de raízes nem os teores de Ca e P nas folhas e raízes. As raízes de cenoura, cujos tratamentos receberam adubação orgânica ou mineral, apresentaram teores de P e K superiores e Ca semelhante aos teores considerados padrões para elaboração de dietas para o ser humano.The present study was undertaken to evaluate the plant nutritional status the root quality and yield of carrots, cv. Brasília, influenced by the following treatments: seven types of organic compounds which were produced from liquid swine manure and straw-materials, that is, crushed

  17. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    Science.gov (United States)

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists.

  18. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  19. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    Science.gov (United States)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  20. Microbiological quality of organic vegetables produced in soil treated with different types of manure and mineral fertilizer Qualidade microbiológica de vegetais orgânicos produzidos em solo tratado com diferentes tipos de esterco e fertilizante mineral

    Directory of Open Access Journals (Sweden)

    Débora Cabral Machado

    2006-12-01

    Full Text Available An attempt was made to evaluate microbiological quality of horticultural crops grown organically. Three species of vegetables were used, lettuce (Lactuva sativa, radish (Raphanus sativus and spinach (Tetragonia expansa, grown organically, in fertile soil. Six different treatments were applied: mineral fertilizer, chicken, cow, and pig manure, chicken litter and cow manure, in association with a liquid foliar biofertilizer. These crops were handled according to correct agronomic practices for growing crops organically for commercial purposes. Samples were examined for the Most Probable Number (MPN/g/mL of total and fecal coliforms and to detect the presence of Escherichia coli and Salmonella spp. All analyzed samples were considered acceptable for consumption, as Salmonella spp. was not detected. However, 63.3%, 50.0%, and 23.3% of the samples of lettuce, radish and spinach, respectively, contained >10² total coliforms/g of product. None of the samples of spinach or radish presented >10² fecal coliforms/g, and only 6.6% of lettuce samples contained >10² fecal coliforms/g. The presence of E. coli was confirmed in one sample of spinach, cultivated with cow manure.O objetivo do presente trabalho foi avaliar a qualidade microbiológica de hortaliças orgânicas produzidas sob diferentes condições. Três espécies de vegetais, alface (Lactuva sativa, rabanete (Raphanus sativus e espinafre (Tetragonia expansa, foram cultivadas no sistema orgânico, em solo fertilizado com seis tratamentos diferentes: adubo mineral, estercos de galinha, bovino e suíno, cama de frango e esterco bovino associado com biofertilizante líquido de aplicação foliar. O cultivo das hortaliças foi feito de acordo com as práticas agronômicas recomendadas para o sistema orgânico em escala comercial. Das hortaliças cultivadas, foram coletadas amostras para a determinação do Número Mais Provável de coliformes totais e termotolerantes e detecção da presença de

  1. Soft energy

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1978-01-01

    A compact energy concept opposes the existing development course of energy supply. This concept does without projects for opening-up oil and gas occurrences in the Arctic and in offshore seas, and also without a further extension of nuclear energy. Energy consumption is to be stabilized in the long-run on today's level by a utilization of energy which is to be substantially improved in a technical and economic respect. Oil and gas are to be replaced by 'soft', regenerative, mainly decentralized energy sources, in the course of about 30 years time. Solar energy is to be used for heating and service water, biogas as motor fuel being generated primarily from reference which will come from agriculture and forestry. Wind and hydroelectric power are to be used for generating electricity. In the first part, concepts for the present and future energy policy are discussed, in the second part, a lot of figures are given, supporting the respective arguments. In the third part the relationships between social and energy-economic developments are pointed out. (UA) [de

  2. Produção de helicônia Golden Torch influenciada pela adubação mineral e orgânica Production of helicônia Golden Torch as influenced by the mineral and organic manure

    Directory of Open Access Journals (Sweden)

    Abel W. de Albuquerque

    2010-10-01

    Full Text Available A agrofloricultura alagoana demanda ações articuladas nos segmentos da cadeia produtiva, a fim de reduzir os custos com insumos como os adubos minerais, que representam um percentual significativo. Este trabalho objetivou avaliar os componentes de produção da Helicônia Golden Torch submetidos às adubações mineral, orgânica e organomineral. As variáveis analisada foram: número de perfilhos por touceira, número de haste floral, comprimento da haste floral, diâmetro da haste floral, comprimento da bráctea, número de folhas por haste floral e área foliar por haste floral. Os resultados obtidos mostraram que a adubação orgânica e a organomineral proporcionaram as maiores produtividade. A adubação orgânica promoveu maior produtividade dos componentes de produção que o tratamento não adubado e a associação das adubações mineral e orgânica são uma prática que contribuiu para a otimização da adubação da cultura.The cut tropical flower market in Alagoas-Brazil demands articulate actions in the production chain to reduce costs with mineral fertilizers that represent a significant percentage of the production costs. This work had the objective of evaluating the production components of the tropical flower heliconia Golden Torch submitted to mineral, organic and organic-mineral fertilization. The following variables were evaluated: number of the offshoots per plant, number of flowers stalk per bunch, length and diameter of the flowers stalk, length of the bracts, number of the leaves and leaf area per plant. The results showed that organic and organic-mineral fertilization promoted the highest harvest of flower stalks. The organic fertilization promoted higher yield of the production components in comparison to control and the organic-mineral fertilization treatments. The association of mineral fertilized and organic manure improved the fertilization practice in this crop.

  3. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  4. Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers.

    Science.gov (United States)

    Nicolodelli, Gustavo; Senesi, Giorgio Saverio; de Oliveira Perazzoli, Ivan Luiz; Marangoni, Bruno Spolon; De Melo Benites, Vinícius; Milori, Débora Marcondes Bastos Pereira

    2016-09-15

    Organic fertilizers are obtained from waste of plant or animal origin. One of the advantages of organic fertilizers is that, from the composting, it recycles waste-organic of urban and agriculture origin, whose disposal would cause environmental impacts. Fast and accurate analysis of both major and minor/trace elements contained in organic mineral and inorganic fertilizers of new generation have promoted the application of modern analytical techniques. In particular, laser induced breakdown spectroscopy (LIBS) is showing to be a very promising, quick and practical technique to detect and measure contaminants and nutrients in fertilizers. Although, this technique presents some limitations, such as a low sensitivity, if compared to other spectroscopic techniques, the use of double pulse (DP) LIBS is an alternative to the conventional LIBS in single pulse (SP). The macronutrients (Ca, Mg, K, P), micronutrients (Cu, Fe, Na, Mn, Zn) and contaminant (Cr) in fertilizer using LIBS in SP and DP configurations were evaluated. A comparative study for both configurations was performed using optimized key parameters for improving LIBS performance. The limit of detection (LOD) values obtained by DP LIBS increased up to seven times as compared to SP LIBS. In general, the marked improvement obtained when using DP system in the simultaneous LIBS quantitative determination for fertilizers analysis could be ascribed to the larger ablated mass of the sample. The results presented in this study show the promising potential of the DP LIBS technique for a qualitative analysis in fertilizers, without requiring sample preparation with chemical reagents. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  6. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  7. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  8. Analysis of some parameters related to the hydraulic infiltration of a silty-loam soil subjected to organic and mineral fertilizer systems in Southern Italy

    Directory of Open Access Journals (Sweden)

    Antonietta Napolitano

    2011-05-01

    Full Text Available This experiment was carried out to detect the most linear process to calculate the hydraulic conductivity, with the aim to classify the soil of experimental station of the Unit for Research in Cultivations Alternative to Tobacco (CAT, locate in South Italy (Scafati, Province of Salerno, subject to different types of manure: compost and mineral fertilizer. The field tests were made by a system measuring infiltration by double, inner and outer ring, inserted into the ground. Each ring was supplied with a constant level of water from external bottle (3 cm, and hydraulic conductivity is determined when the water flow rate in the inner ring is constant. Four areas, two fertilized by mineral fertilizer (areas I and III and two amended with compost (areas II and IV at two depths, 5 and 10 cm (H1-H2, were analysed. The parameters were recorded at the following dates: on 18th and 19th September 2009, respectively, at 5 and 10 cm of depth (H1-H2 in area I; on 7th and 8th October 2009 in area II; on 13th and 14th October 2009 in area III; on 16th and 17th October 2009 in area IV. The effect of compost, used one time only, is present in all parameters, even if with a low statistical significance (P<0.01-0.05. This biomass stores a better water reserve [g (100 g–1-Δθ] and causes a lower avidity for water (bibacity and a better speed of percolation (Ks of exceeding water. The organic matter decreased the variability of soil along field. The studied soil showed to be almost permeable and not having any serious problem concerning rain intensity.

  9. Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals.

    Science.gov (United States)

    Liu, Guocheng; Chen, Lei; Jiang, Zhixiang; Zheng, Hao; Dai, Yanhui; Luo, Xianxiang; Wang, Zhenyu

    2017-12-31

    The aging of biochar by low molecular weight organic acids (LMWOAs), which are typical root-derived exudates, is not well understood. Three LMWOAs (ethanoic, malic, and citric acids) were employed to investigate their aging impacts on the biochars from furfural production residues at 300-600°C (BC300-600). The LMWOAs created abundant macropores in BC300, whereas they significantly increased the mesoporosity and surface area of BC600 by 13.5-27.0% and 44.6-61.5%, respectively. After LMWOA aging, the content of C and H of the biochars increased from 51.3-60.2% and 1.87-3.45% to 56.8-69.9% and 2.06-4.45%, respectively, but the O content decreased from 13.8-24.8% to 7.82-19.4% (except BC300). For carbon fraction in the biochars, the LMWOAs barely altered the bulk and surface functional properties during short-term aging. The LMWOAs facilitated the dissolution of minerals (e.g., K 2 Mg(PO 3 ) 4 , AlPO 4 , and Pb 2 P 2 O 7 ) and correspondingly promoted the release of not only plant nutrients (K + , Ca 2+ , Mg 2+ , Fe 3+ , PO 4 3- , and SO 4 2- ) but also toxic metals (Al 3+ and Pb 2+ ). This research provided systematic insights on the responses of biochar properties to LMWOAs and presented direct evidence for acid activation of inorganic minerals in the biochars by LMWOAs, which could enhance the understanding of environmental behaviors of biochars in rhizosphere soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Estoques totais de carbono orgânico e seus compartimentos em argissolo sob floresta e sob milho cultivado com adubação mineral e orgânica Total stocks of organic carbon and its pools in acrisols under forest and under maize cultivated with mineral and organic fertilization

    Directory of Open Access Journals (Sweden)

    L. F. C. Leite

    2003-10-01

    Full Text Available Os estoques de matéria orgânica do solo e seus compartimentos são importantes na disponibilidade de nutrientes, agregação do solo e no fluxo de gases de efeito estufa entre a superfície terrestre e a atmosfera. Os objetivos deste estudo foram: (a avaliar os efeitos de sistemas de produção de milho sob adubação orgânica e mineral nos estoques totais de carbono orgânico (COT e nitrogênio (NT e de compartimentos de carbono (C orgânico, em um Argissolo Vermelho-Amarelo, e (b estimar a contribuição desses sistemas no seqüestro ou emissão de CO2 atmosférico. Os sistemas de produção, durante 16 anos, constaram de combinações entre dois níveis (0 e 1 de composto orgânico, nas doses de 0 e 40 m³ ha-1 (AO, e três níveis (0, 1 e 2 de adubo mineral, nas doses de 0, 250 (AM1, e 500 kg ha-1 (AM2 da fórmula 4-14-8. Uma área sob Floresta Atlântica (FA adjacente ao experimento foi amostrada e usada como referência de um estado de equilíbrio. Os sistemas de produção em que o composto orgânico foi adicionado apresentaram maiores estoques de COT, NT, carbono da fração leve (C FL e carbono lábil (C L do que os sistemas sem adubação ou apenas com adubação mineral, o que confirma a adubação orgânica como estratégia de manejo importante para a melhoria da qualidade do solo. No entanto, no solo sob FA, os estoques de COT, NT e dos compartimentos de C foram maiores do que aqueles observados nos sistemas de produção. Em virtude da maior sensibilidade, os estoques dos compartimentos do C FL e do C L foram reduzidos em maior intensidade do que os estoques de COT, razão por que podem ser usados como indicadores da interferência antrópica ou das mudanças no manejo sobre o estado da matéria orgânica do solo.Soil organic matter and its different pools have key importance in nutrient availability, soil aggregation, and in the greenhouse gas fluxes between the earth surface and the atmosphere. The objectives of this study

  11. Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean

    Science.gov (United States)

    Obernosterer, Ingrid; Christaki, Urania; Lefèvre, Dominique; Catala, Philippe; Van Wambeke, France; Lebaron, Philippe

    2008-03-01

    The response of heterotrophic bacteria ( Bacteria and Archaea) to the spring phytoplankton bloom that occurs annually above the Kerguelen Plateau (Southern Ocean) due to natural iron fertilization was investigated during the KErguelen Ocean and Plateau compared Study (KEOPS) cruise in January-February 2005. In surface waters (upper 100 m) in the core of the phytoplankton bloom, heterotrophic bacteria were, on an average, 3-fold more abundant and revealed rates of production ([ 3H] leucine incorporation) and respiration (bacterial metabolic activities were attributable to high-nucleic-acid-containing cells that dominated (≈80% of total cell abundance) the heterotrophic bacterial community associated with the phytoplankton bloom. Bacterial growth efficiencies varied between 14% and 20% inside the bloom and were bacterial activity, due to the stimulation by phytoplankton-derived dissolved organic matter. Within the Kerguelen bloom, bacterial carbon demand accounted for roughly 45% of gross community production. These results indicate that heterotrophic bacteria processed a significant portion of primary production, with most of it being rapidly respired.

  12. Recent patents on physical, mineral & organic Acid composition of golden delicious and red delicious apples (malus×domestica borkh) grown in the west of Iran.

    Science.gov (United States)

    Rad, Amir H K; Falahi, Ebrahim; Ebrahimzadeh, Farzad

    2014-01-01

    Apple is one of the fruits that has beneficial effects on human healthy diet and life. The aim of this study is to determine some physical, mineral and organic acids composition of apple cultivars grown in different locations throughout Lorestan province. Apple cultivars had been harvested from different locations throughout Lorestan province of Iran. Analyses for 3 elements (Iron, Zinc, and calcium) were conducted by the flame atomic absorption spectrometry. Phosphorus was measured by the UV-Vis spectrophotometer and Sodium and Potassium were measured by the flame photometer. Organic acids were determined by Titration method using NaOH and phenolphethalein indicator. Weight was measured by scale based on 0.1 g and length and diameters were measured by caliper. The mean weight of Red Delicious and Golden Delicious apples was 173.7 g and 146.7 g, respectively. The amount of iron, zinc, calcium, phosphorus, sodium, and potassium for the red variety was 0.24, 0.14, 28, 8.9, 4.7 and 63.8 respectively; values for the Golden variety were 0.23, 0.14, 27.9, 8.8, 4.5, and 66.3 mg/100g fresh weight, respectively. The amount of ascorbic acid, malic acid, and citric acid for Golden delicious was 9.09, 0.27 and 0.28, respectively; for Red delicious apples, the amount was 9.47, 0.26 and 0.28 mg/100 g, respectively. Acidities for Golden delicious and Red delicious were 3.7 and 4, respectively. One hundred gram of apple fruit grown in Lorestan would provide 3% of iron, 1.5% of zinc, 2.8% of calcium and 1.4% of potassium requirements. The amount of organic acid in apples of Lorestan province was lower than some other countries.

  13. Aggregate and Mineral Resources - Minerals

    Data.gov (United States)

    NSGIC State | GIS Inventory — This point occurrence data set represents the current mineral and selected energy resources of Utah. The data set coordinates were derived from USGS topographic maps...

  14. Majors soil classes of the metropolitan region of Curitiba (PR, Brazil: II - interaction of Pb with mineral and organic constituents

    Directory of Open Access Journals (Sweden)

    Ana Christina Duarte Pires

    2007-03-01

    Full Text Available The interaction between heavy metals and soil constituents is one of the most important factors influencing the potential for ground water pollution. To study Pb behavior, samples of soils were incubated with a salt solution containing this metal. The experimental units consisted of plastic bags, partially opened with 0.1 dm³ of soil with three replications. After incubation, samples were subjected to sequential and selective extractions. Lead retention, measured by the maximum adsorption capacity of the soil, was relatively high with values ranging from 6,439 to 22,148 mg kg-1. The sequential and selective extractions showed that Pb adsorption was stable where the metal was found mainly in organic matter, Fe and Al oxides, and residual forms (specific adsorption. The capacity of the soils to retain Pb, thereby increasing the leaching potential of the metal, was in the sequence of: Histosol - Oxisol - Inceptisol.A interação entre os metais pesados e os constituintes orgânicos e minerais do solo é um dos fatores mais importantes para definir o potencial de contaminação das águas subterrâneas. Para estudar o comportamento do Pb em solos da região metropolitana de Curitiba, estado do Paraná, amostras das classes Organossolo, Latossolo e Cambissolo foram submetidas a análises físicas e químicas, e incubadas com soluções de sais desse metal. A dosagem utilizada correspondeu a 40% da Capacidade Máxima de Adsorção de Pb do solo (CMA. O ensaio foi conduzido na Universidade Federal do Paraná, em condições de casa de vegetação, no período de 29 de outubro a 29 de dezembro de 2003. O delineamento experimental foi em blocos ao acaso, com três repetições e as unidades experimentais corresponderam a sacos plásticos parcialmente abertos com 0,1 dm³ de solo. Após o período de incubação (60 dias, as amostras foram submetidas a extrações seqüenciais e seletivas, na seguinte ordem: 1 KCl 0,005 mol L-1; 2 BaCl2 0,1 mol L-1; 3 Na

  15. The soft notion of China's 'soft power'

    OpenAIRE

    Breslin, Shaun

    2011-01-01

    · Although debates over Chinese soft power have increased in\\ud recent years, there is no shared definition of what ‘soft power’\\ud actually means. The definition seems to change depending on\\ud what the observer wants to argue.\\ud · External analyses of soft power often include a focus on\\ud economic relations and other material (hard) sources of power\\ud and influence.\\ud · Many Chinese analyses of soft power focus on the promotion of a\\ud preferred (positive) understanding of China’s inter...

  16. Modern Soft Tissue Pathology | Center for Cancer Research

    Science.gov (United States)

    This book comprehensively covers modern soft tissue pathology and includes both tumors and non-neoplastic entities. Soft tissues make up a large bulk of the human body, and they are susceptible to a wide range of diseases. Many soft-tissue tumors are biologically very aggressive, and the chance of them metastasizing to vital organs is quite high. In recent years, the outlook

  17. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants.

    Science.gov (United States)

    Koller, Robert; Rodriguez, Alia; Robin, Christophe; Scheu, Stefan; Bonkowski, Michael

    2013-07-01

    Dead organic matter (OM) is a major source of nitrogen (N) for plants. The majority of plants support N uptake by symbiosis with arbuscular mycorrhizal (AM) fungi. Mineralization of N is regulated by microfauna, in particular, protozoa grazing on bacteria. We hypothesized that AM fungi and protozoa interactively facilitate plant N nutrition from OM. In soil systems consisting of an OM patch and a root compartment, plant N uptake and consequences for plant carbon (C) allocation were investigated using stable isotopes. Protozoa mobilized N by consuming bacteria, and the mobilized N was translocated via AM fungi to the host plant. The presence of protozoa in both the OM and root compartment stimulated photosynthesis and the translocation of C from the host plant via AM fungi into the OM patch. This stimulated microbial activity in the OM patch, plant N uptake from OM and doubled plant growth. The results indicate that protozoa increase plant growth by both mobilization of N from OM and by protozoa-root interactions, resulting in increased C allocation to roots and into the rhizosphere, thereby increasing plant nutrient exploitation. Hence, mycorrhizal plants need to interact with protozoa to fully exploit N resources from OM. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Persistent organic pollutants and penile bone mineral density in East Greenland and Canadian polar bears (Ursus maritimus) during 1996-2015.

    Science.gov (United States)

    Daugaard-Petersen, Tobias; Langebæk, Rikke; Rigét, Frank F; Dyck, Markus; Letcher, Robert J; Hyldstrup, Lars; Jensen, Jens-Erik Bech; Dietz, Rune; Sonne, Christian

    2018-05-01

    Persistent organic pollutants (POPs) are long-range transported to the Arctic via atmospheric and oceanic currents, where they biomagnify to high concentrations in the tissues of apex predators such as polar bears (Ursus maritimus). A major concern of POP exposure is their physiological effects on vital organ-tissues posing a threat to the health and survival of polar bears. Here we examined the relationship between selected POPs and baculum bone mineral density (BMD) in the East Greenland and seven Canadian subpopulations of polar bears. BMD was examined in 471 bacula collected between years 1996-2015 while POP concentrations in adipose tissue were determined in 67-192 of these individuals collected from 1999 to -2015. A geographical comparison showed that baculum BMD was significantly lowest in polar bears from East Greenland (EG) when compared to Gulf of Boothia (GB), Southern Hudson (SH) and Western Hudson (WH) Bay subpopulations (all p bears as a reference group gave a T-score of -1.44 which indicate risk of osteopenia. Concentrations of ΣPCB 74 (polychlorinated biphenyls), ΣDDT 3 (dichlorodiphenyltrichloroethanes), p,p'-DDE (dichlorodiphenyldichloroethylene), ΣHCH 3 (hexachlorohexane) and α-HCH was significantly highest in EG bears while ΣPBDE (polybrominated diphenyl ethers), BDE-47 and BDE-153 was significantly highest in SH bears (all p polar bears despite the positive statistical correlations of BMD vs. POPs. Other important factors such as nutritional status, body mass and body condition was not available for the statistical modelling. Since on-going environmental changes are known to affect these, future studies need to incorporate nutritional, endocrine and genetic parameters to further understand how POP exposure may disrupt bone homeostasis and affect baculum BMD across polar bear subpopulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Fumarolic minerals

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci; Garavelli, Anna; Jakobsson, Sveinn Peter

    2016-01-01

    The fumarolic mineralogy of the Icelandic active volcanoes, the Tyrrhenian volcanic belt (Italy) and the Aegean active arc (Greece) is investigated, and literature data surveyed in order to define the characteristics of the European fumarolic systems. They show broad diversity of mineral...... associations, with Vesuvius and Vulcano being also among the world localities richest in mineral species. Volcanic systems, which show recession over a longer period, show fumarolic development from the hightemperature alkaline halide/sulphate, calcic sulphate or sulphidic parageneses, synchronous...... with or immediately following the eruptions, through mediumtemperature ammonium minerals, metal chlorides, or fluoride associations to the late low-temperature paragenesis dominated by sulphur, gypsum, alunogen, and other hydrous sulphates. The situation can be different in the systems that are not recessing but show...

  20. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  1. Soft, Embodied, Situated & Connected

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; divers...

  2. Soft, embodied, situated & connected

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; diverse

  3. Net mineralization nitrogen and soil chemical changes with application of organic wastes with ‘Fermented Bokashi Compost’ - doi: 10.4025/actasciagron.v35i2.15133

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2012-12-01

    Full Text Available The use of organic wastes in agricultural soils is one of the possible ways to employ these materials. The aims of this study were to evaluate the effectiveness of organic wastes and Fermented Bokashi Compost (FBC, to establish the most efficient use of organic wastes for a soil, changing the net nitrogen mineralization and soil chemical properties. The experimental design was completely randomized in a 6 x 2 x 5 factorial, being five organic wastes plus an control (soil without waste, with or without FBC, evaluated at 0, 7, 42, 70 and 91 days of incubation, with three replicates, under laboratory conditions. The organic wastes enhanced the soil chemical properties and increased nitrogen concentration in soil. However, the net nitrogen mineralization was affected by C/N ratio of wastes and incubation time. The FBC mixed with the wastes accelerated and enhanced organic matter degradation, resulting in quickly available quantity of net nitrogen. The wastes can be considered potentially useful as organic fertilizer but their usefulness appears to depend on knowing the C/N ratio of each one. The FBC can be used when one wants a more accelerated degradation, resulting in a quicker quantity of available nutrients to the plants.

  4. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  5. Mineral resource of the month: diatomite

    Science.gov (United States)

    ,

    2013-01-01

    The article discusses the properties and applications of the mineral diatomite. According to the author, diatomite is a soft, friable and very fine-grained siliceous sedimentary rock made of the remains of fossilized diatoms. The author adds that its properties make diatomite very useful as a filtration medium and as a component in cement.

  6. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    flux. Circulation of seawater through the oceanic crust and upper mantle gives rise to a complex series of physical and chemical reactions that lead to the 1) formation of seafloor mineral deposits; 2) alteration of oceanic crust; 3) control... temperature in the high-temperature reaction zone near the heat source. Important parameters in determining the high- temperature fluid composition are • pressure, • temperature, • water/rock ratio, • rock composition, • recharge fluid...

  7. Quantifying structural states of soft mudrocks

    Science.gov (United States)

    Li, B.; Wong, R. C. K.

    2016-05-01

    In this paper, a cm model is proposed to quantify structural states of soft mudrocks, which are dependent on clay fractions and porosities. Physical properties of natural and reconstituted soft mudrock samples are used to derive two parameters in the cm model. With the cm model, a simplified homogenization approach is proposed to estimate geomechanical properties and fabric orientation distributions of soft mudrocks based on the mixture theory. Soft mudrocks are treated as a mixture of nonclay minerals and clay-water composites. Nonclay minerals have a high stiffness and serve as a structural framework of mudrocks when they have a high volume fraction. Clay-water composites occupy the void space among nonclay minerals and serve as an in-fill matrix. With the increase of volume fraction of clay-water composites, there is a transition in the structural state from the state of framework supported to the state of matrix supported. The decreases in shear strength and pore size as well as increases in compressibility and anisotropy in fabric are quantitatively related to such transition. The new homogenization approach based on the proposed cm model yields better performance evaluation than common effective medium modeling approaches because the interactions among nonclay minerals and clay-water composites are considered. With wireline logging data, the cm model is applied to quantify the structural states of Colorado shale formations at different depths in the Cold Lake area, Alberta, Canada. Key geomechancial parameters are estimated based on the proposed homogenization approach and the critical intervals with low strength shale formations are identified.

  8. Phosphorus loss by surface runoff in no-till system under mineral and organic fertilization Perda de fósforo via escoamento superficial no sistema plantio direto sob adubação mineral e orgânica

    Directory of Open Access Journals (Sweden)

    Oromar João Bertol

    2010-02-01

    Full Text Available The no-till system has been intensively used in the state of Paraná, Brazil, and it has increased the nutrients level at the soil surface. This has contributed for nutrient losses via runoff and consequently, off-site water pollution. The objective of this study was to evaluate phosphorus loss in surface runoff by simulated rainfall on an Oxisol, under no-till system following application of mineral fertilizer and liquid swine manure. Nitrogen, soil and water losses from the same study are reported in a separated paper. The application of liquid swine manure, compared with mineral fertilization, increased runoff concentration of total P, particulate P and dissolved reactive P by 193%, 111% and 506%, respectively, averaged for all rainfall intensities. Independently on the fertilizer source, the highest rainfall intensity provided the greatest concentration and loads of P in runoff.O sistema plantio direto tem sito intensivamente utilizado no Estado do Paraná Brasil o qual tem aumentado os níveis de nutrientes na superfície do solo. Isto tem contribuído para a perda de nutrientes via escoamento superficial e consequentemente com a poluição não pontual das águas. Avaliou-se a perda de fósforo via escoamento superficial ocasionado por chuva simulada sobre um Latossolo originário de basalto, em sistema plantio direto submetido à aplicação de fertilizante mineral e dejeto líquido de suíno. As perdas de nitrogênio, solo e água deste mesmo estudo foram publicadas em outro artigo. A aplicação de dejeto líquido suíno, comparado com o fertilizante mineral, aumentou a concentração de P total, P particulado e P dissolvido reativo em 193%, 111% e 506%, respectivamente, na média das chuvas. Independentemente da fonte de fertilizante, a chuva de maior intensidade proporcionou maior concentração e quantidade perdida de P no escoamento superficial.

  9. Simulação pelo modelo century da dinâmica da matéria orgânica de um Argissolo sob adubação mineral e orgânica Simulation of organic matter dynamics in an Argisol under mineral and organic fertilization with the century model

    Directory of Open Access Journals (Sweden)

    L. F. C. Leite

    2004-04-01

    ânica, especialmente em solos tropicais. Os estoques de COT, NT e dos compartimentos de C (lento e passivo, simulados pelo modelo Century, foram similares aos estoques medidos. Os estoques de COT (em Mg ha-1 de C, medidos e simulados pelo modelo Century, foram bem correlacionados (R² = 0,93; p Simulation models are essential instruments to understand soil organic matter dynamics and the turnover of its pools in tropical soils. The objectives of this study were: (a simulate the effects of maize production systems under organic and mineral fertilization on soil organic matter dynamics of an Ultisol using the Century model; (b to compare total carbon (TOC and total nitrogen stocks (TN and the carbon pools (C measured in the laboratory and estimated by the Century model for the surface soil layer (0-20 cm. The study area had been part of the Atlantic Forest (FA until 1930. After that it had been used for maize/bean production up to 1984, when the field experiment was set up. The treatments included a combination of three levels of mineral fertilizer at doses of 0, 250 and 500 kg ha-1 of the 4-14-8 formula and two levels of organic fertilizer (animal manure with soybean and bean straw at doses of 0 and 40 m³ ha-1. Laboratory determinations included TOC and TN, microbial biomass C representing the active C pool and carbon of the light fraction representing the slow C pool. The passive C pool was determined by difference. The Century model was parameterized with data from the present experiment and from literature, whereas the simulations of the dynamics of TOC, TN and the active, slow, and passive pool included land use changes between 1930 and 2050. The Century model estimated a decrease in TOC, TN and the different carbon pools between the slash and burn of the Atlantic Forest until the establishment of the field experiment. Only in the treatments with organic fertilization it was observed a recovery of these pools. Biomass carbon and the carbon of the light fraction were more sensitive

  10. Soft tissue healing in alveolar socket preservation technique: histologic evaluations.

    Science.gov (United States)

    Pellegrini, Gaia; Rasperini, Giulio; Obot, Gregory; Farronato, Davide; Dellavia, Claudia

    2014-01-01

    After tooth extraction, 14 alveolar sockets were grafted with porous bovine bone mineral particles and covered with non-cross-linked collagen membrane (test group), and 14 alveolar sockets were left uncovered. At 5 and 12 weeks, microvascular density (MVD), collagen content, and amount of lymphocytes (Lym) T and B were analyzed in soft tissue. At 5 weeks, MVD was significantly lower and Lym T was significantly higher in tests than in controls (P healing process of the soft tissue.

  11. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    Science.gov (United States)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  12. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  13. Varying response of the concentration and content of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment

    Science.gov (United States)

    A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...

  14. Soil organic matter and nitrogen cycling in response to harvesting, mechanical site preparation, and fertilization in a wetland with a mineral substrate

    Science.gov (United States)

    James W. McLaughlin; Margaret R. Gale; Martin F. Jurgensen; Carl C. Trettin

    2000-01-01

    Forested wetlands are becoming an important timber resource in the Upper Great Lakes Region of the US. However, there is limited information on soil nutrient cycling responses to harvesting and post-harvest manipulations (site preparation and fertilization). The objective of this study was to examine cellulose decomposition, nitrogen mineralization, and soil solution...

  15. "Soft-shelled" monothalamid foraminifers as a modern analogue of early life

    Science.gov (United States)

    Kitazato, Hiroshi; Ohkawara, Nina; Gooday, Andrew

    2017-04-01

    According to the fossil record, the earliest undoubted foraminifers are found in the Early Cambrian, where they are represented by tubular agglutinated forms, thought to be the most primitive foraminiferal morphotypes. The numerous foraminifers with single-chambered, organic-walled tests (i.e. 'soft-shelled' monothalamids) exist in the deep sea and are difficult to preserve as fossils. Molecular phylogenetic data tell us that these 'primitive' taxa include the deepest foraminiferal clades, originating around 600 - 900 Ma. We found many soft-shelled monothalamids in sediment samples from deep trenches, including the Challenger Deep (Marianas Trench) and the Horizon Deep (Tonga Trench). Both deeps exceed 10,000 m water depth, well below the carbonate compensation depth, which represents an environmental barrier for calcareous foraminifera. The foraminifera at these extreme hadal sites include tubular and globular forms with organic walls, among which species of the genera Nodellum and Resigella are particularly abundant. Some forms selectively agglutinate minute flakes of clay minerals on the surface of the organic test. Many soft-shelled monothalamids, including most of those in deep tranches, contain stercomata, the function of which is currently unknown. Gromiids (a rhizarian group related to foraminifera) also accumulate stercomata in their sack-shaped tests. This suggests the possibility that the function of these waste particles is to add bulk, like the filling of soft bags or pillows. We suggest that the monothalamid foraminifera that dominate small-sized eukaryotes in extreme hadal settings may provide clues to understanding the biology and ecology of early life in Neoproterozoic sedimented habitats.

  16. Cyclodextrin-supported organic matrix for application of MALDI-MS for forensics. Soft-ionization to obtain protonated molecules of low molecular weight compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Tetsu, E-mail: tetsu@eng.hokudai.ac.jp [Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asano, Takashi [Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Criminal Investigation Laboratory, Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Fujino, Tatsuya [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Nishihara, Hiroshi [Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2013-06-20

    Highlights: ► MALDI-MS applications for drug identification in forensic science is investigated. ► Cyclodextrin-supported organic matrices strongly suppress the obstacle peaks of organic matrix compounds. ► Cyclodextrin-supported organic matrices also suppress the alkali adducted molecule peaks. ► Sugar units of cyclodextrins work for this specific features. - Abstract: A mass measurement technique for detecting low-molecular-weight drugs with a cyclodextrin-supported organic matrix was investigated. By using cyclodextrin-supported 2,4,6-trihydroxyacetophenone (THAP), the matrix-related peaks of drugs were suppressed. The peaks of protonated molecules of the sample and THAP were mainly observed, and small fragments were detected in a few cases. Despite the Na{sup +} and K{sup +} peaks were observed in the spectrum, Na{sup +} or K{sup +} adduct sample molecules were undetected, owing to the sugar units of cyclodextrin. The advantages of MALDI-MS with cyclodextrin-supported matrices as an analytical tool for forensic samples are discussed. The suppression of alkali adducted molecules and desorption process are also discussed.

  17. Cyclodextrin-supported organic matrix for application of MALDI-MS for forensics. Soft-ionization to obtain protonated molecules of low molecular weight compounds

    International Nuclear Information System (INIS)

    Yonezawa, Tetsu; Asano, Takashi; Fujino, Tatsuya; Nishihara, Hiroshi

    2013-01-01

    Highlights: ► MALDI-MS applications for drug identification in forensic science is investigated. ► Cyclodextrin-supported organic matrices strongly suppress the obstacle peaks of organic matrix compounds. ► Cyclodextrin-supported organic matrices also suppress the alkali adducted molecule peaks. ► Sugar units of cyclodextrins work for this specific features. - Abstract: A mass measurement technique for detecting low-molecular-weight drugs with a cyclodextrin-supported organic matrix was investigated. By using cyclodextrin-supported 2,4,6-trihydroxyacetophenone (THAP), the matrix-related peaks of drugs were suppressed. The peaks of protonated molecules of the sample and THAP were mainly observed, and small fragments were detected in a few cases. Despite the Na + and K + peaks were observed in the spectrum, Na + or K + adduct sample molecules were undetected, owing to the sugar units of cyclodextrin. The advantages of MALDI-MS with cyclodextrin-supported matrices as an analytical tool for forensic samples are discussed. The suppression of alkali adducted molecules and desorption process are also discussed

  18. Soft, embodied, situated & connected: enriching interactions with soft wearbles

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress;

  19. Mineral distributions at the developing tendon enthesis.

    Science.gov (United States)

    Schwartz, Andrea G; Pasteris, Jill D; Genin, Guy M; Daulton, Tyrone L; Thomopoulos, Stavros

    2012-01-01

    Tendon attaches to bone across a functionally graded interface, "the enthesis". A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral

  20. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  1. Fixing soft margins

    NARCIS (Netherlands)

    P. Kofman (Paul); A. Vaal, de (Albert); C.G. de Vries (Casper)

    1993-01-01

    textabstractNon-parametric tolerance limits are employed to calculate soft margins such as advocated in Williamson's target zone proposal. In particular, the tradeoff between softness and zone width is quantified. This may be helpful in choosing appropriate margins. Furthermore, it offers

  2. learning and soft skills

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2000-01-01

    Learning of soft skills are becoming more and more necessary due to the complexe development of modern companies and their environments. However, there seems to be a 'gap' between intentions and reality regarding need of soft skills and the possiblities to be educated in this subject in particular...

  3. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... and knowledge transfer in the context of soft wearables....

  4. Collard greens yield with mineral and organic fertilization / Produção de couve brassica oleracea L. var. acephala com adubação mineral e orgânica

    Directory of Open Access Journals (Sweden)

    Maurício Ursi Ventura

    2009-10-01

    Full Text Available The development of the collard greens crop was studied in the seedling phase and after planting in vessels, which received different treatments of fertilization which included mineral fertilizer (as standard, Bokashi compost (Bo and EM4, earthworms humus (Hu, and piroligneous acid (AP, combined in ten treatments for each crop phase. The standard treatment included commercial substrate for seedlings (SC and after planting with the formula 08-28-16. The length of the leaf was assessed 25 days after emergency. The leaf length and width was assessed 85 days after planting. The fresh and dry weight of leaf and petiole were assessed 144 days after seedling. Inferior development was observed in plants with humus. In general, in the treatments which included Bokashi, the results were similar or close to the standard treatment.Foi estudado o desenvolvimento da cultura da couve-de-folha na fase de muda e após o transplantio em vasos, submetida a diferentes tratamentos de adubação, os quais incluíam fertilizante mineral (como padrão, composto Bokashi (Bo e EM-4, húmus de minhoca (Hu e ácido pirolenhoso (AP, combinados em dez tratamentos para cada fase. O tratamento padrão incluiu substrato comercial para mudas (SC e adubação após o transplantio com a fórmula 08-28-16. O comprimento do limbo foliar foi avaliado 25 dias após a emergência. O comprimento e largura do limbo foliar foram avaliados 85 dias após o transplantio. O peso fresco e seco do limbo e pecíolo foi avaliado aos 144 dias após a semeadura. Desenvolvimento inferior foi observado em plantas com Hu. De maneira geral, nos tratamentos com Bo e EM-4, os resultados foram similares ou apresentaram desenvolvimento próximo ao tratamento padrão.

  5. Minerals Industry' 97. Survey report

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of this annual survey is to provide timely and accurate financial data such as production, price movements, profitability, distribution of assets by activity, employment and labour cost and taxation on the Australian minerals industry. It aims to facilitate more informed debate on the industry's role and importance in the economy. The report also includes information on the safety and health performance and overseas exploration expenditure of the minerals industry. This twenty-first survey relates to the year ended 30 June 1997. The proportion of activity covered in this year's survey is comparable with the 1996 survey. The mineral industry is defined as including exploration for, extraction and primary processing of minerals in Australia. The oil, gas, iron and steel industries are excluded. As for the uranium industry, increased mine capacity over the medium term saw a switch away from spot market purchases to long term contracts for uranium in 1996. This, coupled with announced releases from the US stockpile, saw downward pressure on spot market prices for uranium during 1996/97. The average spot market price for U 3 O 8 fell by an average of 6 percent during 1996/97 and was approximately 16 percent lower than three years ago. General uncertainty over the future profitability of coal industry is compounded by the likely softness of future coal prices

  6. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  7. Rendimento e concentração de nutrientes em alface, em função das adubações orgânica e mineral Yield and nutrient concentration in lettuce as a function of organic and mineral manuring

    Directory of Open Access Journals (Sweden)

    Edson Talarico Rodrigues

    1999-07-01

    Full Text Available O rendimento e a concentração de nutrientes na alface, cultivar Babá, foram quantificados em função das adubações orgânica e mineral, em solo distrófico. Utilizou-se o sistema de transplante de mudas em vasos de polietileno de 5 dm³, em casa de vegetação e o delineamento experimental inteiramente casualizado com três repetições. Os tratamentos foram dispostos no arranjo fatorial 4 x 3, com quatro doses de composto orgânico (0; 0,9; 1,8 e 2,7 dm³, equivalentes a 0, 33, 66 e 99 t/ha, na base seca e três níveis de adubação mineral (0, 1 e 2. O nível 2 veiculou as doses de macro e micronutrientes apropriadas e o nível 1 consistiu de metade do nível 2. As produtividades máximas foram estimadas em 119,5, 119,4 e 153,9 g/planta, com as doses de 37,7, 18,9 e 13 t/ha de composto, nos níveis 0, 1 e 2 de adubo mineral, respectivamente. As doses de composto orgânico promoveram aumentos menos acentuados que a adubação mineral nas concentrações foliares de N, elevaram as concentrações de P, K e Na e diminuíram as de Ca, demonstrando que doses altas de adubos orgânicos provocam excesso de cátions monovalentes, prejudicando a absorção do Ca.Nutrient accumulation in lettuce plants, cv. Babá, was quantified as a function of organic and mineral fertilisers, in a low fertility soil. The experiment was established by transplanting seedlings to 5 dm³ capacity pots in a greenhouse. The experiment was laid out in a complete randomised block design with three replications ordered in factorial arrangement (4 x 3 of four doses of organic compost (0, 0.9, 1.8 and 2.7 dm³; equivalent to 0, 33, 66, and 99 t/ha, in drought basis and three mineral fertiliser levels (0, 1 and 2. Level two carried doses of macro and micronutrients normally recommended for the culture, with level one carrying half the dose of level two. The maximum estimated yields were 119.5, 119.4 and 153.9 g/plant with 37.7, 18.9 and 13 t/ha compost doses, for levels 0

  8. Understanding soft condensed matter via modeling and computation

    CERN Document Server

    Shi, An-Chang

    2011-01-01

    All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.

  9. Next generation offline approaches to trace organic compound speciation: Approaching comprehensive speciation with soft ionization and very high resolution tandem mass spectrometry

    Science.gov (United States)

    Khare, P.; Marcotte, A.; Sheu, R.; Ditto, J.; Gentner, D. R.

    2017-12-01

    Intermediate- and semi-volatile organic compounds (IVOCs and SVOCs) have high secondary organic aerosol (SOA) yields, as well as significant ozone formation potentials. Yet, their emission sources and oxidation pathways remain largely understudied due to limitations in current analytical capabilities. Online mass spectrometers are able to collect real time data but their limited mass resolving power renders molecular level characterization of IVOCs and SVOCs from the unresolved complex mixture unfeasible. With proper sampling techniques and powerful analytical instrumentation, our offline tandem mass spectrometry (i.e. MS×MS) techniques provide molecular-level and structural identification over wide polarity and volatility ranges. We have designed a novel analytical system for offline analysis of gas-phase SOA precursors collected on custom-made multi-bed adsorbent tubes. Samples are desorbed into helium via a gradual temperature ramp and sample flow is split equally for direct-MS×MS analysis and separation via gas chromatography (GC). The effluent from GC separation is split again for analysis via atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-Q×TOF) and traditional electron ionization mass spectrometry (EI-MS). The compounds for direct-MS×MS analysis are delivered via a transfer line maintained at 70ºC directly to APCI-Q×TOF, thus preserving the molecular integrity of thermally-labile, or other highly-reactive, organic compounds. Both our GC-MS×MS and direct-MS×MS analyses report high accuracy parent ion masses as well as information on molecular structure via MS×MS, which together increase the resolution of unidentified complex mixtures. We demonstrate instrument performance and present preliminary results from urban atmospheric samples collected from New York City with a wide range of compounds including highly-functionalized organic compounds previously understudied in outdoor air. Our work offers new

  10. Hydrokinesitherapy in thermal mineral water

    Directory of Open Access Journals (Sweden)

    Rendulić-Slivar Senka

    2013-01-01

    Full Text Available The treatment of clients in health spa resorts entails various forms of hydrotherapy. Due to specific properties of water, especially thermal mineral waters, hydrokinesitherapy has a positive effect on the locomotor system, aerobic capabilities of organism and overall quality of human life. The effects of use of water in movement therapy are related to the physical and chemical properties of water. The application of hydrotherapy entails precautionary measures, with an individual approach in assessment and prescription. The benefits of treatment in thermal mineral water should be emphasized and protected, as all thermal mineral waters differ in composition. All physical properties of water are more pronounced in thermal mineral waters due to its mineralisation, hence its therapeutical efficiency is greater, as well.

  11. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  12. Relationship between trace element content in human organs and hair - significance of hair mineral analysis as a means for assessing internal body burdens of environmental mineral pollutants. Final report for the period October 1984 - September 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kinova, L [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Nuclear Research and Nuclear Energy

    1988-12-31

    The purpose of the project was to establish a possibility to use hair as a monitor for internal body burden with toxic metals. For this purpose samples of human organs (heart, spleen, liver, kidney) and hair were analysed by neutron activation analysis and radiochemical techniques for the determination of As, Cd, Hg, Cu, Zn, Se, Ca, K, Mg, Mn, Na, S. 6 refs, 4 tabs.

  13. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  14. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene; Vidal, Rene Victor Valqui

    2006-01-01

    ’s interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable for supporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  15. Evaluating Six Soft Approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Valqui Vidal, René Victor

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  16. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Vidal, Rene Victor Valqui

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  17. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    DeMasi, A.; Piper, L; Zhang, Y; Reid, I; Wang, S; Smith, K; Downes, J; Pelkekis, N; McGuinness, C; Matsuura, A

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  18. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    Science.gov (United States)

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  19. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  20. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.

    Science.gov (United States)

    Hamdous, Yasmina; Chebbi, Imène; Mandawala, Chalani; Le Fèvre, Raphael; Guyot, François; Seksek, Olivier; Alphandéry, Edouard

    2017-10-17

    Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm 2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/g Fe . Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the