WorldWideScience

Sample records for mineralocorticoid receptor due

  1. Localization of mineralocorticoid receptors at mammalian synapses.

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  2. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice

    Zhou, M.; Bakker, E.H.M.; Velzing, E.; Berger, S.; Oitzl, M.; Joëls, M.; Krugers, H.J.

    2010-01-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory

  3. A SELECTIVE ANTAGONIST OF MINERALOCORTICOID RECEPTOR EPLERENONE IN CARDIOLOGY PRACTICE

    B. B. Gegenava

    2015-01-01

    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  4. Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity

    Thiesson, Helle; Jensen, Boye L; Bistrup, Claus

    2007-01-01

    Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar...... rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining...... were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion...

  5. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy

    Roscioni, Sara S.; de Zeeuw, Dick; Bakker, Stephan J. L.; Lambers Heerspink, Hiddo J.

    2012-01-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients

  6. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  7. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  8. Mineralocorticoid receptor haplotype, oral contraceptives and emotional information processing.

    Hamstra, D A; de Kloet, E R; van Hemert, A M; de Rijk, R H; Van der Does, A J W

    2015-02-12

    Oral contraceptives (OCs) affect mood in some women and may have more subtle effects on emotional information processing in many more users. Female carriers of mineralocorticoid receptor (MR) haplotype 2 have been shown to be more optimistic and less vulnerable to depression. To investigate the effects of oral contraceptives on emotional information processing and a possible moderating effect of MR haplotype. Cross-sectional study in 85 healthy premenopausal women of West-European descent. We found significant main effects of oral contraceptives on facial expression recognition, emotional memory and decision-making. Furthermore, carriers of MR haplotype 1 or 3 were sensitive to the impact of OCs on the recognition of sad and fearful faces and on emotional memory, whereas MR haplotype 2 carriers were not. Different compounds of OCs were included. No hormonal measures were taken. Most naturally cycling participants were assessed in the luteal phase of their menstrual cycle. Carriers of MR haplotype 2 may be less sensitive to depressogenic side-effects of OCs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia

    Lai, Maggie; Horsburgh, Karen; Bae, Sung-Eun; Carter, Roderick N.; Stenvers, Dirk J.; Fowler, Jill H.; Yau, Joyce L.; Gomez-Sanchez, Celso E.; Holmes, Megan C.; Kenyon, Christopher J.; Seckl, Jonathan R.; Macleod, Malcolm R.

    2007-01-01

    The nuclear mineralocorticoid receptor (MR), a high-affinity receptor for glucocorticoids, is highly expressed in the hippocampus where it underpins cognitive, behavioural and neuroendocrine regulation. Increased neuronal MR expression occurs early in the response to cellular injury in vivo and in

  10. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

    Se Eun Lee

    2011-02-01

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5, in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

  11. Influence of allelic variations in relation to norepinephrine and mineralocorticoid receptors on psychopathic traits: a pilot study

    Guillaume Durand

    2018-03-01

    Full Text Available Background Past findings support a relationship between abnormalities in the amygdala and the presence of psychopathic traits. Among other genes and biomarkers relevant to the amygdala, norepinephrine and mineralocorticoid receptors might both play a role in psychopathy due to their association with traits peripheral to psychopathy. The purpose is to examine if allelic variations in single nucleotide polymorphisms related to norepinephrine and mineralocorticoid receptors play a role in the display of psychopathic traits and executive functions. Methods Fifty-seven healthy participants from the community provided a saliva sample for SNP sampling of rs5522 and rs5569. Participants then completed the Psychopathic Personality Inventory–Short Form (PPI-SF and the Tower of Hanoi. Results Allelic variations of both rs5522 and rs5569 were significant when compared to PPI-SF total score and the fearless dominance component of the PPI-SF. A significant result was also obtained between rs5522 and the number of moves needed to complete the 5-disk Tower of Hanoi. Conclusion This pilot study offers preliminary results regarding the effect of allelic variations in SNPs related to norepinephrine and mineralocorticoid receptors on the presence of psychopathic traits. Suggestions are provided to enhance the reliability and validity of a larger-scale study.

  12. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    ter Horst, J.P.; Mark, M.; Kentrop, J.; Arp, M.; van Veen, R.; de Kloet, E.R.; Oitzl, M.S.

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor

  13. Common functional mineralocorticoid receptor polymorphisms modulate the cortisol awakening response : Interaction with SSRIs

    Klok, Melanie D.; Vreeburg, Sophie A.; Penninx, Brenda W. J. H.; Zitman, Frans G.; de Kloet, E. Ron; DeRijk, Roel H.

    Background: Cortisol controls the activity of the hypothalamic pituitary adrenal (HPA) axis during stress and during the circadian cycle through central mineralocorticoid (MR) and glucocorticoid receptors (GR). Changes in MR and GR functioning, therefore, may affect HPA axis activity. In this study

  14. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  15. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Low-Renin Hypertension Phenotype: Genetics and the Role of the Mineralocorticoid Receptor

    Rene Baudrand

    2018-02-01

    Full Text Available A substantial proportion of patients with hypertension have a low or suppressed renin. This phenotype of low-renin hypertension (LRH may be the manifestation of inherited genetic syndromes, acquired somatic mutations, or environmental exposures. Activation of the mineralocorticoid receptor is a common final mechanism for the development of LRH. Classically, the individual causes of LRH have been considered to be rare diseases; however, recent advances suggest that there are milder and “non-classical” variants of many LRH-inducing conditions. In this regard, our understanding of the underlying genetics and mechanisms accounting for LRH, and therefore, potentially the pathogenesis of a large subset of essential hypertension, is evolving. This review will discuss the potential causes of LRH, with a focus on implicated genetic mechanisms, the expanding recognition of non-classical variants of conditions that induce LRH, and the role of the mineralocorticoid receptor in determining this phenotype.

  17. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory

    Cornelisse, S.; Joëls, M.; Smeets, T.

    2011-01-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be

  18. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans.

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-04-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.

  19. Corticosteroids stimulate the amphibious behavior in mudskipper: potential role of mineralocorticoid receptors in teleost fish.

    Sakamoto, Tatsuya; Mori, Chie; Minami, Shogo; Takahashi, Hideya; Abe, Tsukasa; Ojima, Daisuke; Ogoshi, Maho; Sakamoto, Hirotaka

    2011-10-24

    It has long been held that cortisol, a glucocorticoid in many vertebrates, carries out both glucocorticoid and mineralocorticoid actions in teleost fish. However, 11-deoxycorticosterone (DOC) has been identified as a specific endogenous ligand for the teleostean mineralocorticoid receptor (MR). Furthermore, the expressions of MR mRNA are modest in the osmoregulatory organs, but considerably higher in the brain of most teleosts. These recent findings suggest that the mineralocorticoid system (DOC/MR) may carry out some behavioral functions in fish. To test this possibility, we examined the effects of cortisol and DOC administration in the amphibious behavior in mudskipper (Periophthalmus modestus) in vivo. It was found that mudskippers remained in the water for an increased period of time when they were immersed into 5 μM DOC or cortisol for 8h. Additionally, an exposure to 25 μM DOC for 4 to 8 h caused a decreased migratory frequency of mudskippers to the water, reflected a tendency to remain in the water. It was further observed that after 8 h of intracerebroventricular (ICV) injection with 0.3 pmol DOC or cortisol the staying period in the water increased in fish. The migratory frequency was decreased after ICV DOC injection which indicated that fishes stayed in the water. Concurrent ICV injections of cortisol with RU486 [a specific glucocorticoid-receptor (GR) antagonist] inhibited only the partial effects of cortisol. Together with no changes in the plasma DOC concentrations under terrestrial conditions, these results indicate the involvement of brain MRs as cortisol receptors in the preference for an aquatic habitat of mudskippers. Although the role of GR signaling cannot be excluded in the aquatic preference, our data further suggest that the MR may play an important role in the brain dependent behaviors of teleost fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  1. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Ollikainen Noah

    2007-02-01

    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  2. Overexpression of mineralocorticoid receptors partially prevents chronic stress-induced reductions in hippocampal memory and structural plasticity

    Kanatsou, Sofia; Fearey, Brenna C.; Kuil, Laura E.; Lucassen, Paul J.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harm; Joels, Marian

    2015-01-01

    Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a

  3. Mineralocorticoid hypertension

    Vishal Gupta

    2011-01-01

    Full Text Available Hypertension affects about 10 - 25% of the population and is an important risk factor for cardiovascular and renal disease. The renin-angiotensin system is frequently implicated in the pathophysiology of hypertension, be it primary or secondary. The prevalence of primary aldosteronism increases with the severity of hypertension, from 2% in patients with grade 1 hypertension to 20% among resistant hypertensives. Mineralcorticoid hypertension includes a spectrum of disorders ranging from renin-producing pathologies (renin-secreting tumors, malignant hypertension, coarctation of aorta, aldosterone-producing pathologies (primary aldosteronism - Conns syndrome, familial hyperaldosteronism 1, 2, and 3, non-aldosterone mineralocorticoid producing pathologies (apparent mineralocorticoid excess syndrome, Liddle syndrome, deoxycorticosterone-secreting tumors, ectopic adrenocorticotropic hormones (ACTH syndrome, congenitalvadrenal hyperplasia, and drugs with mineraocorticoid activity (locorice, carbenoxole therapy to glucocorticoid receptor resistance syndromes. Clinical presentation includes hypertension with varying severity, hypokalemia, and alkalosis. Ratio of plasma aldosterone concentraion to plasma renin activity remains the best screening tool. Bilateral adrenal venous sampling is the best diagnostic test coupled with a CT scan. Treatment is either surgical (adrenelectomy for unilateral adrenal disease versus medical therapy for idiopathic, ambiguous, or bilateral disease. Medical therapy focuses on blood pressure control and correction of hypokalemia using a combination of anti-hypertensives (calcium channel blockers, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers and potassium-raising therapies (mineralcorticoid receptor antagonist or potassium sparing diuretics. Direct aldosterone synthetase antagonists represent a promising future therapy.

  4. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels

    2018-01-01

    afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion...... vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused......Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal...

  5. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  6. Underexpression of mineralocorticoid receptor in colorectal carcinomas and association with VEGFR-2 overexpression.

    Di Fabio, Francesco; Alvarado, Carlos; Majdan, Agnieszka; Gologan, Adrian; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2007-11-01

    The human mineralocorticoid receptor (MR) is a steroid receptor widely expressed in colorectal mucosa. A significant role for the MR in the reduction of vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA levels has been demonstrated in vitro. To evaluate a potential contribution of MR to colorectal carcinoma progression, we analyzed the expression of MR in relation to VEGFR-2. Fresh human colorectal cancer tissue and adjacent normal mucosa were harvested from 48 consecutive patients. MR and VEGFR-2 mRNA expression levels were determined by real-time reverse transcriptase-polymerase chain reaction and correlated with clinicopathological parameters. A decline of MR expression was observed in all carcinomas compared to normal mucosa. Expression of MR was a median of 11-fold lower in carcinoma compared to the normal mucosa, irrespective of the location, size, stage, and differentiation. MR was a median of 20-fold underexpressed in carcinomas with VEGFR-2 overexpression vs only 9-fold in carcinomas with VEGFR-2 underexpression (p = 0.035, Mann-Whitney test). These findings support the hypothesis that reduction of MR expression may be one of the early events involved in colorectal carcinoma progression. The inverse association between MR and VEGFR-2 expression in carcinoma suggests a potential tumor-suppressive function for MR.

  7. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task

    Souza, R.R.; Dal Bó, S.; de Kloet, E.R.; Oitzl, M.S.; Carobrez, A.P.

    2014-01-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that

  8. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A systematic review and meta-analysis of the impact of mineralocorticoid receptor antagonists on glucose homeostasis

    Korol, Sandra; Mottet, Fannie; Perreault, Sylvie; Baker, William L.; White, Michel; de Denus, Simon

    2017-01-01

    Abstract Background: Spironolactone, a nonselective mineralocorticoid receptor antagonist (MRA), may have a deleterious effect on glycemia. The objective of this review was to assess current knowledge on MRAs’ influence (spironolactone, eplerenone, and canrenone) on glucose homeostasis and the risk of diabetes. Method: A systematic review was conducted using the Medline database on articles published from 1946 to January 2017 that studied the effects of MRAs on any glucose-related endpoints, ...

  10. Blocking mineralocorticoid receptors prior to retrieval reduces contextual fear memory in mice.

    Ming Zhou

    Full Text Available BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs and glucocorticoid receptors (GRs respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2; tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3 and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.

  11. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  12. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  13. Arctigenin antagonizes mineralocorticoid receptor to inhibit the transcription of Na/K-ATPase.

    Cheng, Ye; Zhou, Meili; Wang, Yan

    2016-01-01

    Hypertension is one of the most important risk factors in cardiovascular disease and is the most common chronic disease. Mineralocorticoid receptor (MR) antagonists have been successfully used in clinic for the treatment of hypertension. Our study aims to investigate whether Arctigenin can antagonize MR and inhibit the transcription of Na/K-ATPase. The yeast two-hybrid assay was used to screen natural products and Arctigenin was identified as an MR antagonist. The direct binding of Arctigenin to MR was determined using assays based on surface plasmon resonance, differential scanning calorimetry and fluorescence quenching. Furthermore, results from mammalian one-hybrid and transcriptional activation experiments also confirmed that Arctigenin can potently antagonize MR in cells. We demonstrated that Arctigenin can decrease the level of Na/K-ATPase mRNA by antagonizing MR in HK-2 cells. Our findings show that Arctigenin can effectively decrease Na/K-ATPase transcription; thus highlight its potential as an anti-hypertensive drug lead compound. Our current findings demonstrate that Arctigenin is an antagonist of MR and effectively decreases the Na/K-ATPase 1 gene expression. Our work provides a hint for the drug discovery against cardiovascular disease.

  14. Effects of Mineralocorticoid Receptors Blockade on FearMemory Reconsolidation in Rats

    Abbas Ali Vafaei

    2011-08-01

    Full Text Available Reconsolidation memory is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. Previous studies have shown that mineralocorticoid receptors (MRs modulate distinct phases of learning and memory, which display a high concentration and distinct distribution in the hippocampus. Moreover, we found no studies that examined the role of hippocampal MRs in fear memory reconsolidation. Here, we investigated the effect of MRs blockade on fear memory reconsolidation in rats. Additionally, to test whether blockade of protein synthesis would disrupt fear memory reconsolidation in our paradigm, we tested the effect of cycloheximide, an inhibitor of protein synthesis after memory reactivation. Results indicated that systemic as well as intra-hippocampal administrations of the MR antagonist spironolactone immediately following memory reactivation did not affect on post-retrieval long-term memory. Cycloheximide given after the reactivation treatment produced a strong impairment that persisted over test sessions. These findings indicate that MRs are not required for reconsolidation of fear-based memory.

  15. Mineralocorticoid receptor haplotype moderates the effects of oral contraceptives and menstrual cycle on emotional information processing.

    Hamstra, Danielle A; de Kloet, E Ronald; Tollenaar, Marieke; Verkuil, Bart; Manai, Meriem; Putman, Peter; Van der Does, Willem

    2016-10-01

    The processing of emotional information is affected by menstrual cycle phase and by the use of oral contraceptives (OCs). The stress hormone cortisol is known to affect emotional information processing via the limbic mineralocorticoid receptor (MR). We investigated in an exploratory study whether the MR-genotype moderates the effect of both OC-use and menstrual cycle phase on emotional cognition. Healthy premenopausal volunteers (n=93) of West-European descent completed a battery of emotional cognition tests. Forty-nine participants were OC users and 44 naturally cycling, 21 of whom were tested in the early follicular (EF) and 23 in the mid-luteal (ML) phase of the menstrual cycle. In MR-haplotype 1/3 carriers, ML women gambled more than EF women when their risk to lose was relatively small. In MR-haplotype 2, ML women gambled more than EF women, regardless of their odds of winning. OC-users with MR-haplotype 1/3 recognised fewer facial expressions than ML women with MR-haplotype 1/3. MR-haplotype 1/3 carriers may be more sensitive to the influence of their female hormonal status. MR-haplotype 2 carriers showed more risky decision-making. As this may reflect optimistic expectations, this finding may support previous observations in female carriers of MR-haplotype 2 in a naturalistic cohort study. © The Author(s) 2016.

  16. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  17. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  18. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  19. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  20. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Ma, Frank Y; Han, Yingjie; Nikolic-Paterson, David J; Kolkhof, Peter; Tesch, Greg H

    2015-01-01

    Steroidal mineralocorticoid receptor antagonists (MRAs) are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis. Accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid) from day 0 until being killed on day 15 of disease. Mice were examined for renal injury. Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ) and profibrotic molecules (collagen I, fibronectin). In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction). The non-steroidal MRA (BR-4628) provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  1. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Frank Y Ma

    Full Text Available Steroidal mineralocorticoid receptor antagonists (MRAs are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis.Accelerated anti-glomerular basement membrane (GBM glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid from day 0 until being killed on day 15 of disease. Mice were examined for renal injury.Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ and profibrotic molecules (collagen I, fibronectin. In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction.The non-steroidal MRA (BR-4628 provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  2. The acute effect of a mineralocorticoid receptor agonist on corticotrope secretion in Addison's disease.

    Berardelli, R; Karamouzis, I; D'Angelo, V; Fussotto, B; Minetto, M A; Ghigo, E; Giordano, R; Arvat, E

    2016-05-01

    Mineralocorticoid receptors (MR) in the hippocampus display an important role in the control of hypothalamic-pituitary-adrenal (HPA) axis, mediating the ''proactive'' feedback of glucocorticoids (GC). Fludrocortisone (FC), a potent MR agonist, has been shown to decrease HPA activity through a hippocampal mechanism. Since it has been demonstrated that FC shows a significant inhibition of the HPA axis response to hCRH stimulus in normal subjects, also at doses usually administered as replacement therapy in patients with Addison's disease, an FC effect at MRs in human pituitary or a GR-pituitary agonism stronger than believed until now has been postulated. Ten patients affected by autoimmune Addison's disease received: (1) placebo p.o. + placebo i.v., (2) hydrocortisone (H) 10 mg p.o. + placebo i.v., (3) FC 0.1 mg p.o. + placebo i.v., (4) FC 0.1 mg and H 10 mg p.o. + placebo i.v. to verify a possible GR FC-mediated effect that might display a repercussion on the GC-replacement therapy. H reduced ACTH (p < 0.01) and increased cortisol levels (p < 0.01) with respect to the placebo session, while FC did not affect either ACTH or cortisol levels compared to placebo, and higher ACTH and lower cortisol levels (p < 0.03 and p < 0.01) were observed compared with the H session; furthermore the co-administration of FC + H showed ACTH and cortisol profiles similar to that observed during H alone. Our study showed a lack of FC effect on corticotrope secretion in Addison's disease, thus making unlikely the hypothesis of its GR pituitary agonism and the risk of glucocorticoid excess in primary adrenal insufficiency.

  3. Renoprotective effects of mineralocorticoid receptor blockers in patients with proteinuric kidney diseases.

    Morales, Enrique; Millet, Victor Gutiérrez; Rojas-Rivera, Jorge; Huerta, Ana; Gutiérrez, Eduardo; Gutiérrez-Solís, Elena; Egido, Jesús; Praga, Manuel

    2013-02-01

    Several studies have demonstrated a short-term antiproteinuric effect of mineralocorticoid receptor blockers (MRB) on proteinuric kidney diseases, but no information is available about the long-term persistence (>1 year) of such reduction in proteinuria and the long-term effects of MRB on renal function. We prospectively studied the effects of adding spironolactone (25 mg/day) to 87 patients who maintained proteinuria higher than 1 g/day in spite of renin-angiotensin system blockade. The mean follow-up was 25 ± 15 (1-84) months. Estimated glomerular filtration rate (eGFR) showed an acute fall in the first month of treatment (5.1 ± 9.4 mL/min/1.73 m(2)), but it remained stable thereafter (+0.04 ± 0.7 mL/min/1.73 m(2)/month), with a significant difference with respect to the eGFR slope during the 12-month pre-treatment period. The initial eGFR fall predicted a more stable course of renal function, the higher the eGFR initial fall, the better the long-term evolution of eGFR. Proteinuria showed an important and sustained reduction since the first month of treatment. At the end of follow-up, it had decreased by 61% (43-77%) with respect to baseline values. The antiproteinuric and renoprotective influence of spironolactone was also observed in diabetic patients and in patients with renal function impairment, although tolerance was poorer among the latter. Spironolactone induces an initial acute fall in eGFR that predicts a later favourable influence on the course of renal function and a remarkable and sustained reduction in proteinuria.

  4. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  5. Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (MAGMA) Trial.

    Rajagopalan, Sanjay; Alaiti, M Amer; Broadwater, Kylene; Goud, Aditya; Gaztanaga, Juan; Connelly, Kim; Fares, Anas; Shirazian, Shayan; Kreatsoulas, Catherine; Farkouh, Michael; Dobre, Mirela; Fink, Jeffrey C; Weir, Matthew R

    2017-09-01

    Mineralocorticoid receptor (MR) activation plays an essential role in promoting inflammation, fibrosis, and target organ damage. Currently, no studies are investigating MR antagonism in patients with type 2 diabetes mellitus (T2DM) with chronic kidney disease, at high risk for cardiovascular complications, who are otherwise not candidates for MR antagonism by virtue of heart failure. Further, there is limited information on candidate therapies that may demonstrate differential benefit from this therapy. We hypothesized that MR antagonism may provide additional protection from atherosclerosis progression in higher-risk patients who otherwise may not be candidates for such a therapeutic approach. In this double-blind, randomized, placebo-controlled trial, subjects with T2DM with chronic kidney disease (≥ stage 3) will be randomized in a 1:1 manner to placebo or spironolactone (12.5 mg with eventual escalation to 25 mg daily over a 4-week period). The co-primary efficacy endpoint will be percentage change in total atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated with spironolactone vs placebo. Secondary outcomes include 24-hour mean systolic blood pressure, central aortic blood pressure, and insulin resistance (HOMA-IR) at 6 weeks. A novel measure in the study will be changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as measuring monocyte/macrophage polarization in response to therapy with spironolactone. We envision that our strategy of simultaneously probing the effects of a drug combined with analysis of mechanisms of action and predictive response will likely provide key information with which to design event-based trials. © 2017 Wiley Periodicals, Inc.

  6. Regulación de la acción de la Aldosterona al nivel del receptor mineralocorticoide

    Roberto Franco Saenz

    2001-08-01

    Full Text Available

    Se revisan nuevos conceptos acerca de la secreción de aldosterona y de la interacción de la aldosterona con el receptor mineralocorticoide así como el papel de la enzima 11b-hidroxisteroid dehidrogenasa tipo 2 (11b-HSD-2 en la protección del receptor mineralocorticoides contra la acción de los glucocorticoides endógenos. Alteraciónes en la actividad de esta enzima causan hipertensión arterial en humanos y animales de experimentación. En vista del papel crítico que esta enzima juega en la reabsorción de sodio y el volumen sanguíneo en este estudio se investiga la regulación del gen de la 11b-HSD-2 en el riñón de la rata Dahl, un modelo experimental de hipertensión genética sensible al sodio dietético y se muestra que el sodio dietético aumenta la expresión del gen en el riñón de estas ratas.

    Introducción
    La aldosterona es una hormona mineralocorticoide producida por las células glomerulosas de la corteza adrenal. La aldosterona actúa en el riñón, en el túbulo convoluto distal causando retención de sodio y eliminación de potasio y iones de hidrógeno. La aldosterona juega un papel principal en el mantenimiento del volumen sanguíneo y de la presión arterial. En este manuscrito se revisan nuevos conceptos en la regulación de la secreción de aldosterona y el papel de la enzima 11b-hidroxisteroid dehydrogenasa (11b-HSD en la acción de la aldosterona y en la protección del receptor mineralocorticoide contra los glucocorticoides.

    También se reportan estudios de la regulación del gen de la 11b-HSD-2 en el riñón de la rata Dahl, un modelo experimental de hipertensión genética con sensibilidad al sodio dietético.

  7. Baseline characteristics in PRIORITY study: Proteomics and mineralocorticoid receptor antagonism for prevention of diabetic nephropathy in type 2 diabetes

    Tofte, Nete

    diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria) trial, the aim is to confirm that CKD273 can predict microalbuminuria prospectively, and to test whether mineralocorticoid receptor antagonism (MRA) delays progression to microalbuminuria. Here we report the association between CKD273...... and traditional risk factors for diabetic nephropathy at baseline. Materials and methods PRIORITY is an investigator-initiated, prospective, randomized, double blind, placebo-controlled multicentre clinical trial and observational study in normoalbuminuric type 2 diabetic patients. Patients are stratified...... is development of microalbuminuria. Results In total 2277 type 2 diabetic patients have been screened over a time period of 2.5 years and 1811 are included from 15 sites. Table 1 shows the baseline characteristics. 224 (12.4%) have the high-risk CKD273 pattern. The high- and low-risk populations differ...

  8. Rationale and design of MinerAlocorticoid Receptor antagonist Tolerability Study-Heart Failure (ARTS-HF)

    Pitt, Bertram; Anker, Stefan D; Böhm, Michael

    2015-01-01

    dysfunction. METHODS AND RESULTS: The MinerAlocorticoid Receptor antagonist Tolerability Study-Heart Failure (ARTS-HF; NCT01807221) is a multicentre, randomized, double-blind, active-comparator-controlled, six-parallel-group, phase 2b dose-finding study. In total, 1060 patients with HFrEF and concomitant type...... 2 diabetes mellitus and/or chronic kidney disease (CKD) will be randomized within 7 days of emergency presentation to hospital for worsening chronic HF to receive finerenone (one of five doses in the range 2.5-20.0 mg once daily) or eplerenone (25 mg every second day to 50 mg once daily for 90 days...

  9. Effects of mineralocorticoid receptor antagonists in patients with hypertension and diabetes mellitus: a systematic review and meta-analysis.

    Takahashi, S; Katada, J; Daida, H; Kitamura, F; Yokoyama, K

    2016-09-01

    Blood pressure (BP) control is important to ameliorate cardiovascular events in patients with diabetes mellitus (DM). However, achieving the target BP with a single drug is often difficult. The objective of this study was to evaluate the antihypertensive effects of mineralocorticoid receptor antagonists (MRAs) as add-on therapy to renin-angiotensin system (RAS) inhibitor(s) in patients with hypertension and DM. Studies were searched through October 2014 in MEDLINE, Embase and the Cochrane Central Register of Controlled Trials. Randomized, controlled trials or prospective, observational studies regarding concomitant administration of MRA and RAS inhibitor(s) in patients with DM were included. Articles were excluded if the mean systolic BP (SBP) was hypertension and DM already taking RAS inhibitors. Serum potassium levels should be monitored to prevent hyperkalemia.

  10. Aldosterone-mineralocorticoid receptor promotes urine prostasin through glomerular barrier injury and not tissue abundance

    Stolzenburg Oxlund, Christina; Kurt, B.; Schwarzensteiner, I.

    2015-01-01

    with placebo or the mineralocorticoid antagonist spironolactone. Western immunoblotting of creatinine-normalized urine samples was performed from placebo and spironolactone treated patients with and without albuminuria. Tissue prostasin was measured in membranes from human nephrectomy recieving either ACE......-i/ANGII or no antihypertensive treatment prior to operation. Urine and tissue prostasin was measured in puromycin-induced nephrotic syndrome rats. Results: Plasma prostasin concentration increased significantly with spironolactone but was not changed with placebo. Urine prostasin concentration was below detection limit....... Puromycin-induced nephrotic syndrome in rats was associated with significant increase in u-prostasin while kidney tissue prostasin protein abundance was not changed. Prostasin protein abundance was similar in membranes from human nephrectomy homogenate from patients treated preoperatively with ACE...

  11. Nesfatin-1/NUCB2 in the amygdala influences visceral sensitivity via glucocorticoid and mineralocorticoid receptors in male maternal separation rats.

    Zhou, X-P; Sha, J; Huang, L; Li, T-N; Zhang, R-R; Tang, M-D; Lin, L; Li, X-L

    2016-10-01

    Nesfatin-1, a recently identified satiety molecule derived from nucleobindin 2 (NUCB2), is associated with visceral hypersensitivity in rats and is expressed in the amygdala. We tested the hypothesis that nesfatin-1 expression in the amygdala is involved in the pathogenesis of irritable bowel syndrome (IBS) visceral hypersensitivity. An animal model of IBS-like visceral hypersensitivity was established using maternal separation (MS) during postnatal days 2-16. The role of nesfatin-1 in the amygdala on visceral sensitivity was evaluated. Rats subjected to MS showed a significantly increased mean abdominal withdrawal reflex (AWR) score and electromyographic (EMG) activity at 40, 60, and 80 mmHg colorectal distension. Plasma concentrations of nesfatin-1 and corticosterone were significantly higher than in non-handled (NH) rats. mRNA and protein expression of nesfatin-1/NUCB2 in the amygdala were increased in MS rats, but not in NH rats. In MS rats, AWR scores and EMG activity were significantly decreased after anti-nesfatin-1/NUCB2 injection. In normal rats, mean AWR score, EMG activity, and corticosterone expression were significantly increased after nesfatin-1 injection into the amygdala. Nesfatin-1-induced visceral hypersensitivity was abolished following application of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) antagonists. Elevated expression of nesfatin-1/NUCB2 in the amygdala in MS rats suggests a potential role in the pathogenesis of visceral hypersensitivity, which could potentially take place via activation of GR and MR signaling pathways. © 2016 John Wiley & Sons Ltd.

  12. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task.

    Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian

    2016-12-01

    Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory.

    Cornelisse, Sandra; Joëls, Marian; Smeets, Tom

    2011-12-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.

  14. Increased expression of mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type 2 in human atria during atrial fibrillation.

    De-An, Pei; Li, Li; Zhi-Yun, Xu; Jin-Yu, Huang; Zheng-Ming, Xu; Min, Wang; Qiang, Yao; Shi-Eng, Huang

    2010-01-01

    Atrialfibrillation (AF) is associated with the activation of the renin-angiotensin-aldosterone system in the atria. It is not clear whether the expression of a mineralocorticoid receptor (MR), or 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), conferring aldosterone specificity to the MR, in patients with AF is altered. Patients with AF may be associated with increased expression of MR and 11betaHSD2 in the atria. Atrial tissue samples of 25 patients with rheumatic heart valve disease undergoing a valve replacement operation were examined. A total of 13 patients had chronic persistent AF (>6 mo) and 12 patients had no history of AF. The MR and 11betaHSD2 expression were analyzed at the mRNA and protein level. The localization of MR and 11betaHSD2 in atrial tissue was performed using specific immunohistochemistry staining. The results of real-time quantitative polymerase chain reaction (PCR) showed that AF groups, in comparison with sinus rhythm, had a higher mRNA expression level of MR or 11betaHSD2 (all P atrial tissue were also significantly increased in patients with AF compared with patients with sinus rhythm (P atrial interstitial fibrosis in patients with AF. These findings may have an important impact on the treatment of AF with aldosterone antagonists. Copyright 2010 Wiley Periodicals, Inc.

  15. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  16. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  17. Importance of the time of initiation of mineralocorticoid receptor antagonists on risk of mortality in patients with heart failure.

    Rossi, Rosario; Crupi, Nicola; Coppi, Francesca; Monopoli, Daniel; Sgura, Fabio

    2015-03-01

    Several studies have definitively shown the benefit of mineralocorticoid receptor antagonists (MRAs) in patients with heart failure (HF). However, very few prior studies examined the relationship between the timing of initiation of MRAs and prognosis. In addition, on this topic, there is no information regarding the specific population of patients suffering a first episode of decompensated congestive HF. We studied a homogenous cohort of patients discharged alive from our hospital after a first episode of decompensated congestive HF, in order to clarify the association between time of aldosterone receptor antagonist (ARA) initiation (within the first 90 days after hospital discharge) and mortality. Our population was composed of a series of consecutive patients. All-cause mortality was compared between patients who initiated MRAs at discharge (early group) and those who initiated MRAs one month later and up to 90 days after discharge (delayed group). We used prescription time distribution matching to control for survival difference between groups. The early and delayed groups consisted of 365 and 320 patients, respectively. During the one-year follow-up, a significant difference in mortality was demonstrated between groups. Adjusted hazard ratios (HRs) for early versus delayed initiation were 1.72 (95% confidence interval (CI) 0.96 to 2.84) at six months, and 1.93 (95% CI 1.18 to 3.14) at one year. Delay of MRA initiation up to 30 to 90 days after discharge implies a significant increase in mortality compared with MRA initiation at discharge, after a first episode of decompensate congestive HF. © The Author(s) 2013.

  18. Spatial learning of female mice: a role of the mineralocorticoid receptor during stress and the estrous cycle

    Judith P Ter Horst

    2013-05-01

    Full Text Available Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR and glucocorticoid receptors (GR. Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB the spatial performance of female mice with genetic deletion of MR from the forebrain (MRCaMKCre and their wild type littermates (MRflox/flox mice over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MRflox/flox mice and neither did the acute stressor. However, the MRCaMKCre mutants needed significantly more time to find the exit and made more hole visit errors than the MRflox/flox mice, especially when in proestrus and estrus. In addition, stressed MRCaMKCre mice in estrus had a shorter exit latency than the control estrus MRCaMKCre mice. About 70% of the female MRCaMKCre and MRflox/flox mice used a hippocampal (spatial, extra maze cues rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MRCaMKCre mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch towards a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.

  19. Selective attention to emotional cues and emotion recognition in healthy subjects: the role of mineralocorticoid receptor stimulation.

    Schultebraucks, Katharina; Deuter, Christian E; Duesenberg, Moritz; Schulze, Lars; Hellmann-Regen, Julian; Domke, Antonia; Lockenvitz, Lisa; Kuehl, Linn K; Otte, Christian; Wingenfeld, Katja

    2016-09-01

    Selective attention toward emotional cues and emotion recognition of facial expressions are important aspects of social cognition. Stress modulates social cognition through cortisol, which acts on glucocorticoid (GR) and mineralocorticoid receptors (MR) in the brain. We examined the role of MR activation on attentional bias toward emotional cues and on emotion recognition. We included 40 healthy young women and 40 healthy young men (mean age 23.9 ± 3.3), who either received 0.4 mg of the MR agonist fludrocortisone or placebo. A dot-probe paradigm was used to test for attentional biases toward emotional cues (happy and sad faces). Moreover, we used a facial emotion recognition task to investigate the ability to recognize emotional valence (anger and sadness) from facial expression in four graded categories of emotional intensity (20, 30, 40, and 80 %). In the emotional dot-probe task, we found a main effect of treatment and a treatment × valence interaction. Post hoc analyses revealed an attentional bias away from sad faces after placebo intake and a shift in selective attention toward sad faces compared to placebo. We found no attentional bias toward happy faces after fludrocortisone or placebo intake. In the facial emotion recognition task, there was no main effect of treatment. MR stimulation seems to be important in modulating quick, automatic emotional processing, i.e., a shift in selective attention toward negative emotional cues. Our results confirm and extend previous findings of MR function. However, we did not find an effect of MR stimulation on emotion recognition.

  20. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  1. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    Ueda, Kohei [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Fujiki, Katsunori; Shirahige, Katsuhiko [Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo (Japan); Gomez-Sanchez, Celso E. [Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS (United States); Endocrinology, University of Mississippi Medical Center, MS (United States); Fujita, Toshiro [Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Nangaku, Masaomi [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Nagase, Miki, E-mail: mnagase-tky@umin.ac.jp [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Department of Anatomy and Life Structure, School of Medicine Juntendo University, Tokyo (Japan)

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  2. Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11β-hydroxysteroid dehydrogenase type 2 deficiency.

    Yau, Mabel; Haider, Shozeb; Khattab, Ahmed; Ling, Chen; Mathew, Mehr; Zaidi, Samir; Bloch, Madison; Patel, Monica; Ewert, Sinead; Abdullah, Wafa; Toygar, Aysenur; Mudryi, Vitalii; Al Badi, Maryam; Alzubdi, Mouch; Wilson, Robert C; Al Azkawi, Hanan Said; Ozdemir, Hatice Nur; Abu-Amer, Wahid; Hertecant, Jozef; Razzaghy-Azar, Maryam; Funder, John W; Al Senani, Aisha; Sun, Li; Kim, Se-Min; Yuen, Tony; Zaidi, Mone; New, Maria I

    2017-12-26

    Mutations in 11β-hydroxysteroid dehydrogenase type 2 gene ( HSD11B2 ) cause an extraordinarily rare autosomal recessive disorder, apparent mineralocorticoid excess (AME). AME is a form of low renin hypertension that is potentially fatal if untreated. Mutations in the HSD11B2 gene result either in severe AME or a milder phenotype (type 2 AME). To date, ∼40 causative mutations have been identified. As part of the International Consortium for Rare Steroid Disorders, we have diagnosed and followed the largest single worldwide cohort of 36 AME patients. Here, we present the genotype and clinical phenotype of these patients, prominently from consanguineous marriages in the Middle East, who display profound hypertension and hypokalemic alkalosis. To correlate mutations with phenotypic severity, we constructed a computational model of the HSD11B2 protein. Having used a similar strategy for the in silico evaluation of 150 mutations of CYP21A2 , the disease-causing gene in congenital adrenal hyperplasia, we now provide a full structural explanation for the clinical severity of AME resulting from each known HSD11B2 missense mutation. We find that mutations that allow the formation of an inactive dimer, alter substrate/coenzyme binding, or impair structural stability of HSD11B2 yield severe AME. In contrast, mutations that cause an indirect disruption of substrate binding or mildly alter intramolecular interactions result in type 2 AME. A simple in silico evaluation of novel missense mutations could help predict the often-diverse phenotypes of an extremely rare monogenic disorder.

  3. Mineralocorticoid hypertension and hypokalaemia induced by posaconazole

    Boughton, Charlotte; Taylor, David; Ghataore, Lea; Taylor, Norman; Whitelaw, Benjamin C

    2018-01-01

    Summary We describe severe hypokalaemia and hypertension due to a mineralocorticoid effect in a patient with myelodysplastic syndrome taking posaconazole as antifungal prophylaxis. Two distinct mechanisms due to posaconazole are identified: inhibition of 11β hydroxylase leading to the accumulation of the mineralocorticoid hormone 11-deoxycorticosterone (DOC) and secondly, inhibition of 11β hydroxysteroid dehydrogenase type 2 (11βHSD2), as demonstrated by an elevated serum cortisol-to-cortison...

  4. Menopause not aldosterone-to-renin ratio predicts blood pressure response to a mineralocorticoid receptor antagonist in primary care hypertensive patients.

    Olivieri, Oliviero; Pizzolo, Francesca; Ciacciarelli, Alberto; Corrocher, Roberto; Signorelli, Denise; Falcone, Salvatore; Blengio, Gian S

    2008-09-01

    It has been suggested that hypertensive patients with raised aldosterone-to-renin ratio (ARR) are specifically sensitive to mineralocorticoid receptor antagonists (MRAs). We have previously shown that patients with an elevated ARR are relatively frequent in the setting of primary care. We therefore designed an interventional study to ascertain whether primary care hypertensive patients with an elevated ARR presented a superior response to MRA treatment than subjects with normal ratio. According to the previously observed distribution in general population, 1/3 and 2/3 of hypertensive patients with high or normal ARR, respectively, were treated with kanrenoate 50-100 mg/day for 2 months. To avoid uncontrolled blood pressure (BP), 49% of patients continued also "ARR-neutral" drugs such as verapamil and/or alpha-adrenergic blockers. Patients groups were matched for most features but an elevated ARR was more frequent in female than in male gender; moreover, 90% of women with raised ARR were in menopause. A clear reduction of BP values was recorded after both the first and the second month of treatment with kanrenoate, with the maximal effect obtained when the dosage titration at 100 mg/day was accomplished. However, patients previously identified by a raised ARR did not have a larger response to MRA treatment than patients with normal ratio. In contrast, MRA was twofold more effective in reducing SBP in women than in men (after 2 months of treatment -16.4 mm Hg vs.-8.2 mm Hg). These results suggest that postmenopausal hypertension is largely dependent on mineralocorticoid receptor activation and selectively sensitive to MRAs.

  5. Unanticipated increases in hepatic steatosis among human immunodeficiency virus patients receiving mineralocorticoid receptor antagonist eplerenone for non-alcoholic fatty liver disease.

    Chaudhury, Chloe S; Purdy, Julia B; Liu, Chia-Ying; Morse, Caryn G; Stanley, Takara L; Kleiner, David; Hadigan, Colleen

    2018-05-01

    Non-alcoholic fatty liver disease is common in human immunodeficiency virus, but there are no approved therapies. The aim of this open-label proof-of-concept study was to determine the effect of the mineralocorticoid receptor antagonist eplerenone on hepatic fat in human immunodeficiency virus-infected patients with hepatic fat ≥5% by magnetic resonance spectroscopy. Five subjects received eplerenone (25 mg daily × 1 week followed by 50 mg daily × 23 weeks). Laboratory tests were done at each visit, and the primary endpoint, change in hepatic fat content, was determined by MRI spectroscopy at baseline and week 24. The study was stopped early after observing unexpected significant increases in hepatic fat at week 24 (mean increase 13.0 ± 7.3%, P = .02). The increases in steatosis were accompanied by a tendency for transaminase values to decrease (alanine aminotransferase mean change -14 ± 16 IU/L, P = .14). There were no consistent changes in other metabolic parameters or blood pressure. Repeat assessment of hepatic steatosis 1-2 months after stopping study medication revealed improvements in steatosis towards baseline values. The unexpected observation of increased hepatic steatosis with the administration of eplerenone led to early termination of the investigation. While limited because of the small number of participants and the open-label design, this study provides data to suggest that mineralocorticoid receptor antagonism with eplerenone may not be an effective approach to treat hepatic steatosis in human immunodeficiency virus or the general population. Additional research is needed to determine the pathophysiological mechanism behind these unanticipated observations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease

    Pitt, Bertram; Kober, Lars; Ponikowski, Piotr

    2013-01-01

    Mineralocorticoid receptor antagonists (MRAs) improve outcomes in patients with heart failure and reduced left ventricular ejection fraction (HFrEF), but their use is limited by hyperkalaemia and/or worsening renal function (WRF). BAY 94-8862 is a highly selective and strongly potent non-steroida......Mineralocorticoid receptor antagonists (MRAs) improve outcomes in patients with heart failure and reduced left ventricular ejection fraction (HFrEF), but their use is limited by hyperkalaemia and/or worsening renal function (WRF). BAY 94-8862 is a highly selective and strongly potent non......-steroidal MRA. We investigated its safety and tolerability in patients with HFrEF associated with mild or moderate chronic kidney disease (CKD)....

  7. Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload.

    Elena Montes-Cobos

    Full Text Available Mineralocorticoid receptor (MR inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox. Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.

  8. Vascular remodeling and mineralocorticoids.

    Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K

    1995-01-01

    Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

  9. Mineralocorticoid hypertension and hypokalaemia induced by posaconazole.

    Boughton, Charlotte; Taylor, David; Ghataore, Lea; Taylor, Norman; Whitelaw, Benjamin C

    2018-01-01

    We describe severe hypokalaemia and hypertension due to a mineralocorticoid effect in a patient with myelodysplastic syndrome taking posaconazole as antifungal prophylaxis. Two distinct mechanisms due to posaconazole are identified: inhibition of 11β hydroxylase leading to the accumulation of the mineralocorticoid hormone 11-deoxycorticosterone (DOC) and secondly, inhibition of 11β hydroxysteroid dehydrogenase type 2 (11βHSD2), as demonstrated by an elevated serum cortisol-to-cortisone ratio. The effects were ameliorated by spironolactone. We also suggest that posaconazole may cause cortisol insufficiency. Patients taking posaconazole should therefore be monitored for hypokalaemia, hypertension and symptoms of hypocortisolaemia, at the onset of treatment and on a monthly basis. Treatment with mineralocorticoid antagonists (spironolactone or eplerenone), supplementation of glucocorticoids (e.g. hydrocortisone) or dose reduction or cessation of posaconazole should all be considered as management strategies. Combined hypertension and hypokalaemia are suggestive of mineralocorticoid excess; further investigation is appropriate.If serum aldosterone is suppressed, then further investigation to assess for an alternative mineralocorticoid is appropriate, potentially using urine steroid profiling and/or serum steroid panelling.Posaconazole can cause both hypokalaemia and hypertension, and we propose that this is due to two mechanisms - both 11β hydroxylase inhibition and 11β HSD2 inhibition.Posaconazole treatment may lead to cortisol insufficiency, which may require treatment; however, in this clinical case, the effect was mild.First-line treatment of this presentation would likely be use of a mineralocorticoid antagonist.Patients taking posaconazole should be monitored for hypertension and hypokalaemia on initiation and monthly thereafter.

  10. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.

    Le Moëllic, Cathy; Ouvrard-Pascaud, Antoine; Capurro, Claudia; Cluzeaud, Francoise; Fay, Michel; Jaisser, Frederic; Farman, Nicolette; Blot-Chabaud, Marcel

    2004-05-01

    Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr

  11. PF-03882845, a non-steroidal mineralocorticoid receptor antagonist, prevents renal injury with reduced risk of hyperkalemia in an animal model of nephropathy

    Stephen eOrena

    2013-10-01

    Full Text Available The mineralocorticoid receptor (MR antagonists PF 03882845 and eplerenone were evaluated for renal protection against aldosterone mediated renal disease in uninephrectomized Sprague Dawley (SD rats maintained on a high salt diet and receiving aldosterone by osmotic mini pump for 27 days. Serum K+ and the urinary albumin to creatinine ratio (UACR were assessed following 14 and 27 days of treatment. Aldosterone induced renal fibrosis as evidenced by increases in UACR, collagen IV staining in kidney cortex, and expression of pro fibrotic genes relative to sham operated controls not receiving aldosterone. While both PF 03882845 and eplerenone elevated serum K+ levels with similar potencies, PF 03882845 was more potent than eplerenone in suppressing the rise in UACR. PF 03882845 prevented the increase in collagen IV staining at 5, 15 and 50 mg/kg BID while eplerenone was effective only at the highest dose tested (450 mg/kg BID. All doses of PF 03882845 suppressed aldosterone induced increases in collagen IV, transforming growth factor 1 (Tgf 1, interleukin 6 (Il-6, intermolecular adhesion molecule 1 (Icam-1 and osteopontin gene expression in kidney while eplerenone was only effective at the highest dose. The therapeutic index (TI, calculated as the ratio of the EC50 for increasing serum K+ to the EC50 for UACR lowering, was 83.8 for PF 03882845 and 1.47 for eplerenone. Thus the TI of PF 03882845 against hyperkalemia was 57 fold superior to that of eplerenone indicating that PF 03882845 may present significantly less risk for hyperkalemia compared to eplerenone.

  12. Plasma 11-deoxycorticosterone (DOC) and mineralocorticoid receptor testicular expression during rainbow trout Oncorhynchus mykiss spermiation: implication with 17alpha, 20beta-dihydroxyprogesterone on the milt fluidity?

    Milla, Sylvain; Terrien, Xavier; Sturm, Armin; Ibrahim, Fidaa; Giton, Franck; Fiet, Jean; Prunet, Patrick; Le Gac, Florence

    2008-05-19

    In rainbow trout (Oncorhynchus mykiss), the endocrine control of spermiation is not fully understood. Besides 11ketotestosterone (11KT) and 17alpha, 20beta-dihydroxyprogesterone (MIS), the potential physiological ligand of the mineralocorticoid receptor (MR) 11-deoxycorticosterone (DOC), is a credible candidate in O. mykiss spermiation regulation as spermiation is accompanied with changes in aqueous and ionic flows. In this study, we investigated potential roles of DOC during spermiation 1) by describing changes in blood plasma DOC level, MR mRNA abundance during the reproductive cycle and MR localization in the reproductive tract 2) by investigating and comparing the effects of DOC (10 mg/kg) and MIS (5 mg/kg) supplementations on sperm parameters 3) by measuring the in vitro effect of DOC on testis MIS production. The plasma concentration of DOC increased rapidly at the end of the reproductive cycle to reach levels that were 10-50 fold higher in mature males than in immature fish. MR mRNA relative abundance was lower in maturing testes when compared to immature testes, but increased rapidly during the spermiation period, immediately after the plasma rise in DOC. At this stage, immunohistochemistry localized MR protein to cells situated at the periphery of the seminiferous tubules and in the efferent ducts. Neither DOC nor MIS had significant effects on the mean sperm volume, although MIS treatment significantly increased the percentage of males producing milt. However, a significant reduction in the spermatocrit was observed when DOC and MIS were administrated together. Finally, we detected an inhibitory effect of DOC on testis MIS production in vitro. These results are in agreement with potential roles of DOC and MR during spermiation and support the hypothesis that DOC and MIS mechanisms of action are linked during this reproductive stage, maybe controlling milt fluidity. They also confirm that in O. mykiss MIS is involved in spermiation induction.

  13. Overexpression of Mineralocorticoid Receptors in the Mouse Forebrain Partly Alleviates the Effects of Chronic Early Life Stress on Spatial Memory, Neurogenesis and Synaptic Function in the Dentate Gyrus

    Sofia Kanatsou

    2017-05-01

    Full Text Available Evidence from human studies suggests that high expression of brain mineralocorticoid receptors (MR may promote resilience against negative consequences of stress exposure, including childhood trauma. We examined, in mice, whether brain MR overexpression can alleviate the effects of chronic early life stress (ELS on contextual memory formation under low and high stress conditions, and neurogenesis and synaptic function of dentate gyrus granular cells. Male mice were exposed to ELS by housing the dam with limited nesting and bedding material from postnatal day (PND 2 to 9. We investigated the moderating role of MRs by using forebrain-specific transgenic MR overexpression (MR-tg mice. Low-stress contextual (i.e., object relocation memory formation was hampered by ELS in wildtype but not MR-tg mice. Anxiety like behavior and high-stress contextual (i.e., fear memory formation were unaffected by ELS and/or MR expression level. At the cellular level, an interaction effect was observed between ELS and MR overexpression on the number of doublecortin-positive cells, with a significant difference between the wildtype ELS and MR-tg ELS groups. No interaction was found regarding Ki-67 and BrdU staining. A significant interaction between ELS and MR expression was further observed with regard to mEPSCs and mIPSC frequency. The ratio of evoked EPSC/IPSC or NMDA/AMPA responses was unaffected. Overall, these results suggest that ELS affects contextual memory formation under low stress conditions as well as neurogenesis and synaptic transmission in dentate granule cells, an effect that can be alleviated by MR-overexpression.

  14. A real-world cohort study on the quality of potassium and creatinine monitoring during initiation of mineralocorticoid receptor antagonists in patients with heart failure.

    Nilsson, Erik; De Deco, Pietro; Trevisan, Marco; Bellocco, Rino; Lindholm, Bengt; Lund, Lars H; Coresh, Josef; Carrero, Juan J

    2018-05-02

    Clinical heart failure (HF) guidelines recommend monitoring of creatinine and potassium throughout the initial weeks of mineralocorticoid receptor antagonists (MRAs) therapy. We here assessed the extent to which this occurs in our healthcare. Observational study in 2007-2010 HF patients starting MRA therapy in Stockholm, Sweden. Outcomes included potassium and creatinine laboratory testing before MRA initiation and in the early (days 1-10) and extended (days 11-90) post-initiation periods. Exclusion criteria considered death/hospitalization within 90 days, and lack of a second MRA dispense. Of 4,036 HF patients starting on MRA, 45% were initiated from a hospital, 24% from a primary care center and 30% from other private centers. Overall, 89% underwent pre-initiation testing, being more common among hospital (97%) than for primary care (74%) initiations. Only 24% were adequately monitored in all three recommended intervals, being again more frequent following hospital (33%) than private (21%) or primary care (17%) initiations. In multivariable analyses, adequate monitoring was more likely for hospital [odds ratio (OR), 95% confidence interval; 2.85, 2.34-3.56] initiations, and for patients with chronic kidney disease (OR 1.79, 1.30-2.43) and concomitant use of ACE (OR 1.27, 1.05-1.52), ARBs (OR 1.19, 1.01-1.40) or beta blockers (OR 1.65, 1.22-2.26). Age, sex and prescribing center explained a small portion of adequate monitoring (c-statistic, 0.63). Addition of comorbidities and medications improved prediction marginally (c-statistic, 0.65). Although serum potassium and creatinine monitoring before MRA initiation for HF is frequent, rates of post-initiation monitoring remain suboptimal, especially among primary care centers.

  15. Mineralocorticoid and apparent mineralocorticoid syndromes of secondary hypertension.

    Ardhanari, Sivakumar; Kannuswamy, Rohini; Chaudhary, Kunal; Lockette, Warren; Whaley-Connell, Adam

    2015-05-01

    The mineralocorticoid aldosterone is a key hormone in the regulation of plasma volume and blood pressure in man. Excessive levels of this mineralocorticoid have been shown to mediate metabolic disorders and end-organ damage more than what can be attributed to its effects on blood pressure alone. Inappropriate excess levels of aldosterone contribute significantly to the cardiorenal metabolic syndrome and target organ injury that include atherosclerosis, myocardial hypertrophy, fibrosis, heart failure, and kidney disease. The importance of understanding the role of excess mineralocorticoid hormones such as aldosterone in resistant hypertension and in those with secondary hypertension should be visited. Primary aldosteronism is one of the commonly identified causes of hypertension and is treatable and/or potentially curable. We intend to review the management of mineralocorticoid-induced hypertension in the adult population along with other disease entities that mimic primary aldosteronism. Copyright © 2015 National Kidney Foundation, Inc. All rights reserved.

  16. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-05

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P Social isolation decreased gene expression (P social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  17. Two Qatari siblings with cystic fibrosis and apparent mineralocorticoid excess

    Khalid Zahraldin

    2015-01-01

    Full Text Available Cystic fibrosis (CF and apparent mineralocorticoid excess (AME syndrome are both autosomal recessive disorders that result from mutations of specific identified genes for each condition. CF is caused by defects in the Cystic fibrosis trans membrane conductance regulator (CFTR gene which encodes for a protein that functions as a chloride channel and regulates the flow of other ions across the apical surface of epithelial cells. AME is due to the deficiency of 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2, which is responsible for the peripheral inactivation of cortisol to cortisone. Cortisol excess stimulates the mineralocoritoid receptors (MR resulting in intense sodium retention, hypokalemia and hypertension. We report on a consanguineous Arab family, in which two sibs inherited both CF and AME. Gene testing for AME revealed previously unreported mutation in the 11βHSD2 gene. This report draws attention to the importance of recognizing the possibility of two recessive disorders in the same child in complex consanguineous families. Moreover, it provides a unique opportunity to highlight the implications of the coexistence of two genetic disorders on patient care and genetic counseling of the family.

  18. Apparent mineralocorticoid excess and the long term treatment of genetic hypertension.

    Razzaghy-Azar, Maryam; Yau, Mabel; Khattab, Ahmed; New, Maria I

    2017-01-01

    Apparent mineralocorticoid excess (AME) is a genetic disorder causing severe hypertension, hypokalemia, and hyporeninemic hypoaldosteronism owing to deficient 11 beta-hydroxysteroid dehydrogenase type-2 (11βHSD2) enzyme activity. The 11βHSD2 enzyme confers mineralocorticoid receptor specificity for aldosterone by converting cortisol to its inactive metabolite, cortisone and inactivating the cortisol-mineralocorticoid receptor complex. The 20year follow-up of a consanguineous Iranian family with three sibs affected with AME shows the successes and pitfalls of medical therapy with spironolactone. The three sibs, (female, male, female) were diagnosed at the ages of 14, 11, and 4 years, respectively. At diagnosis, hypertensive retinopathy and left ventricular hypertrophy were present in the eldest female and retinopathy was noted in the male sib. Spironolactone treatment resulted in decreased blood pressure and rise in serum potassium levels. The older female, age 36, developed reduced left ventricular function with mitral and tricuspid regurgitation and renal failure after her second pregnancy. She was treated with renal transplantation resulting in cure of AME with decreased blood pressure and weaning from antihypertensives. Her younger sibs, age 34 and 26, do not have end organ damage. Early and vigilant treatment improves morbidity in patients with AME. Mineralocorticoid receptor antagonists normalize blood pressure, correct hypokalemia and reduce hypertensive end-organ damage in patients with AME. Low dose dexamethasone can be considered, though the response may be variable. Future directions of therapy include selective mineralocorticoid antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    Burlakov, V. M.; Emptage, N.; Goriely, A.; Bressloff, P. C.

    2012-01-01

    interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out

  20. Apparent mineralocorticoid excess: time of manifestation and complications despite treatment.

    Knops, Noël B B; Monnens, Leo A; Lenders, Jacques W; Levtchenko, Elena N

    2011-06-01

    Here we describe the case of a patient followed from birth because of a positive family history for apparent mineralocorticoid excess (AME) in an older brother. The patient, a girl, had normal serum electrolyte and blood pressure measurements in the first months after birth. Not until the age of 11 months did she develop anorexia and failure to thrive in combination with hypertension, hypokalemia, and metabolic alkalosis, which are consistent with the diagnosis of AME. This diagnosis was confirmed by mutation analysis of the HSD11B2 gene (C1228T). Treatment with amiloride and furosemide electrolyte disturbances normalized her blood pressure. At the age of 19 years she unexpectedly suffered a stroke. Additional investigations revealed no accepted risk factor for stroke. We discuss the possible underlying mechanisms for the delayed manifestation of hypertension and electrolyte disturbances in AME, propose an additional explanation for the stroke in this patient, and advise treatment with a mineralocorticoid receptor antagonist to reduce stroke risk in patients with AME.

  1. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  2. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  3. Resistance to thyroid hormone due to defective thyroid receptor alpha.

    Moran, Carla; Chatterjee, Krishna

    2015-08-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Role and physiological actions of the mineralo-corticoids; Role et actions physiologiques des mineralo-corticoides

    Morel, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This review recalls first of all the history of the discovery of aldosterone; it then defines the concept of mineralo-corticoid on the biological level; the physiological effects of aldosterone are compared with those of desoxycorticosterone, which have been known for a long time. The part played by the mineralo-corticoids in maintaining the hydro-mineral balance is then discussed, particularly in the light of information provided by acute deficiency or primitive hyperaldosteronism; the importance of the correlations linking the post-hypophysis and suprarenal is underlined. The possible mechanisms of the action of mineralo-corticoids on the kidney are discussed in greater detail and a general plan of action is proposed. The physiological regulation of the secretion of mineralo-corticoids is then described, and the respective roles played in this secretion by different factors are discussed (ante-hypophysis, corticoids, plasmatic concentration of electrolytes, volume of extracellular liquids, etc...). Finally, the whole problem investigated is placed within the field of homeostasis (377 bibliographical references). (author) [French] Cette revue de la question rappelle d'abord l'historique de la decouverte de l'aldosterone; elle definit ensuite le concept de mineralo-corticoide sur le plan biologique; les effets physiologiques de l'aldosterone sont compares a ceux connus depuis longtemps de la desoxycorticosterone. Le role joue par les mineralo-corticoides dans le maintien de la balance hydrominerale est ensuite discute, notamment a la lumiere des informations fournies par l'insuffisance aigue ou l'hyperaldosteronisme primitif; l'importance des correlations liant posthypophyse et surrenale est soulignee. Les mecanismes possibles de l'action des mineralo-corticoides sur le rein sont discutes avec davantage de details et un schema general d'action est propose. La regulation physiologique de la secretion des mineralo-corticoides est ensuite exposee et les roles

  5. Role and physiological actions of the mineralo-corticoids; Role et actions physiologiques des mineralo-corticoides

    Morel, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This review recalls first of all the history of the discovery of aldosterone; it then defines the concept of mineralo-corticoid on the biological level; the physiological effects of aldosterone are compared with those of desoxycorticosterone, which have been known for a long time. The part played by the mineralo-corticoids in maintaining the hydro-mineral balance is then discussed, particularly in the light of information provided by acute deficiency or primitive hyperaldosteronism; the importance of the correlations linking the post-hypophysis and suprarenal is underlined. The possible mechanisms of the action of mineralo-corticoids on the kidney are discussed in greater detail and a general plan of action is proposed. The physiological regulation of the secretion of mineralo-corticoids is then described, and the respective roles played in this secretion by different factors are discussed (ante-hypophysis, corticoids, plasmatic concentration of electrolytes, volume of extracellular liquids, etc...). Finally, the whole problem investigated is placed within the field of homeostasis (377 bibliographical references). (author) [French] Cette revue de la question rappelle d'abord l'historique de la decouverte de l'aldosterone; elle definit ensuite le concept de mineralo-corticoide sur le plan biologique; les effets physiologiques de l'aldosterone sont compares a ceux connus depuis longtemps de la desoxycorticosterone. Le role joue par les mineralo-corticoides dans le maintien de la balance hydrominerale est ensuite discute, notamment a la lumiere des informations fournies par l'insuffisance aigue ou l'hyperaldosteronisme primitif; l'importance des correlations liant posthypophyse et surrenale est soulignee. Les mecanismes possibles de l'action des mineralo-corticoides sur le rein sont discutes avec davantage de details et un schema general d'action est propose. La regulation physiologique de la secretion des mineralo-corticoides

  6. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark

    2005-01-01

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  7. Hjertestop associeret med syndrome of apparent mineralocorticoid excess

    Meldgaard-Nielsen, Anne; Laugesen, Esben; Poulsen, Per Løgstrup

    2014-01-01

    Ventricular fibrillation is an unknown complication to the syndrome of apparent mineralocorticoid excess (SAME). This case report describes a young woman admitted with hypo-kalaemia and hypertension. Concentrations of both P-renin and P-aldosterone were low and urinary steroid metabolites revealed...

  8. Role and physiological actions of the mineralo-corticoids

    Morel, F.

    1958-01-01

    This review recalls first of all the history of the discovery of aldosterone; it then defines the concept of mineralo-corticoid on the biological level; the physiological effects of aldosterone are compared with those of desoxycorticosterone, which have been known for a long time. The part played by the mineralo-corticoids in maintaining the hydro-mineral balance is then discussed, particularly in the light of information provided by acute deficiency or primitive hyperaldosteronism; the importance of the correlations linking the post-hypophysis and suprarenal is underlined. The possible mechanisms of the action of mineralo-corticoids on the kidney are discussed in greater detail and a general plan of action is proposed. The physiological regulation of the secretion of mineralo-corticoids is then described, and the respective roles played in this secretion by different factors are discussed (ante-hypophysis, corticoids, plasmatic concentration of electrolytes, volume of extracellular liquids, etc...). Finally, the whole problem investigated is placed within the field of homeostasis (377 bibliographical references). (author) [fr

  9. Immunodetection of 11 beta-hydroxysteroid dehydrogenase type 2 in human mineralocorticoid target tissues: evidence for nuclear localization.

    Shimojo, M; Ricketts, M L; Petrelli, M D; Moradi, P; Johnson, G D; Bradwell, A R; Hewison, M; Howie, A J; Stewart, P M

    1997-03-01

    11 beta-Hydroxysteroid dehydrogenase (11 beta HSI) is an enzyme complex responsible for the conversion of hormonally active cortisol to inactive cortisone; two isoforms of the enzyme have been cloned and characterized. Clinical observations from patients with the hypertensive syndrome apparent mineralocorticoid excess, recently explained on the basis of mutations in the human 11 beta HSD2 gene, suggest that it is the 11 beta HSD2 isoform that serves a vital role in dictating specificity upon the mineralocorticoid receptor (MR). We have raised a novel antibody in sheep against human 11 beta HSD2 using synthetic multiantigenic peptides and have examined the localization and subcellular distribution of 11 beta HSD2 in mineralocorticoid target tissues. The immunopurified antibody recognized a single band of approximately 44 kDa in placenta, trophoblast, and distal colon. In kidney tissue, two bands of approximately 44 and 48 kDa were consistently observed. No signal was seen in decidua, adrenal, or liver. Immunoperoxidase studies on the mineralocorticoid target tissues, kidney, colon, and parotid gland indicated positive staining in epithelial cells known to express the MR: respectively, renal collecting ducts, surface and crypt colonic epithelial cells, and parotid duct epithelial cells. No staining was seen in these tissues in other sites. The intracellular localization of 11 beta HSD2 in kidney and colon epithelial cells was addressed using confocal laser microscopy. Parallel measurements of 11 beta HSD2 and nuclear propidium iodide fluorescence on sections scanned through an optical section of approximately 0.1 micron indicated significant 11 beta HSD2 immunofluorescence in the nucleus. In human kidney, colon, and salivary gland, 11 beta HSD2 protects the MR from glucocorticoid excess in an autocrine fashion. Furthermore, within these tissues, 11 beta HSD2, which had been considered to be a microsomal enzyme, is also found in the nucleus, suggesting that the

  10. Brain mineralocorticoid receptors as resilience factor under adverse life conditions?

    Kanatsou, S.

    2016-01-01

    Studies in human cohorts have underlined the importance of gene-environment interactions for brain structure and function during development and in adulthood. Such interactions can make the difference between staying healthy or succumbing to disease, e.g. depression or posttraumatic stress disorder.

  11. Mineralocorticoid receptor haplotype, estradiol, progesterone and emotional information processing.

    Hamstra, Danielle A; de Kloet, E Ronald; Quataert, Ina; Jansen, Myrthe; Van der Does, Willem

    2017-02-01

    Carriers of MR-haplotype 1 and 3 (GA/CG; rs5522 and rs2070951) are more sensitive to the influence of oral contraceptives (OC) and menstrual cycle phase on emotional information processing than MR-haplotype 2 (CA) carriers. We investigated whether this effect is associated with estradiol (E2) and/or progesterone (P4) levels. Healthy MR-genotyped premenopausal women were tested twice in a counterbalanced design. Naturally cycling (NC) women were tested in the early-follicular and mid-luteal phase and OC-users during OC-intake and in the pill-free week. At both sessions E2 and P4 were assessed in saliva. Tests included implicit and explicit positive and negative affect, attentional blink accuracy, emotional memory, emotion recognition, and risky decision-making (gambling). MR-haplotype 2 homozygotes had higher implicit happiness scores than MR-haplotype 2 heterozygotes (p=0.031) and MR-haplotype 1/3 carriers (pemotion recognition test than MR-haplotype 1/3 (p=0.001). Practice effects were observed for most measures. The pattern of correlations between information processing and P4 or E2 differed between sessions, as well as the moderating effects of the MR genotype. In the first session the MR-genotype moderated the influence of P4 on implicit anxiety (sr=-0.30; p=0.005): higher P4 was associated with reduction in implicit anxiety, but only in MR-haplotype 2 homozygotes (sr=-0.61; p=0.012). In the second session the MR-genotype moderated the influence of E2 on the recognition of facial expressions of happiness (sr=-0.21; p=0.035): only in MR-haplotype 1/3 higher E2 was correlated with happiness recognition (sr=0.29; p=0.005). In the second session higher E2 and P4 were negatively correlated with accuracy in lag2 trials of the attentional blink task (pemotional information processing. This moderating effect may depend on the novelty of the situation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency.

    Kohlsdorf, Katja; Nunziata, Adriana; Funcke, Jan-Bernd; Brandt, Stephanie; von Schnurbein, Julia; Vollbach, Heike; Lennerz, Belinda; Fritsch, Maria; Greber-Platzer, Susanne; Fröhlich-Reiterer, Elke; Luedeke, Manuel; Borck, Guntram; Debatin, Klaus-Michael; Fischer-Posovszky, Pamela; Wabitsch, Martin

    2018-02-27

    To evaluate whether early childhood body mass index (BMI) is an appropriate indicator for monogenic obesity. A cohort of n = 21 children living in Germany or Austria with monogenic obesity due to congenital leptin deficiency (group LEP, n = 6), leptin receptor deficiency (group LEPR, n = 6) and primarily heterozygous MC4 receptor deficiency (group MC4R, n = 9) was analyzed. A control group (CTRL) was defined that consisted of n = 22 obese adolescents with no mutation in the above mentioned genes. Early childhood (0-5 years) BMI trajectories were compared between the groups at selected time points. The LEP and LEPR group showed a tremendous increase in BMI during the first 2 years of life with all patients displaying a BMI >27 kg/m 2 (27.2-38.4 kg/m 2 ) and %BMI P95 (percentage of the 95th percentile BMI for age and sex) >140% (144.8-198.6%) at the age of 2 years and a BMI > 33 kg/m 2 (33.3-45.9 kg/m 2 ) and %BMI P95  > 184% (184.1-212.6%) at the age of 5 years. The MC4R and CTRL groups had a later onset of obesity with significantly lower BMI values at both time points (p BMI trajectories in this pediatric cohort with monogenic obesity we suggest that BMI values >27.0 kg/m 2 or %BMI P95  > 140% at the age of 2 years and BMI values >33.0 kg/m 2 or %BMI P95  > 184% at the age of 5 years may be useful cut points to identify children who should undergo genetic screening for monogenic obesity due to functionally relevant mutations in the leptin gene or leptin receptor gene.

  13. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  14. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation

    Etienne Larger

    2016-11-01

    Full Text Available Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 μM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells.

  15. A novel mutation in HSD11B2 causes apparent mineralocorticoid excess in an Omani kindred.

    Yau, Mabel; Azkawi, Hanan Said Al; Haider, Shozeb; Khattab, Ahmed; Badi, Maryam Al; Abdullah, Wafa; Senani, Aisha Al; Wilson, Robert C; Yuen, Tony; Zaidi, Mone; New, Maria I

    2016-07-01

    Apparent mineralocorticoid excess (AME) is a rare autosomal recessive genetic disorder causing severe hypertension in childhood due to a deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), which is encoded by HSD11B2. Without treatment, chronic hypertension leads to early development of end-organ damage. Approximately 40 causative mutations in HSD11B2 have been identified in ∼100 AME patients worldwide. We have studied the clinical presentation, biochemical parameters, and molecular genetics in six patients from a consanguineous Omani family with AME. DNA sequence analysis of affected members of this family revealed homozygous c.799A>G mutations within exon 4 of HSD11B2, corresponding to a p.T267A mutation of 11βHSD2. The structural change and predicted consequences owing to the p.T267A mutation have been modeled in silico. We conclude that this novel mutation is responsible for AME in this family. © 2016 New York Academy of Sciences.

  16. Adolescent with acute psychosis due to anti-N-methyl-D-aspartate receptor encephalitis: successful recovery

    Jonuskaite, Dovile; Kalibatas, Paulius; Praninskiene, Ruta; Zalubiene, Asta; Jucaite, Aurelija; Cerkauskiene, Rimante

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a relatively new autoimmune disorder of the central nervous system. We report the first case of anti-NMDAR autoimmune encephalitis combined with anti-voltage-gated potassium channel (anti-VGKC) antibodies in Lithuania in a 16-year-old girl. The patient was admitted to psychiatry unit because of an acute psychotic episode. She was unsuccessfully treated with antipsychotics, and electroconvulsive therapy was initiated because of he...

  17. Albumin receptor effect may be due to a surface-induced conformational change in albumin

    Reed, R.G.; Burrington, C.M.

    1989-01-01

    To determine whether equilibrium binding between albumin and hepatocytes involves a cell surface receptor for albumin, we incubated freshly isolated rat hepatocytes with 125 I-albumin and determined the amount of albumin associated with the cells as a function of the total albumin concentration. The resulting two-phase binding curve showed the rat albumin-hepatocyte interaction to consist of a saturable binding interaction with a dissociation constant of 1.1 microM and 2 X 10(6) sites/cell in addition to a weak, nonsaturable binding interaction. However, the saturable binding of albumin to hepatocytes did not appear to result from the presence of an albumin receptor on the cell surface; the interaction was the same for different species of albumin, for chemically modified albumins, and for fragments of albumin representing mutually exclusive domains of the molecule. The saturable binding was, instead, found to involve a subpopulation of albumin with an enhanced affinity for the cell surface. We show that this subpopulation of albumin is generated upon contact with either solid surfaces or cell surfaces and can be transferred from one surface to another. We propose that the two-phase Scatchard binding curve and the ''albumin receptor effect'' reflect two populations of albumin that bind to the cell surface with different affinities rather than one population of albumin that binds to two classes of binding sites

  18. Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences

    Dumeige, Laurence; Storey, Caroline; Decourtye, Lyvianne; Nehlich, Melanie; Lhadj, Christophe; Viengchareun, Say; Kappeler, Laurent; Lombès, Marc; Martinerie, Laetitia

    2017-01-01

    Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology. PMID:28230786

  19. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  20. Toxic acrolein production due to Ca(2+) influx by the NMDA receptor during stroke.

    Nakamura, Mizuho; Uemura, Takeshi; Saiki, Ryotaro; Sakamoto, Akihiko; Park, Hyerim; Nishimura, Kazuhiro; Terui, Yusuke; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2016-01-01

    N-Methyl-d-aspartate (NMDA) receptors have a high permeability to Ca(2+), contributing to neuronal cell death after stroke. We recently found that acrolein produced from polyamines is a major toxic compound during stroke. Thus, it was determined whether over-accumulation of Ca(2+) increases the production of acrolein from polyamines in a photochemically-induced thrombosis mouse model of stroke and in cell culture systems. A unilateral infarction was induced in mouse brain by photoinduction after injection of Rose Bengal. The volume of the infarction was analyzed using the public domain National Institutes of Health image program. Protein-conjugated acrolein levels at the locus of infarction and in cells were measured by Western blotting. Levels of polyamines were measured by high-performance liquid chromatography. When the size of brain infarction was decreased by N(1), N(4), N(8)-tribenzylspermidine, a channel blocker of the NMDA receptors, levels of Ca(2+) and protein-conjugated acrolein (PC-Acro) were reduced, while levels of polyamines were increased at the locus of infarction. When cell growth of mouse mammary carcinoma FM3A cells and neuroblastoma Neuro2a cells was inhibited by Ca(2+), the level of polyamines decreased, while that of PC-Acro increased. It was also shown that Ca(2+) toxicity was decreased in an acrolein toxicity decreasing FM3A mutant cells recently isolated. In addition, 20-40 μM Ca(2+) caused the release of polyamines from ribosomes. The results indicate that acrolein is produced from polyamines released from ribosomes through Ca(2+) increase. The results indicate that toxicity of Ca(2+) during brain infarction is correlated with the increase of acrolein. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice.

    Matsuwaki, Takashi; Nishihara, Masugi; Sato, Tsuyoshi; Yoda, Tetsuya; Iwakura, Yoichiro; Chida, Dai

    2010-11-01

    Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.

  2. Ectopic ACTH secretion due to a bronchopulmonary carcinoid localized by somatostatin receptor scintigraphy.

    Iser, G; Pfohl, M; Dörr, U; Weiss, E M; Seif, F J

    1994-11-01

    We present the case of a 65-year-old woman with an adrenocorticotropic hormone (ACTH) secreting bronchopulmonary carcinoid. This patient showed the typical long history of Cushing's syndrome, including hypokaliemia, impaired glucose tolerance, high levels of ACTH and beta-endorphin, and coproduction of other peptides. At the onset of clinical symptoms in 1979 an adrenal adenoma was suspected, and left-sided adrenalectomy was performed. The symptoms soon recurred, and the diagnosis of ACTH-dependent Cushing's syndrome was made. As no ACTH-secreting tumor was found, the right adrenal was resected, and the patient was followed up regularly. Fourteen years later chest roentgenography and computed tomography revealed a para-aortic pulmonary lesion, which was suspicious for a bronchopulmonary carcinoid. ACTH and beta-endorphin were excessively, pancreatic polypeptide slightly elevated at that time. The final diagnosis was made using somatostatin receptor scintigraphy which confirmed the hormonal activity of the suspicious lesion; no additional focus was found. This method turned out to be not only a useful additional localization technique but also a promising tool for characterization and staging of a suspected ACTH-producing carcinoid. The tumor was resected curatively, and the diagnosis was confirmed histologically.

  3. Partial androgen insensitivity syndrome due to somatic mosaicism of the androgen receptor.

    Batista, Rafael Loch; Rodrigues, Andresa De Santi; Machado, Aline Zamboni; Nishi, Mirian Yumie; Cunha, Flávia Siqueira; Silva, Rosana Barbosa; Costa, Elaine M F; Mendonca, Berenice B; Domenice, Sorahia

    2018-01-26

    Androgen insensitivity syndrome (AIS) is the most frequent etiology of 46,XY disorders of sex development (DSDs), and it is an X-linked disorder caused by mutations in the androgen receptor (AR) gene. AIS patients present a broad phenotypic spectrum and individuals with a partial phenotype present with different degrees of undervirilized external genitalia. There are more than 500 different AR gene allelic variants reported to be linked to AIS, but the presence of somatic mosaicisms has been rarely identified. In the presence of a wild-type AR gene, a significant degree of spontaneous virilization at puberty can be observed, and it could influence the gender assignment, genetic counseling and the clinical and psychological management of these patients and the psychosexual outcomes of these patients are not known. In this study, we report two patients with AR allelic variants in heterozygous (c.382G>T and c.1769-1G>C) causing a partial AIS (PAIS) phenotype. The first patient was raised as female and she had undergone a gonadectomy at puberty. In both patients there was congruency between gender of rearing and gender identity and gender role. Somatic mosaicism is rare in AIS and nonsense AR variant allelic can cause partial AIS phenotype in this situation. Despite the risk of virilization and prenatal androgen exposure, the gender identity and gender role was concordant with sex of rearing in both cases. A better testosterone response can be expected in male individuals and this should be considered in the clinical management.

  4. Differential effects of mineralocorticoid blockade on the hypothalamo-pituitary-adrenal axis in pregnant and nonpregnant ewes

    Lingis, Melissa; Richards, Elaine M.

    2011-01-01

    During pregnancy, plasma ACTH and cortisol are chronically increased; this appears to occur through a reset of hypothalamo-pituitary-adrenal (HPA) activity. We have hypothesized that differences in mineralocorticoid receptor activity in pregnancy may alter feedback inhibition of the HPA axis. We tested the effect of MR antagonism in pregnant and nonpregnant ewes infused for 4 h with saline or the MR antagonist canrenoate. Pregnancy significantly increased plasma ACTH, cortisol, angiotensin II, and aldosterone. Infusion of canrenoate increased plasma ACTH, cortisol, and aldosterone in both pregnant and nonpregnant ewes; however, the temporal pattern of these responses differed between these two reproductive states. In nonpregnant ewes, plasma ACTH and cortisol transiently increased at 1 h of infusion, whereas in pregnant ewes the levels gradually increased and were significantly elevated from 2 to 4 h of infusion. MR blockade increased plasma aldosterone from 2 to 4 h in the pregnant ewes but only at 4 h in the nonpregnant ewes. In both pregnant and nonpregnant ewes, the increase in plasma aldosterone was significantly related to the timing and magnitude of the increase in plasma potassium. The results indicate a differential effect of MR activity in pregnant and nonpregnant ewes and suggest that the slow changes in ACTH, cortisol, and aldosterone are likely to be related to blockade of MR effects in the kidney rather than to effects of MR blockade in hippocampus or hypothalamus. PMID:21205934

  5. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Deitcher David L

    2011-01-01

    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  6. Apparent mineralocorticoid excess syndrome: report of one family with three affected children.

    Al-Harbi, Taiba; Al-Shaikh, Adnan

    2012-01-01

    The syndrome of apparent mineralocorticoid excess (AME) is an autosomal recessive disorder characterized by hypertension, hypokalemia, low renin, and hypoaldosteronism. It is caused by deficiency of 11β-hydroxysteroid dehydrogenase, which results in a defect of the peripheral metabolism of cortisol to cortisone. As a consequence, the serum cortisol half-life (T½) is prolonged, ACTH is suppressed, and serum cortisol concentration is normal. The hormonal diagnosis of the disorder is made by the increased ratio of urine-free cortisol to cortisone. In patients with AME, this ratio is 5-18, while in normal individuals it is syndrome of AME. We report three siblings - two female and one male - with the syndrome of apparent mineralocorticoid excess who presented with hypertension, hypokalemia, low renin, and low aldosterone levels. The finding of abnormally high ratios of 24-h urine-free cortisol to cortisone in our three patients (case 1, 8.4; case 2, 25; and case 3, 7.5) confirmed the diagnosis of apparent mineralocorticoid excess syndrome in these children. They were treated with oral potassium supplements. The addition of spironolactone resulted in a decrease in blood pressure, rise in serum potassium and a gradual increase in plasma renin activity in all three. In this study, the genetic testing of those three siblings with the typical clinical features of AME has detected missense mutation c.662C>T (p.Arg208Cys) in exon 3 of the HSD11B2 gene in the homozygous state.

  7. Temporal and spatial dynamics of corticosteroid receptor down-regulation in rat brain following social defeat

    Buwalda, B; Felszeghy, K; Horváth, K M; Nyakas, C; de Boer, S.F.; Bohus, B; Koolhaas, J M

    The experiments explored the nature and time course of changes in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) binding in homogenates of various brain regions and pituitary of male Wistar rats following social defeat stress. One week after defeat, the binding capacity of GRs was

  8. Iodine stimulates estrogen receptor singling and its systemic level is increased in surgical patients due to topical absorption.

    He, Shaohua; Wang, Bingchan; Lu, Xiyi; Miao, Suyu; Yang, Fengming; Zava, Theodore; Ding, Qiang; Zhang, Shijiang; Liu, Jiayin; Zava, David; Shi, Yuenian Eric

    2018-01-02

    Iodine is crucial for thyroid hormone production. However, recent epidemiologic studies have shown that breast cancer patients have an elevated risk of developing thyroid cancer and vice versa. A notable finding in this study is that iodine stimulated the transcriptional activity of estrogen receptor-α (ER-α) in breast cancer cells. Iodine stimulated expression of several ER-α regulated gene including PS2 , Cathepsin D , CyclinD1 , and PR both in vitro and in nude mice, which is consistent with its stimulation of both anchorage-dependent and -independent growth of ER-α positive breast cancer cells and the effect to dampen tumor shrinkage of MCF-7 xenograft in ovariectomized nude mice. Analyses of clinical urine samples from breast cancer patients undergoing surgery demonstrated that urinary iodine levels were significantly higher than that in controls; and this increased level is due to the antiseptic use of iodine during breast surgery. The present study indicates that excess iodine intake may be an unfavorable factor in breast cancer by stimulation of ER-α transcriptional activity.

  9. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  10. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5HT3A receptors due to the action of flavonoids

    Robin eHerbrechter

    2015-07-01

    Full Text Available The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g. setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3A receptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonist of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (--liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (--liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito.

  11. Circulating cytokines and cytokine receptors in infliximab treatment failure due to TNF-α independent Crohn disease

    Steenholdt, Casper; Coskun, Mehmet; Buhl, Sine

    2016-01-01

    -IFX antibodies. Circulating cytokines and cytokine receptors were assessed by enzyme-linked immunosorbent assay: granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin (IL)-1α, IL-1β, IL-1Ra, IL-6, IL-10, IL-12p70, soluble TNF receptor (sTNF-R) 1, sTNF-R2, IL-17A, and monocyte chemotactic...

  12. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat

  13. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Montero-Pedrazuela, Ana; Fern?ndez-Lamo, Iv?n; Alieva, Mar?a; Pereda-P?rez, Inmaculada; Venero, C?sar; Guada?o-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this ex...

  14. A Stress-Induced Shift from Trace to Delay Conditioning Depends on the Mineralocorticoid Receptor

    Vogel, Susanne; Klumpers, Floris; Kroes, Marijn C W; Oplaat, Krista T.; Krugers, Harm J.; Oitzl, Melly S.; Joëls, Marian; Fernández, Guillén

    2015-01-01

    Background Fear learning in stressful situations is highly adaptive for survival by steering behavior in subsequent situations, but fear learning can become disproportionate in vulnerable individuals. Despite the potential clinical significance, the mechanism by which stress modulates fear learning

  15. Linking genetic variants of the mineralocorticoid receptor and negative memory bias: Interaction with prior life adversity

    Vogel, S.; Gerritsen, L.; Oostrom, I.I.H. van; Arias Vasquez, A.; Rijpkema, M.J.P.; Joels, M.; Franke, B.; Tendolkar, I.; Fernandez, G.S.E.

    2014-01-01

    Substantial research has been conducted investigating the association between life adversity and genetic vulnerability for depression, but clear mechanistic links are rarely identified and investigation often focused on single genetic variants. Complex phenotypes like depression, however, are likely

  16. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease

    Currie, Gemma; Taylor, Alison H M; Fujita, Toshiro

    2016-01-01

    BACKGROUND: Hypertension and proteinuria are critically involved in the progression of chronic kidney disease. Despite treatment with renin angiotensin system inhibition, kidney function declines in many patients. Aldosterone excess is a risk factor for progression of kidney disease. Hyperkalaemi...... pressure and urinary protein/albumin excretion with a quantifiable risk of hyperkalaemia above predefined study upper limit....

  17. Spironolactone induces apoptosis and inhibits NF-kappaB independent of the mineralocorticoid receptor

    Sønder, Søren Ulrik Salling; Woetmann, Anders; Odum, Niels

    2006-01-01

    mononuclear cells (MNC). To elucidate the mechanism behind SPIR's apoptotic effect, we investigated the relation between apoptosis and cytokine suppression for SPIR along with the apoptosis-inducing and antiinflammatory drug sulfasalazine (SFZ). Using human MNC, we found that SPIR and SFZ, at concentrations...... 10 and 1000 muM, respectively, significantly increased both apoptosis and cell death. Production of inflammatory cytokines was significantly reduced by 3 to 30 muM SPIR and by 300 to 1000 muM SFZ. We also found that 0.4 muM SPIR and 300 muM SFZ significantly reduced the activity of NF......-kappaB, a transcription factor involved in both apoptosis and immunoinflammation. ALDO, the MR antagonist, eplerenone, and the SPIR metabolite, 7alpha-thiomethyl-spironolactone, slightly reduced NF-kappaB activity, but they did not interfere with SPIR's effect, showing that MR binding is not involved in SPIR...

  18. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernández, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  19. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernandez, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  20. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    Vogel, Susanne; Klumpers, Floris; Schroeder, Tobias Navarro; Oplaat, Krista T.; Krugers, Harm J.; Oitzl, Melly S.; Joels, Marian; Doeller, Christian F.; Fernandez, Guillen

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  1. Autoradiographic demonstration of target cells for the mineralocorticoid aldosterone in the rat pineal gland

    Ruehle, H.J.; Ermisch, A.

    1987-01-01

    Male rats received [ 3 H]aldosterone 30 min before sacrifice. Autoradiograms were prepared from brain and pineal gland by a thaw-mount technique. Grain counting revealed that the pineal retained 4 times as much radioactivity as brain regions with tight capillaries. Using an appropriate method of quantitative autoradiogram evaluation, it was shown that in adrenalectomized animals, but not after shamoperiation, 28% of the pinealocytes concentrated the steroid in their nuclei. This is the first demonstration of saturable mineralocorticoid binding in the pineal gland. (author)

  2. Expression of oxytocin receptors is greatly reduced in the placenta of heavy mares with retained fetal membranes due to secondary uterine atony.

    Rapacz-Leonard, A; Raś, A; Całka, J; Janowski, T E

    2015-09-01

    Fetal membrane retention can be a life-threatening condition and its incidence exceeds 50% in heavy draught mares. Although fetal membrane retention is commonly treated with repeated injections of oxytocin, based on the suggestion that it is caused mainly by secondary atony of the uterus, this treatment sometimes fails. This led us to ask if expression of oxytocin receptors differs in mares that retain fetal membranes due to secondary uterine atony. To determine whether expression of oxytocin receptors in equine placental tissues differs when heavy draught mares expel fetal membranes or retain them because of secondary uterine atony. Controlled study using archived tissues. Placental biopsies (containing the endometrium and allantochorion) were taken from 8 heavy draught mares during parturition. Four mares expelled fetal membranes shortly after foaling (control mares) and 4 mares retained them (expulsion time was >3 h from delivery). The 4 mares that retained fetal membranes had secondary atony of the uterus. The amount of oxytocin receptors was estimated by measuring the intensity of western blot bands. The presence and location of oxytocin receptors were determined by immunocytochemistry. Oxytocin receptor expression was nearly 50 times less intense in mares with placenta retention due to secondary atony of the uterus and immunocytochemical staining was barely visible. In the control mares, oxytocin receptors were found in both epithelial and endothelial cells of the placenta and staining was most intense where the endometrium contacts the allantochorion. Inadequate expression of oxytocin receptors may be a cause of uterine atony leading to fetal membrane retention. © 2015 EVJ Ltd.

  3. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients

    Casteleijn, Niek F.; Messchendorp, A. Lianne; Bae, Kyong T.; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M.

    Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal

  4. Production of thyrotropin receptor antibodies in acute phase of infectious mononucleosis due to Epstein-Barr virus primary infection: a case report of a child.

    Nagata, Keiko; Okuno, Keisuke; Ochi, Marika; Kumata, Keisuke; Sano, Hitoshi; Yoneda, Naohiro; Ueyama, Jun-Ichi; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Kanzaki, Susumu; Hayashi, Kazuhiko

    2015-01-01

    Various autoantibodies have been reported to be detected during the progression of infectious mononucleosis. We observed a case of infectious mononucleosis due to Epstein-Barr virus primary infection for 2 months, and noticed the transiently increased titer of thyrotropin receptor autoantibodies detected at the acute phase on the 3rd day after admission. At that time, real-time quantitative PCR also revealed the mRNA expressions of an immediate early lytic gene, BZLF1, and a latent gene, EBNA2. The expression of BZLF1 mRNA means that Epstein-Barr virus infects lytically, and EBNA2 protein has an important role in antibody production as well as the establishment of Epstein-Barr virus latency. These results suggest that Epstein-Barr virus lytic infection is relevant to thyrotropin receptor autoantibody production. Thyrotropin receptor autoantibodies stimulate thyroid follicular cells to produce excessive thyroid hormones and cause Graves' disease. Recently, we reported the thyrotropin receptor autoantibody production from thyrotropin receptor autoantibody-predisposed Epstein-Barr virus-infected B cells by the induction of Epstein-Barr virus lytic infection in vitro. This case showed in vivo findings consistent with our previous reports, and is important to consider the pathophysiology of Graves' disease and one of the mechanisms of autoimmunity.

  5. Total Thyroidectomy for Thyroid Cancer Followed by Thyroid Storm due to Thyrotropin Receptor Antibody Stimulation of Metastatic Thyroid Tissue

    Folkestad, Lars; Brandt, Frans; Brix, Thomas

    2017-01-01

    BACKGROUND: Graves disease (GD) is an autoimmune condition characterized by the presence of antibodies against the thyrotropin receptor (TRAB), which stimulate the thyroid gland to produce excess thyroid hormone. Theoretically, TRAB could stimulate highly differentiated thyroid cancer tissue and...... treatment continued until after the fourth RAI dose. Hypothyroidism did not occur until following the fifth RAI treatment. SUMMARY AND CONCLUSIONS: We present a patient initially diagnosed with thyrotoxicosis and subsequently with metastatic follicular variant of papillary thyroid cancer. It is suggested...... that TRAB stimulated the highly differentiated extrathyroidal metastatic thyroid tissue to produce excessive amounts of thyroid hormone, delayed diagnosis, and potential aggravation of the course of thyroid cancer....

  6. Negative regulation of humoral immunity due to interplay between the SLAMF1, SLAMF5, and SLAMF6 receptors

    Ninghai eWang

    2015-04-01

    Full Text Available Whereas the SLAMF-associated protein (SAP is involved in differentiation of TFH cells and antibody responses, the precise requirements of SLAMF receptors in humoral immune responses are incompletely understood. By analyzing mice with targeted disruptions of the SLAMF1, SLAMF5 and SLAMF6 genes, we found that both T-dependent and T-independent antibody responses were twofold higher compared to those in single knockout mice. These data suggest a suppressive synergy of SLAMF1, SLAMF5 and SLAMF6 in humoral immunity, which contrasts the decreased antibody responses resulting from a defective GC reaction in the absence of the adapter SAP. In adoptive co-transfer assays, both [Slamf1+5+6]-/- B and T cells were capable of inducing enhanced antibody responses, but more pronounced enhancement was observed after adoptive transfer of [Slamf1+5+6]-/- B cells compared to that of [Slamf1+5+6]-/- T cells. In support of [Slamf1+5+6]-/- B cell intrinsic activity, [Slamf1+5+6]-/- mice also mounted significantly higher antibody responses to T-independent type 2 antigen. Furthermore, treatment of mice with anti-SLAMF6 monoclonal antibody results in severe inhibition of the development of TFH cells and GC B cells, confirming a suppressive effect of SLAMF6. Taken together, these results establish SLAMF1, SLAMF5 and SLAMF6 as important negative regulators of humoral immune response, consistent with the notion that SLAM family receptors have dual functions in immune responses.

  7. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  8. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  9. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    Zhengmeng Ye

    2018-03-01

    Full Text Available Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5 exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R, regulated by G protein-coupled receptor kinase type 4 (GRK4, plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the

  10. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.

  11. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients.

    Casteleijn, Niek F; Messchendorp, A Lianne; Bae, Kyong T; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M

    2017-06-01

    Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal function loss. Therefore, we aimed to investigate the effect of tolvaptan-induced polyuria on ureter diameter in ADPKD patients. 70 ADPKD patients were included (51 were randomized to tolvaptan and 19 to placebo). At baseline and after 3 years of treatment renal function was measured (mGFR) and MRI was performed to measure TKV and ureter diameter at the levels of renal pelvis and fifth lumbar vertebral body (L5). In these patients [65.7 % male, age 41 ± 9 years, mGFR 74 ± 27 mL/min/1.73 m 2 and TKV 1.92 (1.27-2.67) L], no differences were found between tolvaptan and placebo-treated patients in 24-h urine volume at baseline (2.5 vs. 2.5 L, p = 0.8), nor in ureter diameter at renal pelvis and L5 (4.0 vs. 4.2 mm, p = 0.4 and 3.0 vs. 3.1 mm, p = 0.3). After 3 years of treatment 24-h urine volume was higher in tolvaptan-treated patients when compared to placebo (4.7 vs. 2.3 L, p polyuria did not lead to an increase in ureter diameter, suggesting that tolvaptan is a safe therapy from a urological point of view.

  12. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor β-subunit

    Hirata, Hiromi; Saint-Amant, Louis; Downes, Gerald B.; Cui, Wilson W.; Zhou, Weibin; Granato, Michael; Kuwada, John Y.

    2005-01-01

    Bilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR). This result suggests that glycinergic synaptic transmission is defective in beo mutants. Muscle voltage recordings confirmed that muscles on both sides of the trunk in beo are likely to receive simultaneous synaptic input from the CNS. Recordings from motor neurons revealed that glycinergic synaptic transmission was missing in beo mutants. Furthermore, immunostaining with an antibody against GlyR showed clusters in wild-type neurons but not in beo neurons. These data suggest that the failure of GlyRs to aggregate at synaptic sites causes impairment of glycinergic transmission and abnormal behavior in beo mutants. Indeed, mutations in the GlyR β-subunit, which are thought to be required for proper localization of GlyRs, were identified as the basis for the beo mutation. These data demonstrate that GlyRβ is essential for physiologically relevant clustering of GlyRs in vivo. Because GlyR mutations in humans lead to hyperekplexia, a motor disorder characterized by startle responses, the zebrafish beo mutant should be a useful animal model for this condition. PMID:15928085

  13. receptores

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  14. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  15. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  16. [A comparative study on efficacy of glucocorticoids, mineralocorticoids and vasoactive drugs on reversing hearing loss in patients suffering idiopathic sensorineural cochlear hypoacusis. A preliminary clinical trial].

    Campos-Bañales, Eugenia María; López-Campos, Daniel; de Serdio-Arias, José Luis; Esteban-Rodriguez, J; García-Sáinz, Mar; Muñoz-Cortés, Álvaro; López-Aguado, Daniel

    2015-01-01

    Sensory neural hearing loss (SNHL) is a disorder characterised by an important deterioration of the auditory function. Re-establishing normal ion homeostasis of the endolymph could be related to hearing recovery and it might be mediated by mineralocorticoids. The main purpose of this preliminary, randomized controlled clinical trial was assessing the recovery of idiopathic sensory neural cochlear hearing loss (SNHL) by comparing the efficacy of 2 types of steroids versus vasodilators. The 3-month intervention involved 70 patients, allocated into 4 different groups: a control with no medication, consisting of 14 patients (8 men and 6 women); a vasodilator group of 21 patients (11 men and 10 women); a glucocorticoid group with 16 patients (10 men and 6 women); and a mineralocorticoid therapy group, consisting of 19 patients (11 men and 8 women). The level of hearing loss and its topography were estimated using Liminal Tone Audiometry (LTA) and Auditory Brainstem Response (ABR). Our research found overall greater efficacy of mineralocorticoids versus glucocorticoids and vasodilators. There was better response in women than in men and it was higher from the left ear, regardless of patient gender. The hearing gain was significantly superior in the mineralocorticoid group, followed by the glucocorticoid group. However, the responses to vasodilators were lesser and of low statistical significance. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  17. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: A systematic review and meta-analysis

    Currie, G. (Gemma); Taylor, A.H.M. (Alison H. M.); Fujita, T. (Toshiro); Ohtsu, H. (Hiroshi); Lindhardt, M. (Morten); K. Rossing; Boesby, L. (Lene); Edwards, N.C. (Nicola C.); Ferro, C.J. (Charles J.); J. Townend (Jonathan); A.H. van den Meiracker (Anton); Saklayen, M.G. (Mohammad G.); Oveisi, S. (Sonia); Jardine, A.G. (Alan G.); C. Delles (Christian); Preiss, D.J. (David J.); Mark, P.B. (Patrick B.)

    2016-01-01

    textabstractBackground: Hypertension and proteinuria are critically involved in the progression of chronic kidney disease. Despite treatment with renin angiotensin system inhibition, kidney function declines in many patients. Aldosterone excess is a risk factor for progression of kidney disease.

  18. The mineralocorticoid receptor antagonist eplerenone reduces renal interstitial fibrosis after long-term cyclosporine treatment in rat

    Nielsen, Finn Thomsen; Jensen, Boye L.; Hansen, Pernille B. L.

    2013-01-01

    blood pressure (BP) and GFR (inulin clearance) in conscious, freely moving animals. Plasma was sampled for analysis and kidney tissue was fixed for quantitative stereological analyses. RESULTS: Compared to controls, CsA-treatment reduced relative tubular volume (0.73+/-0.03 vs. 0.85+/-0.01, p...

  19. Sexual dysfunctions in men affected by autoimmune Addison's disease before and after short-term gluco- and mineralocorticoid replacement therapy.

    Granata, Antonio; Tirabassi, Giacomo; Pugni, Valeria; Arnaldi, Giorgio; Boscaro, Marco; Carani, Cesare; Balercia, Giancarlo

    2013-08-01

    There is evidence suggesting that autoimmune Addison's disease (AD) could be associated with sexual dysfunctions probably caused by gluco- and mineralocorticoid deficiency; however, no study has yet treated this subject in males. To evaluate male sexuality and psychological correlates in autoimmune AD before and after gluco- and mineralocorticoid replacement therapy. Twelve subjects with a first diagnosis of autoimmune AD were studied before (baseline) and 2 months after (recovery phase) initiating hormone replacement therapy. Erectile function (EF), orgasmic function (OF), sexual desire (SD), intercourse satisfaction (IS), overall satisfaction (OS), depression, and anxiety were studied using a number of questionnaires (International Index of Erectile Function, Beck Depression Inventory, and Spielberger State-Trait Anxiety Inventory); clinical, biochemical, and hormone data were included in the analysis. At baseline, low values were found for EF, OF, SD, IS, and OS and high values for depression and anxiety; all of these parameters improved significantly in the recovery phase compared with baseline. EF variation between the two phases correlated significantly and positively with the variation of serum cortisol, urinary free cortisol, systolic blood pressure, and diastolic blood pressure and inversely with that of upright plasma renin activity. Multiple linear regression analysis using EF variation as dependent variable confirmed the relationship of the latter with variation of serum cortisol, urinary free cortisol, and upright plasma renin activity but not with variation of systolic and diastolic blood pressure. Our study showed that onset of autoimmune AD in males is associated with a number of sexual dysfunctions, all reversible after initiating replacement hormone therapy; cortisol and aldosterone deficiency seems to play an important role in the genesis of erectile dysfunction although the mechanism of their activity is not clear. © 2012 International Society

  20. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality

    Hendriks, C.; Kuenen, J.; Kranenburg, R.; Scholz, Y.; Schaap, M.

    2015-01-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on

  1. Very late-onset group B Streptococcus meningitis, sepsis, and systemic shigellosis due to interleukin-1 receptor-associated kinase-4 deficiency.

    Krause, Jens C; Ghandil, Pegah; Chrabieh, Maya; Casanova, Jean-Laurent; Picard, Capucine; Puel, Anne; Creech, C Buddy

    2009-11-01

    We describe a child with very late-onset group B Streptococcus sepsis and meningitis, systemic shigellosis, and chronic osteomyelitis. Peripheral blood cells obtained from the patient and her brother did not respond to stimulation with either interleukin-1beta or lipopolysaccharide. Sequencing of the interleukin-1 receptor-associated kinase-4 gene revealed 2 novel mutations.

  2. Development of Novel Drugs That Target Coactivation Sites of the Androgen Receptor for Treatment of Antiandrogen-Resistant Prostate Cancer

    2015-12-01

    quantifying their effect on the production of the prostate specific antigen (PSA) in prostate cancer cell lines (11). PSA is AR-regulated serine protease and... products . The hydroxylation products were observed in lesser amounts. The IV and IP serum profiles of VPC-13566 suggest that it could be administered IP...Glucocorticoid, mineralocorticoid, progesterone , and androgen receptors. Pharmacological Reviews. 2006;58:782-97. 2. Denmeade SR, Isaacs JT. A

  3. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  4. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  5. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  6. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  7. The effect of GABA A receptor antagonist - bicucullin - administration on the number of multiform neurons in the brain parabrachial nucleus due to pain induction of adult male rats

    Mahsa Kamali

    2015-10-01

    Full Text Available Background and Aim:  A lot of biological investigations are aimed to find pain decreasing or relieving substances that appear in various diseases. Parabrachial nucleus plays an important role in cognitive and emotional aspects of pain. The present study was designed to evaluate the inhibitory effect of bicuculine- as a GABA A receptor antagonist- on the number of multiform neurons in Parabrachial region of adult male rats in tonic pain model. Materials and Methods: This experimental study was carried out on 40 Wistar male rats. Based on the pain induction, the animals were divided into 8 groups (n=5. Bicuculine was administrated in doses of  50, 100, and 200 ng/rat.  Using stereotaxic method, Bicuculine was administrated to the rats` brain parabrachial area. The present study utilized Formalin test as a standard method for pain stimulations. Thereafter, Gimsa staining method was applied for histological determination of multiform cells. The obtained data was analyzed using statistical testsincluding Student-t and  one-way ANOVA. Results: Our data showed no significant changes in the number of multiform cells in Parabrachial nucleus between the animals administrated by bicuculine at the dose of 50   compared  with the controls (P>0.05. Nevertheless, the number of these cells was decreased significantly in the animals administrated by bicuculine at the doses of 100 and 200   when compared to the controls (p<0.05. Conclusion:  It was found that nociceptive stimulations cause changes in the number of multiform neurons in para- brachial nucleus. Nevertheless, higher dose administration of GABA A receptor antagonist has preventive effects on neuronal dysmorphogenesis at this brain area.

  8. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells due to interferon-gamma exposure

    Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A.; Krause, James S.; Banik, Naren L.

    2014-01-01

    Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. In order to examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis related proteases (caspase-3 and −12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. PMID:24188094

  9. Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production

    Szarka E

    2012-04-01

    Full Text Available Eszter Szarka1*, Zsuzsa Neer1*, Péter Balogh2, Monika Ádori1, Adrienn Angyal1, József Prechl3, Endre Kiss1,3, Dorottya Kövesdi1, Gabriella Sármay11Department of Immunology, Eötvös Loránd University, 1117 Budapest, 2Department of Immunology and Biotechnology, University of Pécs, Pécs, 3Immunology Research Group of the Hungarian Academy of Science at Eötvös Loránd University, 1117 Budapest, Hungary*These authors contributed equally to this workAbstract: Antibodies specific for bovine type II collagen (CII and Fcγ receptors play a major role in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2. These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro

  10. TDP-43 Loss-of-Function Causes Neuronal Loss Due to Defective Steroid Receptor-Mediated Gene Program Switching in Drosophila

    Lies Vanden Broeck

    2013-01-01

    Full Text Available TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased and decreased expression of TDP-43 (dTDP-43 in Drosophila. Although upregulation of dTDP-43 induced neuronal ubiquitin and dTDP-43-positive inclusions, both up- and downregulated dTDP-43 resulted in selective apoptosis of bursicon neurons and highly similar transcriptome alterations at the pupal-adult transition. Gene network analysis and genetic validation showed that both up- and downregulated dTDP-43 directly and dramatically increased the expression of the neuronal microtubule-associated protein Map205, resulting in cytoplasmic accumulations of the ecdysteroid receptor (EcR and a failure to switch EcR-dependent gene programs from a pupal to adult pattern. We propose that dTDP-43 neurotoxicity is caused by a loss of its normal function.

  11. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  12. Hipercalcemia hipocalciúrica debida a una mutación de novo del gen del receptor sensor de calcio Hypocalciuric hypercalcemia due to de novo mutation of the calcium sensing receptor

    Marcelo Sarli

    2004-08-01

    Full Text Available El objetivo de este trabajo es presentar el inusual caso clínico de una paciente de 34 años que consultó para establecer diagnóstico de certeza y conducta terapéutica ante una hipercalcemia asintomática, detectada en un examen bioquímico de rutina. La elevación de la calcemia en ausencia de inhibición de la secreción de parathormona orientó hacia una patología paratiroidea. La persistencia de la hipercalcemia concomitante con hipocalciuria y coincidente con una relación clearance de calcio/clearance de creatinina inferior a 0.01, hicieron sospechar el diagnóstico de hipercalcemia hipocalciúrica familiar. La falta de antecedentes familiares llevó a realizar un estudio molecular de la paciente y su grupo familiar. Los resultados de los estudios nos permitieron concluir que la paciente es portadora de una mutación de novo (inactivante del gen del receptor sensor del calcio. Se incluyen los datos del estudio molecular y una breve revisión bibliográfica del tema.The aim of this paper is to refer the unusual case of a 34 years old woman who consulted because of asymptomatic hypercalcemia, detected in a biochemical routine examination. The elevated values of serum calcium without blunted parathyroid hormone secretion suggested a parathyroid pathology. The concomitance of hypocalciuria with hypercalcemia and a calcium clearance/creatinine clearance ratio less than 0.01 reverted the diagnosis of familial hypocalciuric hypercalcemia, the first option. The absence of familial background led to the molecular study of the patient and her family. The latter confirmed the diagnosis of a de novo inactivating mutation of the calcium sensing receptor. Details on the molecular study and a brief review of this subject are included.

  13. Familial Isolated Pituitary Adenomas (FIPA) and the Pituitary Adenoma Predisposition due to Mutations in the Aryl Hydrocarbon Receptor Interacting Protein (AIP) Gene

    Aaltonen, Lauri A.; Daly, Adrian F.

    2013-01-01

    Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses

  14. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy.

    Camozzi, Valentina; Betterle, Corrado; Frigo, Anna Chiara; Zaccariotto, Veronica; Zaninotto, Martina; De Caneva, Erica; Lucato, Paola; Gomiero, Walter; Garelli, Silvia; Sabbadin, Chiara; Salvà, Monica; Costa, Miriam Dalla; Boscaro, Marco; Luisetto, Giovanni

    2018-02-01

    to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.

  15. Dynamics of Corticosteroid Receptors: Lessons from Live Cell Imaging

    Nishi, Mayumi

    2011-01-01

    Adrenal corticosteroids (cortisol in humans or corticosterone in rodents) exert numerous effects on the central nervous system that regulates the stress response, mood, learning and memory, and various neuroendocrine functions. Corticosterone (CORT) actions in the brain are mediated via two receptor systems: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). It has been shown that GR and MR are highly colocalized in the hippocampus. These receptors are mainly distributed in the cytoplasm without hormones and translocated into the nucleus after treatment with hormones to act as transcriptional factors. Thus the subcellular dynamics of both receptors are one of the most important issues. Given the differential action of MR and GR in the central nervous system, it is of great consequence to clarify how these receptors are trafficked between cytoplasm and nucleus and their interactions are regulated by hormones and/or other molecules to exert their transcriptional activity. In this review, we focus on the nucleocytoplasmic and subnuclear trafficking of GR and MR in neural cells and non-neural cells analyzed by using molecular imaging techniques with green fluorescent protein (GFP) including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET), and discuss various factors affecting the dynamics of these receptors. Furthermore, we discuss the future directions of in vivo molecular imaging of corticosteroid receptors at the whole brain level

  16. Due diligence

    Sanghera, G.S.

    1999-01-01

    The Occupational Health and Safety (OHS) Act requires that every employer shall ensure the health and safety of workers in the workplace. Issues regarding the practices at workplaces and how they should reflect the standards of due diligence were discussed. Due diligence was described as being the need for employers to identify hazards in the workplace and to take active steps to prevent workers from potentially dangerous incidents. The paper discussed various aspects of due diligence including policy, training, procedures, measurement and enforcement. The consequences of contravening the OHS Act were also described

  17. From receptor balance to rational glucocorticoid therapy.

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  18. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?

    Judith Toneatto

    2014-11-01

    Full Text Available It is well known that glucocorticoids and mineralocorticoids are part of the list of hormones that control adipogenesis as well as different aspects of the physiology of the adipose tissue. Their actions are mediated through their binding to the glucocorticoid and the mineralocorticoid receptors (GR and MR, respectively, in complex with heat shock proteins (Hsps and high molecular weight immunophilins (IMMs. Albeit many aspects of the molecular mechanism of the corticosteroid receptors are not fully elucidated yet, it was not until recently that the first evidences of the functional importance of Hsps and IMMs in the process of adipocyte differentiation have been described. Hsp90 and the high molecular weight IMM FKBP51 modulate GR and MR activity at multiple levels, that is, hormone binding affinity, their subcellular distribution, and the transcriptional status, among other aspects of the NR function. Interestingly, it has recently been described that Hsp90 and FKBP51 also participate in the control of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the nuclear architecture through its participation in the reorganization of the nuclear lamina and the control of the subnuclear distribution of GR. Thus, the aim of this review is to integrate and discuss the actual understanding of the role of corticosteroid receptors, their chaperones and cochaperones, in the process of adipocyte differentiation.

  19. Mineralocorticoid hypertension: clinical and laboratory studies with special reference to selective percutaneous venography combined with aldosterone assay in the adrenal venous blood

    Wajchenberg, B.L.; Liberman, B.; Novaes, M.

    1977-01-01

    With the purpose of demonstrating the presence of hypertension, hypokalemia and alkalosis were studied. The presence of daily aldosteronism was verified in five patients; the sixth one presented no daily aldosteronism but an increase of 18-OH-DOCA production, an ACTH dependente mineralocorticoid. The presence of tumor (less than 0.9cm) could not be shown in two patients by bilateral selective adrenal venography. The aldosterone assay during catherization of adrenal vein of those patients permitted to determine the tumoral side. Attention must be given to the fact that the blood collection of adrenal vein must always be made during adrenal venography to demonstrate the presence of short unilateral tumor or bilateral disease [pt

  20. Distribution of cellular HSV-1 receptor expression in human brain.

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  1. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    2012-02-01

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  2. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    Dooley, Ruth

    2011-07-26

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  3. Soluble adenylyl cyclase in vascular endothelium: gene expression control of epithelial sodium channel-α, Na+/K+-ATPase-α/β, and mineralocorticoid receptor.

    Schmitz, Boris; Nedele, Johanna; Guske, Katrin; Maase, Martina; Lenders, Malte; Schelleckes, Michael; Kusche-Vihrog, Kristina; Brand, Stefan-Martin; Brand, Eva

    2014-04-01

    The Ca(2+)- and bicarbonate-activated soluble adenylyl cyclase (sAC) has been identified recently as an important mediator of aldosterone signaling in the kidney. Nuclear sAC has been reported to stimulate cAMP response element-binding protein 1 phosphorylation via protein kinase A, suggesting an alternative cAMP pathway in the nucleus. In this study, we analyzed the sAC as a potential modulator of endothelial stiffness in the vascular endothelium. We determined the contribution of sAC to cAMP response element-mediated transcriptional activation in vascular endothelial cells and kidney collecting duct cells. Inhibition of sAC by the specific inhibitor KH7 significantly reduced cAMP response element-mediated promoter activity and affected cAMP response element-binding protein 1 phosphorylation. Furthermore, KH7 and anti-sAC small interfering RNA significantly decreased mRNA and protein levels of epithelial sodium channel-α and Na(+)/K(+)-ATPase-α. Using atomic force microscopy, a nano-technique that measures stiffness and deformability of living cells, we detected significant endothelial cell softening after sAC inhibition. Our results suggest that the sAC is a regulator of gene expression involved in aldosterone signaling and an important regulator of endothelial stiffness. Additional studies are warranted to investigate the protective action of sAC inhibitors in humans for potential clinical use.

  4. Insulin receptors

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  5. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  6. Somatostatin receptors

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  7. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  8. Glutamate receptor agonists

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  9. Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels

    Sabourin, Jessica; Bartoli, Fiona; Antigny, Fabrice; Gomez, Ana Maria; Benitah, Jean-Pierre

    2016-01-01

    Store-operated Ca2+ entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca2+ influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca2+]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway. PMID:27129253

  10. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats.

    Hattori, Yukiko; Takeda, Tomoki; Nakamura, Arisa; Nishida, Kyoko; Shioji, Yuko; Fukumitsu, Haruki; Yamada, Hideyuki; Ishii, Yuji

    2018-05-16

    Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  12. Addition of the Neurokinin-1-Receptor Antagonist (RA) Aprepitant to a 5-Hydroxytryptamine-RA and Dexamethasone in the Prophylaxis of Nausea and Vomiting Due to Radiation Therapy With Concomitant Cisplatin

    Jahn, Franziska, E-mail: franziska.jahn@uk-halle.de [Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany); Riesner, Anica [Department of Gastroenterology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany); Jahn, Patrick [Nursing Research Unit, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany); Sieker, Frank; Vordermark, Dirk [Department of Radiation Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany); Jordan, Karin [Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany)

    2015-08-01

    Purpose: To assess, in a prospective, observational study, the safety and efficacy of the addition of the neurokinin-1-receptor antagonist (NK1-RA) aprepitant to concomitant radiochemotherapy, for the prophylaxis of radiation therapy–induced nausea and vomiting. Patients and Methods: This prospective observational study compared the antiemetic efficacy of an NK1-RA (aprepitant), a 5-hydroxytryptamine-RA, and dexamethasone (aprepitant regimen) versus a 5-hydroxytryptamine-RA and dexamethasone (control regimen) in patients receiving concomitant radiochemotherapy with cisplatin at the Department of Radiation Oncology, University Hospital Halle (Saale), Germany. The primary endpoint was complete response in the overall phase, defined as no vomiting and no use of rescue therapy in this period. Results: Fifty-nine patients treated with concomitant radiochemotherapy with cisplatin were included in this study. Thirty-one patients received the aprepitant regimen and 29 the control regimen. The overall complete response rates for cycles 1 and 2 were 75.9% and 64.5% for the aprepitant group and 60.7% and 54.2% for the control group, respectively. Although a 15.2% absolute difference was reached in cycle 1, a statistical significance was not detected (P=.22). Furthermore maximum nausea was 1.58 ± 1.91 in the control group and 0.73 ± 1.79 in the aprepitant group (P=.084); for the head-and-neck subset, 2.23 ± 2.13 in the control group and 0.64 ± 1.77 in the aprepitant group, respectively (P=.03). Conclusion: This is the first study of an NK1-RA–containing antiemetic prophylaxis regimen in patients receiving concomitant radiochemotherapy. Although the primary endpoint was not obtained, the absolute difference of 10% in efficacy was reached, which is defined as clinically meaningful for patients by international guidelines groups. Randomized phase 3 studies are necessary to further define the potential role of an NK1-RA in this setting.

  13. Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania (V.) braziliensis and Leishmania (L.) amazonensis

    Campos, Marliane Batista; Lima, Luciana Vieira do Rêgo; de Lima, Ana Carolina Stocco; Vasconcelos dos Santos, Thiago; Ramos, Patrícia Karla Santos; Gomes, Claudia Maria de Castro

    2018-01-01

    Leishmania (V.) braziliensis and Leishmania(L.) amazonensis are the most pathogenic agents of American Cutaneous Leishmaniasis in Brazil, causing a wide spectrum of clinical and immunopathological manifestations, including: localized cutaneous leishmaniasis (LCLDTH+/++), borderline disseminated cutaneous leishmaniasis (BDCLDTH±), anergic diffuse cutaneous leishmaniasis (ADCLDTH-), and mucosal leishmaniasis (MLDTH++++). It has recently been demonstrated, however, that while L. (V.) braziliensis shows a clear potential to advance the infection from central LCL (a moderate T-cell hypersensitivity form) towards ML (the highest T-cell hypersensitivity pole), L. (L.) amazonensis drives the infection in the opposite direction to ADCL (the lowest T-cell hypersensitivity pole). This study evaluated by immunohistochemistry the expression of Toll-like receptors (TLRs) 2, 4, and 9 and their relationships with CD4 and CD8 T-cells, and TNF-α, IL-10, and TGF-β cytokines in that disease spectrum. Biopsies of skin and mucosal lesions from 43 patients were examined: 6 cases of ADCL, 5 of BDCL, and 11 of LCL caused byL. (L.) amazonensis; as well as 10 cases of LCL, 4 of BDCL, and 6 of ML caused byL. (V.) braziliensis. CD4+ T-cells demonstrated their highest expression in ML and, in contrast, their lowest in ADCL. CD8+ T-cells also showed their lowest expression in ADCL as compared to the other forms of the disease. TNF-α+showed increased expression from ADCL to ML, while IL-10+and TGF-β+ showed increased expression in the opposite direction, from ML to ADCL. With regards to TLR2, 4, and 9 expressions, strong interactions of TLR2 and 4 with clinical forms associated with L. (V.) braziliensis were observed, while TLR9, in contrast, showed a strong interaction with clinical forms linked to L. (L.) amazonensis. These findings strongly suggest the ability of L. (V.) braziliensis and L. (L.) amazonensis to interact with those TLRs to promote a dichotomous T-cell immune response in ACL

  14. Receptor assay

    Kato, K; Ibayashi, H [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1975-05-01

    This paper summarized present status and problems of analysis of hormone receptor and a few considerations on clinical significance of receptor abnormalities. It was pointed that in future clinical field quantitative and qualitative analysis of receptor did not remain only in the etiological discussion, but that it was an epoch-making field of investigation which contained the possiblity of artificial change of sensitivity of living body on drugs and the development connected directly with treatment of various diseases.

  15. adrenergic receptor with preeclampsia

    User

    2011-05-09

    May 9, 2011 ... due to a post- receptor defect (Karadas et al., 2007). Several polymorphisms have ... the detection of the Arg16Gly polymorphism, overnight digestion at. 37°C with 10 U ..... DW, Wood AJ, Stein CM (2004). Beta2-adrenoceptor ...

  16. Steroid receptor profiling of vinclozolin and its primary metabolites

    Molina-Molina, Jose-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernandez, Mariana-Fatima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolas; Balaguer, Patrick

    2006-01-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERα and ERβ). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR >> PR > GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERβ. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process

  17. Steroid receptor profiling of vinclozolin and its primary metabolites.

    Molina-Molina, José-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernández, Mariana-Fátima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolás; Balaguer, Patrick

    2006-10-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERalpha and ERbeta). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR>PR>GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERbeta. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.

  18. Social information changes stress hormone receptor expression in the songbird brain.

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Scavenger receptors in homeostasis and immunity.

    Canton, Johnathan; Neculai, Dante; Grinstein, Sergio

    2013-09-01

    Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.

  20. Metformin and insulin receptors

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  1. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer.

    Laura Tiberio

    Full Text Available Angiogenesis plays a crucial role in tumor growth and progression. Low expression of mineralocorticoid receptor (MR in several malignant tumors correlates with disease recurrence and overall survival. Previous studies have shown that MR expression is decreased in colorectal cancer (CRC. Here we hypothesize that decreased MR expression can contribute to angiogenesis and poor patient survival in colorectal malignancies. In a cohort of CRC patients, we analyzed tumor MR expression, its correlation with tumor microvascular density and its impact on survival. Subsequently, we interrogated the role of MR in angiogenesis in an in vitro model, based on the colon cancer cell line HCT116, ingenierized to re-express a physiologically controlled MR. In CRC, decreased MR expression was associated with increased microvascular density and poor patient survival. In pchMR transfected HCT116, aldosterone or natural serum steroids largely inhibited mRNA expression levels of both VEGFA and its receptor 2/KDR. In CRC, MR activation may significantly decrease angiogenesis by directly inhibiting dysregulated VEGFA and hypoxia-induced VEGFA mRNA expression. In addition, MR activation attenuates the expression of the VEGF receptor 2/KDR, possibly dampening the activation of a VEGFA/KDR dependent signaling pathway important for the survival of tumor cells under hypoxic conditions.

  2. Transient Pseudohypoaldosteronism due to Urinary Tract Infection in Infancy: A Report of 4 Cases

    Kaplowitz Paul

    2009-05-01

    Full Text Available Hyponatremia with hyperkalemia in infancy is an uncommon but life-threatening occurrence. In the first weeks of life, this scenario is often associated with aldosterone deficiency due to salt-wasting congenital adrenal hyperplasia. However, alternative diagnoses involving inadequate mineralocorticoid secretion or action must be considered, particularly for infants one month of age or older. We report four infants who presented with profound hyponatremia accompanied by urinary tract infection, ultimately leading to the diagnosis of transient pseudohypoaldosteronism. Our cases provide support for the idea that the renal tubular resistance to aldosterone is due to urinary tract infection itself rather than to underlying urinary tract anomalies typically found in these infants. Awareness of this condition is important so that serum aldosterone, urine sodium, and urine cultures may be obtained immediately in any infant presenting with hyponatremia and hyperkalemia in whom a diagnosis of congenital adrenal hyperplasia was not found. Adequate replacement with intravenous saline and antibiotic therapy is sufficient to correct sodium levels over 24–48 hours.

  3. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Diplopia due to Dacryops

    Rahmi Duman

    2013-01-01

    Full Text Available Dacryops is a lacrimal ductal cyst. It is known that it can cause globe displacement, motility restriction, and proptosis because of the mass effect. Diplopia due to dacryops has not been reported previously. Here, we present a 57-year-old man with binocular horizontal diplopia that occurred during left direction gaze due to dacryops.

  5. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Panhypopituitarism Due to Hemochromatosis

    Mesut Özkaya; Kadir Gis; Ali Çetinkaya

    2013-01-01

    Hemochromatosis is an iron storage disease. Panhypopituitarism is a clinical condition in which the anterior pituitary hormones are deficient. Herein, we report a rare case of panhypopituitarism due to hemochromatosis. Turk Jem 2013; 17: 125-6

  7. Deference and Due Process

    Vermeule, Cornelius Adrian

    2015-01-01

    In the textbooks, procedural due process is a strictly judicial enterprise; although substantive entitlements are created by legislative and executive action, it is for courts to decide independently what process the Constitution requires. The notion that procedural due process might be committed primarily to the discretion of the agencies themselves is almost entirely absent from the academic literature. The facts on the ground are very different. Thanks to converging strands of caselaw ...

  8. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  9. Injury due to thorotrast

    Mori, Takesaburo

    1976-01-01

    A synthetic study was performed on some of those to whom Thorotrast had been injected, in Japan. In the epidemiological study of 147 war woundeds to whom Thorotrast had been injected, it was noted that the Thorotrast injection increased the mortality rate and the incidences of malignant hepatic tumor, liver cirrhosis, and hematological diseases. Clinical study of 44 of them showed that the Thorotrast injection resulted in liver and hematopoietic hypofunctions. Analysis of the dissection of the injected area in 118 cases showed malignant hepatic tumor in 63.5%, liver cirrhosis in 14.4% and hematological diseases in 10.2%. The total of the three types of disease was 88.1%. Histological classification showed that of the malignant hepatic tumors due to Thorotrast, hepatobiliary cancer and hemangioendothelioma of the liver were frequent. By the comparison of the absorbed dose in the liver of the malignant hepatic tumors due to Thorotrast with that of the cancers developed in animal experiments, it was noted that the carcinogenic dose was a mean of 2,000 - 3,000 rad by accumulated dose. It was elucidated that carcinogenesis and fibrination were primary in injury due to Thorotrast, i.e., late injury due to Thorotrast, and that the increase in the accumulated dose in rogans and the increase of the local dose due to the gigantic growth of Thorotrast granules in organs greatly influenced carninogenesis and fibrination. (Chiba, N.)

  10. Seventh Symposium on Subtypes of Musccarinic Receptors.

    1997-01-01

    nociceptive pain, are less than ideal. For mild to moderate pain, the first line of therapy includes aspirin, acetaminophen/ paracetamol , and nonsteroidal...due to receptor degradation triggered by prolonged carbachol occupancy. This down-regulation was accompanied by uncoupling of the M2-receptors after 24...be under control by the m3 mAChR, suggesting a complex receptor regulation of phosphoinositide metabolism, including degradation and synthesis. Future

  11. Stargazin Modulation of AMPA Receptors

    Sana A. Shaikh

    2016-10-01

    Full Text Available Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.

  12. Anaphylaxis due to caffeine

    Sugiyama, Kumiya; Cho, Tatsurai; Tatewaki, Masamitsu; Onishi, Shogo; Yokoyama, Tatsuya; Yoshida, Naruo; Fujimatsu, Takayoshi; Hirata, Hirokuni; Fukuda, Takeshi; Fukushima, Yasutsugu

    2015-01-01

    We report a rare case of anaphylaxis due to caffeine intake. A 27-year-old woman suffered her first episode of anaphylaxis and a positive skin prick test suggested that the anaphylaxis was due to an IgE-mediated hypersensitivity reaction to caffeine. She was diagnosed with caffeine allergy and has not had an allergic reaction after avoiding foods and drinks containing caffeine. Although caffeine is known to have antiallergic effects, this case shows that caffeine can be an allergen and cause ...

  13. Effects of acute restraint-induced stress on glucocorticoid receptors and brain-derived neurotrophic factor after mild traumatic brain injury.

    Griesbach, G S; Vincelli, J; Tio, D L; Hovda, D A

    2012-05-17

    We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post-injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either an FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30 min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7, and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain-derived neurotrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors was determined by Western blot analysis. Results indicated injury-dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle-treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14. These findings suggest that the increased sensitivity to stressful events during the first post-injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Corticosteroid receptor expression in a teleost fish that displays alternative male reproductive tactics.

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-01-01

    Corticosteroid signaling mechanisms mediate a wide range of adaptive physiological responses, including those essential to reproduction. Here, we investigated the presence and relative abundance of corticosteroid receptors during the breeding season in the plainfin midshipman fish (Porichthys notatus), a species that has two male reproductive morphs. Only type I "singing" males acoustically court females and aggressively defend a nest site, whereas type II "sneaker" males steal fertilizations from nesting type I males. Cloning and sequencing first identified glucocorticoid (GR) and mineralocorticoid (MR) receptors in midshipman that exhibited high sequence identity with other vertebrate GRs and MRs. Absolute-quantitative real-time PCR then revealed higher levels of GR in the central nervous system (CNS) of type II males than type I males and females, while GR levels in the sound-producing, vocal muscle and the liver were higher in type I males than type II males and females. MR expression was also greater in the CNS of type II males than type I males or females, but the differences were more modest in magnitude. Lastly, plasma levels of cortisol, the main glucocorticoid in teleosts, were 2- to 3-fold greater in type II males compared to type I males. Together, the results suggest a link between corticosteroid regulation and physiological and behavioral variation in a teleost fish that displays male alternative reproductive tactics.

  15. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors

    Chang, C.; Kokontis, J.; Liao, S.

    1988-01-01

    Structural analysis of cDNAs for human and rat androgen receptors (ARs) indicates that the amino-terminal regions of ARs are rich in oligo- and poly(amino acid) motifs as in some homeotic genes. The human AR has a long stretch of repeated glycines, whereas rat AR has a long stretch of glutamines. There is a considerable sequence similarity among ARs and the receptors for glucocorticoids, progestins, and mineralocorticoids within the steroid-binding domains. The cysteine-rich DNA-binding domains are well conserved. Translation of mRNA transcribed from AR cDNAs yielded 94- and 76-kDa proteins and smaller forms that bind to DNA and have high affinity toward androgens. These rat or human ARs were recognized by human autoantibodies to natural Ars. Molecular hybridization studies, using AR cDNAs as probes, indicated that the ventral prostate and other male accessory organs are rich in AR mRNA and that the production of AR mRNA in the target organs may be autoregulated by androgens

  16. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  17. Preservation of peripheral benzodiazepine receptors: differential effects of freezing on [3H]Ro 5-4864 and [3H]PK 11195 binding

    Basile, A.S.; Ostrowski, N.L.; Skolnick, P.

    1987-01-01

    A statistically significant decrease in the density of peripheral benzodiazepine receptors was observed in renal membranes of rats beginning 2 weeks after adrenalectomy when compared with sham-operated controls. This decrease in peripheral benzodiazepine receptor density was manifest as a decrease in the Bmax of two ligands [ 3 H]Ro 5-4864 and [ 3 H]PK 11195, without accompanying changes in their apparent affinity (Kd) for this site. Similar changes were not seen in another aldosterone-sensitive organ, the submandibular salivary gland. The decrease in peripheral benzodiazepine receptor density in observed in adrenalectomized rat renal membranes was restored to control levels after 1 week of aldosterone administration using a dose (12.5 micrograms/kg/day) that had no effect on peripheral benzodiazepine receptor density in sham-operated animals. In contrast, dexamethasone administration (50 micrograms/kg/day, 1 week) had no effect on renal peripheral benzodiazepine receptor density when administered to either adrenalectomized or sham-operated rats. Further, adrenal demedullation had no effect on renal peripheral benzodiazepine receptor density or affinity. The decrease in peripheral benzodiazepine receptor density was localized to the renal cortex and the outer stripe of the medulla by gross dissection of renal slices and renal tissue section autoradiography. The specific effect of adrenalectomy on renal peripheral benzodiazepine receptor density, the lack of direct effect of aldosterone on [ 3 H]Ro 5-4864 binding, and the localization of the change in peripheral benzodiazepine receptor density to the renal cortex and outer stripe suggests that these changes may reflect an adaptation of the renal nephron (possibly the distal convoluted tubule, intermediate tubule and/or the collecting duct) to the loss of mineralocorticoid hormones

  18. Studies on insulin receptor, 2

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  19. Human due diligence.

    Harding, David; Rouse, Ted

    2007-04-01

    Most companies do a thorough job of financial due diligence when they acquire other companies. But all too often, deal makers simply ignore or underestimate the significance of people issues in mergers and acquisitions. The consequences are severe. Most obviously, there's a high degree of talent loss after a deal's announcement. To make matters worse, differences in decision-making styles lead to infighting; integration stalls; and productivity declines. The good news is that human due diligence can help companies avoid these problems. Done early enough, it helps acquirers decide whether to embrace or kill a deal and determine the price they are willing to pay. It also lays the groundwork for smooth integration. When acquirers have done their homework, they can uncover capability gaps, points of friction, and differences in decision making. Even more important, they can make the critical "people" decisions-who stays, who goes, who runs the combined business, what to do with the rank and file-at the time the deal is announced or shortly thereafter. Making such decisions within the first 30 days is critical to the success of a deal. Hostile situations clearly make things more difficult, but companies can and must still do a certain amount of human due diligence to reduce the inevitable fallout from the acquisition process and smooth the integration. This article details the steps involved in conducting human due diligence. The approach is structured around answering five basic questions: Who is the cultural acquirer? What kind of organization do you want? Will the two cultures mesh? Who are the people you most want to retain? And how will rank-and-file employees react to the deal? Unless an acquiring company has answered these questions to its satisfaction, the acquisition it is making will be very likely to end badly.

  20. Chronic stress alters concentrations of corticosterone receptors in a tissue-specific manner in wild house sparrows (Passer domesticus).

    Lattin, Christine R; Romero, L Michael

    2014-07-15

    The physiological stress response results in release of glucocorticoid hormones such as corticosterone (CORT). Whereas short-term activation of this response helps animals cope with environmental stressors, chronic activation can result in negative effects including metabolic dysregulation and reproductive failure. However, there is no consensus hormonal profile of a chronically stressed animal, suggesting that researchers may need to look beyond hormone titers to interpret the impacts of chronic stress. In this study, we brought wild house sparrows (Passer domesticus) into captivity. We then compared glucocorticoid and mineralocorticoid receptor concentrations in sparrows exposed either to a standardized chronic stress protocol (n=26) or to standard husbandry conditions (controls; n=20). We used radioligand binding assays to quantify receptors in whole brain, liver, kidneys, spleen, gonads, gastrocnemius and pectoralis muscle, omental and subcutaneous fat, and bib and back skin. In most tissues, CORT receptors did not differ between controls and stressed animals, although we found marginal increases in receptor density in kidney and testes in stressed birds at some time points. Only in pectoralis muscle was there a robust effect of chronic stress, with both receptor types higher in stressed animals. Increased pectoralis sensitivity to CORT with chronic stress may be part of the underlying mechanism for muscle wasting in animals administered exogenous CORT. Furthermore, the change in pectoralis was not paralleled by gastrocnemius receptors. This difference may help explain previous reports of a greater effect of CORT on pectoralis than on other muscle types, and indicate that birds use this muscle as a protein reserve. © 2014. Published by The Company of Biologists Ltd.

  1. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z.

    2015-01-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. PMID:25676786

  2. Technical Due Diligence

    Jensen, Per Anker; Varano, Mattia

    2011-01-01

    carried out for buyers or sellers involved in real estate transactions. It can also be part of mergers including real estate and other assets or part of facilities management outsourcing. This paper is based on a case study and an interview survey of companies involved in TDD consulting in Denmark......Technical Due Diligence (TDD) as an evaluation of the performance of constructed facilities has become an important new field of practice for consultants. Before the financial crisis started in autumn 2008 it represented the fastest growing activity in some consulting companies. TDD is mostly...... and Italy during 2009. The research identifies the current practice and compares it with the recommended practice in international guidelines. The current practice is very diverse and could in many cases be improved by a more structured approach and stricter adherence to international guidelines. However...

  3. The LDL receptor.

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  4. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These

  5. Structural and Molecular Modeling Features of P2X Receptors

    Luiz Anastacio Alves

    2014-03-01

    Full Text Available Currently, adenosine 5'-triphosphate (ATP is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.

  6. Fetal kidney programming by severe food restriction: effects on structure, hormonal receptor expression and urinary sodium excretion in rats.

    Vaccari, Barbara; Mesquita, Flavia F; Gontijo, Jose A R; Boer, Patricia A

    2015-03-01

    The present study investigates, in 23-day-old and adult male rats, the effect of severe food restriction in utero on blood pressure (BP), and its association with nephron structure and function changes, angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MR) receptor expression. The daily food supply to pregnant rats was measured and one group (n=15) received normal quantity of food (NF) while the other received 50% of that (FR50%) (n=15). Kidneys were processed to AT1R, AT2R, MR, and GR immunolocalization and for western blotting analysis. The renal function was estimated by creatinine and lithium clearances in 12-week-old offspring. By stereological analyses, FR50% offspring present a reduction of nephron numbers (35%) with unchanged renal volume. Expression of AT1R and AT2R was significantly decreased in FR50% while the expression of GR and MR increased in FR50%. We also verified a pronounced decrease in urinary sodium excretion accompanied by increased BP in 12-week-old FR50% offspring. The current data suggest that changes in renal function are conducive to excess sodium tubule reabsorption, and this might potentiate the programming of adult hypertension. It is plausible to arise in the current study an association between decreasing natriuresis, reciprocal changes in renal AngII and steroid receptors with the hypertension development found in FR50% compared with age-matched NF offspring. © The Author(s) 2013.

  7. A translational approach to clinical practice via stress-responsive glucocorticoid receptor signaling.

    Juruena, Mario F; Agustini, Bruno; Cleare, Anthony J; Young, Allan H

    2017-01-01

    A recent article by Kwan and colleagues could elegantly demonstrate the necessary interaction between neuronal serotonin (5-HT) systems and the hypothalamic-pituitary-adrenal (HPA) axis through glucocorticoid receptors (GR), producing an adequate stress response, in this case, responding to hypoxia with an increase in hematopoietic stem and progenitor cells (HSPC). There is an intricate system connecting brain, body and mind and this exchange is only possible when all these systems-nervous, endocrine, and immune-have receptors on critical cells to receive information (via messenger molecules) from each of the other systems. There is evidence that the expression and function of GR in the hippocampus, mainly MR, is regulated by the stimulation of 5-HT receptors. Stressful stimuli increase 5-HT release and turnover in the hippocampus, and it seems reasonable to suggest that some of the changes in mineralocorticoid and GR expression may be mediated, in part at least, by the increase in 5-HT. Also serotonin and HPA axis dysfunctions have already been implicated in a variety of psychiatric disorders, especially depression. Early life stress (ELS) can have profound impact on these systems and can predispose subjects to a variety of adult metabolic and psychiatric conditions. It is important to analyze the mechanisms of this complex interaction and its subsequent programming effects on the stress systems, so that we can find new ways and targets for treatment of psychiatric disorders. Different areas of research on basic biological sciences are now being integrated and this approach will hopefully provide several new insights, new pharmacological targets and improve our global understanding of these highly debilitating chronic conditions, that we now call mental disorders.

  8. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure

    Nappi J

    2011-06-01

    Full Text Available Jean M Nappi, Adam SiegClinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, Charleston, SC, USAAbstract: Aldosterone is a mineralocorticoid hormone synthesized by the adrenal glands that has several regulatory functions to help the body maintain normal volume status and electrolyte balance. Studies have shown significantly higher levels of aldosterone secretion in patients with congestive heart failure compared with normal patients. Elevated levels of aldosterone have been shown to elevate blood pressure, cause left ventricular hypertrophy, and promote cardiac fibrosis. An appreciation of the true role of aldosterone in patients with chronic heart failure did not become apparent until the publication of the Randomized Aldactone Evaluation Study. Until recently, the use of aldosterone receptor antagonists has been limited to patients with severe heart failure and patients with heart failure following myocardial infarction. The Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF study added additional evidence to support the expanded use of aldosterone receptor antagonists in heart failure patients. The results of the EMPHASIS-HF trial showed that patients with mild-to-moderate (New York Heart Association Class II heart failure had reductions in mortality and hospitalizations from the addition of eplerenone to optimal medical therapy. Evidence remains elusive about the exact mechanism by which aldosterone receptor antagonists improve heart failure morbidity and mortality. The benefits of aldosterone receptor antagonist use in heart failure must be weighed against the potential risk of complications, ie, hyperkalemia and, in the case of spironolactone, possible endocrine abnormalities, in particular gynecomastia. With appropriate monitoring, these risks can be minimized. We now have evidence that patients with mild-to-severe symptoms

  9. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome

    Tsigos, C.; Arai, K.; Latronico, A.C. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)]|[Temple Univ. School of Medicine, Philadelphia, PA (United States)]|[Children`s Hospital of New Jersey, Newark, NJ (United States)] [and others

    1995-07-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, usually without mineralocorticoid deficiency. Occasionally, the disorder is associated with alacrima and achalasia of the esophagus (triple A syndrome), suggesting potential heterogeneity in its etiology. Mutations in the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in 1 other family with IGD and 2 famlies with triple A syndrome. The proband with IGD was a homozygote for an A {r_arrow}G substitution, changing tyrosine 254 to cysteine in the third extracellular loop of the receptor protein, probably interfering with ligand binding. Both of her parents were heterozygotes for this mutation, which was not detected in 100 normal alleles. No mutations were identified in the entire coding area of the ACTH receptor in the 2 families with triple A syndrome, supporting the idea of a developmental or postreceptor defect in this syndrome. 19 refs., 1 fig.

  10. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Acetylcholine receptor antibody

    ... medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood of ...

  12. Cooperative ethylene receptor signaling

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  13. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  14. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  15. A prototypical Sigma-1 receptor antagonist protects against brain ischemia

    Schetz, John A.; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W.

    2007-01-01

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this s...

  16. Psychopharmacology of 5-HT1A receptors

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  17. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  18. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination.

    Xiao, Lin; Guo, Dazhi; Hu, Chun; Shen, Weiran; Shan, Lei; Li, Cui; Liu, Xiuyun; Yang, Wenjing; Zhang, Weidong; He, Cheng

    2012-07-01

    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS). Copyright © 2012 Wiley Periodicals, Inc.

  19. GABA receptor imaging

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  20. GABA receptor imaging

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  1. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  2. The sex-dependent role of the glucocorticoid receptor in depression: variations in the NR3C1 gene are associated with major depressive disorder in women but not in men.

    Sarubin, Nina; Hilbert, Sven; Naumann, Felix; Zill, Peter; Wimmer, Anna-Maria; Nothdurfter, Caroline; Rupprecht, Rainer; Baghai, Thomas C; Bühner, Markus; Schüle, Cornelius

    2017-03-01

    Genetic variations in the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) have been associated with maladaptive stress responses and major depressive disorder (MDD). In a case-control study design, we examined whether single nucleotide polymorphisms (SNPs) and haploid genotype (haplotype) associations of MR gene NR3C2, GR gene NR3C1 and genes of GR chaperone molecules FK506 binding protein 5 (FKBP5) and corticotrophin-releasing hormone receptor 1 (CRHR1) differed between healthy subjects (n = 634) and inpatients with major depressive disorder (n = 412). All analyses were conducted for women and men separately. After conservative correction of Type-I-error to obtain reliable p values, one SNP in the NR3C1 gene, namely rs6195, showed a significant association with the presence of a major depression (p = 0.048) in females. In contrast, NR3C2, FKBP5 and CRHR1 polymorphisms were not significantly associated with MDD. No haplotype effects could be identified. Our results support the notion of an association between variants of GR-related genes in women and the pathophysiology of depression: females suffering from MDD showed a more than three times higher frequency of the T/C polymorphism compared to controls, which thus seems to increase the vulnerability to depression in females.

  3. Glucocorticoid receptor modulators.

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Dengue virus receptor

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  5. Combined receptor antagonist stimulation of the hypothalamic-pituitary-adrenal axis test identifies impaired negative feedback sensitivity to cortisol in obese men.

    Mattsson, Cecilia; Reynolds, Rebecca M; Simonyte, Kotryna; Olsson, Tommy; Walker, Brian R

    2009-04-01

    Hypothalamic-pituitary-adrenal (HPA) axis dysregulation may underlie disorders including obesity, depression, cognitive decline, and the metabolic syndrome. Conventional tests of HPA axis negative feedback rely on glucocorticoid receptor (GR) agonists such as dexamethasone but do not test feedback by endogenous cortisol, potentially mediated by both GR and mineralocorticoid receptors (MR). The objective of the study was to use a combination of GR (RU38486, mifepristone) and MR (spironolactone) antagonists to explore the poorly understood activation of the HPA axis that occurs in obesity. This was a double-blind, placebo-controlled, randomized, crossover study. The study was conducted at a clinical research facility. Participants included 15 lean (body mass index 22.0 +/- 1.6 kg/m(2)) and 16 overweight/obese (body mass index 30.1 +/- 3.5 kg/m(2)) men. Subjects attended on four occasions for blood and saliva sampling every 30 min between 1800 and 2200 h. At 1100 and 1600 h before visits, subjects took 200 mg spironolactone, 400 mg RU38486, 200 mg spironolactone + 400 mg RU38486, or placebo orally. Serum cortisol levels after drug or placebo were measured. Cortisol levels did not differ between lean and obese after placebo. Spironolactone and RU38486 alone had modest effects, increasing cortisol by less than 50% in both groups. However, combined spironolactone plus RU38486 elevated cortisol concentrations substantially, more so in lean than obese men [2.9- (0.3) vs. 2.2 (0.3)-fold elevation, P = 0.002]. Combined receptor antagonist stimulation of the HPA axis reveals redundancy of MR and GR in negative feedback in humans. Obese men have impaired responses to combined receptor antagonist stimulation, suggesting impaired negative feedback by endogenous cortisol. Such an approach may be useful to dissect abnormal HPA axis control in neuropsychiatric and other disorders.

  6. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail.

    Zimmer, C; Spencer, K A

    2014-12-01

    Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions. © 2014 The Authors. Journal of Neuroendocrinology published by

  7. Angiotensin II receptor one (AT1) mediates dextrose induced endoplasmic reticulum stress and superoxide production in human coronary artery endothelial cells.

    Haas, Michael J; Onstead-Haas, Luisa; Lee, Tracey; Torfah, Maisoon; Mooradian, Arshag D

    2016-10-01

    Renin-angiotensin-aldosterone system (RAAS) has been implicated in diabetes-related vascular complications partly through oxidative stress. To determine the role of angiotensin II receptor subtype one (AT1) in dextrose induced endoplasmic reticulum (ER) stress, another cellular stress implicated in vascular disease. Human coronary artery endothelial cells with or without AT1 receptor knock down were treated with 27.5mM dextrose for 24h in the presence of various pharmacologic blockers of RAAS and ER stress and superoxide (SO) production were measured. Transfection of cells with AT1 antisense RNA knocked down cellular AT1 by approximately 80%. The ER stress was measured using the placental alkaline phosphatase (ES-TRAP) assay and western blot analysis of glucose regulated protein 78 (GRP78), c-jun-N-terminal kinase 1 (JNK1), phospho-JNK1, eukaryotic translation initiation factor 2α (eIF2α) and phospho-eIF2α measurements. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. In cells with AT1 knock down, dextrose induced ER stress was significantly blunted and treatment with 27.5mM dextrose resulted in significantly smaller increase in SO production compared to 27.5mM dextrose treated and sham transfected cells. Dextrose induced ER stress was reduced with pharmacologic blockers of AT1 (losartan and candesartan) and mineralocorticoid receptor blocker (spironolactone) but not with angiotensin converting enzyme inhibitors (captopril and lisinopril). The dextrose induced SO generation was inhibited by all pharmacologic blockers of RAAS tested. The results indicate that dextrose induced ER stress and SO production in endothelial cells are mediated at least partly through AT1 receptor activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. A critical look at the function of the P2Y11 receptor

    Dreisig, Karin; Kornum, Birgitte Rahbek

    2016-01-01

    The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermor...

  9. Angiotensin type 2 receptors

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral...

  10. Low density lipoprotein receptors: preliminary results on 'in vivo' study

    Lupattelli, G.; Virgolini, I.; Li, S.R.; Sinzinger, H.

    1991-01-01

    Plasmatic levels of low density lipoproteins (LDL) are regulated by the receptor pathway and most LDL receptor are located in the liver. A receptor defect due to genetic mutations of the LDL receptor gene is the cause of familial hypercholesterolemia (F.H.), a disease characterized by high cholesterol levels and premature atherosclerosis. Injections of autologous radiolabelled LDL, followed by hepatic scintiscanning, can be used to obtain 'in vivo' quantification of hepatic receptor activity, both in normal and hypercholesterolemic patients. In this study we observe no hepatic increase of radioactivity in patients affected by F.H., confirming the liver receptor defect. Scintigraphy is a non-invasive technique which can be used to diagnose this disease and to monitor the efficiacy of hypolipidemic therapy. (Authors)

  11. [Dehydration due to "mouth broken"].

    Meijler, D P M; van Mossevelde, P W J; van Beek, R H T

    2012-09-01

    Two children were admitted to a medical centre due to dehydration after an oral injury and the extraction of a tooth. One child complained of "mouth broken". Dehydration is the most common water-electrolyte imbalance in children. Babies and young children are prone to dehydration due to their relatively large body surface area, the high percentage extracellular fluid, and the limited ability of the kidneys to conserve water. After the removal ofa tooth, after an oral trauma or in case of oral discomfort, a child is at greater risk of dehydration by reduced fluid and food intake due to oral pain and/or discomfort and anxiety to drink. In those cases, extra attention needs to be devoted to the intake of fluids.

  12. AMPA receptor ligands

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  13. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  14. Lipophorin Receptor: The Insect Lipoprotein Receptor

    IAS Admin

    Director of ... function of the Lp is to deliver lipids throughout the insect body for metabolism ... Lipid is used as a major energy source for development as well as other metabolic .... LpR4 receptor variant was expressed exclusively in the brain and.

  15. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  16. Teacher Dismissal and Due Process.

    Leichner, Edward C.; Blackstone, Sidney

    1977-01-01

    This article addresses due process requirements in the nonrenewal and dismissal of tenured and nontenured teachers. The Georgia Fair Dismissal Law is used as a basis for discussing the grounds for teacher dismissal. Dismissal grounds discussed are 1) incompetency; 2) insubordination; 3) willful neglect of duties; 4) immorality; 5) inciting,…

  17. Due Process Hearing Case Study

    Bateman, David F.

    2009-01-01

    William is 9 years of age, residing with his parent within the boundaries of an unnamed district ("the District"). As a student with autism he is eligible for special education programming and services. There was one issue presented for this due process hearing: What was the appropriate program and placement for him for the 2008-2009 school year?…

  18. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Serotonin Receptors in Hippocampus

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  20. Autoerotic death due to electrocution

    Piotr Arkuszewski

    2014-08-01

    Full Text Available Autoerotic death is a very rare case in forensic medicine. It is usually caused by asphyxia, but other reasons are also possible. Herein we present a case of autoerotic death due to electrocution caused by a self-made electrical device. The device was constructed to increase sexual feelings through stimulation of the scrotal area.

  1. Dose due to 40K

    Escareno J, E.; Vega C, H. R.

    2011-10-01

    The dose due to 40 K has been estimated. Potassium is one of the most abundant elements in nature, being approximately 2% of the Earth's crust. Potassium has three isotopes 39 K, 40 K and 41 K, two are stable while 40 K is radioactive with a half life of 1.2x10 9 years; there is 0.0117% 40 K-to-K ratio. Potassium plays an important role in plants, animals and humans growth and reproduction. Due to the fact that K is an essential element for humans, 40 K is the most abundant radioisotope in human body. In order to keep good health conditions K must be intake at daily basis trough food and beverages, however when K in ingested above the requirements produce adverse health effects in persons with renal, cardiac and hypertension problems or suffering diabetes. In 89.3% 40 K decays to 40 C through β-decay, in 10.3% decays through electronic capture and emitting 1.46 MeV γ-ray. K is abundant in soil, construction materials, sand thus γ-rays produced during 40 K decay contribute to external dose. For K in the body practically all 40 K decaying energy is absorbed by the body; thus 40 K contributes to total dose in humans and it is important to evaluate its contribution. In this work a set of 40 K sources were prepared using different amounts of KCl salt, a γ-ray spectrometer with a NaI(Tl) was characterized to standardized the sources in order to evaluate the dose due to 40 K. Using thermoluminescent dosemeters the dose due to 40 K was measured and related to the amount of 40 K γ-ray activity. (Author)

  2. The Integrin Receptor in Biologically Relevant Bilayers

    Kalli, Antreas C.; Róg, Tomasz; Vattulainen, Ilpo

    2017-01-01

    /talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study...... demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin....../talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction...

  3. A molecular receptor selective for zwitterionic alanine.

    Rubio, Omayra H; Taouil, Rachid; Muñiz, Francisco M; Monleón, Laura M; Simón, Luis; Sanz, Francisca; Morán, Joaquín R

    2017-01-04

    A molecular receptor has been synthesized joining an aza-crown ether with a chiral chromane which mimics the oxyanion hole of the enzymes. With this receptor an apolar host-guest complex with zwitterionic alanine has been achieved through the formation of up to seven H-bonds. This complex allows the extraction of aqueous alanine to a chloroform phase, while other natural amino acids are poorly extracted or are not extracted at all. Due to the chiral nature of the receptor, enantioselective extraction from the aqueous alanine solution to a chloroform phase takes place. X-Ray analysis combined with anisotropic effects, NOE and CD studies revealed the absolute configuration of both strong and weak complexes. Modelling studies also support the proposed structures. The presence of an oxyanion-hole motif in this structure was corroborated by X-ray diffraction studies.

  4. Depressive disorder due to craniopharyngioma.

    Spence, S A; Taylor, D G; Hirsch, S R

    1995-01-01

    Secondary causes of depression are legion, and must always be considered in patients presenting with features atypical of primary idiopathic depressive disorder. The case described is that of a middle-aged woman presenting initially with a major depressive disorder who was subsequently found to have a craniopharyngioma, leading to a revised diagnosis of mood disorder due to the tumour. Some features of the presentation might have led to earlier diagnosis had their localizing significance been recognized. Diencephalic lesions should always be considered in patients presenting with the hypersomnic-hyperphagic variant of depressive disorder. Images Figure 1 PMID:8544149

  5. Maculopathy due to drug inhalation.

    Asensio-Sánchez, V M; Gonzalez-Buendia, L; Marcos-Fernández, M

    2014-08-01

    A case of maculopathy due to "poppers" is described. Poppers is a drug composed of various forms of alkyl nitrite. A 39 year-old man, who had been using poppers for years, was seen in the clinic with phosphenes, reduced visual acuity and central scotoma. The SD-OCT in the right eye showed disruption at the level of the IS/OS junction line. The SD-OCT scan in the left eye showed an outer rectangular retinal hole and an outer retinal cyst. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  6. Anaphylaxis Due to Head Injury

    Bruner, Heather C.

    2015-05-01

    Full Text Available Both anaphylaxis and head injury are often seen in the emergency department, but they are rarely seen in combination. We present a case of a 30-year-old woman who presented with anaphylaxis with urticaria and angioedema following a minor head injury. The patient responded well to intramuscular epinephrine without further complications or airway compromise. Prior case reports have reported angioedema from hereditary angioedema during dental procedures and maxillofacial surgery, but there have not been any cases of first-time angioedema or anaphylaxis due to head injury. [West J Emerg Med. 2015;16(3:435–437.

  7. Anaphylaxis due to head injury.

    Bruner, Heather C; Bruner, David I

    2015-05-01

    Both anaphylaxis and head injury are often seen in the emergency department, but they are rarely seen in combination. We present a case of a 30-year-old woman who presented with anaphylaxis with urticaria and angioedema following a minor head injury. The patient responded well to intramuscular epinephrine without further complications or airway compromise. Prior case reports have reported angioedema from hereditary angioedema during dental procedures and maxillofacial surgery, but there have not been any cases of first-time angioedema or anaphylaxis due to head injury.

  8. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    Large, T.H.; Cho, N.J.; De Mello, F.G.; Klein, W.L.

    1985-01-01

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed

  9. Cellular receptors for human enterovirus species A

    Yorihiro eNishimura

    2012-03-01

    Full Text Available Human enterovirus species A (HEV-A is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16 and enterovirus 71 (EV71 are the major causative agents of hand, foot, and mouth disease (HFMD. Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis.Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1 and scavenger receptor class B, member 2 (SCARB2, were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.

  10. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism

    Goodman, C R; Sato, T; Peck, A R; Girondo, M A; Yang, N; Liu, C; Yanac, A F; Kovatich, A J; Hooke, J A; Shriver, C D; Mitchell, E P; Hyslop, T; Rui, H

    2016-01-01

    Therapy resistance remains a major problem in estrogen receptor-α (ERα)-positive breast cancer. A subgroup of ERα-positive breast cancer is characterized by mosaic presence of a minor population of ERα-negative cancer cells expressing the basal cytokeratin-5 (CK5). These CK5-positive cells are therapy resistant and have increased tumor-initiating potential. Although a series of reports document induction of the CK5-positive cells by progestins, it is unknown if other 3-ketosteroids share this ability. We now report that glucocorticoids and mineralocorticoids effectively expand the CK5-positive cell population. CK5-positive cells induced by 3-ketosteroids lacked ERα and progesterone receptors, expressed stem cell marker, CD44, and displayed increased clonogenicity in soft agar and broad drug-resistance in vitro and in vivo. Upregulation of CK5-positive cells by 3-ketosteroids required induction of the transcriptional repressor BCL6 based on suppression of BCL6 by two independent BCL6 small hairpin RNAs or by prolactin. Prolactin also suppressed 3-ketosteroid induction of CK5+ cells in T47D xenografts in vivo. Survival analysis with recursive partitioning in node-negative ERα-positive breast cancer using quantitative CK5 and BCL6 mRNA or protein expression data identified patients at high or low risk for tumor recurrence in two independent patient cohorts. The data provide a mechanism by which common pathophysiological or pharmacologic elevations in glucocorticoids or other 3-ketosteroids may adversely affect patients with mixed ERα+/CK5+ breast cancer. The observations further suggest a cooperative diagnostic utility of CK5 and BCL6 expression levels and justify exploring efficacy of inhibitors of BCL6 and 3-ketosteroid receptors for a subset of ERα-positive breast cancers. PMID:26096934

  11. N1-Substituted 2,3-Quinoxalinediones as Kainate Receptor Antagonists: X-ray Crystallography, Structure-Affinity Relationships and in vitro Pharmacology

    Pallesen, Jakob Staun; Møllerud, Stine; Frydenvang, Karla Andrea

    2018-01-01

    Among the ionotropic glutamate receptors, the physiological role of kainate receptors is less well understood than AMPA and NMDA receptors, partly due to a lack of selective pharmacological tool compounds. Although ligands with selectivity towards the kainate receptor subtype GluK1 are available,...

  12. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  14. DYSTOCIA DUE TO SOFT TISSUE

    DeCarle, Donald W.

    1954-01-01

    In dystocia caused by abnormal conditions of the soft parts, the etiologic changes may be either in the genital tissues or in adjacent soft structures. Broadly, the conditions causing the difficulty may be grouped as follows: (1) anomalies or congenital modifications; (2) tumors; (3) modifications due to age, accident or surgical operations; (4) modification of the expulsive forces; (5) abnormalities of the products of conception. Often in such circumstances cesarean section is necessary. Sometimes when tumor is present it can be removed before it interferes with delivery, but decision to excise the growth must be guided by such factors as the location of the lesion and the stage of gestation. This would determine to what extent the maintenance of pregnancy would be jeopardized by surgical intervention before term. PMID:13190430

  15. Single fatherhood due to cancer.

    Yopp, Justin M; Rosenstein, Donald L

    2012-12-01

    Cancer is a leading cause of widowed fatherhood in the USA. Fathers whose spouses have died from cancer constitute a potentially vulnerable population as they adjust to their role as sole or primary caregiver while managing their own grief and that of their children. The importance of addressing the psychological needs of widowed fathers is underscored by data showing that father's coping and emotional availability are closely tied to their bereaved children's mental health. Surprisingly, scant attention has been given to the phenomenon of widowed fatherhood with virtually no clinical resources or research studies devoted to fathers who have lost their wives to cancer. This commentary highlights key challenges facing this underserved population of widowers and calls for development of research agendas and clinical interventions for single fathers due to cancer. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Occupational injuries due to violence.

    Hales, T; Seligman, P J; Newman, S C; Timbrook, C L

    1988-06-01

    Each year in the United States, an estimated 800 to 1,400 people are murdered at work, and an unknown number of nonfatal injuries due to workplace violence occur. Based on Ohio's workers' compensation claims from 1983 through 1985, police officers, gasoline service station employees, employees of the real estate industry, and hotel/motel employees were found to be at the highest risk for occupational violent crime (OVC) injury and death. Grocery store employees, specifically those working in convenience food stores, and employees of the real estate industry had the most reported rapes. Four previously unidentified industries at increased risk of employee victimization were described. Identification of industries and occupations at high risk for crime victimization provides the opportunity to focus preventive strategies to promote employee safety and security in the workplace.

  17. APPENDICULAR INVAGINATION DUE TO ENDOMETRIOSIS

    Vasja Kruh

    2003-12-01

    Full Text Available Background. Invagination of the vermiform appendix is a very rare occurrence. We summarize epidemiologic and etiologic factors, types of classification, symtomatology, diagnostic features and treatment.Patients and treatment. The authors present 49-years old female with long-standing abdominal pains, who came in our hospital due to acute exacerbation with sever abdominal pain. Because of progressive symptoms and sensitivity in the right-lower abdominal quadrant a diagnostic laparoscopy was performed. An anomaly of cecum and the absence of appendix vermiformis have forced us to proceed with laparotomy in McBurnay point. After cecotomy an invaginated gangrenous appendix was found. The histological examination revealed endometriosis.Conclusions. By presenting this extremely rare pathology we also want to emphasize the important role of diagnostic laparoscopy in front of acute abdomen.

  18. Receptor saturation in roentgen films

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  19. Androgen receptor drives cellular senescence.

    Yelena Mirochnik

    Full Text Available The accepted androgen receptor (AR role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.

  20. Congenital Adrenal Hyperplasia due to 17-alpha-hydoxylase/17,20-lyase Deficiency Presenting with Hypertension and Pseudohermaphroditism: First Case Report from Oman

    Waad-Allah S. Mula-Abed

    2014-01-01

    Full Text Available This is the first report of congenital adrenal hyperplasia (CAH due to combined 17α-hydroxylase/17,20 lyase deficiency in an Omani patient who was initially treated for many years as a case of hypertension. CAH is an uncommon disorder that results from a defect in steroid hormones biosynthesis in the adrenal cortex. The clinical presentation depends on the site of enzymatic mutations and the types of accumulated steroid precursors. A 22-year-old woman who was diagnosed to have hypertension since the age of 10 years who was treated with anti-hypertensive therapy was referred to the National Diabetes and Endocrine Centre, Royal Hospital, Oman. The patient also had primary amenorrhea and features of sexual infantilism. Full laboratory and radio-imaging investigations were done. Adrenal steroids, pituitary function and karyotyping study were performed and the diagnosis was confirmed by molecular mutation study. Laboratory investigations revealed adrenal steroids and pituitary hormones profile in addition to 46XY karyotype that are consistent with the diagnosis of CAH due to 17α-hydroxylase deficiency. Extensive laboratory workup revealed low levels of serum cortisol (and its precursors 17α-hydroxyprogesterone and 11-deoxycortisol, adrenal androgens (dehydroepiandrosterone sulfate and androstenedione, and estrogen (estradiol; and high levels of mineralocorticoids precursors (11-deoxycorticosterone and corticosterone with high levels of ACTH, FSH and LH. Mutation analysis revealed CYP17A1-homozygous mutation (c.287G>A p.Arg96Gln resulting in the complete absence of 17α-hydroxylase/17,20-lyase activity. The patient was treated with dexamethasone and ethinyl estradiol with cessation of anti-hypertensive therapy. A review of the literature was conducted to identify previous studies related to this subtype of CAH. This is the first biochemically and genetically proven case of CAH due to 17α-hydroxylase/17,20-lyase deficiency in Oman and in the Arab

  1. [Children with hyperthyroidism due to elevated hCG levels].

    Jöbsis, Jasper J; van Trotsenburg, A S Paul; Merks, Johannes H M; Kamp, Gerdine A

    2014-01-01

    We describe two children with hyperthyroidism secondary to elevated hCG levels: one patient with gestational trophoblastic disease and one patient with choriocarcinoma. hCG resembles other glycoproteins that can lead to hyperthyroidism through TSH receptor activation. Also, through its LH-mimicking effect, hCG can induce high oestradiol levels, resulting in stormy pubertal development. False negative hCG tests due to the high-dose hook effect may complicate the diagnostic process. In patients with antibody-negative thyrotoxicosis, the diagnosis of hCG-induced hyperthyroidism must be considered.

  2. Ionotropic crustacean olfactory receptors.

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  3. [Nephropathy due to Puumala hantavirus].

    Dandolo, A; Prajs, N; Lizop, M

    2014-12-01

    Hemorrhagic fever with renal syndrome (HFRS) is due to an infection by the virus of the Hantavirus genus. Rodent hosts of Hantavirus are present in restricted areas in France; consequently, there are ecological niches and microepidemics of human Hantavirus infections. A HFRS case was diagnosed in the Paris region. The 11-year-old child had an acute debut fever-persistent despite antipyretic medication-asthenia, headache, abdominal pain, myalgia, thrombocytopenia, as well as renal failure with proteinuria. The diagnosis was made with a relevant clinical history and the specific serology of Puumala hantavirus. Therefore, a kidney biopsy was not necessary. What was interesting was the diagnostic approach because of the difference between the place and time of contamination and where the child became ill and developed the symptoms. The child was infected by Puumala hantavirus in Les Ardennes, a high-risk area, but became ill in the Paris region, an area with no prevalence. We review Hantavirus infections in France and its differential diagnosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  5. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Drevets, Wayne C.; Thase, Michael E.; Moses-Kolko, Eydie L.; Price, Julie; Frank, Ellen; Kupfer, David J.; Mathis, Chester

    2007-01-01

    Introduction: Serotonin-1A receptor (5-HT 1A R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT 1A R agonists in vivo and to 5-HT 1A R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT 1A R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl- 11 C]WAY-100635, and we have demonstrated reduced 5-HT 1A R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl- 11 C]WAY-100635, 5-HT 1A R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT 1A R BP was reduced by 26% in the MTC (P 1A R binding were similar to those found postmortem in 5-HT 1A R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT 1A R-binding capacity in the raphe in depressed suicide victims [Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892-903]. There

  6. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  7. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  8. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-01-01

    Highlights: • OX 1 and OX 2 orexin and CB 1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX 1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB 1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX 1 , OX 2 and CB 1 receptors, C-terminally fused with either Renilla luciferase or GFP 2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB 1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP 2 to CB 1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX 1 –OX 2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB 1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations

  9. Glucocorticoid control of gene transcription in neural tissue

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  10. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    In view of evidence that neither interindividual nor induced intra-individual variations of adrenergic receptor status are related to metabolic or haemodynamic sensitivity to adrenaline in vivo, we took an alternative approach to assessment of the relevance of adrenergic receptor measurement...... densities (and binding affinities), measured with 3H-labelled yohimbine, and adrenaline-induced suppression of cyclic AMP contents did not differ among the three groups. Thus, in contrast to idiopathic autonomic failure, there is no generalized increase in adrenergic receptors in autonomic failure due...

  11. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  12. Assays for calcitonin receptors

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.

    1985-01-01

    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is 125 I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed

  13. Imaging opiate receptors with positron emission tomography

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5..mu..g/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 ..mu..g/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  14. Imaging opiate receptors with positron emission tomography

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5μg/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 μg/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15

  15. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    Hougaard, S; Nørgaard, P; Abrahamsen, N

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...

  16. Angiotensin type 2 receptor (AT2R) and receptor Mas

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striki...

  17. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    Yingying Cai

    Full Text Available Family B G protein-coupled receptors (GPCRs play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1 receptor (GLP1R, whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  18. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J; DeVree, Brian T; Yang, Yang; Sunahara, Roger K; Yan, Elsa C Y

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  19. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    Chun-Lei Zhang

    Full Text Available Methylphenidate (MPH, commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD. Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC. To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+ increase, but does not require PKA and extracellular Ca(2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  20. Quantitative immunolocalization of {mu} opioid receptors: regulation by naltrexone

    Evans, C.J.; Lam, H.; To, T.; Anton, B. [Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute, University of California, Los Angeles, CA (United States); Unterwald, E.M. [Department of Psychiatry, New York University Medical Center, New York, NY (United States)

    1998-04-24

    The present study utilized a newly developed quantitative immunohistochemical assay to measure changes in {mu} opioid receptor abundance following chronic administration of the opioid receptor antagonist naltrexone. These data were compared with those obtained from {mu} receptor radioligand binding on adjacent tissue sections, in order to determine whether the characteristic antagonist-induced increase in radioligand binding is due to an increase in the total number of {mu} receptors and/or to an increase in the proportion of receptors that are in an active binding conformation in the absence of a change in the total number of receptors. Adult male Sprague-Dawley rats were administered naltrexone, 7-8 mg/kg per day, or saline continuously for seven days by osmotic minipumps, after which time their brains were processed for immunohistochemistry and receptor autoradiography on adjacent fresh frozen tissue sections. Semiquantitative immunohistochemistry was performed using a radiolabelled secondary antibody for autoradiographic determination and a set of radioactive standards. Results demonstrate an overall concordance between the distribution of {mu} opioid receptors as measured by the two different methods with a few exceptions. Following naltrexone administration, {mu} receptor immunoreactivity was significantly higher in the amygdala, thalamus, hippocampus, and interpeduncular nucleus as compared with the saline-treated control animals. [{sup 3}H]D-Ala{sup 2},N-Me-Phe{sup 4},Gly-ol{sup 5}-enkephalin binding to {mu} opioid receptors was significantly higher in the globus pallidus, amygdala, thalamus, hypothalamus, hippocampus, substantia nigra, ventral tegmental area, central gray, and interpeduncular nucleus of the naltrexone-treated rats.These findings indicate that in some brain regions chronic naltrexone exposure increases the total number of {mu} opioid receptors, while in other regions there is an increase in the percent of active receptors without an

  1. Quantitative immunolocalization of μ opioid receptors: regulation by naltrexone

    Evans, C.J.; Lam, H.; To, T.; Anton, B.; Unterwald, E.M.

    1998-01-01

    The present study utilized a newly developed quantitative immunohistochemical assay to measure changes in μ opioid receptor abundance following chronic administration of the opioid receptor antagonist naltrexone. These data were compared with those obtained from μ receptor radioligand binding on adjacent tissue sections, in order to determine whether the characteristic antagonist-induced increase in radioligand binding is due to an increase in the total number of μ receptors and/or to an increase in the proportion of receptors that are in an active binding conformation in the absence of a change in the total number of receptors. Adult male Sprague-Dawley rats were administered naltrexone, 7-8 mg/kg per day, or saline continuously for seven days by osmotic minipumps, after which time their brains were processed for immunohistochemistry and receptor autoradiography on adjacent fresh frozen tissue sections. Semiquantitative immunohistochemistry was performed using a radiolabelled secondary antibody for autoradiographic determination and a set of radioactive standards. Results demonstrate an overall concordance between the distribution of μ opioid receptors as measured by the two different methods with a few exceptions. Following naltrexone administration, μ receptor immunoreactivity was significantly higher in the amygdala, thalamus, hippocampus, and interpeduncular nucleus as compared with the saline-treated control animals. [ 3 H]D-Ala 2 ,N-Me-Phe 4 ,Gly-ol 5 -enkephalin binding to μ opioid receptors was significantly higher in the globus pallidus, amygdala, thalamus, hypothalamus, hippocampus, substantia nigra, ventral tegmental area, central gray, and interpeduncular nucleus of the naltrexone-treated rats.These findings indicate that in some brain regions chronic naltrexone exposure increases the total number of μ opioid receptors, while in other regions there is an increase in the percent of active receptors without an observable change in the total number

  2. TLX: An elusive receptor.

    Benod, Cindy; Villagomez, Rosa; Webb, Paul

    2016-03-01

    TLX (tailless receptor) is a member of the nuclear receptor superfamily and belongs to a class of nuclear receptors for which no endogenous or synthetic ligands have yet been identified. TLX is a promising therapeutic target in neurological disorders and brain tumors. Thus, regulatory ligands for TLX need to be identified to complete the validation of TLX as a useful target and would serve as chemical probes to pursue the study of this receptor in disease models. It has recently been proved that TLX is druggable. However, to identify potent and specific TLX ligands with desirable biological activity, a deeper understanding of where ligands bind, how they alter TLX conformation and of the mechanism by which TLX mediates the transcription of its target genes is needed. While TLX is in the process of escaping from orphanhood, future ligand design needs to progress in parallel with improved understanding of (i) the binding cavity or surfaces to target with small molecules on the TLX ligand binding domain and (ii) the nature of the TLX coregulators in particular cell and disease contexts. Both of these topics are discussed in this review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Glutamate receptor ligands

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  4. Ginkgolides and glycine receptors

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown ...

  5. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  6. Olfactory Receptor Database: a sensory chemoreceptor resource

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  7. Memory impairment due to fipronil pesticide exposure occurs at the GABAA receptor level, in rats.

    Godinho, Antonio Francisco; de Oliveira Souza, Ana Carolina; Carvalho, Caio Cristóvão; Horta, Daniel França; De Fraia, Daniel; Anselmo, Fabio; Chaguri, João Leandro; Faria, Caique Aparecido

    2016-10-15

    Fipronil (F) a pesticide considered of second generation cause various toxic effects in target and non-target organisms including humans in which provoke neurotoxicity, having the antagonism of gamma-amino butyric acid (GABA) as their main mechanism for toxic action. GABAergic system has been involved in processes related to the memory formation and consolidation. The present work studied the importance of GABA to the mechanisms involved in the very early development of fipronil-induced memory impairment in rats. Memory behavior was assessed using new object recognition task (ORT) and eight radial arm maze task (8-RAM) to study effects on cognitive and spatial memory. Locomotor behavior was assessed using open field task (OF). The dose of fipronil utilized was studied through a pilot experiment. The GABA antagonist picrotoxin (P) was used to enhance fipronil effects on GABAergic system. Fipronil or picrotoxin decrease memory studied in ORT and 8-RAM tasks. Additionally, F and P co-exposure enhanced effects on memory compared to controls, F, and P, suggesting strongly a GABAergic effect. Weight gain modulation and fipronil in blood were utilized as animal's intoxication indicators. In conclusion, here we report that second-generation pesticides, such as fipronil, can have toxic interactions with the CNS of mammals and lead to memory impairment by modulating the GABAergic system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Prostaglandin Receptor Signaling in Disease

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  9. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  10. Hepatic macrophage complement receptor clearance function following injury.

    Cuddy, B G; Loegering, D J; Blumenstock, F A; Shah, D M

    1986-03-01

    Previous work has demonstrated that in vivo hepatic macrophage complement receptor clearance function is depressed following thermal injury. The present study was carried out to determine if complement receptor function depression is associated with other states of depressed host defense. Hepatic complement receptor clearance function was determined from the hepatic uptake of rat erythrocytes coated with antierythrocyte IgM (EIgM) in rats. Receptor function was determined following cannulation of a carotid artery, laparotomy plus enterotomy, hemorrhagic shock, trauma, thermal injury, acute bacteremia, acute endotoxemia, and injection of erythrocyte stroma, gelatinized lipid emulsion, or colloidal carbon. Hepatic uptake of EIgM was depressed following each of these experimental interventions except arterial cannulation. This effect was shown not to be due to a decrease in hepatic blood flow or depletion of complement and was therefore due to a depression in hepatic macrophage complement receptor clearance function. Thus, impairment of hepatic macrophage complement receptor function is associated with several states of depressed host defense.

  11. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  12. Meeting report: nuclear receptors

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...... the world covering a wide spectrum from fundamental mechanistic studies to metabolism, clinical studies, and drug development. In this report, we summarize the recent and exciting findings presented by the speakers at the meeting....

  13. Neurotransmitter receptor imaging

    Cordes, M.; Hierholzer, J.; Nikolai-Beyer, K.

    1993-01-01

    The importance of neuroreceptor imaging in vivo using single photon emission tomography (SPECT) and positron emission tomography (PET) has increased enormously. The principal neurotransmitters, such as dopamine, GABA/benzodiazepine, acetylcholine, and serotonin, are presented with reference to anatomical, biochemical, and physiological features. The main radioligands for SPECT and PET are introduced, and methodological characteristics of both PET and SPECT presented. Finally, the results of neurotransmitter receptor imaging obtained so far will be discussed. (orig.) [de

  14. Thyroid Stimulating Hormone Receptor

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  15. The expression of the ACTH receptor

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  16. Enhanced Shear-induced Platelet Aggregation Due to Low-temperature Storage

    2013-07-01

    Grewal PK, Wandall HH, Josefsson EC, Sorensen AL, Larson G, Marth JD, Hartwig JH, Hoffmeister KM. Dual roles for hepatic lectin receptors in the clearance ...PLT aggregation due to low temperature storage may be a beneficial strategy to prevent severe bleeding in trauma . P latelets (PLTs) are transfused to...prevent bleed- ing due to thrombocytopenia associated with hematologic malignancies or to manage severe blood loss during surgery or trauma . PLTs are

  17. Cerebrovascular endothelin receptor upregulation in cerebral ischemia

    Edvinsson, Lars

    2009-01-01

    Stroke is a serious neurological disease and the third leading cause of death in the western world. In roughly 15 % of the cases, the cause is due to an intracranial haemorrhage, and the remaining 85 % represent ischemic strokes. Ischemic stroke is caused by the occlusion of a cerebral artery...... either by an embolus or by local thrombosis. Several studies have shown an involvement of the endothelin system in ischemic stroke. This review aims to examine the alterations of vascular endothelin receptor expression in ischemic stroke. Furthermore, studies of the intracellular signalling pathways...... leading to the enhanced expression of vascular endothelin receptors show that both protein kinase C (PKC) and mitogen activating protein kinase (MAPK) play important roles. The results from this work provide new perspectives on the pathophysiology of ischemic stroke, and give a possible explanation...

  18. Finanční due diligence

    Slonka, Tomáš

    2015-01-01

    Thesis on financial due diligence focuses on the use of due diligence in practice. The aim of this work is to determine the risk for the investor and the calculation of the target company with and without conducting due diligence, thus finding out the added value of due diligence.

  19. 5 CFR 732.301 - Due process.

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Due process. 732.301 Section 732.301...) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an... any determination. (b) Comply with all applicable administrative due process requirements, as provided...

  20. Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivity

    Berke, Allison Paige

    2013-01-01

    Abstract Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivityby Allison Paige Berke Joint Doctor of Philosophywith the University of California San FranciscoUniversity of California, Berkeley Professor Song Li, ChairDue to structural similarity, OlfCc1and its mammalian analogue V2R2 are hypothesized to respond to amino acid ligands in a calcium-mediated fashion. By analyzing receptor structure and making targeted mutations, the specificity and sensitivity of the receptor s...

  1. Assignment of the human gene for the glucocorticoid receptor to chromosome 5.

    Gehring, U; Segnitz, B; Foellmer, B; Francke, U

    1985-01-01

    Human lymphoblastic leukemia cells of line CEM-C7 are glucocroticoid-sensitive and contain glucocorticoid receptors of wild-type characteristics. EL4 mouse lymphoma cells are resistant to lysis by glucocorticoids due to mutant receptors that exhibit abnormal DNA binding. Hybrids between the two cell lines were prepared and analyzed with respect to glucocorticoid responsiveness and to receptor types by DNA-cellulose chromatrography. Sensitive hybrid cell clones contained the CEM-C7-specific re...

  2. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  3. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  4. Psychopharmacology of 5-HT{sub 1A} receptors

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  5. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  6. Melatonin Receptor Genes in Vertebrates

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  7. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors

    Woldbye, David P D; Nanobashvili, Avtandil; Sørensen, Andreas Vehus

    2005-01-01

    Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the...

  8. The role of the 5-HT1a receptor in central cardiovascular regulation

    G.H. Dreteler

    1991-01-01

    textabstractThe aim of the studies describe~ in this thesis is to further clarify the role of the 5- HT1A receptor in central cardiovascular regulation. The hypotensive action of 5-HT1A receptor agonists is mainly due to differential sympatho-inhibition resulting in an increase in total

  9. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    P. Laverman (Peter); L. Joosten; A. Eek (Annemarie); S. Roosenburg (Susan); P.K. Peitl; T. Maina (Theodosia); H.R. Mäcke (Helmut); L. Aloj (Luigi); E. von Guggenber (Elisabeth); J.K. Sosabowski (Jane); M. de Jong (Marion); J.-C. Reubi (Jean-Claude); W.J.G. Oyen (Wim); O.C. Boerman (Otto)

    2011-01-01

    textabstractPurpose Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide

  10. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  11. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces

  12. Flavivirus Entry Receptors: An Update

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  13. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  14. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  15. Adenosine Receptors and Wound Healing

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  16. Virally encoded 7TM receptors

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  17. Adenosine receptor desensitization and trafficking.

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  19. TRAIL death receptors and cancer therapeutics

    Huang Ying; Sheikh, M. Saeed

    2007-01-01

    Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) also known as Apo2L is an apoptotic molecule that belongs to the tumor necrosis factor superfamily of cytokines. It mediates its apoptotic effects via its cognate death receptors including DR4 and DR5. Agonistic monoclonal antibodies have also been developed that selectively activate TRAIL death receptors to mediate apoptosis. Multiple clinically relevant agents also upregulate the expression of TRAIL death receptors, and cooperate with TRAIL as well as DR4 and DR5-specific agonistic antibodies to exhibit tumor cell killing. TRAIL is currently in phase I clinical trials, whereas DR4 and DR5-specific agonistic antibodies have been tested in phase I and II studies. Thus, TRAIL has clearly distinguished itself from the other family members including TNF-alpha and FasL both of which could not make it to the clinic due to their toxic nature. It is therefore, evident that the future of TRAIL-based therapeutic approaches looks brighter

  20. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye

    2014-01-01

    The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood....... A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R...

  1. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  2. Back to the future: Rational maps for exploring acetylcholine receptor space and time.

    Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B

    2017-11-01

    Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  4. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao

    2010-01-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor pot...

  5. Modeling structure of G protein-coupled receptors in huan genome

    Zhang, Yang

    2016-01-01

    G protein-coupled receptors (or GPCRs) are integral transmembrane proteins responsible to various cellular signal transductions. Human GPCR proteins are encoded by 5% of human genes but account for the targets of 40% of the FDA approved drugs. Due

  6. The Hypercoagulable state in Hyperthyroidism is mediated via the Thyroid Hormone β Receptor pathway

    Elbers, Laura P. B.; Moran, Carla; Gerdes, Victor E. A.; van Zaane, Bregje; Meijers, Joost C. M.; Endert, Erik; Lyons, Greta; Chatterjee, V. Krishna; Bisschop, Peter H.; Fliers, Eric

    2016-01-01

    Hyperthyroidism is associated with a hypercoagulable state, but the underlying mechanism is unknown. Patients with resistance to thyroid hormone (RTH) due to defective thyroid hormone receptor β (TRβ) exhibit elevated circulating thyroid hormones (TH) with refractoriness to TH action in

  7. Axonal GABAA receptors.

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  8. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  9. Receptor studies in biological psychiatry

    Fujiwara, Yutaka

    1992-01-01

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D 2 ) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D 2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D 2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3 H-clonidine binding sites were increased in platelet membranes of depressive patients, 3 H-imipramine binding sites were decreased. The GABA A receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D 2 ) and the ion-channel type (GABA A ). (J.P.N.)

  10. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced recep...

  11. ''Spare'' alpha 1-adrenergic receptors and the potency of agonists in rat vas deferens

    Minneman, K.P.; Abel, P.W.

    1984-01-01

    The existence of ''spare'' alpha 1-adrenergic receptors in rat vas deferens was examined directly using radioligand binding assays and contractility measurements. Alpha 1-adrenergic receptors in homogenates of rat vas deferens were labeled with [ 125 I]BE 2254 ( 125 IBE). Norepinephrine and other full alpha 1-adrenergic receptor agonists were much less potent in inhibiting 125 IBE binding than in contracting the vas deferens in vitro. Treatment with 300 nM phenoxybenzamine for 10 min to irreversibly inactivate alpha 1-adrenergic receptors caused a large decrease in the potency of full agonists in causing contraction of this tissue and a 23-48% decrease in the maximal contraction observed. Using those data, equilibrium constants for activation (Kact values) of the receptors by agonists were calculated. These Kact values agreed well with the equilibrium binding constants (KD values) determined from displacement of 125 IBE binding. The reduction in alpha 1-adrenergic receptor density following phenoxybenzamine treatment was determined by Scatchard analysis of specific 125 IBE binding sites and compared with the expected reduction (q values) calculated from the agonist dose-response curves before and after phenoxybenzamine treatment. This suggests that phenoxybenzamine functionally inactivates alpha 1-adrenergic receptors at or near the receptor binding site. These experiments suggest that the potencies of agonists in activating alpha 1-adrenergic receptors in rat vas deferens agree well with their potencies in binding to the receptors. The greater potency of agonists in causing contraction may be due to spare receptors in this tissue. The data also demonstrate that phenoxybenzamine irreversibly inactivates alpha 1-adrenergic receptors in rat vas deferens, but that the decrease in receptor density is much smaller than that predicted from receptor theory

  12. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  13. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  14. Quantitative analysis of receptor imaging

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  15. Coronavirus spike-receptor interactions

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  16. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  17. A Novel Mechanism of Androgen Receptor Action

    Roberts, Jr, Charles T

    2006-01-01

    .... Specifically, the authors had determined that the androgen receptor controls the expression of the cell-surface receptor for the hormone IGF-1 at the level of translation of the IGF-1 receptor mRNA...

  18. Quantitative densitometry of neurotransmitter receptors

    Rainbow, T.C.; Bleisch, W.V.; Biegon, A.; McEwen, B.S.

    1982-01-01

    An autoradiographic procedure is described that allows the quantitative measurement of neurotransmitter receptors by optical density readings. Frozen brain sections are labeled in vitro with [ 3 H]ligands under conditions that maximize specific binding to neurotransmitter receptors. The labeled sections are then placed against the 3 H-sensitive LKB Ultrofilm to produce the autoradiograms. These autoradiograms resemble those produced by [ 14 C]deoxyglucose autoradiography and are suitable for quantitative analysis with a densitometer. Muscarinic cholinergic receptors in rat and zebra finch brain and 5-HT receptors in rat brain were visualized by this method. When the proper combination of ligand concentration and exposure time are used, the method provides quantitative information about the amount and affinity of neurotransmitter receptors in brain sections. This was established by comparisons of densitometric readings with parallel measurements made by scintillation counting of sections. (Auth.)

  19. Dopamine Receptors and Parkinson's Disease

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  20. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  1. Structure and function of the IFNγ receptor on human mononuclear phagocytes

    Schreiber, R.D.; Celada, A.

    1986-01-01

    Human mononuclear phagocytes bear a receptor that binds 125 I-IFNγ in a saturable, reversible and specific manner. The receptor consists minimally of a 70 kD polypeptide chain and its expression (5000/cell) and binding affinity (Ka=10 9 M -1 ) are unaffected by cellular activation or differentiation. The receptor's biological relevance was validated by correlating receptor occupancy with induction of a cellular response. 50% maximal induction of Fc receptors on U937 was effected by 0.8 nM IFNγ; the same concentration needed to half saturate U937 IFNγ receptors. Ligand-receptor interaction displayed species specificity but not cellular specificity. The receptors on U937 and human fibroblasts displayed identical ligand binding affinities (1.5-1.8 x 10 9 M -1 ). At 37 0 C, IFNγ bound to U937 in a biphasic manner. The high affinity binding component was due to ligand internalization since purified cell membranes and paraformaldehyde fixed cells displayed only the lower Ka and ligand internalization could be directly demonstrated. Using lysosomotropic amines, the internalized IFNγ-IFNγ receptor complex was tracked into an acid compartment where dissociation occurred. Free intracellular IFNγ was then degraded while free receptor entered an intracellular pool and eventually recycled back to the cell surface

  2. Molecular characterization of opioid receptors

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  3. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  4. Combining GLP-1 receptor agonists with insulin

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  5. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  6. Solution to the inversely stated transient source-receptor problem

    Sajo, E.; Sheff, J.R.

    1995-01-01

    Transient source-receptor problems are traditionally handled via the Boltzmann equation or through one of its variants. In the atmospheric transport of pollutants, meteorological uncertainties in the planetary boundary layer render only a few approximations to the Boltzmann equation useful. Often, due to the high number of unknowns, the atmospheric source-receptor problem is ill-posed. Moreover, models to estimate downwind concentration invariably assume that the source term is known. In this paper, an inverse methodology is developed, based on downwind measurement of concentration and that of meterological parameters to estimate the source term

  7. The Histamine H4 Receptor: From Orphan to the Clinic

    Robin L. Thurmond

    2015-03-01

    Full Text Available The histamine H4 receptor (H4R was first noted as a sequence in genomic databases that had features of a G-protein coupled receptor. This putative receptor was found to bind histamine consistent with its homology to other histamine receptors and thus became the fourth member of the histamine receptor family. Due to the previous success of drugs that target the H1 and H2 receptors, an effort was made to understand the function of this receptor and determine if it represented a drug target. Taking advantage of the vast literature on histamine, a search for histamine activity that did not appear to be mediated by the other three histamine receptors was undertaken. From this asthma and pruritus emerged as areas of particular interest. Histamine has long been suspected to play a role in the pathogenesis of asthma, but antihistamines that target the H1 and H2 receptors have not been shown to be effective for this condition. The use of selective ligands in animal models of asthma has now potentially filled this gap by showing a role for the H4R in mediating lung function and inflammation. A similar story exists for chronic pruritus associated with conditions such as atopic dermatitis. Antihistamines that target the H1 receptor are effective in reducing acute pruritus, but are ineffective in pruritus experienced by patients with atopic dermatitis. As for asthma, animal models have now suggested a role for the H4R in mediating pruritic responses, with antagonists to the H4R reducing pruritus in a number of different conditions. The anti-pruritic effect of H4R antagonists has recently been shown in human clinical studies, validating the preclinical findings in the animal models. A selective H4R antagonist inhibited histamine-induced pruritus in health volunteers and reduced pruritus in patients with atopic dermatitis. The history to date of the H4R provides an excellent example of the deorphanization of a novel receptor and the translation of this into

  8. Peritoneal tuberculosis due to Mycobacterium caprae

    T. Nebreda

    2016-01-01

    Full Text Available The incidence of tuberculosis in humans due to Mycobacterium caprae is very low and is almost confined to Europe. We report a case of a previously healthy 41-year-old Moroccan with a 6 month history of abdominal pain, weight loss, fatigue and diarrhea. A diagnosis of peritoneal tuberculosis due to M. caprae was made.

  9. Constitutional Due Process and Educational Administration.

    Uerling, Donald F.

    1985-01-01

    Discusses substantive and procedural due process as required by the United States Constitution and interpreted by the Supreme Court, with particular reference to situations arising in educational environments. Covers interests protected by due process requirements, the procedures required, and some special considerations that may apply. (PGD)

  10. Procedural Due Process Rights in Student Discipline.

    Pressman, Robert; Weinstein, Susan

    To assist administrators in understanding procedural due process rights in student discipline, this manual draws together hundreds of citations and case summaries of federal and state court decisions and provides detailed commentary as well. Chapter 1 outlines the general principles of procedural due process rights in student discipline, such as…

  11. Qubit dephasing due to quasiparticle tunneling

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  12. Radioiodinated ligands for dopamine receptors

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  13. Labeled receptor ligands for spect

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  14. Initial clinical experience with the first drug (sacubitril/valsartan) in a new class - angiotensin receptor neprilysin inhibitors in patients with heart failure with reduced left ventricular ejection fraction in Poland.

    Kałużna-Oleksy, Marta; Kolasa, Jolanta; Migaj, Jacek; Pawlak, Agnieszka; Lelonek, Małgorzata; Nessler, Jadwiga; Straburzyńska-Migaj, Ewa

    2018-01-01

    Sacubitril/valsartan is the first drug from a new class of angiotensin receptor neprilysin inhibitors (ARNIs) recommended in the new European Society of Cardiology guidelines instead of angiotensin converting enzyme inhibitors (ACEI), or angiotensin receptor blockers (ARB) that are used if ACEI are not tolerated. Sacubitril/valsartan is recommended for further reduction in the risk of hospitalisation or death in outpatients with heart failure with reduced ejection fraction (HFrEF) if symptoms continue despite optimal treatment with ACEI/ARB, beta-blockers, and mineralocorticoid antagonists. The aim of this study is to present the initial experience with regard to the effectiveness, tolerance, and safety of sacubitril/valsartan in the outpatient cardiology practice in Poland. The study is a retrospective analysis of data obtained through a questionnaire filled in by the physicians who initiated the sacubitril/valsartan treatment in patients with HFrEF between 1 June 2016 and 30 September 2016. Patients were followed-up for three months. The analysis included data on 28 patients aged 61 ± 16 years, of whom 85.7% were males. The drug was used in patients in New York Heart Association (NYHA) class I-III. In 25 (89.2%) patients sacubitril/valsartan was started at the lowest dose (24/26 mg BID). During follow-up the sacubitril/valsartan-treated patients had a reduction in HF symptoms assessed using the NYHA functional class (p = 0.001), a significant drop in N-terminal-pro B-type natriuretic peptide levels (mean, from 2900 to 2270 pg/mL; p = 0.008), and improved exercise tolerance, which occurred shortly after treatment initiation - after a mean of 28 days. It was demonstrated that the use of sacubitril/valsartan in outpatients with HFrEF is safe and is associated with a significant clinical improvement.

  15. XMRV: usage of receptors and potential co-receptors

    Gaddam Durga

    2011-09-01

    Full Text Available Abstract Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS. Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.

  16. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  17. Turbulent momentum transport due to neoclassical flows

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff

    2015-01-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)

  18. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W

    2007-01-01

    . Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  19. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  20. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  1. Radiation burden of patients due to mammography

    Novak, L.; Rada, J.

    2005-01-01

    A mammographic dose survey performed in the Czech Republic is based on evaluation of MGD for cranio-caudal (CC) and medio-lateral oblique (MLO) view, which are the standard mammographic projections. The study started in the year 2005, aims of the study are to establish new diagnostic reference levels (DRL) with regards to compressed breast thickness (current DRL is 3 mGy for a 45 mm PMMA breast phantom with 50% glandularity and Mo/Mo combination of filter and anode material) and to analyze an influence of different X -ray machine types, image receptors and imaging techniques on doses to patients. The calculation of mean glandular dose is based on a formalism suggested by Dance and accepted by European Commission. Mean glandular dose is computed from incident air kerma (without backscatter) using tabulated conversion coefficients for different breast thickness, beam quality and patient age. (authors)

  2. Comentario. Mineralocorticoides: Una vida para su investigación.

    Alfredo Jácome Roca

    2001-08-01

    Full Text Available

    Desde que en 1563 Eustaquio en su libro “Opúsculos Anatómicos” mencionara por primera vez a las suprarrenales como un órgano, hasta estos albores del siglo XXI, la importancia de sus productos hormonales ha tenido ciclos en donde se han alternado momentos estelares con otros donde ha reinado escepticismo sobre su papel en la fisiopatología.

    Los hitos logrados por personajes como Addison, Kendall, Conn o Cushing, contrastan con aquel oscuro 1718 cuando Montesquieu declarara desierto un premio instituido por la Academia de Ciencias de Burdeos para dilucidar la pregunta “¿Cuál es la función de las glándulas suprarrenales?” Montesquieu se preguntó si el azar depararìa la respuesta, pues los trabajos presentados no lo habían logrado. Cuando hablamos de patologías conexas importantes no queremos referirnos a las enfermedades que llevan los nombres de los ya mencionados Addison, Cushing o Conn con sus estados de hipo o hipercortisolismo crónicos, hiperaldosteronismo primariamente generado, hipo o hipertensión de origen endocrino; menos aún al todavía más exótico síndrome de Biglieri, con su deficiencia de 17 hidroxilasa que asocia hipertensión e hipogonadismo en un contexto de hiperplasia suprarrenal congénita. Queremos mas bien señalar a la Hipertensión Arterial Sistémica primaria o esencial, que habiendo sido llamada “el enemigo silencioso” se constituye en el factor de riesgo número uno para la aparición de la enfermedad coronaria y de la falla cardiaca, por lo que en su extraordinaria prevalencia significa como agente de morbi-mortalidad en la sociedad moderna. Tratar los efectos deletéreos que conlleva la ocasional patología suprarrenal será labor entonces del endocrinólogo clínico.

    Analizar estas enfermedades como una forma de escudriñar los efectos de enzimas o de esteroides al presentarse como un modelo experimental natural, será labor del investigador; esto último es lo que ha realizado nuestro coterráneo Roberto Franco Sáenz, persona de grandes calidades humanas y científicas, quien ha dedicado su vida al meticuloso estudio del sistema “renina- angiotensinaaldosterona”...

  3. Study on the import dues system

    Woo, Sung Keun [LG-Caltex Oil Co., Seoul (Korea)

    2000-04-01

    Since October 1979, Korea had implemented a petroleum project fund dues system to actively prepare for unstable international petroleum condition. However, as the size of operating a petroleum project fund was bigger and the influence of government on this fund became powerful, it was inserted in the government tax revenues as a {sup S}pecial account for energy and resource project{sup i}n March 1994 and its name was changed to import dues. In this study, it discusses the facts of import dues system, which exists only in Korea, and its policy directions since this system has been reviewed due to the economic development, liberalization of petroleum industry and inequity between alternative energy sources. 4 tabs.

  4. Occurrence of pneumomediastinum due to dental procedures.

    Aslaner, Mehmet Ali; Kasap, Gül Nihal; Demir, Cihat; Akkaş, Meltem; Aksu, Nalan M

    2015-01-01

    The occurrence of pneumomediastinum and massive subcutaneous emphysema due to dental procedures is quite rare. We present a case of pneumomediastinum and massive subcutaneous emphysema that occurred during third molar tooth extraction with air-turbine handpiece.

  5. Peripheral adrenergic receptors in hypertension

    Michel, M. C.; Brodde, O. E.; Insel, P. A.

    1990-01-01

    Increased sympathoadrenal activity appears to play an important role in the development or maintenance of elevated blood pressure in hypertensive patients and various animal models of hypertension. Alterations of adrenergic receptor number or responsiveness might contribute to this increased

  6. Are olfactory receptors really olfactive?

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    environmental conditions. By adopting this standpoint, the functional attribution as olfactory or chemotactic sensors to these receptors should not be seen neither as a cause conditioning receptor gene expression, nor as a final effect resulting from genetically predetermined programs, but as a direct...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  7. Nuclear Receptor Signaling Atlas (NURSA)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  8. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  9. Greenhouse effect due to atmospheric nitrous oxide

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  10. L-glutamate Receptor In Paramecium

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  11. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    Green, Mark A.

    2000-01-01

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  12. [The receptor theory of atherosclerosis].

    Likhoded, V G; Bondarenko, V M; Gintsburg, A L

    2010-01-01

    Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.

  13. Xenobiotics and the Glucocorticoid Receptor

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  14. Xenobiotics and the Glucocorticoid Receptor

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  15. Putative role of prostaglandin receptor in intracerebral hemorrhage

    Shekher eMohan

    2012-10-01

    Full Text Available Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH strokes and 3% are subarachnoid hemorrhage (SAH strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37-38% of patients between the ages of 45-64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptor’s cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate (cAMP and calcium (Ca2+ signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and

  16. Nuclear Receptors, RXR, and the Big Bang.

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  18. Key Questions for Translation of FFA Receptors: From Pharmacology to Medicines.

    Suckow, Arthur T; Briscoe, Celia P

    2017-01-01

    The identification of fatty acids as ligands for the G-protein coupled free fatty acid (FFA) receptor family over 10 years ago led to intensive chemistry efforts to find small-molecule ligands for this class of receptors. Identification of potent, selective modulators of the FFA receptors and their utility in medicine has proven challenging, in part due to their complex pharmacology. Nevertheless, ligands have been identified that are sufficient for exploring the therapeutic potential of this class of receptors in rodents and, in the case of FFA1, FFA2, FFA4, and GPR84, also in humans. Expression profiling, the phenotyping of FFA receptor knockout mice, and the results of studies exploring the effects of these ligands in rodents have uncovered a number of indications where engagement of one or a combination of FFA receptors might provide some clinical benefit in areas including diabetes, inflammatory bowel syndrome, Alzheimer's, pain, and cancer. In this chapter, we will review the clinical potential of modulating FFA receptors based on preclinical and in some cases clinical studies with synthetic ligands. In particular, key aspects and challenges associated with small-molecule ligand identification and FFA receptor pharmacology will be addressed with a view of the hurdles that need to be overcome to fully understand the potential of the receptors as therapeutic targets.

  19. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E.

    1987-01-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [ 125 I]iodocyanopindolol. Binding sites had the characteristics of mixed β 1 - and β 2 -type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β 1 -adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  20. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  1. Insulin receptor binding and protein kinase activity in muscles of trained rats

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  2. Fibroblast growth factor receptors in breast cancer.

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  3. Prognostic Value of Estrogen Receptor alpha and Progesterone Receptor Conversion in Distant Breast Cancer Metastases

    Hoefnagel, Laurien D. C.; Moelans, Cathy B.; Meijer, S. L.; van Slooten, Henk-Jan; Wesseling, Pieter; Wesseling, Jelle; Westenend, Pieter J.; Bart, Joost; Seldenrijk, Cornelis A.; Nagtegaal, Iris D.; Oudejans, Joost; van der Valk, Paul; van Gils, Carla H.; van der Wall, Elsken; van Diest, Paul J.

    2012-01-01

    BACKGROUND: Changes in the receptor profile of primary breast cancers to their metastases (receptor conversion) have been described for the estrogen receptor alpha (ER alpha) and progesterone receptor (PR). The purpose of this study was to evaluate the impact of receptor conversion for ER alpha and

  4. Correlated receptor transport processes buffer single-cell heterogeneity.

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  5. Expression of GABAergic receptors in mouse taste receptor cells.

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  6. Due diligence duties for an environmental liability

    Huebsch, M.

    2000-04-01

    Jurisdiction turned out well to create a basic ruling for due diligence duties. These due diligence duties are high standards for the law of torts (outside of contracts) within the Austrian civil law and represent a liability-extension for the holder of the source of danger. They establish an action for injunction in particular for preventing (further) damages. Therewith due diligence duties get a general sense in the range of a civil law for environmental liability. The responsible holder of a danger zone will therefore influence his way of acting to protect potential victims and the environment. The burden of proof is on the plaintiff (victims) under the Civil Code. Victims have specific sources of danger including high endangering special facilities in their argumentation with the so-called prima-facie-proof or first-appearance-proof. A turning back of the presentation of evidence to the polluter is wrong. The polluter himself has a continuing liability for dangerous activities and his clerks in the case of an extremely high danger of damage. All due diligence duties can be arranged in three areas: in information-, danger-avoidance- and danger-prevention-duties. The determination of range and essence of the duties has to be adjusted to each individual case. The range of the specific danger area is the essential link. The intensity of due diligence duties is increasing with the size of danger in the way of a movable system depending on the protected interest. Due diligence duties have to be kept within reasonable limits with two criterions: necessarity and demand. Proportionality of actions is a third criterion to avoid exaggeration of due diligence duties to obtain an effective protection for victims including the environment. (author)

  7. Toll-like receptors in neonatal sepsis.

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  8. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors.

    Khan, Muhammad Zahid; He, Ling

    2017-04-01

    In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.

  9. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  10. Desensitization of γ-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by γ-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of 36 Cl - tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 μM for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates

  11. GABAA receptor: Positive and negative allosteric modulators.

    Olsen, Richard W

    2018-01-31

    gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of

  12. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Virginie eRouiller-Fabre

    2015-05-01

    Full Text Available During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food and many consumer products, several can act as endocrine disrupting compounds (EDCs, thus interfering with the endocrine system. Phthalates, bisphenol A (BPA and diethylstilbestrol (DES have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review we discuss the role of classical nuclear receptors (genomic pathway in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA and DES. Among the nuclear receptors we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR, androgen receptor (AR, estrogen receptors (ERα and β, liver X receptors (LXR and small heterodimer partner (SHP. First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s. We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  13. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  14. Plasma diffusion due to magnetic field fluctuations

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  15. Paraneoplastic Cushing Syndrome Due To Wilm's Tumor.

    Faizan, Mahwish; Manzoor, Jaida; Saleem, Muhammad; Anwar, Saadia; Mehmood, Qaiser; Hameed, Ambreen; Ali, Agha Shabbir

    2017-05-01

    Paraneoplastic syndromes are rare disorders that are triggered by an altered immune system response to neoplasm. Paraneoplastic syndromes may be the first or the most prominent manifestations of cancer. Wilm's tumor is the most frequent pediatric renal malignancy and usually presents with abdominal mass. Unusual presentations like acquired von Willebrand disease, sudden death due to pulmonary embolism and Cushing syndrome have been described in the literature. Cushing syndrome, as the presenting symptom of a malignant renal tumor in children, is a very rare entity. Few case reports are available in the literature exploring the option of preoperative chemotherapy as well as upfront nephrectomy. We report a rare case of paraneoplastic Cushing syndrome due to a Wilm's tumor. Based on gradual decrease of postoperative weight, blood pressure, serum adrenocorticotropic hormone, and plasma cortisol levels, along with histological confirmation of Wilm's tumor, paraneoplastic Cushing syndrome due to Wilm's tumor was confirmed.

  16. Paraneoplastic cushing syndrome due to wilm's tumor

    Faizan, M.; Anwar, S.; Hameed, A.; Manzoor, J.; Saleem, M.; Mehmood, Q.; Ali, A. S.

    2017-01-01

    Paraneoplastic syndromes are rare disorders that are triggered by an altered immune system response to neoplasm. Paraneoplastic syndromes may be the first or the most prominent manifestations of cancer. Wilm's tumor is the most frequent pediatric renal malignancy and usually presents with abdominal mass. Unusual presentations like acquired von Willebrand disease, sudden death due to pulmonary embolism and Cushing syndrome have been described in the literature. Cushing syndrome, as the presenting symptom of a malignant renal tumor in children, is a very rare entity. Few case reports are available in the literature exploring the option of preoperative chemotherapy as well as upfront nephrectomy. We report a rare case of paraneoplastic Cushing syndrome due to a Wilm's tumor. Based on gradual decrease of postoperative weight, blood pressure, serum adrenocorticotropic hormone, and plasma cortisol levels, alongwith histological confirmation of Wilm's tumor, paraneoplastic Cushing syndrome due to Wilm's tumor was confirmed. (author)

  17. The effects of benzodiazepine-receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat

    Bosman, D. K.; van den Buijs, C. A.; de Haan, J. G.; Maas, M. A.; Chamuleau, R. A.

    1991-01-01

    Two benzodiazepine-receptor partial inverse agonists (Ro 15-4513, Ro 15-3505) and one benzodiazepine-receptor antagonist (flumazenil) were administered to rats with hepatic encephalopathy due to acute liver ischemia. Significant improvement (P less than 0.002) of both the clinical grade of hepatic

  18. Comparative biodistribution of 12 (1)(1)(1)In-labelled gastrin/CCK2 receptor-targeting peptides

    Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Macke, H.; Aloj, L.; Guggenberg, E. von; Sosabowski, J.K.; Jong, M. de; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several

  19. Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor

    Igor E. Deyev

    2017-11-01

    Full Text Available The orphan insulin receptor-related receptor (IRR, in contrast to its close homologs, the insulin receptor (IR and insulin-like growth factor receptor (IGF-IR can be activated by mildly alkaline extracellular medium. We have previously demonstrated that IRR activation is defined by its extracellular region, involves multiple domains, and shows positive cooperativity with two synergistic sites. By the analyses of point mutants and chimeras of IRR with IR in, we now address the role of the fibronectin type III (FnIII repeats in the IRR pH-sensing. The first activation site includes the intrinsically disordered subdomain ID (646–716 within the FnIII-2 domain at the C-terminus of IRR alpha subunit together with closely located residues L135, G188, R244, H318, and K319 of L1 and C domains of the second subunit. The second site involves residue T582 of FnIII-1 domain at the top of IRR lambda-shape pyramid together with M406, V407, and D408 from L2 domain within the second subunit. A possible importance of the IRR carbohydrate moiety for its activation was also assessed. IRR is normally less glycosylated than IR and IGF-IR. Swapping both FnIII-2 and FnIII-3 IRR domains with those of IR shifted beta-subunit mass from 68 kDa for IRR to about 100 kDa due to increased glycosylation and abolished the IRR pH response. However, mutations of four asparagine residues, potential glycosylation sites in chimera IRR with swapped FnIII-2/3 domains of IR, decreased the chimera glycosylation and resulted in a partial restoration of IRR pH-sensing activity, suggesting that the extensive glycosylation of FnIII-2/3 provides steric hindrance for the alkali-induced rearrangement of the IRR ectodomain.

  20. Conducting financial due diligence of medical practices.

    Louiselle, P

    1995-12-01

    Many healthcare organizations are acquiring medical practices in an effort to build more integrated systems of healthcare products and services. This acquisition activity must be approached cautiously to ensure that medical practices being acquired do not have deficiencies that would jeopardize integration efforts. Conducting a thorough due diligence analysis of medical practices before finalizing the transaction can limit the acquiring organizations' legal and financial exposure and is a necessary component to the acquisition process. The author discusses the components of a successful financial due diligence analysis and addresses some of the risk factors in a practice acquisition.

  1. Environmental impact due to nuclear power plants

    Kellermann, O.; Balfanz, H.P.

    1975-01-01

    The environmental impact due to nuclear power plants is smaller than that due to fossil-fired power plants. The risks of the nuclear power plant operation are determined by the quantity and the probability of the release of radioactive materials. According to the value, the risks of normal operation can be compared to the accident risks. An attempt should be made to effectively reduce the remaining risk at unfavourable sites with the emphasis on accidents with larger effects than design basis accidents. (orig./LH) [de

  2. Weibel instability due to inverse bremsstrahlung absorption

    Bendib, A.; Bendib, K.; Bendib, A.; Bendib, K.; Sid, A.; Bendib, K.

    1997-01-01

    A new Weibel source due to the inverse bremsstrahlung absorption is presented. It has been shown that in homogeneous plasmas, this mechanism may drive strong collisionless Weibel modes with growth rates of order of γ∼10 11 s -1 and negligible group velocities. In the laser-produced plasmas, for short laser wavelengths (λ L 10 14 W/cm 2 ), this Weibel source is most efficient as the ones due to the heat flux and the plasma expansion. The useful scaling law of the convective e-foldings, with respect to the laser and the plasma parameters, is also derived. copyright 1997 The American Physical Society

  3. Intracellular recording from a spider vibration receptor.

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  4. Low 5-HT1B receptor binding in the migraine brain

    Deen, Marie; Hansen, Hanne D; Hougaard, Anders

    2018-01-01

    Background The pathophysiology of migraine may involve dysfunction of serotonergic signaling. In particular, the 5-HT1B receptor is considered a key player due to the efficacy of 5-HT1B receptor agonists for treatment of migraine attacks. Aim To examine the cerebral 5-HT1B receptor binding....... Patients who reported migraine brain regions involved in pain modulation as regions of interest and applied a latent variable model (LVM) to assess the group effect on binding across these regions. Results Our data...... support a model wherein group status predicts the latent variable ( p = 0.038), with migraine patients having lower 5-HT1B receptor binding across regions compared to controls. Further, in a whole-brain voxel-based analysis, time since last migraine attack correlated positively with 5-HT1B receptor...

  5. Breast abscess due to Actinomyces europaeus.

    Silva, W A; Pinheiro, A M; Jahns, B; Bögli-Stuber, K; Droz, S; Zimmerli, S

    2011-06-01

    Actinomyces europaeus was first described in 1997 as a new species causing predominantly skin and soft-tissue infections. Mastitis due to A. europaeus is an unusual condition. This article reports a case of primary breast abscess caused by A. europaeus in a postmenopausal woman.

  6. Freezing of Water Droplet due to Evaporation

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  7. Six questions about translational due diligence.

    Selinger, Evan

    2010-04-28

    To maintain stable respect and support, translational research must be guided by appropriate ethical, social, legal, and political concerns and carry out culturally competent practices. Considering six key questions concerning due diligence will enable the translational research community to examine critically how it approaches these endeavors.

  8. Contract Law, Due Process, and the NCAA.

    Dickerson, Jaffe D.; Chapman, Mayer

    1978-01-01

    The NCAA has enjoyed almost total freedom from judicial scrutiny of its rules, procedures, and official acts in large part because of its private nature as an unincorporated association. The function of the NCAA, California State University, Hayward v NCAA, and due process of the student-athlete are discussed. (MLW)

  9. Facial nerve palsy due to birth trauma

    Seventh cranial nerve palsy due to birth trauma; Facial palsy - birth trauma; Facial palsy - neonate; Facial palsy - infant ... An infant's facial nerve is also called the seventh cranial nerve. It can be damaged just before or at the time of delivery. ...

  10. [Severe, subacute axonal polyneuropathy due to hypophosphatemia].

    Eijk, J.J.J. van; Abdo, W.F.; Deurwaarder, E. den; Zwarts, M.J.; Warrenburg, B.P.C. van de

    2010-01-01

    A 46-year-old man receiving tube feeding because of anorexia and weight loss developed progressive neurological symptoms initially resembling Guillain-Barre syndrome. Eventually axonal neuropathy due to severe hypophosphatemia was diagnosed. Hypophosphatemia can be caused by the so-called refeeding

  11. Supraventricular Tachycardia Atackt Due to Losewieght Drug

    Murat Yalcin

    2016-01-01

    Full Text Available Obesity is an important health problem. Treatment of obesity includes diet, exercise and drugs. Some of these drugs are out of prescription. Advers effects of these drugs have not been known. In this report; we present a case with supraventricular tachycardia attack due to loseweight drug containing mangostana (mango, hibiscus, citrus mate, L-karnitin, guarana.

  12. When Pregnancy Goes Past Your Due Date

    ... due date determined? • What is postterm pregnancy? • What causes a postterm pregnancy? • What are the risks associated with postterm pregnancy? • ... longer than 42 weeks is called “postterm.” What causes a postterm pregnancy? The causes of postterm pregnancy are unknown, but ...

  13. Craniopharyngioma with hyperprolactinaemia due to a prolactinoma.

    Wheatley, T; Clark, J D; Stewart, S

    1986-01-01

    A case is presented in which a histologically proven prolactin secreting pituitary macroadenoma was associated with a large suprasellar craniopharyngioma. The pre-operative prolactin concentration was 8180 mU/l. Although hyperprolactinaemia up to 3000 mU/l in patients with a craniopharyngioma is usually due to stalk compression, greater values may indicate an associated prolactinoma. Images PMID:3794737

  14. Nuclear potentials due to pion exchange

    Robillota, M.R.

    1984-01-01

    The two, three and four nucleon potentials due to the exchange of pions can be accurately calculated by means of chiral symmetry. The comparison of the dynamical content of these potentials allow us to understand the geometrical origin of the hierarchy existing among them. (Author) [pt

  15. Internal dosimetric evaluation due to uranium aerosols

    Garcia Aguilar Juan; Delgado Avila Gustavo

    1991-01-01

    The present work has like object to carry out the internal dosimetric evaluation to the occupationally exposed personnel, due to the inhalation of aerosols of natural uranium and enriched in the pilot plant of nuclear fuel production of the National Institute of Nuclear Research

  16. Spinal cord compression due to metastases

    Azevedo, C.M. de; Matushita, J.P.K.; Silva, M.A.F. da; Koch, H.A.

    1986-01-01

    A study of 20 patients with medullary compression syndrome due to lesions not related to the central nervous system is presented. Plain films of the spine and myelography are made to determine the level of osseous involvement, the level of the spinal block and to planning radiotherapy. (Author) [pt

  17. Ophthalmoplegia, Dysphonia and Tetraparesis Due to Guillain ...

    Guillain-Barre's syndrome (GBS) or inflammatory/post-infectious acute polyradiculoneuropathy is due to demyelination of nerves, causing a progressive paresis or paralysis. It usually begins in the legs and sometimes goes up to the respiratory muscles and cranial nerves. The exact mechanism of GBS occurrance is still ...

  18. Freight economic vulnerabilities due to flooding events.

    2016-12-01

    Extreme weather events, and flooding in particular, have been occurring more often and with increased severity over the past decade, and there is reason to expect this trend will continue in the future due to a changing climate. Flooding events can u...

  19. Due diligence responsibilities of the professional geologist

    Hobbs, G.W.

    1991-01-01

    Whether in the role of independent consultant or company employee, a geologist has certain professional obligations in the evaluation of an oil and gas submittal from a third party. 'Due diligence' is the term used to describe the analysis of an investment opportunity. Due diligence involves a multidisciplinary examination of both the technical and business aspects of a submittal. In addition to the obvious geological considerations, prospect evaluations should include relevant details about the specific technical documentation reviewed, information sources, and how the data were verified. Full disclosure of ownership, technical risks, and negative aspects of the prospect should be included along with the positive elements. After the geological analysis is completed, the economic merits of the prospect should be analyzed, incorporating all lease burdens and terms of participation into the calculations. Estimated exploration, development, and operating costs, together with projected annual production, cash flow, and reserves must be examined as to their reasonableness. Finally, the due diligence review should include a thorough check on the reputation, financial condition, technical and managerial expertise, and prior track record of the operator. Bank, trade, legal, and prior partner references should be contacted. The successful professional geologist in today's competitive world must have multidisciplinary skills. A solid background in geology and geophysics, a basic understanding of the principles of petroleum engineering and economics, and the wits of a private eye are needed for good due diligence work

  20. Dysphagia due to diffuseidiopathic skeletal hyperostosis (DISH ...

    Diffuse idiopathic skeletal hyperostosis (DISH) or Forestier's disease isa form of degenerative arthritiswith unique spinal and extra spinal manifestations. Dysphagia due to DISH is uncommon but when present DISH should be suspected. Surgical decompression can relieve some of the symptoms. We report a case of a 60 ...

  1. Recurrent poststernotomy mediastinitis due to histoplasmosis: The ...

    This report describes the first case of surgical site infection due to Histoplasma capsulatum. A 4 year-old presented with recurrent thoracotomy surgical site infection (SSI) requiring multiple debridements until the correct diagnosis was performed. This case illustrates the critical role of histopathology in early recognition of ...

  2. [Treatment of macroglossia due to acromegaly].

    Alons, K.; Berge, S.J.; Rieu, P.N.M.A.; Meijer, G.J.

    2010-01-01

    A 61-years-old woman had macroglossia due to acromegaly with complaints of dyspneu at a lying sleeping position and complaints of speech and dysphagia. At the age of 55 years she was diagnosed with acromegaly induced by a adenoma of the pituitary gland, which had been removed surgically. The

  3. Plagiarism Due to Misunderstanding: Online Instructor Perceptions

    Greenberger, Scott; Holbeck, Rick; Steele, John; Dyer, Thomas

    2016-01-01

    Plagiarism is an ongoing problem in higher education. This problem exists in both online and face-to-face modalities. The literature indicates that there are three ways higher education institutions define plagiarism, which includes theft, deception, and misunderstanding. Plagiarism due to misunderstanding has received less attention in the…

  4. Systemic contact dermatitis due to nickel

    Taruli Olivia

    2015-08-01

    Full Text Available Introduction: Systemic contact dermatitis (SCD is a systemic reactivation of a previous allergic contact dermatitis. The initial exposure may usually be topical, followed by oral, intravenous or inhalation exposure leading to a systemic hypersensitivity reaction. A case of a 27 year-old male with SCD due to nickel is reported Case Report: A 27 year-old male presented with recurrent pruritic eruption consist of deep seated vesicles on both palmar and left plantar since 6 months before admission. This complaint began after patient consumed excessive amounts of chocolate, canned food, and beans. The patient worked as a technician in a food factory. History of allergy due to nickel was acknowledged since childhood. The clinical presentation was diffuse deep seated vesicles, and multiple erythematous macules to plaques, with collarette scale. Patch test using the European standard showed a +3 result to nickel. The patient was diagnosed as systemic contact dermatitis due to nickel. The treatments were topical corticosteroid and patient education of avoidance of both contact and systemic exposure to nickel. The patient showed clinical improvement after 2 weeks. Discussion: SCD was diagnosed due to the history of massive consumption of food containing nickel in a patient who had initial sensitization to nickel, with clinical features and the patch test result. Advice to be aware of nickel and its avoidance is important in SCD management.

  5. AFT Chief Promises Due-Process Reform

    Sawchuk, Stephen

    2010-01-01

    The president of the American Federation of Teachers (AFT), Randi Weingarten, is putting the sensitive issue of due process on the education reform table, with a pledge to work with districts to streamline the often-cumbersome procedures for dismissing teachers who fail to improve their performance after receiving help and support. She has also…

  6. Purinergic Receptors in Ocular Inflammation

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  7. Photo-antagonism of the GABAA receptor.

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  8. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells

    Stroncek, David F.; Lee, Daniel W.; Ren, Jiaqiang; Sabatino, Marianna; Highfill, Steven; Khuu, Hanh; Shah, Nirali N.; Kaplan, Rosandra N.; Fry, Terry J.; Mackall, Crystal L.

    2017-01-01

    Background Clinical trials of Chimeric Antigen Receptor (CAR) T cells manufactured from autologous peripheral blood mononuclear cell (PBMC) concentrates for the treatment of hematologic malignancies have been promising, but CAR T cell yields have been variable. This variability is due in part to the contamination of the PBMC concentrates with monocytes and granulocytes. Methods Counter-flow elutriation allows for the closed system separation of lymphocytes from monocytes and granulocytes. We ...

  9. TAM receptor signaling in development.

    Burstyn-Cohen, Tal

    2017-01-01

    TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.

  10. How calcium makes endocytic receptors attractive

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    of the receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable...... 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect...... the receptor calcium sites....

  11. Lessons from crystal structures of kainate receptors

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory...... synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...

  12. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy.

    Frost, J J; Mayberg, H S; Fisher, R S; Douglass, K H; Dannals, R F; Links, J M; Wilson, A A; Ravert, H T; Rosenbaum, A E; Snyder, S H

    1988-03-01

    Neurochemical studies in animal models of epilepsy have demonstrated the importance of multiple neurotransmitters and their receptors in mediating seizures. The role of opiate receptors and endogenous opioid peptides in seizure mechanisms is well developed and is the basis for measuring opiate receptors in patients with epilepsy. Patients with complex partial seizures due to unilateral temporal seizure foci were studied by positron emission tomography using 11C-carfentanil to measure mu-opiate receptors and 18F-fluoro-deoxy-D-glucose to measure glucose utilization. Opiate receptor binding is greater in the temporal neocortex on the side of the electrical focus than on the opposite side. Modeling studies indicate that the increase in binding is due to an increase in affinity or the number of unoccupied receptors. No significant asymmetry of 11C-carfentanil binding was detected in the amygdala or hippocampus. Glucose utilization correlated inversely with 11C-carfentanil binding in the temporal neocortex. Increased opiate receptors in the temporal neocortex may represent a tonic anticonvulsant system that limits the spread of electrical activity from other temporal lobe structures.

  13. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding

    Innerarity, T.L.; Weisgraber, K.H.; Arnold, K.S.; Mahley, R.W.; Krauss, R.M.; Vega, G.L.; Grundy, S.M.

    1987-01-01

    Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity. Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125 I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated wit an abnormal lipid composition or structure of the LDL. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients

  14. Physicians in transition: practice due diligence.

    Paterick, Timothy E

    2013-01-01

    The landscape of healthcare is changing rapidly. That landscape is now a business model of medicine. That rapid change resulting in a business model is affecting physicians professionally and personally. The new business model of medicine has led to large healthcare organizations hiring physicians as employees. The role of a physician as an employee has many limitations in terms of practice and personal autonomy. Employed physicians sign legally binding employment agreements that are written by the legal team working for the healthcare organization. Thus physicians should practice due diligence before signing the employment agreement. "Due diligence" refers to the care a reasonable person should take before entering into an agreement with another party. That reasonable person should seek expertise to represent his or her interests when searching a balanced agreement between the physician and organization.

  15. POET: Planetary Orbital Evolution due to Tides

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  16. Sciatica due to pelvic hematoma: case report

    Kocaman Umit

    2016-12-01

    Full Text Available Sciatica is defined as pain in the sciatic nerve distribution. The most common reason of sciatica is radiculopathy due to lumbar disc hernia. Other causes can be congenital, acquired, infectious, neoplastic, or inflammatory. The piriformis syndrome is another cause. The pain starts in an insidious manner when the cause of sciatica is an extraspinal tumor. It is intermittent at first but a constant and progressive pain that does not decrease with position or rest gradually develops in all patients. The possibility of an intraabdominal or pelvic mass should always be considered and the relevant tests requested when the cause of the sciatica cannot be explained. We present an 83-year-old male who presented with non-traumatic and non-vascular lumbosacral plexopathy due to a large hematoma in the left adductor muscle following the use of warfarin sodium.

  17. Band magnetism due to f-electrons

    Brodsky, M.B.; Trainor, R.J.

    1976-01-01

    Specific heat data illustrate several types of itinerant or band magnetism in actinide intermetallic compounds. The results show ferromagnetic spin fluctuations in UAl 2 with T/sub sf/ equals 25K, itinerant antiferromagnetism in NpSn 3 with T/sub N/ equals 9.5K and itinerant ferromagnetism in NpOs 2 with T/sub C/ equals 7.9K. Specific heat studies of dilute U/sub 1-x/Th/sub x/Al 2 show the theoretically predicted modifications due to impurity scattering in a spin fluctuation system. For NpSn 3 it is possible to show the BCS nature of the transition due to the gap formation

  18. Eosinophilic ascites due to severe eosinophilic ileitis

    Setia Namrata

    2010-01-01

    Full Text Available Background: There is a broad etiology for effusion eosinophilia that includes allergic, reactive, infectious, immune, neoplastic, and idiopathic causes. We report and describe the cytomorphologic findings of a rare case of eosinophilic ascites due to severe eosinophilic ileitis. Case Presentation: A 17-year-old male manifested acutely with eosinophilic ascites due to severe biopsy-proven subserosal eosinophilic ileitis. Isolated peritoneal fluid submitted for cytologic evaluation revealed that 65% eosinophils were present in a bloody background. The patient responded to corticosteroids, with complete resolution of his ascites. Conclusion: Eosinophilic gastroenteritis with subserosal involvement should be added to the list of causes for eosinophils in peritoneal fluid. The finding of eosinophilic ascites, with appropriate clinical and laboratory findings, may warrant the need to perform laparoscopic intestinal biopsies to confirm the diagnosis.

  19. Eosinophilic ascites due to severe eosinophilic ileitis.

    Setia, Namrata; Ghobrial, Peter; Liron, Pantanowitz

    2010-09-17

    There is a broad etiology for effusion eosinophilia that includes allergic, reactive, infectious, immune, neoplastic, and idiopathic causes. We report and describe the cytomorphologic findings of a rare case of eosinophilic ascites due to severe eosinophilic ileitis. A 17-year-old male manifested acutely with eosinophilic ascites due to severe biopsy-proven subserosal eosinophilic ileitis. Isolated peritoneal fluid submitted for cytologic evaluation revealed that 65% eosinophils were present in a bloody background. The patient responded to corticosteroids, with complete resolution of his ascites. Eosinophilic gastroenteritis with subserosal involvement should be added to the list of causes for eosinophils in peritoneal fluid. The finding of eosinophilic ascites, with appropriate clinical and laboratory findings, may warrant the need to perform laparoscopic intestinal biopsies to confirm the diagnosis.

  20. Transport due to ion pressure gradient turbulence

    Connor, J.W.

    1986-01-01

    Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)

  1. Phonic Attenuation due to Screen-Barriers

    Vasile Bacria

    2011-10-01

    Full Text Available The technique of noise decreasing admits two basic approaches: an active approach and a passive one. In the frame of passive method one can count the employment of screen-barriers. In this paper we present some considerations on sound attenuation due to screen-barriers emphasizing the elements which influence it. The elucidation of these elements is made by measurements. The obtained results can be applied in every other practical situation concerning the protection against noise.

  2. Dose due to {sup 40}K

    Escareno J, E.; Vega C, H. R., E-mail: edmundoej@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-10-15

    The dose due to {sup 40}K has been estimated. Potassium is one of the most abundant elements in nature, being approximately 2% of the Earth's crust. Potassium has three isotopes {sup 39}K, {sup 40}K and {sup 41}K, two are stable while {sup 40}K is radioactive with a half life of 1.2x10{sup 9} years; there is 0.0117% {sup 40}K-to-K ratio. Potassium plays an important role in plants, animals and humans growth and reproduction. Due to the fact that K is an essential element for humans, {sup 40}K is the most abundant radioisotope in human body. In order to keep good health conditions K must be intake at daily basis trough food and beverages, however when K in ingested above the requirements produce adverse health effects in persons with renal, cardiac and hypertension problems or suffering diabetes. In 89.3% {sup 40}K decays to {sup 40}C through {beta}-decay, in 10.3% decays through electronic capture and emitting 1.46 MeV {gamma}-ray. K is abundant in soil, construction materials, sand thus {gamma}-rays produced during {sup 40}K decay contribute to external dose. For K in the body practically all {sup 40}K decaying energy is absorbed by the body; thus {sup 40}K contributes to total dose in humans and it is important to evaluate its contribution. In this work a set of {sup 40}K sources were prepared using different amounts of KCl salt, a {gamma}-ray spectrometer with a NaI(Tl) was characterized to standardized the sources in order to evaluate the dose due to {sup 40}K. Using thermoluminescent dosemeters the dose due to {sup 40}K was measured and related to the amount of {sup 40}K {gamma}-ray activity. (Author)

  3. Contamination Effects Due to Space Environmental Interactions

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  4. Molecular evolution of a chordate specific family of G protein-coupled receptors

    Leese Florian

    2011-08-01

    Full Text Available Abstract Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C in vertebrates, and a fourth homologue present only in mammals (GPRC5D. Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non

  5. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy

    Berhanu, P.

    1988-01-01

    Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation

  6. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?

    Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-17

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  7. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Cecilia Bucci

    2014-10-01

    Full Text Available Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC and p75NTR, a member of the tumor necrosis factor (TNF receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.

  8. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  9. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Bucci, Cecilia; Alifano, Pietro; Cogli, Laura

    2014-01-01

    Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways. PMID:25295627

  10. Elimination of a ligand gating site generates a supersensitive olfactory receptor.

    Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I

    2016-06-21

    Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.

  11. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  12. Micropapillary Lung Cancer with Breast Metastasis Simulating Primary Breast Cancer due to Architectural Distortion on Images

    Ko, Kyung Ran; Hong, Eun Kyung; Lee, See Yeon [Center for Breast Cancer, National Cancer Center, Goyang (Korea, Republic of); Ro, Jae Yoon [The Methodist Hospital, Weill Medical College of Cornell University, Houston (United States)

    2012-03-15

    A 47-year-old Korean woman with right middle lobe lung adenocarcinoma, malignant pleural effusion, and multiple lymph node and bone metastases, after three months of lung cancer diagnosis, presented with a palpable right breast mass. Images of the right breast demonstrated architectural distortion that strongly suggested primary breast cancer. Breast biopsy revealed metastatic lung cancer with a negative result for estrogen receptor (ER), progesterone receptor (PR) and mammaglobin, and a positive result for thyroid transcription factor-1 (TTF-1). We present a case of breast metastasis from a case of lung cancer with an extensive micropapillary component, which was initially misinterpreted as a primary breast cancer due to unusual image findings with architectural distortion.

  13. Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements.

    Keller, H; Givel, F; Perroud, M; Wahli, W

    1995-07-01

    Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.

  14. External exposure due to natural radiation (KINKI)

    1978-01-01

    A field survey of exposure rates due to natural radiation has been conducted throughout the Kinki district of Japan during both September and October 1973. In each location, measurements of exposures at one to fifteen sites, one of where contained 5 stations at least, were made. A total of 143 sites were measured. Observations were made using a spherical ionization chamber and several scintillation surveymeters. The spherical plastic ionization chamber of which inner diameter and wall thickness are 200 mm and 3 mm (acrylate) respectively has adequate sensitivity for field survey. The chamber was used as a standard of apparatus, but it is difficult to use the apparatus in all locations only by the apparatus, so that a surveymeter with a NaI(Tl) 1''phi x 1'' scintillator was used for regular measurements. Two types of surveymeters, the one with a 2''phi x 2'' NaI(Tl) scintillator and the other with a 3''phi x 3'' NaI(Tl) scintillator, were used as auxiliary devices. Both the chamber and the surveymeter were used in 20 sites and their readings were compared for drawing a relationship between them. Practically the direct reading of the surveymeter were reduced into the corresponding value of the plastic chamber through the relationship of linear proportion. Systematic error at calibration ( 60 Co) and reading error (rodoh) of the plastic chamber were within +-6% (maximum over all error) and within +-3.5% (standard error for 6μ R/hr) respectively. Reading error of the surveymeter is about +-3% (standard error for 6μ R/hr). Measurements in open bare field were made at one meter above the ground and outdoor gamma-rays exposure rates (μ R/hr) were due to cosmic rays as well as terrestrial radiation, as it may be considered that the contribution of fallout due to artificial origin was very small. (J.P.N.)

  15. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes......, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress...

  16. Pneumonia due to Enterobacter cancerogenus infection.

    Demir, Tülin; Baran, Gamze; Buyukguclu, Tuncay; Sezgin, Fikriye Milletli; Kaymaz, Haci

    2014-11-01

    Enterobacter cancerogenus (formerly known as CDC Enteric Group 19; synonym with Enterobacter taylorae) has rarely been associated with human infections, and little is known regarding the epidemiology and clinical significance of this organism. We describe a community-acquired pneumonia case in a 44-year-old female due to E. cancerogenus. Identification and antimicrobial susceptibility of the microorganism was performed by the automatized VITEK 2 Compact system (bioMerieux, France). The clinical case suggests that E. cancerogenus is a potentially pathogenic microorganism in determined circumstances; underlying diseases such as bronchial asthma, empiric antibiotic treatment, wounds, diagnostic, or therapeutic instruments.

  17. Traumatic oesophageal perforation due to haematoma

    Grønhøj Larsen, Christian; Brandt, Bodil

    2014-01-01

    . Three explanations postulated to be the cause for late perforation which might be due to esophageal wall ischemia from pressure built up between the hematoma, azygos vein and the lower part of thoracic trachea; or could be an immediate rupture walled-off until the patient became symptomatic......; or the intramural hematoma gradually lysed and causing late perforation. CONCLUSION: Although extremely rare, an oesophageal haematoma and late complications must be considered in patients on anti-coagulant therapy following blunt thoracic trauma and complaining only of chest pain....

  18. Particle transport due to magnetic fluctuations

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T e ) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product e B r >. Particle transport is small just inside the last closed flux surface (Γ e,mag e,total ), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity

  19. Questa è la storia di due ragazzi

    Maria Lombardo

    2015-07-01

    Full Text Available Questa è la storia di due ragazzi per i quali le speranze di riuscita in una professione artistica come quella dell’attore - già difficile per chiunque - in percentuale erano una su dieci. Forse zero. E invece ce l’hanno fatta: uno a Parigi, l’altro a Roma. Entrambi di colore, entrambi di umili origini, arrivati in Europa come tanti, centinaia di migliaia, nel loro caso non da clandestini. Le storie di Bakary e Federico mostrano come il talento e la fortuna possano vincere le avversità, l’emarginazione, i pregiudizi.

  20. Stretch due to Penile Prosthesis Reservoir Migration

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  1. Lasing without inversion due to cooling subsystem

    Shakhmuratov, R.N.

    1997-01-01

    The new possibility of inversionless lasing is discussed. We have considered the resonant interaction of a two-level system (TLS) with photons and the adiabatic interaction with an ensemble of Bose particles. It is found out that a TLS with equally populated energy levels amplifies the coherent light with Stokes-shifted frequency. This becomes possible as photon emission is accompanied by Bose particles excitation. The energy flow from the TLS to the photon subsystem is realized due to the Bose subsystem being at finite temperature and playing the cooler role. The advantage of this new lasing principle is discussed. It is shown that lasing conditions strongly differ from conventional ones

  2. Stability of solubilized benzodiazepine receptors

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    1997-01-01

    According to the observations of other researchers, benzodiazepine receptors solubilized with sodium deoxycholate are unstable, but stability can be improved by exchanging deoxycholate for Triton X-100. In our experiments we conclude that the choice of detergent is not the restrictive factor for the

  3. Serum transferrin receptor in polycythemia.

    Manteiga, R; Remacha, A F; Sardà, M P; Ubeda, J

    1998-10-01

    We measured serum transferrin receptor (sTfR) levels in 22 patients with polycythemia vera and in 26 cases of secondary polycythemia. In our study, raised sTfR levels in both polycythemia groups were related to iron deficiency.

  4. FMRFamide receptors of Helix aspersa

    Payza, K.

    1988-01-01

    A receptor binding assay and an isolated heart bioassay were used to identify and characterize the FMRFamide receptors in Helix. In the heart bioassay, FMRFamide increased myocardial contraction force. A potent FMRFamide analog, desaminoTyr-Phe-norLeu-arg-Phe-amide (daYFnLRFamide), was used as a radioiodinated receptor ligand. The high affinity binding of 125 I-daYFnLRFamide at 0 degree C to Helix brain membranes was reversible, saturable, pH-dependent and specific, with a K D of 13-14 nM. A lower affinity (245 nM) site was also observed. Radioligand binding sites were also identified in the heart, male reproductive organs and digestive organs. The structure-activity relations (SAR) of cardiostimulation correlated with the specificity of 125 I-daYFnLRFamide binding to brain and heart receptors. The SAR were similar to those of other molluscan FMRFamide bioassays, except that they showed a marked preference for some analogs with blocked amino-terminals

  5. Pharmacological approach of the receptors

    Puech, A.J.

    1989-01-01

    This paper explains the three main goals for clinical positron emission tomography (PET) studies: detection of receptor abnormalities in groups of patients to propose therapeutic indication of new ligands; validation of current hypothesis of drug effect; rational clinical drug development specially for dose-finding studies. (H.W.)

  6. Uncompetitive antagonism of AMPA receptors

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...

  7. NMDA receptors and memory encoding.

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  8. Ror receptor tyrosine kinases: orphans no more

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  9. Benzodiazepine receptor antagonists for hepatic encephalopathy

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  10. Bronchopleural cutaneous fistula due to Eikenella corrodens.

    Wong, Kin-Sun; Huang, Yhu-Chering

    2005-01-01

    The aim of this paper is to review the subject and to report on and discuss a case of bronchopleural cutaneous fistula due to Eikenella corrodens. A 16-year-old girl was brought to our hospital with fever and blood-tinged sputum 2 weeks prior to her admission. She suffered from neurologic sequelae of herpetic encephalitis and had been bed-ridden since 5 years of age. A longitudinal paraspinal soft mass had been noted in the previous week by her mother. She had been given oral feeding despite frequent choking for the past few years. On palpation, the mass can be squeezed to follow the least resistance of subcutaneous space longitudinally extending to the lower thoracic region. Chest computed tomography scan revealed right lower lobe necrotizing pneumonitis and a pleuro-cutaneous fistula leading to the subcutaneous air locules. A protracted course of antibiotics was prescribed and subcutaneous air trapping decreased in size over 8 weeks. Eikenella corrodens has increasingly been implicated as a potential causative pathogen in pleuropulmonary infections. Pleuro-cutaneous fistula and abscess formation complicating empyema and necrotizing pneumonitis due to E. corrodens infection have not been reported. A bulging thoracic subcutaneous lesion waxes and wanes with respiration suggest the possibility of a pleruo-cutaneous fistula. Treatment of Eikenella empyema using antibiotics without surgical decortication requires a prolonged course of antibiotic therapy.

  11. Total gastrectomy due to ferric chloride intoxication.

    Menéndez, A Mesut; Abramson, Leonardo; Vera, Raúl A; Duza, Guillermo E; Palermo, Mariano

    2015-09-01

    The ferric chloride intoxication is frequently caused by accident. Its toxicity is generally underrated, which can lead to fatal evolution or irreversible consequences. In this case, the caustic condition of the substance is related to the toxic properties of iron. A 36-year-old male patient arrives by ambulance indicating sensory deterioration. He presents erosive injuries in the buccal cavity and in the oropharynx, brownish teeth and metabolic acidosis. Toxicology tests and ferritin blood dosage are requested, which show a result from 1400 mg/dl. The symptoms are interpreted as acute iron intoxication. Due to the unfavorable evolution of his condition, an abdominal and pelvic CT scan are performed, which show extensive pneumoperitoneum and free fluid in the abdominal cavity. An exploratory laparotomy, a total gastrectomy with esophagostomy and feeding jejunostomy, washing and drainage due to perforated gastric necrosis caused by caustic ingestion are performed. In our country, there is a high rate of intoxication caused by iron compounds, although it is not statistically measured. Nevertheless, the ferric chloride intoxication is extremely infrequent. The ingestion of this product leads to complications, which are associated with the iron concentration and its condition as a caustic agent. The surgical indications in the presence of intoxication caused by iron compounds are: stomach evacuation of iron, gastric necrosis, perforation or peritonitis and stenosis. Early or prophylactic gastrectomy is contraindicated. However, if complications that require immediate surgical intervention arise, there should be no hesitation and the corresponding procedure should be performed.

  12. Nonconvulsive status epilepticus due to ifosfamide.

    Kilickap, Saadettin; Cakar, Mustafa; Onal, Ibrahim K; Tufan, Abdurrahman; Akoglu, Hadim; Aksoy, Sercan; Erman, Mustafa; Tekuzman, Gulten

    2006-02-01

    To report 2 cases of nonconvulsive status epilepticus (NCSE) following infusion of ifosfamide. Two patients who received ifosfamide-containing chemotherapy developed NCSE. One woman received ifosfamide 1000 mg/m2 (1 h infusion on days 1-5); confusion, lethargy, and speech deterioration developed on day 3. The second patient developed similar symptoms on day 3 of treatment with 2500 mg/m2. Both patients responded to intravenous administration of diazepam 10 mg and were given levetiracetam as maintenance therapy. The severity and presentation of central nervous system toxicity due to ifosfamide varies greatly and involves a spectrum ranging from subclinical electroencephalogram changes to coma. NCSE, an epileptic disorder in which typical convulsive activity is absent, has previously been reported in only 4 patients receiving ifosfamide. Levetiracetam may be used for maintenance antiepileptic therapy after diazepam administration. Among the many presentations of ifosfamide neurotoxicity, clinicians should consider NCSE as a possible explanation for changes in consciousness in a patient receiving this agent. An objective causality assessment by use of the Naranjo probability scale revealed that NCSE due to ifosfamide was probable.

  13. Road Accident due to a Pancreatic Insulinoma

    Parisi, Amilcare; Desiderio, Jacopo; Cirocchi, Roberto; Grassi, Veronica; Trastulli, Stefano; Barberini, Francesco; Corsi, Alessia; Cacurri, Alban; Renzi, Claudio; Anastasio, Fabio; Battista, Francesca; Pucci, Giacomo; Noya, Giuseppe; Schillaci, Giuseppe

    2015-01-01

    Abstract Insulinoma is a rare pancreatic endocrine tumor, typically sporadic and solitary. Although the Whipple triad, consisting of hypoglycemia, neuroglycopenic symptoms, and symptoms relief with glucose administration, is often present, the diagnosis may be challenging when symptoms are less typical. We report a case of road accident due to an episode of loss of consciousness in a patient with pancreatic insulinoma. In the previous months, the patient had occasionally reported nonspecific symptoms. During hospitalization, endocrine examinations were compatible with an insulin-producing tumor. Abdominal computerized tomography and magnetic resonance imaging allowed us to identify and localize the tumor. The patient underwent a robotic distal pancreatectomy with partial omentectomy and splenectomy. Insulin-producing tumors may go undetected for a long period due to nonspecific clinical symptoms, and may cause episodes of loss of consciousness with potentially lethal consequences. Robot-assisted procedures can be performed with the same techniques of the traditional surgery, reducing surgical trauma, intraoperative blood loss, and hospital stays. PMID:25816027

  14. [In-hospital mortality due to stroke].

    Rodríguez Lucci, Federico; Pujol Lereis, Virginia; Ameriso, Sebastián; Povedano, Guillermo; Díaz, María F; Hlavnicka, Alejandro; Wainsztein, Néstor A; Ameriso, Sebastián F

    2013-01-01

    Overall mortality due to stroke has decreased in the last three decades probable due to a better control of vascular risk factors. In-hospital mortality of stroke patients has been estimated to be between 6 and 14% in most of the series reported. However, data from recent clinical trials suggest that these figures may be substantially lower. Data from FLENI Stroke Data Bank and institutional mortality records between 2000 and 2010 were reviewed. Ischemic stroke subtypes were classified according to TOAST criteria and hemorrhagic stroke subtypes were classified as intraparenchymal hematoma, aneurismatic subarachnoid hemorrhage, arterio-venous malformation, and other intraparenchymal hematomas. A total of 1514 patients were studied. Of these, 1079 (71%) were ischemic strokes,39% large vessels, 27% cardioembolic, 9% lacunar, 14% unknown etiology, and 11% others etiologies. There were 435 (29%) hemorrhagic strokes, 27% intraparenchymal hematomas, 30% aneurismatic subarachnoid hemorrhage, 25% arterio-venous malformation, and 18% other intraparenchymal hematomas. Moreover, 38 in-hospital deaths were recorded (17 ischemic strokes and 21 hemorrhagic strokes), accounting for 2.5% overall mortality (1.7% in ischemic strokes and 4.8% in hemorrhagic strokes). No deaths occurred associated with the use of intravenous fibrinolytics occurred. In our Centre in-hospital mortality in patients with stroke was low. Management of these patients in a Centre dedicated to neurological diseases along with a multidisciplinary approach from medical and non-medical staff trained in the care of cerebrovascular diseases could, at least in part, account for these results.

  15. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  16. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  17. Synapse geometry and receptor dynamics modulate synaptic strength.

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  18. Killer Cell Immunoglobulin-like Receptors and their Ligands

    Tajik N.

    2010-09-01

    Full Text Available The Natural killer (NK cells are a subset of lymphocytes comprising around 10% of total lymphocytes in peripheral blood. Due to their role in the innate response, NK cells provide a ‘first line of defense’ against infectious agents and cancer and are also thought to play a role in autoimmunity. The killer cell immunoglobulin-like receptors (KIR are regulatory surface molecules, found on NK cells and on a subset of T lymphocytes. The genes for KIR are present on chromosome 19 in the leukocyte receptor complex and show a major difference for both the type and number of KIR genes present among different ethnic groups. They have been divided into two groups of 2D or 3D, depending on the number of external immunoglobulin domains. The presence of a long cytoplasmic tail with two immune tyrosine-based inhibitory motifs (ITIM allows the transduction of inhibitory signals and characterizes the inhibitory KIRs (2DL and 3DL, whereas the presence of short cytoplasmic tails corresponds to the activating KIR receptors (2DS and 3DS.These polymorphic receptors interact with specific motifs on human leukocyte antigen (HLA class I molecules, modulate NK cytolytic activity. Some KIRs are known to interact with HLA-C molecules of target cells, HLA-Bw4 molecules and HLA-A3/11. For some KIRs the corresponding ligands are still unknown.

  19. Development of radiodiagnostics for image diagnosis of intracerebral dopamine receptor

    Fujita, Motoi; Kitamura, Hideaki; Nakajima, Takashi [Saigata, National Hospital, Niigata (Japan)

    1998-02-01

    Single photon emission tomography (SPECT) able to evaluate the local blood flow in the brain is a safety and effective system for clinical diagnosis and pathological evaluation of incurable neulopsychotic diseases. Development of receptor imaging agents for SPECT, which has not been approved are progressing now. Using gerbits as an animal model for cerebrovascular diseases, an investigation was made on {sup 125}I-Iomazenil (Ro16-0154), an antagonist of benzodiazepin receptor in CNS as well as dopamine receptor ligands. {sup 125}I-Iomazenil was found to markedly accumulate in the regions; cerebral cortex (especially, layer VI and V), amygdala, thalamus, hypothalamus, nigra, cerebellar cortex, etc., where benzodiazepin is specifically localized. The accumulation was inhibited by preadministered flumazenil, indicating that {sup 125}I-Iomazenil can bind to the benzodiazepin receptor in CNS. The present study demonstrated that the late images of {sup 123}I-Iomazenil-SPECT are useful for detecting a lesion in the crebral cortex and cerabellar one, but it was unable to image out a lesion in the dentate-red nuclei due to DRPLA or Joseph disease. Therefore, {sup 123}I-Iomazenil was thought to be a valuable radiomedicine for imaging out and pathological evaluation. (M.N.)

  20. Receptores de progesterona en meningioma.

    Herminio Ojeda Di Ninno

    1995-04-01

    Full Text Available Objetivo: Determinar la presencia de los receptores de progesterona en meningiomas y su frecuencia mediante la inmunohistoquímica. Material y Métodos: Se analizaron 24 muestras provenientes de pacientes intervenidos quirúrgicamente en el Instituto Nacional de Enfermedades Neoplásicas entre los años 1990 y 1992 con diagnóstico anatomopatológico de meningioma. La determinación de los receptores se hizo mediante una técnica de inmunohistoquímica rápida que permite el estudio de tejidos fijados previamente en parafina. Resultados: De los 24 casos estudiados, nueve resultaron ser positivos en la determinación de receptores de progesterona (37%. Se pudo observar un marcado predominio dentro del grupo femenino quienes constituyeron 8/9 casos positivos. Conclusiones: El empleo de esta reciente técnica de inmunohistoquímica aplicada a tejido de fijado en parafina, nos ha permitido confirmar la presencia de receptores de progesterona en meningiomas con una frecuencia elevada que creemos amerita un estudio más amplio de manera sistemática que incluya la intervención terapéutica mediante el uso de antiprogestágenos, como el Mifepristone o RU 486. De este estudio podrían beneficiarse no sólo pacientes operados recientemente sino aquellos que, intervenidos en el pasado sean detectados como portadores de receptores de progesterona mediante la aplicación de esta novedosa técnica (Rev Med Hered 1995; 6: 121-130.

  1. A new family of insect tyramine receptors

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine...

  2. Imaging of receptors in clinical neurosciences

    Korf, J

    This article deals with the question why should one determine receptors in the brain with positron and single photon emission tomography (PET and SPECT, respectively). Radiopharmaceuticals for a wide variety of receptors are available now. Receptors studies with PET and SPECT have thus far focused

  3. Receptor conversion in distant breast cancer metastases

    Hoefnagel, L.D.C.

    2013-01-01

    The routine pathological work-up of breast cancer includes the evaluation of the estrogen receptor (ERα), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) which reveals biological information about the tumour as well as provides predictive biomarkers regarding hormonal

  4. Molecular pharmacology of human NMDA receptors

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard

    2012-01-01

    N-methyl-d-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical ani...

  5. Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity

    Peleg, S.; Schrader, W.T.; O'Malley, B.W.

    1988-01-01

    DNA binding activity of chicken progesterone receptor B form (PRB) and A form (PRA) has been examined. This activity is strongly dependent upon the presence of thiols in the buffer. Stability studies showed that PRB was more sensitive to oxidation that was PRA. Receptor preparations were fractionated by DNA-cellulose chromatography to DNA-positive and DNA-negative subpopulations, and sulfhydryl groups were quantified on immunopurified receptor by labeling with [ 3 H]-N-ethylmaleimide. Labeling of DNA-negative receptors with [ 3 H]-N-ethylmaleimide showed 21-23 sulfhydryl groups on either PRA or PRB form when the proteins were reduced and denatured. A similar number was seen without reduction if denatured DNA-positive receptor species were tested. In contrast, the DNA-negative PRB had only 10-12 sulfhydryl groups detectable without reduction. A similar number (12-13 sulfhydryl groups) was found for PRA species that lost DNA binding activity after exposure to a nonreducing environment in vitro. The authors conclude that the naturally occurring receptor forms unable to bind to DNA, as well as receptor forms that have lost DNA binding activity due to exposure to nonreducing environment in vitro, contain 10-12 oxidized cysteine residues, likely present as disulfide bonds. Since they were unable to reduce the disulfide bonds when the native DNA-negative receptor proteins were treated with dithiothreitol (DTT), they speculate that irreversible loss of DNA binding activity of receptor in vitro is due to oxidation of cysteine residues that are not accessible to DTT in the native state

  6. Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX†

    Kobayashi, Mime; Yu, Ruth T.; Yasuda, Kunio; Umesono, Kazuhiko

    2000-01-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor β (RARβ). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARβ2 promoter. The region surrounding the transcription start site of the avian RARβ2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARβ2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARβ gene in the eye. PMID:11073974

  7. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX.

    Kobayashi, M; Yu, R T; Yasuda, K; Umesono, K

    2000-12-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.

  8. Ratchet due to broken friction symmetry

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...... be provided with sonic internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments...... with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion, In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments, Despite the setup being...

  9. Degradation of insulating ceramics due to irradiation

    Kobayashi, Tomohiro; Terai, Takayuki; Yoneoka, Toshiaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Radiation-induced electrical degradation was investigated on single crystal alumina under 2.2 MeV electron irradiation with a dose rate of 5.7 x 10{sup 5} Gy/s and an electrical field of 1.6 x 10{sup 5} V/m at 773 K. After irradiation, electrical resistivity both on the surface and in the bulk decreased in the temperature range of 300 to 773 K. Substantial resistivity decreased from the initial value due to the irradiation, the degradation ratio was much smaller than the case of poly-crystalline specimens. On the other hands, surface resistivity decreased with increasing temperature for measurement with an abrupt change by 4 orders of magnitude around 600 K, and it showed thermal hysteresis. (author)

  10. Fuel bundle movement due to reverse flow

    Wahba, N N; Akalin, O [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    When a break occurs in the inlet feeder or inlet header, the rapid depressurization will cause the channel flow to reverse forcing the string of bundles to accelerate and impact with upstream shield plug. A model has been developed to predict the bundle motion due to the channel flow reversal. The model accounts for various forces acting on the bundle. A series of five reverse flow, bundle acceleration experiments have been conducted simulating a break in the inlet feeder of a CANDU fuel channel. The model has been validated against the experiments. The predicted impact velocities are in good agreement with the measured values. It is demonstrated that the model may be successfully used in predicting bundle relocation timing following a large LOCA (loss of coolant). (author). 7 refs., 3 tabs., 11 figs.

  11. Dysphagia due to Diffuse Idiopathic Skeletal Hyperostosis

    Masafumi Ohki

    2012-01-01

    Full Text Available Diffuse idiopathic skeletal hyperostosis (DISH is usually asymptomatic. However, rarely, it causes dysphagia, hoarseness, dyspnea, snoring, stridor, and laryngeal edema. Herein, we present a patient with DISH causing dysphagia. A 70-year-old man presented with a 4-month history of sore throat, dysphagia, and foreign body sensation. Flexible laryngoscopy revealed a leftward-protruding posterior wall in the hypopharynx. Computed tomography and magnetic resonance imaging revealed a bony mass pushing, anteriorly, on the posterior hypopharyngeal wall. Ossification included an osseous bridge involving 5 contiguous vertebral bodies. Dysphagia due to DISH was diagnosed. His symptoms were relieved by conservative therapy using anti-inflammatory drugs. However, if conservative therapy fails and symptoms are severe, surgical treatments must be considered.

  12. Acute Paraplegia due to Thoracic Hematomyelia

    Aykut Akpınar

    2016-01-01

    Full Text Available Spontaneous intraspinal intramedullary hemorrhage is a rare entity with the acute onset of neurologic symptoms. The etiology of idiopathic spontaneous hematomyelia (ISH is unknown, and there are few published case reports. Hematomyelia is mostly associated with trauma, but the other nontraumatic etiologies are vascular malformations, tumors, bleeding disorders, syphilis, syrinx, and myelitis. MRI is a good choice for early diagnosis. Hematomyelia usually causes acute spinal cord syndrome due to the compression and destruction of the spinal cord. A high-dose steroid treatment and surgical decompression and evacuation of hematoma are the urgent solution methods. We present idiopathic spontaneous hematomyelia of a previously healthy 80-year-old male with a sudden onset of back pain and paraplegia.

  13. Fractures due to insufficient pelvic girdle

    Garcia Aguayo, F.J.; Martinez Almagro, A.

    1995-01-01

    Eleven cases are presented of postmenopausal women with a total of 37 fractures due to insufficient pelvic girdle: 15 located in sacrum, ten in the pubic rami, four in ilium proximal to the sacroiliac joint, three in iliac fossa, two in iliac tuberosity and three in the public body. Eight of the patients were diagnosed over a period of six years when seeking medical attention for bone pain. The other three were diagnosed retrospectively among a group of 33 cancer patients (the majority having having breast cancer) who presented positive pelvic radionuclide bone scan. CT was superior to conventional radiology in detecting fractures of this type, especially those of sacrum and ilium. Radionuclide bone scan was highly sensitive but its specificity was low, requiring back-up radiology and above all CT to establish the differential diagnosis with respect to other types of lesions, especially metastases. (Author) 14 refs

  14. Small Bowel Obstruction due to Intestinal Xanthomatosis

    L. E. Barrera-Herrera

    2015-01-01

    Full Text Available Vast majority of bowel obstruction is due to postoperative adhesions, malignancy, intestinal inflammatory disease, and hernias; however, knowledge of other uncommon causes is critical to establish a prompt treatment and decrease mortality. Xanthomatosis is produced by accumulation of cholesterol-rich foamy macrophages. Intestinal xanthomatosis is an uncommon nonneoplastic lesion that may cause small bowel obstruction and several cases have been reported in the English literature as obstruction in the jejunum. We report a case of small intestinal xanthomatosis occurring in a 51-year-old female who presented with one day of copious vomiting and intermittent abdominal pain. Radiologic images revealed jejunal loop thickening and inflammatory changes suggestive of foreign body obstruction, diagnostic laparoscopy found two strictures at the jejunum, and a pathologic examination confirmed a segmental small bowel xanthomatosis. This case illustrates that obstruction even without predisposing factors such as hyperlipidemia or lymphoproliferative disorders.

  15. Amplitude growth due to random, correlated kicks

    Michelotti, L.; Mills, F.

    1989-03-01

    Historically, stochastic processes, such as gas scattering or stochastic cooling, have been treated by the Fokker-Planck equation. In this approach, usually considered for one dimension only, the equation can be considered as a continuity equation for a variable which would be a constant of the motion in the absence of the stochastic process, for example, the action variable, I = ε/2π for betatron oscillations, where ε is the area of the Courant-Snyder ellipse, or energy in the case of unbunched beams, or the action variable for phase oscillations in case the beam is bunched. A flux, /Phi/, including diffusive terms can be defined, usually to second order. /Phi/ = M 1 F(I) + M 2 ∂F/∂I + /hor ellipsis/. M 1 and M 2 are the expectation values of δI and (δI) 2 due to the individual stochastic kicks over some period of time, long enough that the variance of these quantities is sufficiently small. Then the Fokker-Planck equation is just ∂F/∂I + ∂/Phi//∂I = 0. In many cases those where the beam distribution has already achieved its final shape, it is sufficient to find the rate of increase of by taking simple averages over the Fokker-Planck equation. At the time this work was begun, there was good knowledge of the second moment for general stochastic processes due to stochastic cooling theory, but the form of the first moment was known only for extremely wideband processes. The purposes of this note are to derive an expression relating the expected single particle amplitude growth to the noise autocorrelation function and to obtain, thereby, the form of M 1 for narrow band processes. 4 refs

  16. The emerging role of promiscuous 7TM receptors as chemosensors for food intake.

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2010-01-01

    In recent years, several highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized of which many are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids (FFAs) and are expressed in taste tissue, the gastrointestinal (GI) tract, endocrine glands, adipose tissue, and/or kidney. This has led to the hypothesis that these receptors may act as sensors of food intake modulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. In the present review, we describe the molecular mechanisms of nutrient-sensing of the calcium-sensing receptor (CaR), the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3-sensing L-α-amino acids; the carbohydrate-sensing T1R2/T1R3 receptor; the proteolytic degradation product sensor GPR93 (also termed GPR92); and the FFA sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. Due to their omnipresent nature, the natural ligands have had limited usability in pharmacological/physiological studies which has hampered the elucidation of the physiological function and therapeutic prospect of their receptors. However, an increasing number of subtype-selective ligands and/or receptor knockout mice are being developed which at least for some of the receptors have validated them as promising drug targets in, for example, type II diabetes. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  18. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  19. Disease: H00603 [KEGG MEDICUS

    Full Text Available pertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. ... JOURNAL ... Endocrinology 144:528-33 (2003) DOI:10.1210/en.2002-220708

  20. The role of purinergic receptors in stem cell differentiation

    Constanze Kaebisch

    2015-01-01

    Full Text Available A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.