WorldWideScience

Sample records for mineralocorticoid receptor blockade

  1. Effects of Mineralocorticoid Receptors Blockade on FearMemory Reconsolidation in Rats

    Directory of Open Access Journals (Sweden)

    Abbas Ali Vafaei

    2011-08-01

    Full Text Available Reconsolidation memory is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. Previous studies have shown that mineralocorticoid receptors (MRs modulate distinct phases of learning and memory, which display a high concentration and distinct distribution in the hippocampus. Moreover, we found no studies that examined the role of hippocampal MRs in fear memory reconsolidation. Here, we investigated the effect of MRs blockade on fear memory reconsolidation in rats. Additionally, to test whether blockade of protein synthesis would disrupt fear memory reconsolidation in our paradigm, we tested the effect of cycloheximide, an inhibitor of protein synthesis after memory reactivation. Results indicated that systemic as well as intra-hippocampal administrations of the MR antagonist spironolactone immediately following memory reactivation did not affect on post-retrieval long-term memory. Cycloheximide given after the reactivation treatment produced a strong impairment that persisted over test sessions. These findings indicate that MRs are not required for reconsolidation of fear-based memory.

  2. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  3. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  4. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  5. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory.

    Science.gov (United States)

    Cornelisse, Sandra; Joëls, Marian; Smeets, Tom

    2011-12-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.

  6. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  7. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory

    NARCIS (Netherlands)

    Cornelisse, S.; Joëls, M.; Smeets, T.

    2011-01-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be

  8. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans.

    Science.gov (United States)

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-04-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.

  9. Differential effects of mineralocorticoid blockade on the hypothalamo-pituitary-adrenal axis in pregnant and nonpregnant ewes

    Science.gov (United States)

    Lingis, Melissa; Richards, Elaine M.

    2011-01-01

    During pregnancy, plasma ACTH and cortisol are chronically increased; this appears to occur through a reset of hypothalamo-pituitary-adrenal (HPA) activity. We have hypothesized that differences in mineralocorticoid receptor activity in pregnancy may alter feedback inhibition of the HPA axis. We tested the effect of MR antagonism in pregnant and nonpregnant ewes infused for 4 h with saline or the MR antagonist canrenoate. Pregnancy significantly increased plasma ACTH, cortisol, angiotensin II, and aldosterone. Infusion of canrenoate increased plasma ACTH, cortisol, and aldosterone in both pregnant and nonpregnant ewes; however, the temporal pattern of these responses differed between these two reproductive states. In nonpregnant ewes, plasma ACTH and cortisol transiently increased at 1 h of infusion, whereas in pregnant ewes the levels gradually increased and were significantly elevated from 2 to 4 h of infusion. MR blockade increased plasma aldosterone from 2 to 4 h in the pregnant ewes but only at 4 h in the nonpregnant ewes. In both pregnant and nonpregnant ewes, the increase in plasma aldosterone was significantly related to the timing and magnitude of the increase in plasma potassium. The results indicate a differential effect of MR activity in pregnant and nonpregnant ewes and suggest that the slow changes in ACTH, cortisol, and aldosterone are likely to be related to blockade of MR effects in the kidney rather than to effects of MR blockade in hippocampus or hypothalamus. PMID:21205934

  10. Blocking mineralocorticoid receptors prior to retrieval reduces contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    Full Text Available BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs and glucocorticoid receptors (GRs respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2; tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3 and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.

  11. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy

    NARCIS (Netherlands)

    Roscioni, Sara S.; de Zeeuw, Dick; Bakker, Stephan J. L.; Lambers Heerspink, Hiddo J.

    2012-01-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients

  12. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    Science.gov (United States)

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice

    NARCIS (Netherlands)

    Zhou, M.; Bakker, E.H.M.; Velzing, E.; Berger, S.; Oitzl, M.; Joëls, M.; Krugers, H.J.

    2010-01-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory

  14. A SELECTIVE ANTAGONIST OF MINERALOCORTICOID RECEPTOR EPLERENONE IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    B. B. Gegenava

    2015-01-01

    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  15. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    DEFF Research Database (Denmark)

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels

    2018-01-01

    afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion...... vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused......Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal...

  16. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    Science.gov (United States)

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia

    NARCIS (Netherlands)

    Lai, Maggie; Horsburgh, Karen; Bae, Sung-Eun; Carter, Roderick N.; Stenvers, Dirk J.; Fowler, Jill H.; Yau, Joyce L.; Gomez-Sanchez, Celso E.; Holmes, Megan C.; Kenyon, Christopher J.; Seckl, Jonathan R.; Macleod, Malcolm R.

    2007-01-01

    The nuclear mineralocorticoid receptor (MR), a high-affinity receptor for glucocorticoids, is highly expressed in the hippocampus where it underpins cognitive, behavioural and neuroendocrine regulation. Increased neuronal MR expression occurs early in the response to cellular injury in vivo and in

  18. Common functional mineralocorticoid receptor polymorphisms modulate the cortisol awakening response : Interaction with SSRIs

    NARCIS (Netherlands)

    Klok, Melanie D.; Vreeburg, Sophie A.; Penninx, Brenda W. J. H.; Zitman, Frans G.; de Kloet, E. Ron; DeRijk, Roel H.

    Background: Cortisol controls the activity of the hypothalamic pituitary adrenal (HPA) axis during stress and during the circadian cycle through central mineralocorticoid (MR) and glucocorticoid receptors (GR). Changes in MR and GR functioning, therefore, may affect HPA axis activity. In this study

  19. The Low-Renin Hypertension Phenotype: Genetics and the Role of the Mineralocorticoid Receptor

    Directory of Open Access Journals (Sweden)

    Rene Baudrand

    2018-02-01

    Full Text Available A substantial proportion of patients with hypertension have a low or suppressed renin. This phenotype of low-renin hypertension (LRH may be the manifestation of inherited genetic syndromes, acquired somatic mutations, or environmental exposures. Activation of the mineralocorticoid receptor is a common final mechanism for the development of LRH. Classically, the individual causes of LRH have been considered to be rare diseases; however, recent advances suggest that there are milder and “non-classical” variants of many LRH-inducing conditions. In this regard, our understanding of the underlying genetics and mechanisms accounting for LRH, and therefore, potentially the pathogenesis of a large subset of essential hypertension, is evolving. This review will discuss the potential causes of LRH, with a focus on implicated genetic mechanisms, the expanding recognition of non-classical variants of conditions that induce LRH, and the role of the mineralocorticoid receptor in determining this phenotype.

  20. Influence of allelic variations in relation to norepinephrine and mineralocorticoid receptors on psychopathic traits: a pilot study

    Directory of Open Access Journals (Sweden)

    Guillaume Durand

    2018-03-01

    Full Text Available Background Past findings support a relationship between abnormalities in the amygdala and the presence of psychopathic traits. Among other genes and biomarkers relevant to the amygdala, norepinephrine and mineralocorticoid receptors might both play a role in psychopathy due to their association with traits peripheral to psychopathy. The purpose is to examine if allelic variations in single nucleotide polymorphisms related to norepinephrine and mineralocorticoid receptors play a role in the display of psychopathic traits and executive functions. Methods Fifty-seven healthy participants from the community provided a saliva sample for SNP sampling of rs5522 and rs5569. Participants then completed the Psychopathic Personality Inventory–Short Form (PPI-SF and the Tower of Hanoi. Results Allelic variations of both rs5522 and rs5569 were significant when compared to PPI-SF total score and the fearless dominance component of the PPI-SF. A significant result was also obtained between rs5522 and the number of moves needed to complete the 5-disk Tower of Hanoi. Conclusion This pilot study offers preliminary results regarding the effect of allelic variations in SNPs related to norepinephrine and mineralocorticoid receptors on the presence of psychopathic traits. Suggestions are provided to enhance the reliability and validity of a larger-scale study.

  1. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    NARCIS (Netherlands)

    ter Horst, J.P.; Mark, M.; Kentrop, J.; Arp, M.; van Veen, R.; de Kloet, E.R.; Oitzl, M.S.

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor

  2. Overexpression of mineralocorticoid receptors partially prevents chronic stress-induced reductions in hippocampal memory and structural plasticity

    NARCIS (Netherlands)

    Kanatsou, Sofia; Fearey, Brenna C.; Kuil, Laura E.; Lucassen, Paul J.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harm; Joels, Marian

    2015-01-01

    Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a

  3. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Directory of Open Access Journals (Sweden)

    Ollikainen Noah

    2007-02-01

    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  4. Corticosteroids stimulate the amphibious behavior in mudskipper: potential role of mineralocorticoid receptors in teleost fish.

    Science.gov (United States)

    Sakamoto, Tatsuya; Mori, Chie; Minami, Shogo; Takahashi, Hideya; Abe, Tsukasa; Ojima, Daisuke; Ogoshi, Maho; Sakamoto, Hirotaka

    2011-10-24

    It has long been held that cortisol, a glucocorticoid in many vertebrates, carries out both glucocorticoid and mineralocorticoid actions in teleost fish. However, 11-deoxycorticosterone (DOC) has been identified as a specific endogenous ligand for the teleostean mineralocorticoid receptor (MR). Furthermore, the expressions of MR mRNA are modest in the osmoregulatory organs, but considerably higher in the brain of most teleosts. These recent findings suggest that the mineralocorticoid system (DOC/MR) may carry out some behavioral functions in fish. To test this possibility, we examined the effects of cortisol and DOC administration in the amphibious behavior in mudskipper (Periophthalmus modestus) in vivo. It was found that mudskippers remained in the water for an increased period of time when they were immersed into 5 μM DOC or cortisol for 8h. Additionally, an exposure to 25 μM DOC for 4 to 8 h caused a decreased migratory frequency of mudskippers to the water, reflected a tendency to remain in the water. It was further observed that after 8 h of intracerebroventricular (ICV) injection with 0.3 pmol DOC or cortisol the staying period in the water increased in fish. The migratory frequency was decreased after ICV DOC injection which indicated that fishes stayed in the water. Concurrent ICV injections of cortisol with RU486 [a specific glucocorticoid-receptor (GR) antagonist] inhibited only the partial effects of cortisol. Together with no changes in the plasma DOC concentrations under terrestrial conditions, these results indicate the involvement of brain MRs as cortisol receptors in the preference for an aquatic habitat of mudskippers. Although the role of GR signaling cannot be excluded in the aquatic preference, our data further suggest that the MR may play an important role in the brain dependent behaviors of teleost fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Mineralocorticoid hypertension

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Hypertension affects about 10 - 25% of the population and is an important risk factor for cardiovascular and renal disease. The renin-angiotensin system is frequently implicated in the pathophysiology of hypertension, be it primary or secondary. The prevalence of primary aldosteronism increases with the severity of hypertension, from 2% in patients with grade 1 hypertension to 20% among resistant hypertensives. Mineralcorticoid hypertension includes a spectrum of disorders ranging from renin-producing pathologies (renin-secreting tumors, malignant hypertension, coarctation of aorta, aldosterone-producing pathologies (primary aldosteronism - Conns syndrome, familial hyperaldosteronism 1, 2, and 3, non-aldosterone mineralocorticoid producing pathologies (apparent mineralocorticoid excess syndrome, Liddle syndrome, deoxycorticosterone-secreting tumors, ectopic adrenocorticotropic hormones (ACTH syndrome, congenitalvadrenal hyperplasia, and drugs with mineraocorticoid activity (locorice, carbenoxole therapy to glucocorticoid receptor resistance syndromes. Clinical presentation includes hypertension with varying severity, hypokalemia, and alkalosis. Ratio of plasma aldosterone concentraion to plasma renin activity remains the best screening tool. Bilateral adrenal venous sampling is the best diagnostic test coupled with a CT scan. Treatment is either surgical (adrenelectomy for unilateral adrenal disease versus medical therapy for idiopathic, ambiguous, or bilateral disease. Medical therapy focuses on blood pressure control and correction of hypokalemia using a combination of anti-hypertensives (calcium channel blockers, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers and potassium-raising therapies (mineralcorticoid receptor antagonist or potassium sparing diuretics. Direct aldosterone synthetase antagonists represent a promising future therapy.

  6. Dual Blockade of the Renin-angiotensin-aldosterone System in Type 2 Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Yan-Huan Feng

    2016-01-01

    Full Text Available Objective: To examine the efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system (RAAS among patients with type 2 diabetic kidney disease. Data Sources: We searched the major literature repositories, including the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE, for randomized clinical trials published between January 1990 and October 2015 that compared the efficacy and safety of the use of dual blockade of the RAAS versus the use of monotherapy, without applying any language restrictions. Keywords for the searches included "diabetic nephropathy," "chronic kidney disease," "chronic renal insufficiency," "diabetes mellitus," "dual therapy," "combined therapy," "dual blockade," "renin-angiotensin system," "angiotensin-converting enzyme inhibitor," "angiotensin-receptor blocker," "aldosterone blockade," "selective aldosterone blockade," "renin inhibitor," "direct renin inhibitor," "mineralocorticoid receptor blocker," etc. Study Selection: The selected articles were carefully reviewed. We excluded randomized clinical trials in which the kidney damage of patients was related to diseases other than diabetes mellitus. Results: Combination treatment with an angiotensin-converting enzyme inhibitor supplemented by an angiotensin II receptor blocking agent is expected to provide a more complete blockade of the RAAS and a better control of hypertension. However, existing literature has presented mixed results, in particular, related to patient safety. In view of this, we conducted a comprehensive literature review in order to explain the rationale for dual blockade of the RAAS, and to discuss the pros and cons. Conclusions: Despite the negative results of some recent large-scale studies, it may be immature to declare that the dual blockade is a failure because of the complex nature of the RAAS surrounding its diversified functions and utility. Further trials are warranted to study the combination therapy as an

  7. Regulación de la acción de la Aldosterona al nivel del receptor mineralocorticoide

    Directory of Open Access Journals (Sweden)

    Roberto Franco Saenz

    2001-08-01

    Full Text Available

    Se revisan nuevos conceptos acerca de la secreción de aldosterona y de la interacción de la aldosterona con el receptor mineralocorticoide así como el papel de la enzima 11b-hidroxisteroid dehidrogenasa tipo 2 (11b-HSD-2 en la protección del receptor mineralocorticoides contra la acción de los glucocorticoides endógenos. Alteraciónes en la actividad de esta enzima causan hipertensión arterial en humanos y animales de experimentación. En vista del papel crítico que esta enzima juega en la reabsorción de sodio y el volumen sanguíneo en este estudio se investiga la regulación del gen de la 11b-HSD-2 en el riñón de la rata Dahl, un modelo experimental de hipertensión genética sensible al sodio dietético y se muestra que el sodio dietético aumenta la expresión del gen en el riñón de estas ratas.

    Introducción
    La aldosterona es una hormona mineralocorticoide producida por las células glomerulosas de la corteza adrenal. La aldosterona actúa en el riñón, en el túbulo convoluto distal causando retención de sodio y eliminación de potasio y iones de hidrógeno. La aldosterona juega un papel principal en el mantenimiento del volumen sanguíneo y de la presión arterial. En este manuscrito se revisan nuevos conceptos en la regulación de la secreción de aldosterona y el papel de la enzima 11b-hidroxisteroid dehydrogenasa (11b-HSD en la acción de la aldosterona y en la protección del receptor mineralocorticoide contra los glucocorticoides.

    También se reportan estudios de la regulación del gen de la 11b-HSD-2 en el riñón de la rata Dahl, un modelo experimental de hipertensión genética con sensibilidad al sodio dietético.

  8. Renoprotective effects of mineralocorticoid receptor blockers in patients with proteinuric kidney diseases.

    Science.gov (United States)

    Morales, Enrique; Millet, Victor Gutiérrez; Rojas-Rivera, Jorge; Huerta, Ana; Gutiérrez, Eduardo; Gutiérrez-Solís, Elena; Egido, Jesús; Praga, Manuel

    2013-02-01

    Several studies have demonstrated a short-term antiproteinuric effect of mineralocorticoid receptor blockers (MRB) on proteinuric kidney diseases, but no information is available about the long-term persistence (>1 year) of such reduction in proteinuria and the long-term effects of MRB on renal function. We prospectively studied the effects of adding spironolactone (25 mg/day) to 87 patients who maintained proteinuria higher than 1 g/day in spite of renin-angiotensin system blockade. The mean follow-up was 25 ± 15 (1-84) months. Estimated glomerular filtration rate (eGFR) showed an acute fall in the first month of treatment (5.1 ± 9.4 mL/min/1.73 m(2)), but it remained stable thereafter (+0.04 ± 0.7 mL/min/1.73 m(2)/month), with a significant difference with respect to the eGFR slope during the 12-month pre-treatment period. The initial eGFR fall predicted a more stable course of renal function, the higher the eGFR initial fall, the better the long-term evolution of eGFR. Proteinuria showed an important and sustained reduction since the first month of treatment. At the end of follow-up, it had decreased by 61% (43-77%) with respect to baseline values. The antiproteinuric and renoprotective influence of spironolactone was also observed in diabetic patients and in patients with renal function impairment, although tolerance was poorer among the latter. Spironolactone induces an initial acute fall in eGFR that predicts a later favourable influence on the course of renal function and a remarkable and sustained reduction in proteinuria.

  9. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

    Directory of Open Access Journals (Sweden)

    Se Eun Lee

    2011-02-01

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5, in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

  10. Apparent mineralocorticoid excess and the long term treatment of genetic hypertension.

    Science.gov (United States)

    Razzaghy-Azar, Maryam; Yau, Mabel; Khattab, Ahmed; New, Maria I

    2017-01-01

    Apparent mineralocorticoid excess (AME) is a genetic disorder causing severe hypertension, hypokalemia, and hyporeninemic hypoaldosteronism owing to deficient 11 beta-hydroxysteroid dehydrogenase type-2 (11βHSD2) enzyme activity. The 11βHSD2 enzyme confers mineralocorticoid receptor specificity for aldosterone by converting cortisol to its inactive metabolite, cortisone and inactivating the cortisol-mineralocorticoid receptor complex. The 20year follow-up of a consanguineous Iranian family with three sibs affected with AME shows the successes and pitfalls of medical therapy with spironolactone. The three sibs, (female, male, female) were diagnosed at the ages of 14, 11, and 4 years, respectively. At diagnosis, hypertensive retinopathy and left ventricular hypertrophy were present in the eldest female and retinopathy was noted in the male sib. Spironolactone treatment resulted in decreased blood pressure and rise in serum potassium levels. The older female, age 36, developed reduced left ventricular function with mitral and tricuspid regurgitation and renal failure after her second pregnancy. She was treated with renal transplantation resulting in cure of AME with decreased blood pressure and weaning from antihypertensives. Her younger sibs, age 34 and 26, do not have end organ damage. Early and vigilant treatment improves morbidity in patients with AME. Mineralocorticoid receptor antagonists normalize blood pressure, correct hypokalemia and reduce hypertensive end-organ damage in patients with AME. Low dose dexamethasone can be considered, though the response may be variable. Future directions of therapy include selective mineralocorticoid antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task

    NARCIS (Netherlands)

    Souza, R.R.; Dal Bó, S.; de Kloet, E.R.; Oitzl, M.S.; Carobrez, A.P.

    2014-01-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that

  12. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  13. A systematic review and meta-analysis of the impact of mineralocorticoid receptor antagonists on glucose homeostasis

    OpenAIRE

    Korol, Sandra; Mottet, Fannie; Perreault, Sylvie; Baker, William L.; White, Michel; de Denus, Simon

    2017-01-01

    Abstract Background: Spironolactone, a nonselective mineralocorticoid receptor antagonist (MRA), may have a deleterious effect on glycemia. The objective of this review was to assess current knowledge on MRAs’ influence (spironolactone, eplerenone, and canrenone) on glucose homeostasis and the risk of diabetes. Method: A systematic review was conducted using the Medline database on articles published from 1946 to January 2017 that studied the effects of MRAs on any glucose-related endpoints, ...

  14. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  15. Mineralocorticoid and apparent mineralocorticoid syndromes of secondary hypertension.

    Science.gov (United States)

    Ardhanari, Sivakumar; Kannuswamy, Rohini; Chaudhary, Kunal; Lockette, Warren; Whaley-Connell, Adam

    2015-05-01

    The mineralocorticoid aldosterone is a key hormone in the regulation of plasma volume and blood pressure in man. Excessive levels of this mineralocorticoid have been shown to mediate metabolic disorders and end-organ damage more than what can be attributed to its effects on blood pressure alone. Inappropriate excess levels of aldosterone contribute significantly to the cardiorenal metabolic syndrome and target organ injury that include atherosclerosis, myocardial hypertrophy, fibrosis, heart failure, and kidney disease. The importance of understanding the role of excess mineralocorticoid hormones such as aldosterone in resistant hypertension and in those with secondary hypertension should be visited. Primary aldosteronism is one of the commonly identified causes of hypertension and is treatable and/or potentially curable. We intend to review the management of mineralocorticoid-induced hypertension in the adult population along with other disease entities that mimic primary aldosteronism. Copyright © 2015 National Kidney Foundation, Inc. All rights reserved.

  16. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  17. Mineralocorticoid receptor haplotype, oral contraceptives and emotional information processing.

    Science.gov (United States)

    Hamstra, D A; de Kloet, E R; van Hemert, A M; de Rijk, R H; Van der Does, A J W

    2015-02-12

    Oral contraceptives (OCs) affect mood in some women and may have more subtle effects on emotional information processing in many more users. Female carriers of mineralocorticoid receptor (MR) haplotype 2 have been shown to be more optimistic and less vulnerable to depression. To investigate the effects of oral contraceptives on emotional information processing and a possible moderating effect of MR haplotype. Cross-sectional study in 85 healthy premenopausal women of West-European descent. We found significant main effects of oral contraceptives on facial expression recognition, emotional memory and decision-making. Furthermore, carriers of MR haplotype 1 or 3 were sensitive to the impact of OCs on the recognition of sad and fearful faces and on emotional memory, whereas MR haplotype 2 carriers were not. Different compounds of OCs were included. No hormonal measures were taken. Most naturally cycling participants were assessed in the luteal phase of their menstrual cycle. Carriers of MR haplotype 2 may be less sensitive to depressogenic side-effects of OCs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease

    DEFF Research Database (Denmark)

    Pitt, Bertram; Kober, Lars; Ponikowski, Piotr

    2013-01-01

    Mineralocorticoid receptor antagonists (MRAs) improve outcomes in patients with heart failure and reduced left ventricular ejection fraction (HFrEF), but their use is limited by hyperkalaemia and/or worsening renal function (WRF). BAY 94-8862 is a highly selective and strongly potent non-steroida......Mineralocorticoid receptor antagonists (MRAs) improve outcomes in patients with heart failure and reduced left ventricular ejection fraction (HFrEF), but their use is limited by hyperkalaemia and/or worsening renal function (WRF). BAY 94-8862 is a highly selective and strongly potent non......-steroidal MRA. We investigated its safety and tolerability in patients with HFrEF associated with mild or moderate chronic kidney disease (CKD)....

  19. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    Science.gov (United States)

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  20. Rationale and design of MinerAlocorticoid Receptor antagonist Tolerability Study-Heart Failure (ARTS-HF)

    DEFF Research Database (Denmark)

    Pitt, Bertram; Anker, Stefan D; Böhm, Michael

    2015-01-01

    dysfunction. METHODS AND RESULTS: The MinerAlocorticoid Receptor antagonist Tolerability Study-Heart Failure (ARTS-HF; NCT01807221) is a multicentre, randomized, double-blind, active-comparator-controlled, six-parallel-group, phase 2b dose-finding study. In total, 1060 patients with HFrEF and concomitant type...... 2 diabetes mellitus and/or chronic kidney disease (CKD) will be randomized within 7 days of emergency presentation to hospital for worsening chronic HF to receive finerenone (one of five doses in the range 2.5-20.0 mg once daily) or eplerenone (25 mg every second day to 50 mg once daily for 90 days...

  1. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    Science.gov (United States)

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  2. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  3. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  4. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Science.gov (United States)

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  5. Underexpression of mineralocorticoid receptor in colorectal carcinomas and association with VEGFR-2 overexpression.

    Science.gov (United States)

    Di Fabio, Francesco; Alvarado, Carlos; Majdan, Agnieszka; Gologan, Adrian; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2007-11-01

    The human mineralocorticoid receptor (MR) is a steroid receptor widely expressed in colorectal mucosa. A significant role for the MR in the reduction of vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA levels has been demonstrated in vitro. To evaluate a potential contribution of MR to colorectal carcinoma progression, we analyzed the expression of MR in relation to VEGFR-2. Fresh human colorectal cancer tissue and adjacent normal mucosa were harvested from 48 consecutive patients. MR and VEGFR-2 mRNA expression levels were determined by real-time reverse transcriptase-polymerase chain reaction and correlated with clinicopathological parameters. A decline of MR expression was observed in all carcinomas compared to normal mucosa. Expression of MR was a median of 11-fold lower in carcinoma compared to the normal mucosa, irrespective of the location, size, stage, and differentiation. MR was a median of 20-fold underexpressed in carcinomas with VEGFR-2 overexpression vs only 9-fold in carcinomas with VEGFR-2 underexpression (p = 0.035, Mann-Whitney test). These findings support the hypothesis that reduction of MR expression may be one of the early events involved in colorectal carcinoma progression. The inverse association between MR and VEGFR-2 expression in carcinoma suggests a potential tumor-suppressive function for MR.

  6. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  7. Prevention of atherosclerosis by specific AT1-receptor blockade with candesartan cilexetil

    Directory of Open Access Journals (Sweden)

    Vasilios Papademetriou

    2001-03-01

    Full Text Available Several studies indicate that blockade of the renin-angiotensin-aldosterone system (RAAS can prevent atherosclerosis and vascular events, but the precise mechanisms involved are still unclear. In this study, we investigated the effect of the AT 1-receptor blocker, candesartan, in the prevention of atherosclerosis in Watanabe heritable hyperlipidaemic (WHHL rabbits and also the effect of AT1-receptor blockade in the uptake of oxidised LDL by macrophage cell cultures. In the first set of experiments, 12 WHHL rabbits were randomly assigned to three groups: placebo, atenolol 5 mg/kg daily or candesartan 2 mg/kg daily for six months. Compared with controls and atenolol-treated rabbits, candesartan treatment resulted in a significant 50—60% reduction of atherosclerotic plaque formation and a 66% reduction in cholesterol accumulation in the thoracic aorta.Studies in macrophage cultures indicated that candesartan prevented uptake of oxidised LDL-(oxLDL-cholesterol by cultured macrophages. Candesartan inhibited the uptake of oxLDL in a dose-dependent manner, reaching a maximum inhibition of 70% at concentrations of 5.6 µg/ml. Further studies in other animal models and well-designed trials in humans are warranted to further explore the role of AT1-receptor blockade in the prevention of atherosclerosis.

  8. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    Directory of Open Access Journals (Sweden)

    Roderick J Tan

    Full Text Available Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA and endothelin receptor B (ETB. Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p. or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p., atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios. Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  9. Role and physiological actions of the mineralo-corticoids; Role et actions physiologiques des mineralo-corticoides

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This review recalls first of all the history of the discovery of aldosterone; it then defines the concept of mineralo-corticoid on the biological level; the physiological effects of aldosterone are compared with those of desoxycorticosterone, which have been known for a long time. The part played by the mineralo-corticoids in maintaining the hydro-mineral balance is then discussed, particularly in the light of information provided by acute deficiency or primitive hyperaldosteronism; the importance of the correlations linking the post-hypophysis and suprarenal is underlined. The possible mechanisms of the action of mineralo-corticoids on the kidney are discussed in greater detail and a general plan of action is proposed. The physiological regulation of the secretion of mineralo-corticoids is then described, and the respective roles played in this secretion by different factors are discussed (ante-hypophysis, corticoids, plasmatic concentration of electrolytes, volume of extracellular liquids, etc...). Finally, the whole problem investigated is placed within the field of homeostasis (377 bibliographical references). (author) [French] Cette revue de la question rappelle d'abord l'historique de la decouverte de l'aldosterone; elle definit ensuite le concept de mineralo-corticoide sur le plan biologique; les effets physiologiques de l'aldosterone sont compares a ceux connus depuis longtemps de la desoxycorticosterone. Le role joue par les mineralo-corticoides dans le maintien de la balance hydrominerale est ensuite discute, notamment a la lumiere des informations fournies par l'insuffisance aigue ou l'hyperaldosteronisme primitif; l'importance des correlations liant posthypophyse et surrenale est soulignee. Les mecanismes possibles de l'action des mineralo-corticoides sur le rein sont discutes avec davantage de details et un schema general d'action est propose. La regulation physiologique de la secretion des mineralo-corticoides est ensuite exposee et les roles

  10. Role and physiological actions of the mineralo-corticoids; Role et actions physiologiques des mineralo-corticoides

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This review recalls first of all the history of the discovery of aldosterone; it then defines the concept of mineralo-corticoid on the biological level; the physiological effects of aldosterone are compared with those of desoxycorticosterone, which have been known for a long time. The part played by the mineralo-corticoids in maintaining the hydro-mineral balance is then discussed, particularly in the light of information provided by acute deficiency or primitive hyperaldosteronism; the importance of the correlations linking the post-hypophysis and suprarenal is underlined. The possible mechanisms of the action of mineralo-corticoids on the kidney are discussed in greater detail and a general plan of action is proposed. The physiological regulation of the secretion of mineralo-corticoids is then described, and the respective roles played in this secretion by different factors are discussed (ante-hypophysis, corticoids, plasmatic concentration of electrolytes, volume of extracellular liquids, etc...). Finally, the whole problem investigated is placed within the field of homeostasis (377 bibliographical references). (author) [French] Cette revue de la question rappelle d'abord l'historique de la decouverte de l'aldosterone; elle definit ensuite le concept de mineralo-corticoide sur le plan biologique; les effets physiologiques de l'aldosterone sont compares a ceux connus depuis longtemps de la desoxycorticosterone. Le role joue par les mineralo-corticoides dans le maintien de la balance hydrominerale est ensuite discute, notamment a la lumiere des informations fournies par l'insuffisance aigue ou l'hyperaldosteronisme primitif; l'importance des correlations liant posthypophyse et surrenale est soulignee. Les mecanismes possibles de l'action des mineralo-corticoides sur le rein sont discutes avec davantage de details et un schema general d'action est propose. La regulation physiologique de la secretion des mineralo-corticoides

  11. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    International Nuclear Information System (INIS)

    Lin, Xinchun; Bernloehr, Christian; Hildebrandt, Tobias; Stadler, Florian J.; Doods, Henri; Wu, Dongmei

    2016-01-01

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  12. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xinchun [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Bernloehr, Christian; Hildebrandt, Tobias [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Stadler, Florian J., E-mail: fjstadler@szu.edu.cn [Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060 (China); Doods, Henri [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Wu, Dongmei, E-mail: dongmeiwu@bellsouth.net [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Department of BIN Convergence Technology, Chonbuk National University (Korea, Republic of)

    2016-08-15

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  13. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, M.; Czernin, J.; Sun, K. [Univ. of California, Los Angeles, CA (United States)] [and others

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  14. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  15. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Science.gov (United States)

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  16. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark

    2005-01-01

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  17. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  18. Arctigenin antagonizes mineralocorticoid receptor to inhibit the transcription of Na/K-ATPase.

    Science.gov (United States)

    Cheng, Ye; Zhou, Meili; Wang, Yan

    2016-01-01

    Hypertension is one of the most important risk factors in cardiovascular disease and is the most common chronic disease. Mineralocorticoid receptor (MR) antagonists have been successfully used in clinic for the treatment of hypertension. Our study aims to investigate whether Arctigenin can antagonize MR and inhibit the transcription of Na/K-ATPase. The yeast two-hybrid assay was used to screen natural products and Arctigenin was identified as an MR antagonist. The direct binding of Arctigenin to MR was determined using assays based on surface plasmon resonance, differential scanning calorimetry and fluorescence quenching. Furthermore, results from mammalian one-hybrid and transcriptional activation experiments also confirmed that Arctigenin can potently antagonize MR in cells. We demonstrated that Arctigenin can decrease the level of Na/K-ATPase mRNA by antagonizing MR in HK-2 cells. Our findings show that Arctigenin can effectively decrease Na/K-ATPase transcription; thus highlight its potential as an anti-hypertensive drug lead compound. Our current findings demonstrate that Arctigenin is an antagonist of MR and effectively decreases the Na/K-ATPase 1 gene expression. Our work provides a hint for the drug discovery against cardiovascular disease.

  19. Menopause not aldosterone-to-renin ratio predicts blood pressure response to a mineralocorticoid receptor antagonist in primary care hypertensive patients.

    Science.gov (United States)

    Olivieri, Oliviero; Pizzolo, Francesca; Ciacciarelli, Alberto; Corrocher, Roberto; Signorelli, Denise; Falcone, Salvatore; Blengio, Gian S

    2008-09-01

    It has been suggested that hypertensive patients with raised aldosterone-to-renin ratio (ARR) are specifically sensitive to mineralocorticoid receptor antagonists (MRAs). We have previously shown that patients with an elevated ARR are relatively frequent in the setting of primary care. We therefore designed an interventional study to ascertain whether primary care hypertensive patients with an elevated ARR presented a superior response to MRA treatment than subjects with normal ratio. According to the previously observed distribution in general population, 1/3 and 2/3 of hypertensive patients with high or normal ARR, respectively, were treated with kanrenoate 50-100 mg/day for 2 months. To avoid uncontrolled blood pressure (BP), 49% of patients continued also "ARR-neutral" drugs such as verapamil and/or alpha-adrenergic blockers. Patients groups were matched for most features but an elevated ARR was more frequent in female than in male gender; moreover, 90% of women with raised ARR were in menopause. A clear reduction of BP values was recorded after both the first and the second month of treatment with kanrenoate, with the maximal effect obtained when the dosage titration at 100 mg/day was accomplished. However, patients previously identified by a raised ARR did not have a larger response to MRA treatment than patients with normal ratio. In contrast, MRA was twofold more effective in reducing SBP in women than in men (after 2 months of treatment -16.4 mm Hg vs.-8.2 mm Hg). These results suggest that postmenopausal hypertension is largely dependent on mineralocorticoid receptor activation and selectively sensitive to MRAs.

  20. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    Science.gov (United States)

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  1. Nephroprotective action of renin-angiotensin-aldosterone system blockade in chronic kidney disease patients: the landscape after ALTITUDE and VA NEPHRON-D trails.

    Science.gov (United States)

    Rutkowski, Boleslaw; Tylicki, Leszek

    2015-03-01

    The intervention in the renin-angiotensin-aldosterone system (RAAS) is currently the most effective strategy that combines blood pressure lowering and renoprotection. Several large, randomized, controlled trials evidenced the renoprotective potential of the angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) in nephropathies of almost any etiology. Mineralocorticoid receptor antagonists and direct renin inhibitor, aliskiren, as add-on treatments to standard therapy including the optimal dose of ACEIs or ARBs reduce albuminuria or proteinuria and slow development of renal dysfunction more than placebo. No clinical evidence is available however about whether these strategies may influence on long-term kidney outcome. Three recent trials suggested that aggressive RAAS blockade, that is, combination of 2 RAAS-blocking agents, does not decrease cardiovascular and renal morbidity and may carry an increased risk of serious complications. This article reviews an evidence-based approach on the use of RAAS-inhibiting agents in chronic kidney disease and considers the implementation of dual RAAS blockade with reference to the results of ALTITUDE and VA NEPHRON-D trails aiming to aid clinicians in their treatment decisions for patients with chronic kidney disease. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    Science.gov (United States)

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  3. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Effects of mineralocorticoid receptor antagonists in patients with hypertension and diabetes mellitus: a systematic review and meta-analysis.

    Science.gov (United States)

    Takahashi, S; Katada, J; Daida, H; Kitamura, F; Yokoyama, K

    2016-09-01

    Blood pressure (BP) control is important to ameliorate cardiovascular events in patients with diabetes mellitus (DM). However, achieving the target BP with a single drug is often difficult. The objective of this study was to evaluate the antihypertensive effects of mineralocorticoid receptor antagonists (MRAs) as add-on therapy to renin-angiotensin system (RAS) inhibitor(s) in patients with hypertension and DM. Studies were searched through October 2014 in MEDLINE, Embase and the Cochrane Central Register of Controlled Trials. Randomized, controlled trials or prospective, observational studies regarding concomitant administration of MRA and RAS inhibitor(s) in patients with DM were included. Articles were excluded if the mean systolic BP (SBP) was hypertension and DM already taking RAS inhibitors. Serum potassium levels should be monitored to prevent hyperkalemia.

  5. Apparent mineralocorticoid excess: time of manifestation and complications despite treatment.

    Science.gov (United States)

    Knops, Noël B B; Monnens, Leo A; Lenders, Jacques W; Levtchenko, Elena N

    2011-06-01

    Here we describe the case of a patient followed from birth because of a positive family history for apparent mineralocorticoid excess (AME) in an older brother. The patient, a girl, had normal serum electrolyte and blood pressure measurements in the first months after birth. Not until the age of 11 months did she develop anorexia and failure to thrive in combination with hypertension, hypokalemia, and metabolic alkalosis, which are consistent with the diagnosis of AME. This diagnosis was confirmed by mutation analysis of the HSD11B2 gene (C1228T). Treatment with amiloride and furosemide electrolyte disturbances normalized her blood pressure. At the age of 19 years she unexpectedly suffered a stroke. Additional investigations revealed no accepted risk factor for stroke. We discuss the possible underlying mechanisms for the delayed manifestation of hypertension and electrolyte disturbances in AME, propose an additional explanation for the stroke in this patient, and advise treatment with a mineralocorticoid receptor antagonist to reduce stroke risk in patients with AME.

  6. Vascular remodeling and mineralocorticoids.

    Science.gov (United States)

    Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K

    1995-01-01

    Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

  7. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  8. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  9. Mineralocorticoid hypertension and hypokalaemia induced by posaconazole.

    Science.gov (United States)

    Boughton, Charlotte; Taylor, David; Ghataore, Lea; Taylor, Norman; Whitelaw, Benjamin C

    2018-01-01

    We describe severe hypokalaemia and hypertension due to a mineralocorticoid effect in a patient with myelodysplastic syndrome taking posaconazole as antifungal prophylaxis. Two distinct mechanisms due to posaconazole are identified: inhibition of 11β hydroxylase leading to the accumulation of the mineralocorticoid hormone 11-deoxycorticosterone (DOC) and secondly, inhibition of 11β hydroxysteroid dehydrogenase type 2 (11βHSD2), as demonstrated by an elevated serum cortisol-to-cortisone ratio. The effects were ameliorated by spironolactone. We also suggest that posaconazole may cause cortisol insufficiency. Patients taking posaconazole should therefore be monitored for hypokalaemia, hypertension and symptoms of hypocortisolaemia, at the onset of treatment and on a monthly basis. Treatment with mineralocorticoid antagonists (spironolactone or eplerenone), supplementation of glucocorticoids (e.g. hydrocortisone) or dose reduction or cessation of posaconazole should all be considered as management strategies. Combined hypertension and hypokalaemia are suggestive of mineralocorticoid excess; further investigation is appropriate.If serum aldosterone is suppressed, then further investigation to assess for an alternative mineralocorticoid is appropriate, potentially using urine steroid profiling and/or serum steroid panelling.Posaconazole can cause both hypokalaemia and hypertension, and we propose that this is due to two mechanisms - both 11β hydroxylase inhibition and 11β HSD2 inhibition.Posaconazole treatment may lead to cortisol insufficiency, which may require treatment; however, in this clinical case, the effect was mild.First-line treatment of this presentation would likely be use of a mineralocorticoid antagonist.Patients taking posaconazole should be monitored for hypertension and hypokalaemia on initiation and monthly thereafter.

  10. THE EFFECTS OF ACUTE AND CHRONIC STRESS ON ERYTHROCYTE DYNAMIC IN COMBINATION WITH ß–ADRENERGIC RECEPTORS BLOCKADE IN RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2005-08-01

    Full Text Available : 3 consecutive days propranolol hydrochloride administration (5 mg/kg b.w., subcutaneous injections under acute and chronic stress conditions causes changes of peripheral erythrocyte distribution in rats. The effects of acute stress and its combination with ȕ-adrenergic receptor blockade on erythrocyte dynamic were more pregnant beside the effects of chronic stress and its combination with ȕ-adrenergic receptor blockade, respectively. ȕ-adrenergic mechanisms were shown to be involved in regulation of erythrocyte dynamic in acute and chronic stress response.

  11. Toll-like receptor 3 blockade in rhinovirus-induced experimental asthma exacerbations

    DEFF Research Database (Denmark)

    Silkoff, Philip E; Flavin, Susan; Gordon, Robert

    2017-01-01

    BACKGROUND: Human rhinoviruses (HRVs) commonly precipitate asthma exacerbations. Toll-like receptor 3, an innate pattern recognition receptor, is triggered by HRV, driving inflammation that can worsen asthma. OBJECTIVE: We sought to evaluate an inhibitory mAb to Toll-like receptor 3, CNTO3157......, respectively, and were then inoculated with HRV-16 within 72 hours. All subjects were monitored for respiratory symptoms, lung function, and nasal viral load. The primary end point was maximal decrease in FEV1 during 10 days after inoculation. RESULTS: In asthmatic patients (n = 63) CNTO3157 provided......: In summary, CNTO3157 was ineffective in attenuating the effect of HRV-16 challenge on lung function, asthma control, and symptoms in asthmatic patients but suppressed cold symptoms in healthy subjects. Other approaches, including blockade of multiple pathways or antiviral agents, need to be sought...

  12. Unanticipated increases in hepatic steatosis among human immunodeficiency virus patients receiving mineralocorticoid receptor antagonist eplerenone for non-alcoholic fatty liver disease.

    Science.gov (United States)

    Chaudhury, Chloe S; Purdy, Julia B; Liu, Chia-Ying; Morse, Caryn G; Stanley, Takara L; Kleiner, David; Hadigan, Colleen

    2018-05-01

    Non-alcoholic fatty liver disease is common in human immunodeficiency virus, but there are no approved therapies. The aim of this open-label proof-of-concept study was to determine the effect of the mineralocorticoid receptor antagonist eplerenone on hepatic fat in human immunodeficiency virus-infected patients with hepatic fat ≥5% by magnetic resonance spectroscopy. Five subjects received eplerenone (25 mg daily × 1 week followed by 50 mg daily × 23 weeks). Laboratory tests were done at each visit, and the primary endpoint, change in hepatic fat content, was determined by MRI spectroscopy at baseline and week 24. The study was stopped early after observing unexpected significant increases in hepatic fat at week 24 (mean increase 13.0 ± 7.3%, P = .02). The increases in steatosis were accompanied by a tendency for transaminase values to decrease (alanine aminotransferase mean change -14 ± 16 IU/L, P = .14). There were no consistent changes in other metabolic parameters or blood pressure. Repeat assessment of hepatic steatosis 1-2 months after stopping study medication revealed improvements in steatosis towards baseline values. The unexpected observation of increased hepatic steatosis with the administration of eplerenone led to early termination of the investigation. While limited because of the small number of participants and the open-label design, this study provides data to suggest that mineralocorticoid receptor antagonism with eplerenone may not be an effective approach to treat hepatic steatosis in human immunodeficiency virus or the general population. Additional research is needed to determine the pathophysiological mechanism behind these unanticipated observations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Baseline characteristics in PRIORITY study: Proteomics and mineralocorticoid receptor antagonism for prevention of diabetic nephropathy in type 2 diabetes

    DEFF Research Database (Denmark)

    Tofte, Nete

    diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria) trial, the aim is to confirm that CKD273 can predict microalbuminuria prospectively, and to test whether mineralocorticoid receptor antagonism (MRA) delays progression to microalbuminuria. Here we report the association between CKD273...... and traditional risk factors for diabetic nephropathy at baseline. Materials and methods PRIORITY is an investigator-initiated, prospective, randomized, double blind, placebo-controlled multicentre clinical trial and observational study in normoalbuminuric type 2 diabetic patients. Patients are stratified...... is development of microalbuminuria. Results In total 2277 type 2 diabetic patients have been screened over a time period of 2.5 years and 1811 are included from 15 sites. Table 1 shows the baseline characteristics. 224 (12.4%) have the high-risk CKD273 pattern. The high- and low-risk populations differ...

  14. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice

    OpenAIRE

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear con...

  15. Role and physiological actions of the mineralo-corticoids

    International Nuclear Information System (INIS)

    Morel, F.

    1958-01-01

    This review recalls first of all the history of the discovery of aldosterone; it then defines the concept of mineralo-corticoid on the biological level; the physiological effects of aldosterone are compared with those of desoxycorticosterone, which have been known for a long time. The part played by the mineralo-corticoids in maintaining the hydro-mineral balance is then discussed, particularly in the light of information provided by acute deficiency or primitive hyperaldosteronism; the importance of the correlations linking the post-hypophysis and suprarenal is underlined. The possible mechanisms of the action of mineralo-corticoids on the kidney are discussed in greater detail and a general plan of action is proposed. The physiological regulation of the secretion of mineralo-corticoids is then described, and the respective roles played in this secretion by different factors are discussed (ante-hypophysis, corticoids, plasmatic concentration of electrolytes, volume of extracellular liquids, etc...). Finally, the whole problem investigated is placed within the field of homeostasis (377 bibliographical references). (author) [fr

  16. Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Directory of Open Access Journals (Sweden)

    Sophie E. Broughton

    2014-07-01

    Full Text Available Interleukin-3 (IL-3 is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD, a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF, IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade.

  17. Mineralocorticoid hypertension and hypokalaemia induced by posaconazole

    OpenAIRE

    Boughton, Charlotte; Taylor, David; Ghataore, Lea; Taylor, Norman; Whitelaw, Benjamin C

    2018-01-01

    Summary We describe severe hypokalaemia and hypertension due to a mineralocorticoid effect in a patient with myelodysplastic syndrome taking posaconazole as antifungal prophylaxis. Two distinct mechanisms due to posaconazole are identified: inhibition of 11β hydroxylase leading to the accumulation of the mineralocorticoid hormone 11-deoxycorticosterone (DOC) and secondly, inhibition of 11β hydroxysteroid dehydrogenase type 2 (11βHSD2), as demonstrated by an elevated serum cortisol-to-cortison...

  18. [Dissociation of antihypertensive and metabolic response to losartan and spironolactone in experimental rats with metabolic sindrome].

    Science.gov (United States)

    Machado, Hussen; Pinheiro, Helady Sanders; Terra, Marcella Martins; Guerra, Martha de Oliveira; de Paula, Rogerio Baumgratz; Peters, Vera Maria

    2012-01-01

    The treatment of arterial hypertension (AH) in patients with metabolic syndrome (MS) is a challenge, since non drug therapies are difficult to implement and optimal pharmacological treatment is not fully established. To assess the blockade of the rennin angiotensin aldosterone system (RAAS) in blood pressure (BP) in renal function and morphology in an experimental model of MS induced by high fat diet. Wistar rats were fed on high fat diet from the fourth week of life, for 20 weeks. The groups received Losartan or Spironolactone from the eighth week of life. We weekly evaluated the body weight and BP by tail plethysmography. At the end of the experiment oral glucose tolerance, lipid profile, creatinine clearance tests, and the direct measurement of BP were performed. A morphometric kidney analysis was performed. The administration of high-fat diet was associated with the development of MS, characterized by central fat accumulation, hypertension, hyperglycemia and hypertriglyceridemia. In this model there were no changes in renal histomorphometry. The blockade of angiotensin II (Ang II) receptor AT1 prevented the development of hypertension. The mineralocorticoid blockage did not have antihypertensive efficacy but was associated with reduction of abdominal fat. The dissociation of the antihypertensive response to the blockades of Ang II receptors and mineralocorticoid indicates the involvement of Ang II in the pathogenesis of hypertension associated with obesity. Reduction of central obesity with Spironolactone suggests the presence of mineralocorticoid adipogenic effect.

  19. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    Science.gov (United States)

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  20. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  1. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  2. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    Science.gov (United States)

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  3. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    -induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...... a critical involvement of CB receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo....

  4. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Directory of Open Access Journals (Sweden)

    Deitcher David L

    2011-01-01

    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  5. Blockade of group II metabotropic glutamate receptors produces hyper-locomotion in cocaine pre-exposed rats by interactions with dopamine receptors.

    Science.gov (United States)

    Yoon, Hyung Shin; Jang, Ju Kyong; Kim, Jeong-Hoon

    2008-09-01

    It was previously reported that blockade of group II metabotropic glutamate receptors (mGluRs) produces hyper-locomotion in rats previously exposed to amphetamine, indicating that group II mGluRs are well positioned to modulate the expression of behavioral sensitization by amphetamine. The present study further examined the locomotor activating effects of specific blockade of these receptors after cocaine pre-exposures. First, rats were pre-exposed to seven daily injections of cocaine (15mg/kg, IP). When challenged the next day with an injection of either saline or the group II mGluR antagonist LY341495 (0.5, 1.0 or 2.5mg/kg, IP), they produced hyper-locomotor activity, measured by infrared beam interruptions, to LY341495 compared to saline in a dose-dependent manner. Second, rats were pre-exposed to either saline or seven daily injections of cocaine (15mg/kg, IP). Three weeks later, when they were challenged with an injection of either saline or LY341495 (1.0mg/kg, IP), only rats pre-exposed to cocaine produced hyper-locomotor activity to LY341495 compared to saline. These effects, however, were not present when dopamine D1 (SCH23390; 5 or 10microg/kg), but not D2 (eticlopride; 10 or 50microg/kg), receptor antagonist was pre-injected, indicating that this cocaine-induced hyper-locomotor activity to LY341495 may be mediated in dopamine D1 receptor-dependent manner. These results suggest that group II mGluRs may be adapted to interact with dopaminergic neuronal signaling in mediating the sensitized locomotor activity produced by repeated cocaine pre-exposures.

  6. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task.

    Science.gov (United States)

    Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian

    2016-12-01

    Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    Science.gov (United States)

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension: A systematic review and meta-analysis.

    Science.gov (United States)

    Sinnott, Sarah-Jo; Tomlinson, Laurie A; Root, Adrian A; Mathur, Rohini; Mansfield, Kathryn E; Smeeth, Liam; Douglas, Ian J

    2017-02-01

    Aim We assessed the effectiveness of fourth-line mineralocorticoid receptor antagonists in comparison with other fourth-line anti-hypertensive agents in resistant hypertension. Methods and results We systematically searched Medline, EMBASE and the Cochrane library from database inception until January 2016. We included randomised and non-randomised studies that compared mineralocorticoid receptor antagonists with other fourth-line anti-hypertensive agents in patients with resistant hypertension. The outcome was change in systolic blood pressure, measured in the office, at home or by ambulatory blood pressure monitoring. Secondary outcomes were changes in serum potassium and occurrence of hyperkalaemia. We used random effects models and assessed statistical heterogeneity using the I 2 test and corresponding 95% confidence intervals. From 2,506 records, 5 studies met our inclusion criteria with 755 included patients. Two studies were randomised and three were non-randomised. Comparative fourth-line agents included bisoprolol, doxazosin, furosemide and additional blockade of the renin angiotensin-aldosterone system. Using data from randomised studies, mineralocorticoid receptor antagonists reduced blood pressure by 7.4 mmHg (95%CI 3.2 - 11.6) more than the active comparator. When limited to non-randomised studies, mineralocorticoid receptor antagonists reduced blood pressure by 11.9 mmHg (95% CI 9.3 - 14.4) more than the active comparator. Conclusion On the basis of this meta-analysis, mineralocorticoid receptor antagonists reduce blood pressure more effectively than other fourth-line agents in resistant hypertension. Effectiveness stratified by ethnicity and comorbidities, in addition to information on clinical outcomes such as myocardial infarction and stroke, now needs to be determined.

  9. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Science.gov (United States)

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels

    Science.gov (United States)

    Sabourin, Jessica; Bartoli, Fiona; Antigny, Fabrice; Gomez, Ana Maria; Benitah, Jean-Pierre

    2016-01-01

    Store-operated Ca2+ entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca2+ influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca2+]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway. PMID:27129253

  11. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    International Nuclear Information System (INIS)

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Sabourin, Jean-Christophe; Benderitter, Marc; Francois, Agnes

    2009-01-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET A ), and ET type B receptor (ET B ) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET A and ET B receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET A /ET B expression and ET A /ET B localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET A and ET B in healthy human rectums was similar to that in rat rectums. However, strong ET A immunostaining was seen in the presence of human radiation proctitis, and increased ET A mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET A was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET A , radiation exposure deregulates the endothelin system through an 'ET A profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or specific ET A receptor blockade do not prevent radiation damage

  12. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    Science.gov (United States)

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal

  13. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    Science.gov (United States)

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  14. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  15. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  16. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  17. Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity

    DEFF Research Database (Denmark)

    Thiesson, Helle; Jensen, Boye L; Bistrup, Claus

    2007-01-01

    Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar...... rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining...... were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion...

  18. Normotensive sodium loading in conscious dogs: Regulation of renin secretion during beta receptor blockade

    DEFF Research Database (Denmark)

    Bie, Peter; Mølstrøm, Simon; Wamberg, Søren

    2009-01-01

    Cl (20 micromol/kg/min for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol/kg/d, LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg/kg/h). Vasopressin V2 receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was maintained by servo-controlled...... that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the beta1-receptor antagonist metoprolol. This was tested in conscious dogs by infusion of Na...... irrespective of diet. In conclusion, PRC depended on dietary sodium and beta1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by beta1-receptor blockade demonstrating that renin may be regulated without changes in MAP, GFR, or beta1...

  19. Muscle-type nicotinic receptor blockade by diethylamine, the hydrophilic moiety of lidocaine

    Directory of Open Access Journals (Sweden)

    Armando eAlberola-Die

    2016-02-01

    Full Text Available Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs, this work was aimed to determine the inhibitory effects of diethylamine (DEA, a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh in a dose-dependent manner (IC50 close to 70 μM, but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3 and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and

  20. Mineralocorticoid receptor haplotype moderates the effects of oral contraceptives and menstrual cycle on emotional information processing.

    Science.gov (United States)

    Hamstra, Danielle A; de Kloet, E Ronald; Tollenaar, Marieke; Verkuil, Bart; Manai, Meriem; Putman, Peter; Van der Does, Willem

    2016-10-01

    The processing of emotional information is affected by menstrual cycle phase and by the use of oral contraceptives (OCs). The stress hormone cortisol is known to affect emotional information processing via the limbic mineralocorticoid receptor (MR). We investigated in an exploratory study whether the MR-genotype moderates the effect of both OC-use and menstrual cycle phase on emotional cognition. Healthy premenopausal volunteers (n=93) of West-European descent completed a battery of emotional cognition tests. Forty-nine participants were OC users and 44 naturally cycling, 21 of whom were tested in the early follicular (EF) and 23 in the mid-luteal (ML) phase of the menstrual cycle. In MR-haplotype 1/3 carriers, ML women gambled more than EF women when their risk to lose was relatively small. In MR-haplotype 2, ML women gambled more than EF women, regardless of their odds of winning. OC-users with MR-haplotype 1/3 recognised fewer facial expressions than ML women with MR-haplotype 1/3. MR-haplotype 1/3 carriers may be more sensitive to the influence of their female hormonal status. MR-haplotype 2 carriers showed more risky decision-making. As this may reflect optimistic expectations, this finding may support previous observations in female carriers of MR-haplotype 2 in a naturalistic cohort study. © The Author(s) 2016.

  1. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Science.gov (United States)

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  2. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Directory of Open Access Journals (Sweden)

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  3. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  4. Blockade of NMDA receptors blocks the acquisition of cocaine conditioned approach in rats.

    Science.gov (United States)

    Galaj, Ewa; Seepersad, Neal; Dakmak, Zena; Ranaldi, Robert

    2018-01-05

    Conditioned stimuli (CSs) exert motivational effects on both adaptive and pathological reward-related behaviors, including drug taking and seeking. We developed a paradigm that allows us to investigate the neuropharmacology by which previously neutral stimuli acquire the capacity to function as CSs and elicit (intravenous) cocaine conditioned approach and used this paradigm to test the role of NMDA receptor stimulation in the acquisition of cocaine conditioned approach. Rats were injected systemically with the NMDA receptor antagonist, MK-801, before the start of 4 consecutive conditioning sessions, each of which consisted of 20 randomly presented light/tone (CS) presentations paired with cocaine infusion contingent upon nose pokes. Rats later were subjected to a CS-only test. To test the role of NMDA receptor stimulation in the already established conditioned approach, rats were injected with MK-801 prior to the CS-only test that occurred after 18 CS-cocaine conditioning sessions. Blockade of NMDA receptors significantly impaired the acquisition of cocaine-conditioned approach as indicated by the emission of significantly fewer nose pokes and significantly longer latencies to nose poke during CS presentations. When MK-801 treatment was applied after the acquisition of conditioned approach responding it had no effect on these measures. These results suggest that NMDA receptor stimulation plays an important role in the acquisition of reward-related conditioned responses driven by intravenous cocaine-associated CSs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Science.gov (United States)

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  6. The acute effect of a mineralocorticoid receptor agonist on corticotrope secretion in Addison's disease.

    Science.gov (United States)

    Berardelli, R; Karamouzis, I; D'Angelo, V; Fussotto, B; Minetto, M A; Ghigo, E; Giordano, R; Arvat, E

    2016-05-01

    Mineralocorticoid receptors (MR) in the hippocampus display an important role in the control of hypothalamic-pituitary-adrenal (HPA) axis, mediating the ''proactive'' feedback of glucocorticoids (GC). Fludrocortisone (FC), a potent MR agonist, has been shown to decrease HPA activity through a hippocampal mechanism. Since it has been demonstrated that FC shows a significant inhibition of the HPA axis response to hCRH stimulus in normal subjects, also at doses usually administered as replacement therapy in patients with Addison's disease, an FC effect at MRs in human pituitary or a GR-pituitary agonism stronger than believed until now has been postulated. Ten patients affected by autoimmune Addison's disease received: (1) placebo p.o. + placebo i.v., (2) hydrocortisone (H) 10 mg p.o. + placebo i.v., (3) FC 0.1 mg p.o. + placebo i.v., (4) FC 0.1 mg and H 10 mg p.o. + placebo i.v. to verify a possible GR FC-mediated effect that might display a repercussion on the GC-replacement therapy. H reduced ACTH (p < 0.01) and increased cortisol levels (p < 0.01) with respect to the placebo session, while FC did not affect either ACTH or cortisol levels compared to placebo, and higher ACTH and lower cortisol levels (p < 0.03 and p < 0.01) were observed compared with the H session; furthermore the co-administration of FC + H showed ACTH and cortisol profiles similar to that observed during H alone. Our study showed a lack of FC effect on corticotrope secretion in Addison's disease, thus making unlikely the hypothesis of its GR pituitary agonism and the risk of glucocorticoid excess in primary adrenal insufficiency.

  7. Effects of angiotensin II receptor blockade on cerebral, cardiovascular, counter-regulatory, and symptomatic responses during hypoglycaemia in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Færch, Louise H; Thorsteinsson, Birger; Tarnow, Lise

    2015-01-01

    INTRODUCTION: High spontaneous activity of the renin-angiotensin system (RAS) results in more pronounced cognitive impairment and more prolonged QTc interval during hypoglycaemia in type 1 diabetes. We tested whether angiotensin II receptor blockade improves cerebral and cardiovascular function d...

  8. Nesfatin-1/NUCB2 in the amygdala influences visceral sensitivity via glucocorticoid and mineralocorticoid receptors in male maternal separation rats.

    Science.gov (United States)

    Zhou, X-P; Sha, J; Huang, L; Li, T-N; Zhang, R-R; Tang, M-D; Lin, L; Li, X-L

    2016-10-01

    Nesfatin-1, a recently identified satiety molecule derived from nucleobindin 2 (NUCB2), is associated with visceral hypersensitivity in rats and is expressed in the amygdala. We tested the hypothesis that nesfatin-1 expression in the amygdala is involved in the pathogenesis of irritable bowel syndrome (IBS) visceral hypersensitivity. An animal model of IBS-like visceral hypersensitivity was established using maternal separation (MS) during postnatal days 2-16. The role of nesfatin-1 in the amygdala on visceral sensitivity was evaluated. Rats subjected to MS showed a significantly increased mean abdominal withdrawal reflex (AWR) score and electromyographic (EMG) activity at 40, 60, and 80 mmHg colorectal distension. Plasma concentrations of nesfatin-1 and corticosterone were significantly higher than in non-handled (NH) rats. mRNA and protein expression of nesfatin-1/NUCB2 in the amygdala were increased in MS rats, but not in NH rats. In MS rats, AWR scores and EMG activity were significantly decreased after anti-nesfatin-1/NUCB2 injection. In normal rats, mean AWR score, EMG activity, and corticosterone expression were significantly increased after nesfatin-1 injection into the amygdala. Nesfatin-1-induced visceral hypersensitivity was abolished following application of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) antagonists. Elevated expression of nesfatin-1/NUCB2 in the amygdala in MS rats suggests a potential role in the pathogenesis of visceral hypersensitivity, which could potentially take place via activation of GR and MR signaling pathways. © 2016 John Wiley & Sons Ltd.

  9. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus.

    Science.gov (United States)

    Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J

    2014-09-01

    Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in

  10. Importance of the time of initiation of mineralocorticoid receptor antagonists on risk of mortality in patients with heart failure.

    Science.gov (United States)

    Rossi, Rosario; Crupi, Nicola; Coppi, Francesca; Monopoli, Daniel; Sgura, Fabio

    2015-03-01

    Several studies have definitively shown the benefit of mineralocorticoid receptor antagonists (MRAs) in patients with heart failure (HF). However, very few prior studies examined the relationship between the timing of initiation of MRAs and prognosis. In addition, on this topic, there is no information regarding the specific population of patients suffering a first episode of decompensated congestive HF. We studied a homogenous cohort of patients discharged alive from our hospital after a first episode of decompensated congestive HF, in order to clarify the association between time of aldosterone receptor antagonist (ARA) initiation (within the first 90 days after hospital discharge) and mortality. Our population was composed of a series of consecutive patients. All-cause mortality was compared between patients who initiated MRAs at discharge (early group) and those who initiated MRAs one month later and up to 90 days after discharge (delayed group). We used prescription time distribution matching to control for survival difference between groups. The early and delayed groups consisted of 365 and 320 patients, respectively. During the one-year follow-up, a significant difference in mortality was demonstrated between groups. Adjusted hazard ratios (HRs) for early versus delayed initiation were 1.72 (95% confidence interval (CI) 0.96 to 2.84) at six months, and 1.93 (95% CI 1.18 to 3.14) at one year. Delay of MRA initiation up to 30 to 90 days after discharge implies a significant increase in mortality compared with MRA initiation at discharge, after a first episode of decompensate congestive HF. © The Author(s) 2013.

  11. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    International Nuclear Information System (INIS)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with [ 3 H]yohimbine, whereas [ 3 H]clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, [ 3 H] clonidine and [ 3 H]yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of [ 3 H]clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations

  12. Alpha1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses.

    Science.gov (United States)

    Solecki, Wojciech B; Szklarczyk, Klaudia; Klasa, Adam; Pradel, Kamil; Dobrzański, Grzegorz; Przewłocki, Ryszard

    2017-08-01

    Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha 1 -adrenergic receptor (α 1 -AR) signaling in the VTA affects conditioned fear. The role of α 1 -AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α 1 -AR blockade in the mammillary bodies (MB) - a brain region with α 1 -AR expression adjacent to the VTA. Intra-VTA but not intra-MB α 1 -AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α 1 -AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α 1 -AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α 1 -AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α 1 -AR signaling in the regulation of stress responsiveness and fear memory. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  13. BLOCKADE OF PGE2, PGD2 RECEPTORS CONFERS PROTECTION AGAINST PREPATENT SCHISTOSOMIASIS MANSONI IN MICE.

    Science.gov (United States)

    Abdel-Ghany, Rasha; Rabia, Ibrahim; El-Ahwany, Eman; Saber, Sameh; Gamal, Rasha; Nagy, Faten; Mahmoud, Olaa; Hamad, Rabab Salem; Barakat, Walled

    2015-12-01

    Schistosomiasis is a chronic disease with considerable social impact. Despite the availability of affordable chemotherapy, drug treatment has not significantly reduced the overall number of disease cases. Among other mechanisms, the parasite produces PGE2 and PGD2 to evade host immune defenses. To investigate the role of PGE2 and PGD2 in schistosomiasis, we evaluated the effects of L-161,982, Ah6809 (PGE2 receptor antagonists alone of combined with each other) and MK-0524 (PGD2 receptor antagonist) during prepatent Schistosoma mansoni infection. Drugs were administered intraperitoneally an hour before and 24 hours after infection of C57BL/6 mice with 100 Schistosoma mansoni cercariae. L-161,982, Ah6809, their combination and MK-0524 caused partial protection against pre-patent S. mansoni infection which was mediated by biasing the immune response towards Th1 phenotype. These results showed that blockade of PGE2 and PGD2 receptors confers partial protection against pre-patent S. mansoni infection in mice and that they may be useful as adjunctive therapy to current anti-schistosomal drugs or vaccines.

  14. Immunodetection of 11 beta-hydroxysteroid dehydrogenase type 2 in human mineralocorticoid target tissues: evidence for nuclear localization.

    Science.gov (United States)

    Shimojo, M; Ricketts, M L; Petrelli, M D; Moradi, P; Johnson, G D; Bradwell, A R; Hewison, M; Howie, A J; Stewart, P M

    1997-03-01

    11 beta-Hydroxysteroid dehydrogenase (11 beta HSI) is an enzyme complex responsible for the conversion of hormonally active cortisol to inactive cortisone; two isoforms of the enzyme have been cloned and characterized. Clinical observations from patients with the hypertensive syndrome apparent mineralocorticoid excess, recently explained on the basis of mutations in the human 11 beta HSD2 gene, suggest that it is the 11 beta HSD2 isoform that serves a vital role in dictating specificity upon the mineralocorticoid receptor (MR). We have raised a novel antibody in sheep against human 11 beta HSD2 using synthetic multiantigenic peptides and have examined the localization and subcellular distribution of 11 beta HSD2 in mineralocorticoid target tissues. The immunopurified antibody recognized a single band of approximately 44 kDa in placenta, trophoblast, and distal colon. In kidney tissue, two bands of approximately 44 and 48 kDa were consistently observed. No signal was seen in decidua, adrenal, or liver. Immunoperoxidase studies on the mineralocorticoid target tissues, kidney, colon, and parotid gland indicated positive staining in epithelial cells known to express the MR: respectively, renal collecting ducts, surface and crypt colonic epithelial cells, and parotid duct epithelial cells. No staining was seen in these tissues in other sites. The intracellular localization of 11 beta HSD2 in kidney and colon epithelial cells was addressed using confocal laser microscopy. Parallel measurements of 11 beta HSD2 and nuclear propidium iodide fluorescence on sections scanned through an optical section of approximately 0.1 micron indicated significant 11 beta HSD2 immunofluorescence in the nucleus. In human kidney, colon, and salivary gland, 11 beta HSD2 protects the MR from glucocorticoid excess in an autocrine fashion. Furthermore, within these tissues, 11 beta HSD2, which had been considered to be a microsomal enzyme, is also found in the nucleus, suggesting that the

  15. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Science.gov (United States)

    Ma, Frank Y; Han, Yingjie; Nikolic-Paterson, David J; Kolkhof, Peter; Tesch, Greg H

    2015-01-01

    Steroidal mineralocorticoid receptor antagonists (MRAs) are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis. Accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid) from day 0 until being killed on day 15 of disease. Mice were examined for renal injury. Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ) and profibrotic molecules (collagen I, fibronectin). In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction). The non-steroidal MRA (BR-4628) provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  16. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Directory of Open Access Journals (Sweden)

    Frank Y Ma

    Full Text Available Steroidal mineralocorticoid receptor antagonists (MRAs are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis.Accelerated anti-glomerular basement membrane (GBM glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid from day 0 until being killed on day 15 of disease. Mice were examined for renal injury.Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ and profibrotic molecules (collagen I, fibronectin. In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction.The non-steroidal MRA (BR-4628 provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  17. Aldosterone-mineralocorticoid receptor promotes urine prostasin through glomerular barrier injury and not tissue abundance

    DEFF Research Database (Denmark)

    Stolzenburg Oxlund, Christina; Kurt, B.; Schwarzensteiner, I.

    2015-01-01

    with placebo or the mineralocorticoid antagonist spironolactone. Western immunoblotting of creatinine-normalized urine samples was performed from placebo and spironolactone treated patients with and without albuminuria. Tissue prostasin was measured in membranes from human nephrectomy recieving either ACE......-i/ANGII or no antihypertensive treatment prior to operation. Urine and tissue prostasin was measured in puromycin-induced nephrotic syndrome rats. Results: Plasma prostasin concentration increased significantly with spironolactone but was not changed with placebo. Urine prostasin concentration was below detection limit....... Puromycin-induced nephrotic syndrome in rats was associated with significant increase in u-prostasin while kidney tissue prostasin protein abundance was not changed. Prostasin protein abundance was similar in membranes from human nephrectomy homogenate from patients treated preoperatively with ACE...

  18. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    Science.gov (United States)

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  19. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    Science.gov (United States)

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  20. Increased expression of mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type 2 in human atria during atrial fibrillation.

    Science.gov (United States)

    De-An, Pei; Li, Li; Zhi-Yun, Xu; Jin-Yu, Huang; Zheng-Ming, Xu; Min, Wang; Qiang, Yao; Shi-Eng, Huang

    2010-01-01

    Atrialfibrillation (AF) is associated with the activation of the renin-angiotensin-aldosterone system in the atria. It is not clear whether the expression of a mineralocorticoid receptor (MR), or 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), conferring aldosterone specificity to the MR, in patients with AF is altered. Patients with AF may be associated with increased expression of MR and 11betaHSD2 in the atria. Atrial tissue samples of 25 patients with rheumatic heart valve disease undergoing a valve replacement operation were examined. A total of 13 patients had chronic persistent AF (>6 mo) and 12 patients had no history of AF. The MR and 11betaHSD2 expression were analyzed at the mRNA and protein level. The localization of MR and 11betaHSD2 in atrial tissue was performed using specific immunohistochemistry staining. The results of real-time quantitative polymerase chain reaction (PCR) showed that AF groups, in comparison with sinus rhythm, had a higher mRNA expression level of MR or 11betaHSD2 (all P atrial tissue were also significantly increased in patients with AF compared with patients with sinus rhythm (P atrial interstitial fibrosis in patients with AF. These findings may have an important impact on the treatment of AF with aldosterone antagonists. Copyright 2010 Wiley Periodicals, Inc.

  1. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  2. Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences

    Science.gov (United States)

    Dumeige, Laurence; Storey, Caroline; Decourtye, Lyvianne; Nehlich, Melanie; Lhadj, Christophe; Viengchareun, Say; Kappeler, Laurent; Lombès, Marc; Martinerie, Laetitia

    2017-01-01

    Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology. PMID:28230786

  3. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Fujiki, Katsunori; Shirahige, Katsuhiko [Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo (Japan); Gomez-Sanchez, Celso E. [Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS (United States); Endocrinology, University of Mississippi Medical Center, MS (United States); Fujita, Toshiro [Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Nangaku, Masaomi [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Nagase, Miki, E-mail: mnagase-tky@umin.ac.jp [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Department of Anatomy and Life Structure, School of Medicine Juntendo University, Tokyo (Japan)

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  4. Adenosine A2A receptor blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    Directory of Open Access Journals (Sweden)

    Ahmed M Fathalla

    2016-02-01

    Full Text Available Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson's disease (PD symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine, two selective A2Aand A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h, rotenone(1.5 mg/kg/48 h, s.c., ZM241385 (3.3 mg/kg/day, i.p and 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg/day, i.p. After that, animals were subjected to behavioral (stride length and grid walking and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography. In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby high performance liquid chromatography. The effect of rotenone was partially preventedin the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 has led toan improvement improved of motor function and movement coordination (a partial increase of stride length and partial decrease in the number of foot slips and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2Areceptor blockade by ZM241385, but not A1receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients.. This may provide a more selective treatment strategy for PD patients.

  5. Hjertestop associeret med syndrome of apparent mineralocorticoid excess

    DEFF Research Database (Denmark)

    Meldgaard-Nielsen, Anne; Laugesen, Esben; Poulsen, Per Løgstrup

    2014-01-01

    Ventricular fibrillation is an unknown complication to the syndrome of apparent mineralocorticoid excess (SAME). This case report describes a young woman admitted with hypo-kalaemia and hypertension. Concentrations of both P-renin and P-aldosterone were low and urinary steroid metabolites revealed...

  6. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  7. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man

    DEFF Research Database (Denmark)

    Galbo, H; Holst, Janett; Christensen, N J

    1976-01-01

    Seven men ran at 60% of individual maximal oxygen uptake to exhaustion during beta-adrenergic blockade with propranolol (P), during lipolytic blockade with nicotinic acid (N), or without drugs (C). The total work times (83 +/- 9 (P), 122 +/- 8 (N), 166 +/- 10 (C) min, mean and SE) differed signif...... determinants for the exercise-induced glucagon secretion in man. It is suggested that decreased glucose availability enhances the secretion of glucagon and epinephrine during prolonged exercise....

  8. Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (MAGMA) Trial.

    Science.gov (United States)

    Rajagopalan, Sanjay; Alaiti, M Amer; Broadwater, Kylene; Goud, Aditya; Gaztanaga, Juan; Connelly, Kim; Fares, Anas; Shirazian, Shayan; Kreatsoulas, Catherine; Farkouh, Michael; Dobre, Mirela; Fink, Jeffrey C; Weir, Matthew R

    2017-09-01

    Mineralocorticoid receptor (MR) activation plays an essential role in promoting inflammation, fibrosis, and target organ damage. Currently, no studies are investigating MR antagonism in patients with type 2 diabetes mellitus (T2DM) with chronic kidney disease, at high risk for cardiovascular complications, who are otherwise not candidates for MR antagonism by virtue of heart failure. Further, there is limited information on candidate therapies that may demonstrate differential benefit from this therapy. We hypothesized that MR antagonism may provide additional protection from atherosclerosis progression in higher-risk patients who otherwise may not be candidates for such a therapeutic approach. In this double-blind, randomized, placebo-controlled trial, subjects with T2DM with chronic kidney disease (≥ stage 3) will be randomized in a 1:1 manner to placebo or spironolactone (12.5 mg with eventual escalation to 25 mg daily over a 4-week period). The co-primary efficacy endpoint will be percentage change in total atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated with spironolactone vs placebo. Secondary outcomes include 24-hour mean systolic blood pressure, central aortic blood pressure, and insulin resistance (HOMA-IR) at 6 weeks. A novel measure in the study will be changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as measuring monocyte/macrophage polarization in response to therapy with spironolactone. We envision that our strategy of simultaneously probing the effects of a drug combined with analysis of mechanisms of action and predictive response will likely provide key information with which to design event-based trials. © 2017 Wiley Periodicals, Inc.

  9. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Science.gov (United States)

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  10. Blockade of serotonin 5-HT2A receptors potentiates dopamine D2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D2 blockade-induced one.

    Science.gov (United States)

    Nie, Lina; Di, Tianqi; Li, Yu; Cheng, Peng; Li, Ming; Gao, Jun

    2018-06-23

    Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D 2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT 2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT 2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT 2A receptors on dopamine D 2 -mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D 2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D 2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT 2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT 2A and D 2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT 2A receptors mediate maternal behavior is through

  11. Selective attention to emotional cues and emotion recognition in healthy subjects: the role of mineralocorticoid receptor stimulation.

    Science.gov (United States)

    Schultebraucks, Katharina; Deuter, Christian E; Duesenberg, Moritz; Schulze, Lars; Hellmann-Regen, Julian; Domke, Antonia; Lockenvitz, Lisa; Kuehl, Linn K; Otte, Christian; Wingenfeld, Katja

    2016-09-01

    Selective attention toward emotional cues and emotion recognition of facial expressions are important aspects of social cognition. Stress modulates social cognition through cortisol, which acts on glucocorticoid (GR) and mineralocorticoid receptors (MR) in the brain. We examined the role of MR activation on attentional bias toward emotional cues and on emotion recognition. We included 40 healthy young women and 40 healthy young men (mean age 23.9 ± 3.3), who either received 0.4 mg of the MR agonist fludrocortisone or placebo. A dot-probe paradigm was used to test for attentional biases toward emotional cues (happy and sad faces). Moreover, we used a facial emotion recognition task to investigate the ability to recognize emotional valence (anger and sadness) from facial expression in four graded categories of emotional intensity (20, 30, 40, and 80 %). In the emotional dot-probe task, we found a main effect of treatment and a treatment × valence interaction. Post hoc analyses revealed an attentional bias away from sad faces after placebo intake and a shift in selective attention toward sad faces compared to placebo. We found no attentional bias toward happy faces after fludrocortisone or placebo intake. In the facial emotion recognition task, there was no main effect of treatment. MR stimulation seems to be important in modulating quick, automatic emotional processing, i.e., a shift in selective attention toward negative emotional cues. Our results confirm and extend previous findings of MR function. However, we did not find an effect of MR stimulation on emotion recognition.

  12. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    Science.gov (United States)

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  13. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain.

    Science.gov (United States)

    Borowski, Andreas; Vetter, Tina; Kuepper, Michael; Wohlmann, Andreas; Krause, Sebastian; Lorenzen, Thomas; Virchow, Johann Christian; Luttmann, Werner; Friedrich, Karlheinz

    2013-02-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Sodium intake, RAAS-blockade and progressive renal disease

    NARCIS (Netherlands)

    de Borst, Martin H; Navis, Gerjan

    Pharmacological blockade of the renin-angiotensin-aldosterone system (RAAS) by angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the current standard treatment to prevent progressive renal function loss in patients with chronic kidney disease. Yet in many patients the

  15. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Science.gov (United States)

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  17. Normotensive sodium loading in normal man: Regulation of renin secretion during beta-receptor blockade

    DEFF Research Database (Denmark)

    Mølstrøm, Simon; Larsen, Nils Heden; Simonsen, Jane Angel

    2008-01-01

    and renal excretion during slow saline loading at constant plasma sodium con-centration (Na-loading: 12 micromol Na(+) kg(-1) min(-1) for 4 h). Normal subjects were studied on low-sodium intake with and without beta1-adrenergic blockade by metoprolol. Metoprolol per se reduced RAAS activity as expected. Na......Saline administration may change renin system (RAAS) activity and sodium excretion at constant mean arterial pressure (MAP). We hypothesized that such responses are elicited mainly by renal sympathetic nerve activity by beta1-receptors (beta1-RSNA), and tested the hypothesis by studying RAAS......-loading decreased plasma renin (PRC) by 1/3, AngII by 1/2, and aldosterone (pAldo) by 2/3, (all psodium excretion increased indistinguishably with and without metoprolol (16+/-2 to 71...

  18. Effect of cannabinoids CB1 receptors blockade on hemodynamic parameters and endothelial function at the immobilization stress in the experiment

    Directory of Open Access Journals (Sweden)

    S. V. Gavreliuk

    2017-12-01

    Full Text Available The aim of the study was to evaluate the response of hemodynamic parameters and changes in endothelial function in modeling of CB1 cannabinoid receptors blockade in chronic stress. Materials and мethods. The study was performed on four groups of hundred-day-old rats, which were examined by ultrasonic scanning during the ten-day period of the experiment. The first group consisted of intact animals; the second group – animals, which were exposed to immobilization stress; the third – animals which were given a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day daily per os; the fourth group consisted of animals which daily received a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day and were exposed to immobilization stress. The intraluminal vessel diameter, the intima-media complex thickness, endothelium-dependent and endothelium-independent dilation were quantified in the ultrasound examination. Quantitative characteristics of the blood flow were studied: peak systolic velocity, end diastolic velocity, resistive index and peak-systolic/end-diastolic ratio, and estimated mean blood flow velocity. Results. It has been found that the effect of chronic immobilization stress in 100-day-old male rats causes intima-media complex structure and thickness change, endothelial dysfunction and increase in the abdominal aorta intraluminal diameter. Hemodynamics changes are characterized by a decrease in the average blood flow velocity and an increase in the values of indices characterizing the vascular wall peripheral resistance. Prolonged blockade of cannabinoids CB1 receptors leads to endothelial dysfunction development, a decrease in the intraluminal diameter of the abdominal aorta and a decrease in the average blood flow velocity while vascular wall elastic properties maintaining. This affects the sensitivity of cardiovascular system to nitrogen oxide, which is manifested by

  19. Spatial learning of female mice: a role of the mineralocorticoid receptor during stress and the estrous cycle

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2013-05-01

    Full Text Available Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR and glucocorticoid receptors (GR. Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB the spatial performance of female mice with genetic deletion of MR from the forebrain (MRCaMKCre and their wild type littermates (MRflox/flox mice over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MRflox/flox mice and neither did the acute stressor. However, the MRCaMKCre mutants needed significantly more time to find the exit and made more hole visit errors than the MRflox/flox mice, especially when in proestrus and estrus. In addition, stressed MRCaMKCre mice in estrus had a shorter exit latency than the control estrus MRCaMKCre mice. About 70% of the female MRCaMKCre and MRflox/flox mice used a hippocampal (spatial, extra maze cues rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MRCaMKCre mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch towards a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.

  20. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity.

    Science.gov (United States)

    Blume, Shannon R; Nam, Hannah; Luz, Sandra; Bangasser, Debra A; Bhatnagar, Seema

    2018-06-15

    Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure

    Science.gov (United States)

    McKay, Sean; Bengtson, C. Peter; Bading, Hilmar; Wyllie, David J.A.; Hardingham, Giles E.

    2013-01-01

    MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to ‘pre-block’ a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg2+ is also present. In the presence of Mg2+, 50% recovery from MK-801 blockade is achieved after 10′ of 100 μM NMDA, or 30′ of 15 μM NMDA exposure. In Mg2+-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg2+ in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg2+ or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg2+ for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 ‘pre-block’ protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’. PMID:23402996

  2. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  3. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    Science.gov (United States)

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  4. Neurohumoral blockade in CHF management

    Directory of Open Access Journals (Sweden)

    Roland Willenbrock

    2000-03-01

    Full Text Available Is heart failure an endocrine disease? Historically, congestive heart failure (CHF has often been regarded as a mechanical and haemodynamic condition. However, there is now strong evidence that the activation of neuroendocrine systems, like the renin-angiotensin-aldosterone system (RAAS and sympathetic nervous system, as well as the activation of natriuretic peptides, endothelin and vasopressin, play key roles in the progression of CHF. In this context, agents targeting neurohormones offer a highly rational approach to CHF management, with ACE inhibitors, aldosterone antagonists and beta-adrenergic blockade improving the prognosis for many patients. Although relevant improvements in clinical status and survival can be achieved with these drug classes, mortality rates for patients with CHF are still very high. Moreover, most patients do not receive these proven life-prolonging drugs, partially due to fear of adverse events, such as hypotension (with ACE inhibitors, gynaecomastia (with spironolactone and fatigue (with beta-blockers.New agents that combine efficacy with better tolerability are therefore needed. The angiotensin II type 1 (AT1-receptor blockers have the potential to fulfil both these requirements, by blocking the deleterious cardiovascular and haemodynamic effects of angiotensin II while offering placebo-like tolerability. As shown with candesartan, AT1-receptor blockers also modulate the levels of other neurohormones, including aldosterone and atrial natriuretic peptide (ANP. Combined with its tight, long-lasting binding to AT1-receptors, this characteristic gives candesartan the potential for complete blockade of the RAAS-neurohormonal axis, along with the great potential to improve clinical outcomes.

  5. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    OpenAIRE

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then...

  6. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Andersen, S; Tarnow, L; Rossing, P

    2000-01-01

    BACKGROUND: Angiotensin I-converting enzyme (ACE) inhibitors reduce angiotensin II formation and induce bradykinin accumulation. Animal studies suggest that bradykinin may play a role for the effects of ACE inhibition on blood pressure and kidney function. Therefore, we compared the renal and hem...... inhibition is primarily caused by interference in the renin-angiotensin system. Our study suggest that losartan represents a valuable new drug in the treatment of hypertension and proteinuria in type 1 diabetic patients with diabetic nephropathy....... and hemodynamic effects of specific intervention in the renin-angiotensin system by blockade of the angiotensin II subtype-1 receptor to the effect of ACE inhibition. METHODS: A randomized, double-blind, cross-over trial was performed in 16 type 1 diabetic patients (10 men), age 42 +/- 2 years (mean +/- SEM...

  7. Assessment of dopamine receptor blockade by neuroleptic drugs in the living human brain

    International Nuclear Information System (INIS)

    Wong, D.F.; Wagner, H.N. Jr.; Coyle, J.

    1985-01-01

    Positron emission tomography (PET) makes it possible to attempt to relate directly the antipsychotic effect of neuroleptic drugs and their blocking effect on dopamine receptors (D2) in vivo. The authors have examined the ability of haloperidol (HAL) and molindone (MOL) to block the binding of C-11 n-methylspiperone (NMSP) in 6 normal subjects. A dose of 0.05 mg/kg of HAL resulted in a 68% drop in the slope of the caudate/cerebellum (Ca/Cb) vs. time. This slope is related to the rate of specific binding of NMSP to the receptor. A dose response was seen with both drugs. With increasing doses of HAL from .05 to 0.082 mg/kg, CA/Cb vs. time slope fell from .235 to .156/min. (N=4), progressively. Similarly with increasing doses of MOL of .16-.44 mg/kg slopes decreased from .0335 to .0155/min. (N=4). Similar degrees of post injection Ca/Cb ratio were produced with quantities of MOL and HAL administered in the oral dose ratio of doses 3-5:1 times greater than HAL. This is also the dose ratio at which we found similar dopamine receptor blockade by PET in vivo. A question that arises is why the in vitro affinity of HAL for D2 is 30 times greater than that of MOL in the human brain. The results raise the possibility that MOL metabolites are not only active in blocking D2 but indeed may possibly be more potent than MOL itself. It also helps confirm the site of action of MOL and its in vivo metabolites

  8. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  9. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation.

    Science.gov (United States)

    Ochiai, Tomoki; Saito, Shigeru; Yamanaka, Futoshi; Shishido, Koki; Tanaka, Yutaka; Yamabe, Tsuyoshi; Shirai, Shinichi; Tada, Norio; Araki, Motoharu; Naganuma, Toru; Watanabe, Yusuke; Yamamoto, Masanori; Hayashida, Kentaro

    2018-04-01

    The persistence of left ventricular (LV) hypertrophy is associated with poor clinical outcomes after transcatheter aortic valve implantation (TAVI) for aortic stenosis. However, the optimal medical therapy after TAVI remains unknown. We investigated the effect of renin-angiotensin system (RAS) blockade therapy on LV hypertrophy and mortality in patients undergoing TAVI. Between October 2013 and April 2016, 1215 patients undergoing TAVI were prospectively enrolled in the Optimized CathEter vAlvular iNtervention (OCEAN)-TAVI registry. This cohort was stratified according to the postoperative usage of RAS blockade therapy with angiotensin-converting enzyme (ACE) inhibitors or angiotensin-receptor blockers (ARBs). Patients with at least two prescriptions dispensed 180 days apart after TAVI and at least a 6-month follow-up constituted the RAS blockade group (n=371), while those not prescribed any ACE inhibitors or ARBs after TAVI were included in the no RAS blockade group (n=189). At 6 months postoperatively, the RAS blockade group had significantly greater LV mass index regression than the no RAS blockade group (-9±24% vs -2±25%, p=0.024). Kaplan-Meier analysis revealed a significantly lower cumulative 2-year mortality in the RAS blockade than that in the no RAS blockade group (7.5% vs 12.5%; log-rank test, p=0.031). After adjusting for confounding factors, RAS blockade therapy was associated with significantly lower all-cause mortality (HR, 0.45; 95% CI 0.22 to 0.91; p=0.025). Postoperative RAS blockade therapy is associated with greater LV mass index regression and reduced all-cause mortality. These data need to be confirmed by a prospective randomised controlled outcome trial. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Temporal and spatial dynamics of corticosteroid receptor down-regulation in rat brain following social defeat

    NARCIS (Netherlands)

    Buwalda, B; Felszeghy, K; Horváth, K M; Nyakas, C; de Boer, S.F.; Bohus, B; Koolhaas, J M

    The experiments explored the nature and time course of changes in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) binding in homogenates of various brain regions and pituitary of male Wistar rats following social defeat stress. One week after defeat, the binding capacity of GRs was

  11. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    Science.gov (United States)

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  12. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease.

    Science.gov (United States)

    Hardwick, Jean C; Southerland, E Marie; Girasole, Allison E; Ryan, Shannon E; Negrotto, Sara; Ardell, Jeffrey L

    2012-11-01

    Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.

  13. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  14. α2-adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression

    Science.gov (United States)

    Lamkin, Donald M.; Sung, Ha Yeon; Yang, Gyu Sik; David, John M.; Ma, Jeffrey C.Y.; Cole, Steve W.; Sloan, Erica K.

    2014-01-01

    Experimental studies in preclinical mouse models of breast cancer have shown that chronic restraint stress can enhance disease progression by increasing catecholamine levels and subsequent signaling of β-adrenergic receptors. Catecholamines also signal α-adrenergic receptors, and greater α-adrenergic signaling has been shown to promote breast cancer in vitro and in vivo. However, antagonism of α-adrenergic receptors can result in elevated catecholamine levels, which may increase β-adrenergic signaling, because pre-synaptic α2-adrenergic receptors mediate an autoinhibition of sympathetic transmission. Given these findings, we examined the effect of α-adrenergic blockade on breast cancer progression under non-stress and stress conditions (chronic restraint) in an orthotopic mouse model with MDA-MB-231HM cells. Chronic restraint increased primary tumor growth and metastasis to distant tissues as expected, and non-selective α-adrenergic blockade by phentolamine significantly inhibited those effects. However, under non-stress conditions, phentolamine increased primary tumor size and distant metastasis. Sympatho-neural gene expression for catecholamine biosynthesis enzymes was elevated by phentolamine under non-stress conditions, and the non-selective β-blocker propranolol inhibited the effect of phentolamine on breast cancer progression. Selective α2-adrenergic blockade by efaroxan also increased primary tumor size and distant metastasis under non-stress conditions, but selective α1-adrenergic blockade by prazosin did not. These results are consistent with the hypothesis that α2-adrenergic signaling can act through an autoreceptor mechanism to inhibit sympathetic catecholamine release and, thus, modulate established effects of β-adrenergic signaling on tumor progression-relevant biology. PMID:25462899

  15. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    Science.gov (United States)

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  16. C5a receptor (CD88) blockade protects against MPO-ANCA GN.

    Science.gov (United States)

    Xiao, Hong; Dairaghi, Daniel J; Powers, Jay P; Ertl, Linda S; Baumgart, Trageen; Wang, Yu; Seitz, Lisa C; Penfold, Mark E T; Gan, Lin; Hu, Peiqi; Lu, Bao; Gerard, Norma P; Gerard, Craig; Schall, Thomas J; Jaen, Juan C; Falk, Ronald J; Jennette, J Charles

    2014-02-01

    Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.

  17. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.

    Science.gov (United States)

    Wincewicz, D; Juchniewicz, A; Waszkiewicz, N; Braszko, J J

    2016-09-01

    Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (pBDNF in the mPFC (paxis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Two Qatari siblings with cystic fibrosis and apparent mineralocorticoid excess

    Directory of Open Access Journals (Sweden)

    Khalid Zahraldin

    2015-01-01

    Full Text Available Cystic fibrosis (CF and apparent mineralocorticoid excess (AME syndrome are both autosomal recessive disorders that result from mutations of specific identified genes for each condition. CF is caused by defects in the Cystic fibrosis trans membrane conductance regulator (CFTR gene which encodes for a protein that functions as a chloride channel and regulates the flow of other ions across the apical surface of epithelial cells. AME is due to the deficiency of 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2, which is responsible for the peripheral inactivation of cortisol to cortisone. Cortisol excess stimulates the mineralocoritoid receptors (MR resulting in intense sodium retention, hypokalemia and hypertension. We report on a consanguineous Arab family, in which two sibs inherited both CF and AME. Gene testing for AME revealed previously unreported mutation in the 11βHSD2 gene. This report draws attention to the importance of recognizing the possibility of two recessive disorders in the same child in complex consanguineous families. Moreover, it provides a unique opportunity to highlight the implications of the coexistence of two genetic disorders on patient care and genetic counseling of the family.

  19. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    Science.gov (United States)

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  20. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    Directory of Open Access Journals (Sweden)

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  1. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    Science.gov (United States)

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA

  2. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

    Science.gov (United States)

    Roh, Whijae; Chen, Pei-Ling; Reuben, Alexandre; Spencer, Christine N.; Prieto, Peter A.; Miller, John P.; Gopalakrishnan, Vancheswaran; Wang, Feng; Cooper, Zachary A.; Reddy, Sangeetha M.; Gumbs, Curtis; Little, Latasha; Chang, Qing; Chen, Wei-Shen; Wani, Khalida; Petaccia De Macedo, Mariana; Chen, Eveline; Austin-Breneman, Jacob L.; Jiang, Hong; Roszik, Jason; Tetzlaff, Michael T.; Davies, Michael A.; Gershenwald, Jeffrey E.; Tawbi, Hussein; Lazar, Alexander J.; Hwu, Patrick; Hwu, Wen-Jen; Diab, Adi; Glitza, Isabella C.; Patel, Sapna P.; Woodman, Scott E.; Amaria, Rodabe N.; Prieto, Victor G.; Hu, Jianhua; Sharma, Padmanee; Allison, James P.; Chin, Lynda; Zhang, Jianhua; Wargo, Jennifer A.; Futreal, P. Andrew

    2018-01-01

    Immune checkpoint blockade produces clinical benefit in many patients. However better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen-4 (CTLA-4) followed by programmed death receptor-1 (PD-1), and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T-cell receptor sequencing (TCR-seq) and whole exome sequencing (WES) within the same cohort, and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of copy number alterations identified a higher burden of copy number loss in non-responders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was non-redundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy. PMID:28251903

  3. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  4. Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    Science.gov (United States)

    Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M

    2017-08-01

    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Apparent mineralocorticoid excess syndrome: report of one family with three affected children.

    Science.gov (United States)

    Al-Harbi, Taiba; Al-Shaikh, Adnan

    2012-01-01

    The syndrome of apparent mineralocorticoid excess (AME) is an autosomal recessive disorder characterized by hypertension, hypokalemia, low renin, and hypoaldosteronism. It is caused by deficiency of 11β-hydroxysteroid dehydrogenase, which results in a defect of the peripheral metabolism of cortisol to cortisone. As a consequence, the serum cortisol half-life (T½) is prolonged, ACTH is suppressed, and serum cortisol concentration is normal. The hormonal diagnosis of the disorder is made by the increased ratio of urine-free cortisol to cortisone. In patients with AME, this ratio is 5-18, while in normal individuals it is syndrome of AME. We report three siblings - two female and one male - with the syndrome of apparent mineralocorticoid excess who presented with hypertension, hypokalemia, low renin, and low aldosterone levels. The finding of abnormally high ratios of 24-h urine-free cortisol to cortisone in our three patients (case 1, 8.4; case 2, 25; and case 3, 7.5) confirmed the diagnosis of apparent mineralocorticoid excess syndrome in these children. They were treated with oral potassium supplements. The addition of spironolactone resulted in a decrease in blood pressure, rise in serum potassium and a gradual increase in plasma renin activity in all three. In this study, the genetic testing of those three siblings with the typical clinical features of AME has detected missense mutation c.662C>T (p.Arg208Cys) in exon 3 of the HSD11B2 gene in the homozygous state.

  6. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  7. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats.

    Science.gov (United States)

    Firoozmand, Lília Taddeo; Sanches, Andrea; Damaceno-Rodrigues, Nilsa Regina; Perez, Juliana Dinéia; Aragão, Danielle Sanches; Rosa, Rodolfo Mattar; Marcondes, Fernanda Klein; Casarini, Dulce Elena; Caldini, Elia Garcia; Cunha, Tatiana Sousa

    2018-04-20

    To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.

  8. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats

    Directory of Open Access Journals (Sweden)

    Max Thorwald

    2018-04-01

    Full Text Available Hyperglycemia increases the risk of oxidant overproduction in the heart through activation of a multitude of pathways. Oxidation of mitochondrial enzymes may impair their function resulting in accumulation of intermediates and reverse electron transfer, contributing to mitochondrial dysfunction. Furthermore, the renin-angiotensin system (RAS becomes inappropriately activated during metabolic syndrome, increasing oxidant production. To combat excess oxidant production, the transcription factor, nuclear factor erythriod-2- related factor 2 (Nrf2, induces expression of many antioxidant genes. We hypothesized that angiotensin II receptor type 1 (AT1 blockade improves mitochondrial function in response to an acute glucose load via upregulation of Nrf2. To address this hypothesis, an oral glucose challenge was performed in three groups prior to dissection (n = 5–8 animals/group/time point of adult male rats: 1 Long Evans Tokushima Otsuka (LETO; lean strain-control, 2 insulin resistant, obese Otsuka Long Evans Tokushima Fatty (OLETF, and 3 OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 6 weeks. Hearts were collected at T0, T60, and T120 minutes post-glucose infusion. ARB increased Nrf2 binding 32% compared to OLETF at T60. Total superoxide dismutase (SOD and catalase (CAT activities were increased 45% and 66% respectively in ARB treated animals compared to OLETF. Mitochondrial enzyme activities of aconitase, complex I, and complex II increased by 135%, 33% and 66%, respectively in ARB compared to OLETF. These data demonstrate the protective effects of AT1 blockade on mitochondrial function during the manifestation of insulin resistance suggesting that the inappropriate activation of AT1 during insulin resistance may impair Nrf2 translocation and subsequent antioxidant activities and mitochondrial function. Keywords: Angiotensin II, Mitochondria, Cardiac, Antioxidant enzymes, TCA cycle

  9. Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload.

    Directory of Open Access Journals (Sweden)

    Elena Montes-Cobos

    Full Text Available Mineralocorticoid receptor (MR inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox. Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.

  10. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  11. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  12. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  13. NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus

    Directory of Open Access Journals (Sweden)

    R.E. de Bittencourt-Navarrete

    2009-02-01

    Full Text Available Nitric oxide (NO is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

  14. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  15. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn H; Raghava, Jayachandra M; Nielsen, Mette Ødegaard

    2016-01-01

    /3 receptor blockade would restore white matter. METHODS: Between December 2008 and July 2011, antipsychotic-naive patients with first-episode schizophrenia and matched healthy controls underwent baseline examination with 3 T MRI diffusion tensor imaging and clinical assessments. We assessed group differences...... with first-episode schizophrenia and 38 controls in our analysis, and 28 individuals in each group completed the study. At baseline, whole brain TBSS analyses revealed lower FA in patients in the right anterior thalamic radiation (ATR), right cingulum, right inferior longitudinal fasciculus and right...

  16. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    Science.gov (United States)

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-05

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P Social isolation decreased gene expression (P social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  17. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Science.gov (United States)

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  20. PF-03882845, a non-steroidal mineralocorticoid receptor antagonist, prevents renal injury with reduced risk of hyperkalemia in an animal model of nephropathy

    Directory of Open Access Journals (Sweden)

    Stephen eOrena

    2013-10-01

    Full Text Available The mineralocorticoid receptor (MR antagonists PF 03882845 and eplerenone were evaluated for renal protection against aldosterone mediated renal disease in uninephrectomized Sprague Dawley (SD rats maintained on a high salt diet and receiving aldosterone by osmotic mini pump for 27 days. Serum K+ and the urinary albumin to creatinine ratio (UACR were assessed following 14 and 27 days of treatment. Aldosterone induced renal fibrosis as evidenced by increases in UACR, collagen IV staining in kidney cortex, and expression of pro fibrotic genes relative to sham operated controls not receiving aldosterone. While both PF 03882845 and eplerenone elevated serum K+ levels with similar potencies, PF 03882845 was more potent than eplerenone in suppressing the rise in UACR. PF 03882845 prevented the increase in collagen IV staining at 5, 15 and 50 mg/kg BID while eplerenone was effective only at the highest dose tested (450 mg/kg BID. All doses of PF 03882845 suppressed aldosterone induced increases in collagen IV, transforming growth factor 1 (Tgf 1, interleukin 6 (Il-6, intermolecular adhesion molecule 1 (Icam-1 and osteopontin gene expression in kidney while eplerenone was only effective at the highest dose. The therapeutic index (TI, calculated as the ratio of the EC50 for increasing serum K+ to the EC50 for UACR lowering, was 83.8 for PF 03882845 and 1.47 for eplerenone. Thus the TI of PF 03882845 against hyperkalemia was 57 fold superior to that of eplerenone indicating that PF 03882845 may present significantly less risk for hyperkalemia compared to eplerenone.

  1. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  2. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. Combined blockade of ADP receptors and PI3-kinase p110β fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation.

    Directory of Open Access Journals (Sweden)

    Stefanie Krajewski

    Full Text Available Extracorporeal circulation (ECC and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P(2Y(12 and P(2Y(1 blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P(2Y(12 antagonist 2-MeSAMP, the P(2Y(1 antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls. Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P(2Y blockers (p<0.05, while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P(2Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05. P(2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05. Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P(2Y and PI3K blockade (p<0.05. Combined blockade of P

  4. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    Science.gov (United States)

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  5. HTLV-1 specific CD8+ T cell function augmented by blockade of 2B4/CD48 interaction in HTLV-1 infection.

    Directory of Open Access Journals (Sweden)

    Chibueze Chioma Ezinne

    Full Text Available CD8+ T cell response is important in the response to viral infections; this response though is regulated by inhibitory receptors. Expression of inhibitory receptors has been positively correlated with CD8+ T cell exhaustion; the consequent effect of simultaneous blockade of these inhibitory receptors on CD8+ T cell response in viral infections have been studied, however, the role of individual blockade of receptor-ligand pair is unclear. 2B4/CD48 interaction is involved in CD8+T cell regulation, its signal transducer SAP (signaling lymphocyte activation molecule (SLAM-associated protein is required for stimulatory function of 2B4/CD244 on lymphocytes hence, we analyzed 2B4/CD244 (natural killer cell receptor and SAP (signaling lymphocyte activation molecule(SLAM-associated protein on total CD8+ and HTLV-1 specific CD8+T cells in HTLV-1 infection and the effect of blockade of interaction with ligand CD48 on HTLV-1 specific CD8+ T cell function. We observed a high expression of 2B4/CD244 on CD8+ T cells relative to uninfected and further upregulation on HTLV-1 specific CD8+ T cells. 2B4+ CD8+ T cells exhibited more of an effector and terminally differentiated memory phenotype. Blockade of 2B4/CD48 interaction resulted in improvement in function via perforin expression and degranulation as measured by CD107a surface mobilization on HTLV-1 specific CD8+ T cells. In the light of these findings, we thus propose an inhibitory role for 2B4/CD48 interaction on CD8+T cell function.

  6. Reversal of propranolol blockade of adrenergic receptors and related toxicity with drugs that increase cyclic AMP.

    Science.gov (United States)

    Whitehurst, V E; Vick, J A; Alleva, F R; Zhang, J; Joseph, X; Balazs, T

    1999-09-01

    An overdose of propranolol, a widely used nonselective beta-adrenergic receptor blocking agent, can result in hypotension and bradycardia leading to irreversible shock and death. In addition, the blockade of adrenergic receptors can lead to alterations in neurotransmitter receptors resulting in the interruption of the activity of other second messengers and the ultimate cellular responses. In the present experiment, three agents, aminophylline, amrinone, and forskolin were tested in an attempt to reverse the potential lethal effects of a propranolol overdose in dogs. Twenty-two anesthetized beagle dogs were given a 10-min infusion of propranolol at a dose of 1 mg/kg/min. Six of the dogs, treated only with intravenous saline, served as controls. Within 15-30 min all six control dogs exhibited profound hypotension and severe bradycardia that led to cardiogenic shock and death. Seven dogs were treated with intravenous aminophylline 20 mg/kg 5 min after the end of the propranolol infusion. Within 10-15 min heart rate and systemic arterial blood pressure returned to near control levels, and all seven dogs survived. Intravenous amrinone (2-3 mg/kg) given to five dogs, and forskolin (1-2 mg/kg) given to four dogs, also increased heart rate and systemic arterial blood pressure but the recovery of these parameters was appreciably slower than that seen with aminophylline. All of these animals also survived with no apparent adverse effects. Histopathologic evaluation of the hearts of the dogs treated with aminophylline showed less damage (vacuolization, inflammation, hemorrhage) than the hearts from animals given propranolol alone. Results of this study showed that these three drugs, all of which increase cyclic AMP, are capable of reversing the otherwise lethal effects of a propranolol overdose in dogs.

  7. Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation.

    Science.gov (United States)

    Pat, Betty; Killingsworth, Cheryl; Denney, Thomas; Zheng, Junying; Powell, Pamela; Tillson, Michael; Dillon, A Ray; Dell'Italia, Louis J

    2008-12-01

    The low-pressure volume overload of isolated mitral regurgitation (MR) is associated with increased adrenergic drive, left ventricular (LV) dilatation, and loss of interstitial collagen. We tested the hypothesis that beta1-adrenergic receptor blockade (beta1-RB) would attenuate LV remodeling after 4 mo of MR in the dog. beta1-RB did not attenuate collagen loss or the increase in LV mass in MR dogs. Using MRI and three-dimensional (3-D) analysis, there was a 70% increase in the LV end-diastolic (LVED) volume-to-LV mass ratio, a 23% decrease in LVED midwall circumferential curvature, and a >50% increase in LVED 3-D radius/wall thickness in MR dogs that was not attenuated by beta1-RB. However, beta1-RB caused a significant increase in LVED length from the base to apex compared with untreated MR dogs. This was associated with an increase in isolated cardiomyocyte length (171+/-5 microm, P<0.05) compared with normal (156+/-3 microm) and MR (165+/-4 microm) dogs. Isolated cardiomyocyte fractional shortening was significantly depressed in MR dogs compared with normal dogs (3.73+/-0.31 vs. 5.02+/-0.26%, P<0.05) and normalized with beta1-RB (4.73+/-0.48%). In addition, stimulation with the beta-adrenergic receptor agonist isoproterenol (25 nM) increased cardiomyocyte fractional shortening by 215% (P<0.05) in beta1-RB dogs compared with normal (56%) and MR (50%) dogs. In summary, beta1-RB improved LV cardiomyocyte function and beta-adrenergic receptor responsiveness despite further cell elongation. The failure to attenuate LV remodeling associated with MR could be due to a failure to improve ultrastructural changes in extracellular matrix organization.

  8. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    Science.gov (United States)

    ABSTRACT BODY:Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  9. Amenorrhea secondary to a vismodegib-induced blockade of follicle-stimulating hormone-receptor activation.

    Science.gov (United States)

    Strasswimmer, John; Latimer, Benjamin; Ory, Steven

    2014-08-01

    To report a novel mechanism suggestive of early ovarian failure secondary to the anti-tumor hedgehog-pathway inhibitor vismodegib. Case report and literature review. Academic and private dermatology and fertility practices. A 34-year-old nulliparous woman with locally advanced basal cell carcinomas who became amenorrheic while receiving oral therapy with vismodegib. Physical examination and endocrine evaluation. Elevated follicle-stimulating hormone (FSH) and low estrogen in the setting of a normal anti-Müllerian hormone. FSH was elevated; estrogen was low. Preantral follicles were detected and anti-Müllerian hormone activity was normal. Menses resumed 5 weeks after cessation of therapy. Vismodegib, a first-in-class inhibitor of the hedgehog signaling pathway is indicated for advanced basal cell carcinoma and is associated with amenorrhea. The mechanism is unknown; it has some features of ovarian failure but preserves ovarian potential through blockading of FSH-receptor-dependent signal transduction. This effect appears to be rapidly reversible upon cessation of therapy. Vismodegib and related compounds may have potential for a role in intervention for gynecologic and endocrine disorders and in therapy for other issues involving FSH-dependent function. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Directory of Open Access Journals (Sweden)

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  11. Angiotensin II type 1 receptor blockade partially attenuates hypoxia-induced pulmonary hypertension in newborn piglets: relationship with the nitrergic system

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, J.S. Jr. [Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Martins, A.R. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Instituto de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG (Brazil); Rosa, E. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SPBrasil (Brazil); Hehre, D.; Bancalari, E.; Suguihara, C. [Department of Pediatrics, Division of Neonatology, Neonatal Developmental Biology Laboratory, University of Miami Miller School of Medicine, Miami, FL (United States)

    2012-02-10

    The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT{sub 1} receptor (AT{sub 1}-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO{sub 2} = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT{sub 1}-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT{sub 1}-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT{sub 1}-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT{sub 1}-R staining, but C animals showed weak iNOS and AT{sub 1}-R staining. Macrophages of L and P animals showed moderate and weak AT{sub 2}-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT{sub 1}-R blockade. We suggest that AT{sub 1}-R blockade might act through AT{sub 2}-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.

  12. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles

    OpenAIRE

    Stone, Audrey J.; Copp, Steven W.; Kim, Joyce S.; Kaufman, Marc P.

    2015-01-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles ...

  13. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  14. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  15. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    Science.gov (United States)

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  16. Influence of beta blockade on gastric acid secretion and changes in gastric mucosal blood flow before and after parietal cell vagotomy in dogs and man

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Bekker, C

    1983-01-01

    The aim of the present study was, in paired experiments in dogs, to examine the effect of beta-receptor blockade on gastric acid secretion and mucosal blood flow before and after parietal cell vagotomy (PCV). The secretory response to pentagastrin was reduced after vagotomy. beta-Adrenergic block......The aim of the present study was, in paired experiments in dogs, to examine the effect of beta-receptor blockade on gastric acid secretion and mucosal blood flow before and after parietal cell vagotomy (PCV). The secretory response to pentagastrin was reduced after vagotomy. beta...

  17. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  18. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  19. PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model.

    Directory of Open Access Journals (Sweden)

    Shi-Dong Ma

    2016-05-01

    Full Text Available Epstein-Barr virus (EBV infection causes B cell lymphomas in humanized mouse models and contributes to a variety of different types of human lymphomas. T cells directed against viral antigens play a critical role in controlling EBV infection, and EBV-positive lymphomas are particularly common in immunocompromised hosts. We previously showed that EBV induces B cell lymphomas with high frequency in a cord blood-humanized mouse model in which EBV-infected human cord blood is injected intraperitoneally into NOD/LtSz-scid/IL2Rγnull (NSG mice. Since our former studies showed that it is possible for T cells to control the tumors in another NSG mouse model engrafted with both human fetal CD34+ cells and human thymus and liver, here we investigated whether monoclonal antibodies that block the T cell inhibitory receptors, PD-1 and CTLA-4, enhance the ability of cord blood T cells to control the outgrowth of EBV-induced lymphomas in the cord-blood humanized mouse model. We demonstrate that EBV-infected lymphoma cells in this model express both the PD-L1 and PD-L2 inhibitory ligands for the PD-1 receptor, and that T cells express the PD-1 and CTLA-4 receptors. Furthermore, we show that the combination of CTLA-4 and PD-1 blockade strikingly reduces the size of lymphomas induced by a lytic EBV strain (M81 in this model, and that this anti-tumor effect requires T cells. PD-1/CTLA-4 blockade markedly increases EBV-specific T cell responses, and is associated with enhanced tumor infiltration by CD4+ and CD8+ T cells. In addition, PD-1/CTLA-4 blockade decreases the number of both latently, and lytically, EBV-infected B cells. These results indicate that PD-1/CTLA-4 blockade enhances the ability of cord blood T cells to control outgrowth of EBV-induced lymphomas, and suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-induced diseases in humans.

  20. New Sides of Aldosterone Action in Cardiovascular System as Potential Targets for Therapeutic Intervention.

    Science.gov (United States)

    Kolodziejczyk, Patrycjusz; Gromotowicz-Poplawska, Anna; Aleksiejczuk, Michal; Chabielska, Ewa; Tutka, Piotr; Miltyk, Wojciech

    2018-03-26

    Aldosterone, the main mineralocorticoid hormone, plays a crucial role in the regulation of electrolyte homeostasis and blood pressure. Although, this role is undoubtedly important, it is not a hormonal action that attracts the most attention. Aldosterone seems to be very important important as a local messenger in the pathology of cardiovascular diseases (CVD). In the last few years, the attention was focused on the correlation between raised aldosterone level and increased risk of cardiovascular events. It has been demonstrated that aldosterone contributes to fibrosis, inflammation, endothelial dysfunction, fibrinolytic disordes, and oxidative stress leading to CVD development and progression. It used to be thought that the effects of aldosterone are mediated via classic nuclear receptors - mineralocorticoid receptors (MR). Now we know that the mechanism of aldosterone action in cardiovascular system is much more complex, since experimental and clinical studies indicate that MR blockade may be not sufficient to abolish aldosterone-incuced harmful effects in the cardiovascular system. Therefore, the involvement of some other than MR, receptors and factors is suggested. Moreover, in addition to the generally known genomic action of aldosterone, which involves MR activation, the nongenomic pathways are postulated in the mode of hormone action. More and more attention is focused on the membrane-coupled receptors, which mediate the rapid effects of aldosterone and have been already confirmed in different cells and tissues of a cardiovascular system. The confirmation of multiple mechanisms of aldosterone action opens a new perspective for more effective therapeutic intervention in aldosterone-related CVD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    International Nuclear Information System (INIS)

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-01-01

    Highlights: → Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. → Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. → VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. → LPA-LPAR1/3 signaling regulated TGFβ1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. → LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGFβ1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the

  2. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lu [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Xue, Jian-Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu (China); Li, Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Liu, De-Song [Department of Pediatrics, Sichuan Provincial Hospital of Women and Children, Chengdu (China); Ge, Yan; Ni, Pei-Yan; Deng, Lin [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Lu, You, E-mail: radyoulu@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Jiang, Wei, E-mail: wcumsjw72@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu (China)

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  3. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Luis R. Cassinotti

    2018-02-01

    Full Text Available Overactivity of the sympathetic nervous system and central endothelins (ETs are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA-salt hypertensive rats. Following brain ET receptor type A (ETA blockade by BQ610 (selective antagonist, transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ETA blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein in the right OB of hypertensive animals. However, ETA blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ETA are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  4. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats.

    Science.gov (United States)

    Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S

    2018-02-27

    Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  5. A real-world cohort study on the quality of potassium and creatinine monitoring during initiation of mineralocorticoid receptor antagonists in patients with heart failure.

    Science.gov (United States)

    Nilsson, Erik; De Deco, Pietro; Trevisan, Marco; Bellocco, Rino; Lindholm, Bengt; Lund, Lars H; Coresh, Josef; Carrero, Juan J

    2018-05-02

    Clinical heart failure (HF) guidelines recommend monitoring of creatinine and potassium throughout the initial weeks of mineralocorticoid receptor antagonists (MRAs) therapy. We here assessed the extent to which this occurs in our healthcare. Observational study in 2007-2010 HF patients starting MRA therapy in Stockholm, Sweden. Outcomes included potassium and creatinine laboratory testing before MRA initiation and in the early (days 1-10) and extended (days 11-90) post-initiation periods. Exclusion criteria considered death/hospitalization within 90 days, and lack of a second MRA dispense. Of 4,036 HF patients starting on MRA, 45% were initiated from a hospital, 24% from a primary care center and 30% from other private centers. Overall, 89% underwent pre-initiation testing, being more common among hospital (97%) than for primary care (74%) initiations. Only 24% were adequately monitored in all three recommended intervals, being again more frequent following hospital (33%) than private (21%) or primary care (17%) initiations. In multivariable analyses, adequate monitoring was more likely for hospital [odds ratio (OR), 95% confidence interval; 2.85, 2.34-3.56] initiations, and for patients with chronic kidney disease (OR 1.79, 1.30-2.43) and concomitant use of ACE (OR 1.27, 1.05-1.52), ARBs (OR 1.19, 1.01-1.40) or beta blockers (OR 1.65, 1.22-2.26). Age, sex and prescribing center explained a small portion of adequate monitoring (c-statistic, 0.63). Addition of comorbidities and medications improved prediction marginally (c-statistic, 0.65). Although serum potassium and creatinine monitoring before MRA initiation for HF is frequent, rates of post-initiation monitoring remain suboptimal, especially among primary care centers.

  6. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients.

    Science.gov (United States)

    Slagman, Maartje C J; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D

    2012-03-01

    Renin-angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both under- and overtitration of sodium targeting can easily occur. We evaluated whether N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of volume expansion, predicts the benefits of sodium targeting in CKD patients. In a cross-over randomized controlled trial, 33 non-diabetic CKD patients (proteinuria 3.8 ± 0.4 g/24 h, blood pressure 143/86 ± 3/2 mmHg, creatinine clearance 89 ± 5 mL/min) were treated during 6-week periods with placebo, angiotensin receptor blockade (ARB; losartan 100 mg/day) and ARB plus diuretics (losartan 100 mg/day plus hydrochlorothiazide 25 mg/day), combined with LS (93 ± 52 mmol Na(+)/24 h) and regular sodium diet (RS; 193 ± 62 mmol Na(+)/24 h, P diuretics and was normalized by ARB + diuretic + LS [39 (26-59) pg/mL, P = 0.65 versus controls]. NT-proBNP levels above the upper limit of normal (>125 pg/mL) predicted a larger reduction of blood pressure and proteinuria by LS and diuretics but not by ARB, during all steps of the titration regimen. Elevated NT-proBNP levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of sodium targeting, but not RAAS blockade, in proteinuric CKD patients. Importantly, this applies to the untreated condition, as well as to the subsequent treatment steps, consisting of RAAS blockade and even RAAS blockade combined with diuretics. NT-proBNP can be a useful tool to identify CKD patients in whom sodium targeting can improve blood pressure and proteinuria.

  7. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  8. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.

    Science.gov (United States)

    Le Moëllic, Cathy; Ouvrard-Pascaud, Antoine; Capurro, Claudia; Cluzeaud, Francoise; Fay, Michel; Jaisser, Frederic; Farman, Nicolette; Blot-Chabaud, Marcel

    2004-05-01

    Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr

  9. Multivalent Fcγ-receptor engagement by a hexameric Fc-fusion protein triggers Fcγ-receptor internalisation and modulation of Fcγ-receptor functions.

    Science.gov (United States)

    Qureshi, O S; Rowley, T F; Junker, F; Peters, S J; Crilly, S; Compson, J; Eddleston, A; Björkelund, H; Greenslade, K; Parkinson, M; Davies, N L; Griffin, R; Pither, T L; Cain, K; Christodoulou, L; Staelens, L; Ward, E; Tibbitts, J; Kiessling, A; Smith, B; Brennan, F R; Malmqvist, M; Fallah-Arani, F; Humphreys, D P

    2017-12-06

    Engagement of Fcγ-receptors triggers a range of downstream signalling events resulting in a diverse array of immune functions. As a result, blockade of Fc-mediated function is an important strategy for the control of several autoimmune and inflammatory conditions. We have generated a hexameric-Fc fusion protein (hexameric-Fc) and tested the consequences of multi-valent Fcγ-receptor engagement in in vitro and in vivo systems. In vitro engagement of hexameric-Fc with FcγRs showed complex binding interactions that altered with receptor density and triggered the internalisation and degradation of Fcγ-receptors. This caused a disruption of Fc-binding and phagocytosis. In vivo, in a mouse ITP model we observed a short half-life of hexameric-Fc but were nevertheless able to observe inhibition of platelet phagocytosis several days after hexameric-Fc dosing. In cynomolgus monkeys, we again observed a short half-life, but were able to demonstrate effective FcγR blockade. These findings demonstrate the ability of multi-valent Fc-based therapeutics to interfere with FcγR function and a potential mechanism through which they could have a sustained effect; the internalisation and degradation of FcγRs.

  10. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?

    Directory of Open Access Journals (Sweden)

    Judith Toneatto

    2014-11-01

    Full Text Available It is well known that glucocorticoids and mineralocorticoids are part of the list of hormones that control adipogenesis as well as different aspects of the physiology of the adipose tissue. Their actions are mediated through their binding to the glucocorticoid and the mineralocorticoid receptors (GR and MR, respectively, in complex with heat shock proteins (Hsps and high molecular weight immunophilins (IMMs. Albeit many aspects of the molecular mechanism of the corticosteroid receptors are not fully elucidated yet, it was not until recently that the first evidences of the functional importance of Hsps and IMMs in the process of adipocyte differentiation have been described. Hsp90 and the high molecular weight IMM FKBP51 modulate GR and MR activity at multiple levels, that is, hormone binding affinity, their subcellular distribution, and the transcriptional status, among other aspects of the NR function. Interestingly, it has recently been described that Hsp90 and FKBP51 also participate in the control of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the nuclear architecture through its participation in the reorganization of the nuclear lamina and the control of the subnuclear distribution of GR. Thus, the aim of this review is to integrate and discuss the actual understanding of the role of corticosteroid receptors, their chaperones and cochaperones, in the process of adipocyte differentiation.

  11. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Sathyapalan, Thozhukat; Javed, Zeeshan; Kilpatrick, Eric S; Coady, Anne-Marie; Atkin, Stephen L

    2017-03-01

    Animal studies suggest that cannabinoid receptor-1 (CB-1) blockade reduces inflammation and neovascularization by decreasing vascular endothelial growth factor (VEGF) levels associated with a reduction in inflammatory markers, thereby potentially reducing cardiovascular risk. To determine the impact of CB1 antagonism by rimonabant on VEGF and inflammatory markers in obese PCOS women. Randomized, open-labelled parallel study. Endocrinology outpatient clinic in a referral centre. Twenty patients with PCOS (PCOS) and biochemical hyperandrogenaemia with a body mass index of ≥30 kg/m 2 were recruited. Patients were randomized to 1·5 g daily of metformin or 20 mg daily of rimonabant. Post hoc review to detect VEGF and pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 before and after 12 weeks of treatment. After 12 weeks of rimonabant treatment, there was a significant increase in VEGF (99·2 ± 17·6 vs 116·2 ± 15·8 pg/ml, P weight loss. © 2016 John Wiley & Sons Ltd.

  12. Contemporary views on the lawfulness of naval blockades

    NARCIS (Netherlands)

    Fink, M.D.

    2011-01-01

    The traditional law of blockade has several technical requirements that if not met renders a blockade unlawful. These traditional requirements balance the interests of the belligerent and neutrals. A more contemporary view on the law of blockade, however, emphasizes that blockades are also subject

  13. Chronic blockade of angiotensin II action prevents glomerulosclerosis, but induces graft vasculopathy in experimental kidney transplantation

    NARCIS (Netherlands)

    Smit-van Oosten, A; Navis, G; Stegeman, CA; Joles, JA; Klok, PA; Kuipers, F; Tiebosch, ATMG; van Goor, H

    Long-term renin-angiotensin system blockade is beneficial in a variety of renal diseases, This study examines the long-term (34 weeks) effects of the angiotensin-converting enzyme inhibitor lisinopril and the angiotensin II receptor type I blocker L158,809 in the Fisher to Lewis rat model of chronic

  14. Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission computer tomography tracer [123I]iomazenil

    DEFF Research Database (Denmark)

    Videbaek, C; Friberg, L; Holm, S

    1993-01-01

    twice, once without receptor blockade and once with a constant degree of partial blockade of the benzodiazepine receptors by infusion of nonradioactive flumazenil (Lanexat) or midazolam (Dormicum). Single photon emission computer tomography and blood sampling were performed intermittently for 6 h after...

  15. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  16. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    Science.gov (United States)

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  17. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  18. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    Science.gov (United States)

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  19. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  20. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    2012-02-01

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  1. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-07-26

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  2. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes.

    Science.gov (United States)

    Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A

    2016-05-23

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.

  3. Neuraxial blockade for external cephalic version: Cost analysis.

    Science.gov (United States)

    Yamasato, Kelly; Kaneshiro, Bliss; Salcedo, Jennifer

    2015-07-01

    Neuraxial blockade (epidural or spinal anesthesia/analgesia) with external cephalic version increases the external cephalic version success rate. Hospitals and insurers may affect access to neuraxial blockade for external cephalic version, but the costs to these institutions remain largely unstudied. The objective of this study was to perform a cost analysis of neuraxial blockade use during external cephalic version from hospital and insurance payer perspectives. Secondarily, we estimated the effect of neuraxial blockade on cesarean delivery rates. A decision-analysis model was developed using costs and probabilities occurring prenatally through the delivery hospital admission. Model inputs were derived from the literature, national databases, and local supply costs. Univariate and bivariate sensitivity analyses and Monte Carlo simulations were performed to assess model robustness. Neuraxial blockade was cost saving to both hospitals ($30 per delivery) and insurers ($539 per delivery) using baseline estimates. From both perspectives, however, the model was sensitive to multiple variables. Monte Carlo simulation indicated neuraxial blockade to be more costly in approximately 50% of scenarios. The model demonstrated that routine use of neuraxial blockade during external cephalic version, compared to no neuraxial blockade, prevented 17 cesarean deliveries for every 100 external cephalic versions attempted. Neuraxial blockade is associated with minimal hospital and insurer cost changes in the setting of external cephalic version, while reducing the cesarean delivery rate. © 2015 The Authors. Journal of Obstetrics and Gynaecology Research © 2015 Japan Society of Obstetrics and Gynecology.

  4. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Science.gov (United States)

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  5. Dopamine Receptor-Specific Contributions to the Computation of Value.

    Science.gov (United States)

    Burke, Christopher J; Soutschek, Alexander; Weber, Susanna; Raja Beharelle, Anjali; Fehr, Ernst; Haker, Helene; Tobler, Philippe N

    2018-05-01

    Dopamine is thought to play a crucial role in value-based decision making. However, the specific contributions of different dopamine receptor subtypes to the computation of subjective value remain unknown. Here we demonstrate how the balance between D1 and D2 dopamine receptor subtypes shapes subjective value computation during risky decision making. We administered the D2 receptor antagonist amisulpride or placebo before participants made choices between risky options. Compared with placebo, D2 receptor blockade resulted in more frequent choice of higher risk and higher expected value options. Using a novel model fitting procedure, we concurrently estimated the three parameters that define individual risk attitude according to an influential theoretical account of risky decision making (prospect theory). This analysis revealed that the observed reduction in risk aversion under amisulpride was driven by increased sensitivity to reward magnitude and decreased distortion of outcome probability, resulting in more linear value coding. Our data suggest that different components that govern individual risk attitude are under dopaminergic control, such that D2 receptor blockade facilitates risk taking and expected value processing.

  6. Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently

    NARCIS (Netherlands)

    de Waard, Vivian; Bot, Ilze; de Jager, Saskia C. A.; Talib, Sara; Egashira, Kensuke; de Vries, Margreet R.; Quax, Paul H. A.; Biessen, Erik A. L.; van Berkel, Theo J. C.

    2010-01-01

    Objective: CCR2, the receptor for monocyte chemoattractant protein 1 (MCP1), is involved in atherosclerosis and abdominal aortic aneurysms (AAAs). Here, we explored the potential beneficial blockade of the MCP1/CCR2 pathway. Methods: We applied an AAA model in aging apolipoprotein E deficient mice

  7. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  8. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    International Nuclear Information System (INIS)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-01-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of 201 Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and 201 Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of 201 Tl uptake in non-occluded endocardium. Uptake of 201 Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties. (orig.) [de

  9. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    Directory of Open Access Journals (Sweden)

    Jonathan eShelton

    2015-01-01

    Full Text Available Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6 induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg. Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15 or advance (CT22 wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light-induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  10. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    Science.gov (United States)

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  11. Adrenergic receptors and gastric acid secretion in dogs. The influence of beta 2-receptors

    DEFF Research Database (Denmark)

    Gottrup, F; Hovendal, C; Bech, K

    1984-01-01

    the characteristics of a non-competitive mechanism, while the weaker inhibition of histamine induced acid output seemed to follow a competitive mechanism. The inhibitory effect was not mediated through a decreased gastrin release. Dopamine receptor blockade was found to be without any influence on the inhibitory...

  12. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    Science.gov (United States)

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade.

  13. Overexpression of Mineralocorticoid Receptors in the Mouse Forebrain Partly Alleviates the Effects of Chronic Early Life Stress on Spatial Memory, Neurogenesis and Synaptic Function in the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Sofia Kanatsou

    2017-05-01

    Full Text Available Evidence from human studies suggests that high expression of brain mineralocorticoid receptors (MR may promote resilience against negative consequences of stress exposure, including childhood trauma. We examined, in mice, whether brain MR overexpression can alleviate the effects of chronic early life stress (ELS on contextual memory formation under low and high stress conditions, and neurogenesis and synaptic function of dentate gyrus granular cells. Male mice were exposed to ELS by housing the dam with limited nesting and bedding material from postnatal day (PND 2 to 9. We investigated the moderating role of MRs by using forebrain-specific transgenic MR overexpression (MR-tg mice. Low-stress contextual (i.e., object relocation memory formation was hampered by ELS in wildtype but not MR-tg mice. Anxiety like behavior and high-stress contextual (i.e., fear memory formation were unaffected by ELS and/or MR expression level. At the cellular level, an interaction effect was observed between ELS and MR overexpression on the number of doublecortin-positive cells, with a significant difference between the wildtype ELS and MR-tg ELS groups. No interaction was found regarding Ki-67 and BrdU staining. A significant interaction between ELS and MR expression was further observed with regard to mEPSCs and mIPSC frequency. The ratio of evoked EPSC/IPSC or NMDA/AMPA responses was unaffected. Overall, these results suggest that ELS affects contextual memory formation under low stress conditions as well as neurogenesis and synaptic transmission in dentate granule cells, an effect that can be alleviated by MR-overexpression.

  14. α-blockade, apoptosis, and prostate shrinkage: how are they related?

    Science.gov (United States)

    Chłosta, Piotr; Drewa, Tomasz; Kaplan, Steven

    2013-01-01

    The α1-adrenoreceptor antagonists, such as terazosin and doxazosin, induce prostate programmed cell death (apoptosis) within prostate epithelial and stromal cells in vitro. This treatment should cause prostate volume decrease, However, this has never been observed in clinical conditions. The aim of this paper is to review the disconnect between these two processes. PubMed and DOAJ were searched for papers related to prostate, apoptosis, and stem cell death. The following key words were used: prostate, benign prostate hyperplasia, programmed cell death, apoptosis, cell death, α1-adrenoreceptor antagonist, α-blockade, prostate epithelium, prostate stroma, stem cells, progenitors, and in vitro models. We have shown how discoveries related to stem cells can influence our understanding of α-blockade treatment for BPH patients. Prostate epithelial and mesenchymal compartments have stem (progenitors) and differentiating cells. These compartments are described in relation to experimental in vitro and in vivo settings. Apoptosis is observed within prostate tissue, but this effect has no clinical significance and cannot lead to prostate shrinkage. In part, this is due to stem cells that are responsible for prostate tissue regeneration and are resistant to apoptosis triggered by α1-receptor antagonists.

  15. Graft-versus-host disease is enhanced by selective CD73 blockade in mice.

    Directory of Open Access Journals (Sweden)

    Long Wang

    Full Text Available CD73 functions as an ecto-5'-nucleotidase to produce extracellular adenosine that has anti-inflammatory and immunosuppressive activity. We here demonstrate that CD73 helps control graft-versus-host disease (GVHD in mouse models. Survival of wild-type (WT recipients of either allogeneic donor naïve CD73 knock-out (KO or WT T cells was similar suggesting that donor naïve T cell CD73 did not contribute to GVHD. By contrast, donor CD73 KO CD4(+CD25(+ regulatory T cells (Treg had significantly impaired ability to mitigate GVHD mortality compared to WT Treg, suggesting that CD73 on Treg is critical for GVHD protection. However, compared to donor CD73, recipient CD73 is more effective in limiting GVHD. Pharmacological blockade of A2A receptor exacerbated GVHD in WT recipients, but not in CD73 KO recipients, suggesting that A2 receptor signaling is primarily implicated in CD73-mediated GVHD protection. Moreover, pharmacological blockade of CD73 enzymatic activity induced stronger alloreactive T cell activity, worsened GVHD and enhanced the graft-versus-leukemia (GVL effect. These findings suggest that both donor and recipient CD73 protects against GVHD but also limits GVL effects. Thus, either enhancing or blocking CD73 activity has great potential clinical application in allogeneic bone marrow transplants.

  16. Localized CD47 blockade enhances immunotherapy for murine melanoma.

    Science.gov (United States)

    Ingram, Jessica R; Blomberg, Olga S; Sockolosky, Jonathan T; Ali, Lestat; Schmidt, Florian I; Pishesha, Novalia; Espinosa, Camilo; Dougan, Stephanie K; Garcia, K Christopher; Ploegh, Hidde L; Dougan, Michael

    2017-09-19

    CD47 is an antiphagocytic ligand broadly expressed on normal and malignant tissues that delivers an inhibitory signal through the receptor signal regulatory protein alpha (SIRPα). Inhibitors of the CD47-SIRPα interaction improve antitumor antibody responses by enhancing antibody-dependent cellular phagocytosis (ADCP) in xenograft models. Endogenous expression of CD47 on a variety of cell types, including erythrocytes, creates a formidable antigen sink that may limit the efficacy of CD47-targeting therapies. We generated a nanobody, A4, that blocks the CD47-SIRPα interaction. A4 synergizes with anti-PD-L1, but not anti-CTLA4, therapy in the syngeneic B16F10 melanoma model. Neither increased dosing nor half-life extension by fusion of A4 to IgG2a Fc (A4Fc) overcame the issue of an antigen sink or, in the case of A4Fc, systemic toxicity. Generation of a B16F10 cell line that secretes the A4 nanobody showed that an enhanced response to several immune therapies requires near-complete blockade of CD47 in the tumor microenvironment. Thus, strategies to localize CD47 blockade to tumors may be particularly valuable for immune therapy.

  17. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1.

    Science.gov (United States)

    Prince, Courtney D; Rau, Andrew R; Yorgason, Jordan T; España, Rodrigo A

    2015-01-21

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine signaling or cocaine self-administration, particularly under high effort conditions. To address this, we examined the effects of hypocretin receptor 1, and/or hypocretin receptor 2 blockade on dopamine signaling and cocaine reinforcement. We used in vivo fast scan cyclic voltammetry to test the effects of hypocretin antagonists on dopamine signaling in the nucleus accumbens core and a progressive ratio schedule to examine the effects of these antagonists on cocaine self-administration. Results demonstrate that blockade of either hypocretin receptor 1 or both hypocretin receptor 1 and 2 significantly reduces the effects of cocaine on dopamine signaling and decreases the motivation to take cocaine. In contrast, blockade of hypocretin receptor 2 alone had no significant effects on dopamine signaling or self-administration. These findings suggest a differential involvement of the two hypocretin receptors, with hypocretin receptor 1 appearing to be more involved than hypocretin receptor 2 in the regulation of dopamine signaling and cocaine self-administration. When considered with the existing literature, these data support the hypothesis that hypocretins exert a permissive influence on dopamine signaling and motivated behavior via preferential actions on hypocretin receptor 1.

  18. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT).

    Science.gov (United States)

    Ramadan, Ronnie; Dhawan, Saurabh S; Binongo, José Nilo G; Alkhoder, Ayman; Jones, Dean P; Oshinski, John N; Quyyumi, Arshed A

    2016-04-01

    Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of angiotensin II type-1 receptor blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Subjects (n = 120) with carotid intima-media thickness >0.65 mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area and wall thickness were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Over 2 years, the carotid bulb vessel wall area decreased with Valsartan (-6.7, 95% CI [-11.6, -1.9] mm(2)) but not with placebo (3.4, 95% CI [-2.8, 9.6] mm(2)), P = .01 between groups. Similarly, mean wall thickness decreased with Valsartan (-0.18, 95% CI [-0.30, -0.06] mm), but not with placebo (0.08, 95% CI [-0.07, 0.23] mm), P = .009 between groups. Furthermore, plaque thickness decreased with Valsartan (-0.35, 95% CI [-0.63, -0.08] mm) but was unchanged with placebo (+0.28, 95% CI [-0.11, 0.69] mm), P = .01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium-independent vascular function. In subjects with carotid wall thickening, angiotensin II type-1 receptor blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis

  19. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  20. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  2. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Science.gov (United States)

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    neuroprotective against glutamate-induced necrotic neuronal cell death in vitro and that this effect is mediated through NMDA receptor blockade by interacting with a site located within the NMDA channel pore.

  3. [A comparative study on efficacy of glucocorticoids, mineralocorticoids and vasoactive drugs on reversing hearing loss in patients suffering idiopathic sensorineural cochlear hypoacusis. A preliminary clinical trial].

    Science.gov (United States)

    Campos-Bañales, Eugenia María; López-Campos, Daniel; de Serdio-Arias, José Luis; Esteban-Rodriguez, J; García-Sáinz, Mar; Muñoz-Cortés, Álvaro; López-Aguado, Daniel

    2015-01-01

    Sensory neural hearing loss (SNHL) is a disorder characterised by an important deterioration of the auditory function. Re-establishing normal ion homeostasis of the endolymph could be related to hearing recovery and it might be mediated by mineralocorticoids. The main purpose of this preliminary, randomized controlled clinical trial was assessing the recovery of idiopathic sensory neural cochlear hearing loss (SNHL) by comparing the efficacy of 2 types of steroids versus vasodilators. The 3-month intervention involved 70 patients, allocated into 4 different groups: a control with no medication, consisting of 14 patients (8 men and 6 women); a vasodilator group of 21 patients (11 men and 10 women); a glucocorticoid group with 16 patients (10 men and 6 women); and a mineralocorticoid therapy group, consisting of 19 patients (11 men and 8 women). The level of hearing loss and its topography were estimated using Liminal Tone Audiometry (LTA) and Auditory Brainstem Response (ABR). Our research found overall greater efficacy of mineralocorticoids versus glucocorticoids and vasodilators. There was better response in women than in men and it was higher from the left ear, regardless of patient gender. The hearing gain was significantly superior in the mineralocorticoid group, followed by the glucocorticoid group. However, the responses to vasodilators were lesser and of low statistical significance. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  4. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  5. Pitting type of pretibial edema in a patient with silent thyroiditis successfully treated by angiotensin ii receptor blockade.

    Science.gov (United States)

    Kazama, Itsuro; Mori, Yoko; Baba, Asuka; Nakajima, Toshiyuki

    2014-01-01

    Female, 56 FINAL DIAGNOSIS: Thyroiditis - silent Symptoms: Palpitations • pretibial pitting edema • short of breath • sweating - Clinical Procedure: - Specialty: Endocrinology and Metabolic. Unknown etiology. Hyper- or hypothyroidism sometimes causes pretibial myxedema characterized by non-pitting infiltration of a proteinaceous ground substance. However, in those patients, the "pitting" type of pretibial edema as a result of increased sodium and fluid retention or vascular hyper-permeability rarely occurs, except in cases complicated by heart failures due to severe cardiomyopathy or pulmonary hypertension. A 56-year-old woman developed bilateral pretibial pitting edema, followed by occasional sweating, palpitations, and shortness of breath, which persisted for more than 2 months. The diagnosis of hyperthyroidism due to silent thyroiditis was supported by elevated levels of free thyroxine (T4) and triiodothyronine (T3), with a marked decrease in thyroid-stimulating hormone (TSH), and the negative results for TSH receptor antibodies with typical findings of destructive thyrotoxicosis. Despite her "pitting" type of pretibial edema, a chest radio-graph demonstrated the absence of cardiomyopathy or congestive heart failure. Oral administration of angiotensin II receptor blocker (ARB) was initiated for her systolic hypertension, with a relatively higher elevation of plasma renin activity compared to that of the aldosterone level. Although the symptoms characteristic to hyperthyroidism, such as increased sweating, palpitations and shortness of breath, slowly improved with a spontaneous resolution of the disease, ARB quickly resolved the pretibial pitting edema shortly after the administration.. In this case, increased activity of the renin-angiotensin-aldosterone system stimulated by thyroid hormone was likely responsible for the patient's pitting type of edema. The pharmacological blockade of the renin-angiotensin-aldosterone system was thought to be effective for

  6. Plasma 11-deoxycorticosterone (DOC) and mineralocorticoid receptor testicular expression during rainbow trout Oncorhynchus mykiss spermiation: implication with 17alpha, 20beta-dihydroxyprogesterone on the milt fluidity?

    Science.gov (United States)

    Milla, Sylvain; Terrien, Xavier; Sturm, Armin; Ibrahim, Fidaa; Giton, Franck; Fiet, Jean; Prunet, Patrick; Le Gac, Florence

    2008-05-19

    In rainbow trout (Oncorhynchus mykiss), the endocrine control of spermiation is not fully understood. Besides 11ketotestosterone (11KT) and 17alpha, 20beta-dihydroxyprogesterone (MIS), the potential physiological ligand of the mineralocorticoid receptor (MR) 11-deoxycorticosterone (DOC), is a credible candidate in O. mykiss spermiation regulation as spermiation is accompanied with changes in aqueous and ionic flows. In this study, we investigated potential roles of DOC during spermiation 1) by describing changes in blood plasma DOC level, MR mRNA abundance during the reproductive cycle and MR localization in the reproductive tract 2) by investigating and comparing the effects of DOC (10 mg/kg) and MIS (5 mg/kg) supplementations on sperm parameters 3) by measuring the in vitro effect of DOC on testis MIS production. The plasma concentration of DOC increased rapidly at the end of the reproductive cycle to reach levels that were 10-50 fold higher in mature males than in immature fish. MR mRNA relative abundance was lower in maturing testes when compared to immature testes, but increased rapidly during the spermiation period, immediately after the plasma rise in DOC. At this stage, immunohistochemistry localized MR protein to cells situated at the periphery of the seminiferous tubules and in the efferent ducts. Neither DOC nor MIS had significant effects on the mean sperm volume, although MIS treatment significantly increased the percentage of males producing milt. However, a significant reduction in the spermatocrit was observed when DOC and MIS were administrated together. Finally, we detected an inhibitory effect of DOC on testis MIS production in vitro. These results are in agreement with potential roles of DOC and MR during spermiation and support the hypothesis that DOC and MIS mechanisms of action are linked during this reproductive stage, maybe controlling milt fluidity. They also confirm that in O. mykiss MIS is involved in spermiation induction.

  7. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    DEFF Research Database (Denmark)

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J

    2008-01-01

    The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass ind...... variations increase the risk for obesity and modulate BMI in our European population. As CB1 is a drug target for obesity, a pharmacogenetic analysis of the endocannabinoid blockade obesity treatment may be of interest to identify best responders....

  8. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice.

    Science.gov (United States)

    Araújo, Wedson F; Naves, Marcelo A; Ravanini, Juliana N; Schor, Nestor; Teixeira, Vicente P C

    2015-09-01

    Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Regulation of extinction-related plasticity by opioid receptors in the ventrolateral periaqueductal gray matter

    Directory of Open Access Journals (Sweden)

    Ryan Parsons

    2010-08-01

    Full Text Available Recent work has led to a better understanding of the neural mechanisms underlying the extinction of Pavlovian fear conditioning. Long-term synaptic changes in the medial prefrontal cortex (mPFC are critical for extinction learning, but very little is currently known about how the mPFC and other brain areas interact during extinction. The current study examined the effect of drugs that impair the extinction of fear conditioning on the activation of the extracellular-related kinase/mitogen-activated protein kinase (ERK/MAPK in brain regions that likely participate in the consolidation of extinction learning. Inhibitors of opioid and N-methyl-D-aspartic acid (NMDA receptors were applied to the ventrolateral periaqueductal gray matter (vlPAG and amygdala shortly before extinction training. Results from these experiments show that blocking opioid receptors in the vlPAG prevented the formation of extinction memory, whereas NMDA receptor blockade had no effect. Conversely, blocking NMDA receptors in the amygdala disrupted the formation of fear extinction memory, but opioid receptor blockade in the same brain area did not. Subsequent experiments tested the effect of these drug treatments on the activation of the ERK/MAPK signaling pathway in various brain regions following extinction training. Only opioid receptor blockade in the vlPAG disrupted ERK phosphorylation in the mPFC and amygdala. These data support the idea that opiodergic signaling derived from the vlPAG affects plasticity across the brain circuit responsible for the formation of extinction memory.

  10. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte

    2016-01-01

    the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. METHODS: Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test......BACKGROUND: We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored.......56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). CONCLUSIONS: Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association...

  11. Sodium restriction potentiates the renoprotective effects of combined vitamin D receptor activation and angiotensin-converting enzyme inhibition in established proteinuric nephropathy.

    NARCIS (Netherlands)

    Mirkovic, K.; Frenay, A.S.; Born, J. van den; Goor, H van; Navis, G.; Borst, M.H. de; Bindels, R.J.M.; Hoenderop, J.G.J.; Hillebrands, J.L.

    2017-01-01

    BACKGROUND: Renin-angiotensin-aldosterone system (RAAS) blockade provides renoprotective effects in chronic kidney disease (CKD); yet progressive renal function loss remains common. Dietary sodium restriction potentiates the renoprotective effects of RAAS blockade. Vitamin D receptor activator

  12. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    International Nuclear Information System (INIS)

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users

  13. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  14. Autoradiographic demonstration of target cells for the mineralocorticoid aldosterone in the rat pineal gland

    International Nuclear Information System (INIS)

    Ruehle, H.J.; Ermisch, A.

    1987-01-01

    Male rats received [ 3 H]aldosterone 30 min before sacrifice. Autoradiograms were prepared from brain and pineal gland by a thaw-mount technique. Grain counting revealed that the pineal retained 4 times as much radioactivity as brain regions with tight capillaries. Using an appropriate method of quantitative autoradiogram evaluation, it was shown that in adrenalectomized animals, but not after shamoperiation, 28% of the pinealocytes concentrated the steroid in their nuclei. This is the first demonstration of saturable mineralocorticoid binding in the pineal gland. (author)

  15. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  16. PATIENT WITH CHRONIC HEART FAILURE. RATIONAL CHOICE OF THERAPY

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2017-01-01

    Full Text Available The theory of chronic hyperactivation of neurohormonal systems, in particular, sympathoadrenal and renin-angiotensin-aldosterone, is the basis of modern concepts of the pathogenesis of heart failure. The medicinal blocking of these two systems has proved to be effective in the treatment of heart failure with reduced ejection fraction (<40%. Antagonists of mineralocorticoid receptors, along with angiotensin-converting enzyme inhibitors and beta-blockers, are neurohumoral modulators. They are used to treat patients with heart failure with reduced ejection fraction. The prescription of mineralocorticoid receptor antagonists in clinical practice remains insufficient despite their high efficacy. Demonstration of the site of mineralocorticoid receptor antagonists in the complex treatment of a patient with chronic heart failure and diabetes type 2 is the goal of this article.

  17. Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment.

    Science.gov (United States)

    Baskin, Britahny M; Nic Dhonnchadha, Bríd Á; Dwoskin, Linda P; Kantak, Kathleen M

    2017-10-01

    Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.

  18. Development of Novel Drugs That Target Coactivation Sites of the Androgen Receptor for Treatment of Antiandrogen-Resistant Prostate Cancer

    Science.gov (United States)

    2015-12-01

    quantifying their effect on the production of the prostate specific antigen (PSA) in prostate cancer cell lines (11). PSA is AR-regulated serine protease and... products . The hydroxylation products were observed in lesser amounts. The IV and IP serum profiles of VPC-13566 suggest that it could be administered IP...Glucocorticoid, mineralocorticoid, progesterone , and androgen receptors. Pharmacological Reviews. 2006;58:782-97. 2. Denmeade SR, Isaacs JT. A

  19. Dynamics of Corticosteroid Receptors: Lessons from Live Cell Imaging

    International Nuclear Information System (INIS)

    Nishi, Mayumi

    2011-01-01

    Adrenal corticosteroids (cortisol in humans or corticosterone in rodents) exert numerous effects on the central nervous system that regulates the stress response, mood, learning and memory, and various neuroendocrine functions. Corticosterone (CORT) actions in the brain are mediated via two receptor systems: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). It has been shown that GR and MR are highly colocalized in the hippocampus. These receptors are mainly distributed in the cytoplasm without hormones and translocated into the nucleus after treatment with hormones to act as transcriptional factors. Thus the subcellular dynamics of both receptors are one of the most important issues. Given the differential action of MR and GR in the central nervous system, it is of great consequence to clarify how these receptors are trafficked between cytoplasm and nucleus and their interactions are regulated by hormones and/or other molecules to exert their transcriptional activity. In this review, we focus on the nucleocytoplasmic and subnuclear trafficking of GR and MR in neural cells and non-neural cells analyzed by using molecular imaging techniques with green fluorescent protein (GFP) including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET), and discuss various factors affecting the dynamics of these receptors. Furthermore, we discuss the future directions of in vivo molecular imaging of corticosteroid receptors at the whole brain level

  20. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  1. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    Science.gov (United States)

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. Copyright © 2015 by the American Society of Nephrology.

  2. Histamine delays gastric emptying of solid food in man through histamine, receptors

    International Nuclear Information System (INIS)

    Sridhar, K.; Lange, R.; McCallum, R.W.

    1984-01-01

    The authors have shown that histamine (H) contracts the cat pylorus and duodenum through H/sub 1/ receptor mechanisms. The authors investigated the effect of H infusion on gastric emptying (GE) and the role of H/sub 1/ and H/sub 2/ receptor blockade in healthy volunteers. Radionuclide GE studies were performed using chicken liver labeled in vivo with /sup 99m/Technetium-sulfur colloid as a marker of solid food. Study days were as follows: a baseline GE study (Day 1); H infused continuously IV at a rate of 40 μg/kg/hr during the GE study (Day 2); an IV bolus of 50 mg of diphenhydramine (Day 3), or 300 mg cimetidine (Day 4) given just prior to the continuous infusion of H; a final day when cimetidine was given alone (Day 5). GE was monitored for 2 hours on each day. The results of days 1, 2 and 3 are summarized below (+p<0.05 vs baseline or Day 1). Pretreatment with cimetidine (Day 4) augmented the delay in GE induced by H infusion, while cimetidine without H (Day 5) had no effect on GE. The authors conclude that: 1) H given at a dose which elicits maximal acid secretory response in man significantly delays GE; and 2) H/sub 1/ receptor blockade but not H/sub 2/ blockade prevented this effect. Histamine may play a modulatory role in human gastric emptying through an H/sub 1/ receptor mechanism

  3. A tryptophan-rich motif in the human parainfluenza virus type 2 V protein is critical for the blockade of toll-like receptor 7 (TLR7)- and TLR9-dependent signaling.

    Science.gov (United States)

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-05-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.

  4. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point.

    Science.gov (United States)

    Sica, Domenic A

    2010-04-01

    The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.

  5. Objective neuromuscular monitoring of neuromuscular blockade in Denmark

    DEFF Research Database (Denmark)

    Söderström, C M; Eskildsen, K Z; Gätke, M R

    2017-01-01

    BACKGROUND: Neuromuscular blocking agents are commonly used during general anaesthesia but can lead to postoperative residual neuromuscular blockade and associated morbidity. With appropriate objective neuromuscular monitoring (objNMM) residual blockade can be avoided. In this survey, we investig...

  6. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  7. Myostatin deficiency but not anti-myostatin blockade induces marked proteomic changes in mouse skeletal muscle.

    Science.gov (United States)

    Salzler, Robert R; Shah, Darshit; Doré, Anthony; Bauerlein, Roy; Miloscio, Lawrence; Latres, Esther; Papadopoulos, Nicholas J; Olson, William C; MacDonald, Douglas; Duan, Xunbao

    2016-07-01

    Pharmacologic blockade of the myostatin (Mstn)/activin receptor pathway is being pursued as a potential therapy for several muscle wasting disorders. The functional benefits of blocking this pathway are under investigation, in particular given the findings that greater muscle hypertrophy results from Mstn deficiency arising from genetic ablation compared to post-developmental Mstn blockade. Using high-resolution MS coupled with SILAC mouse technology, we quantitated the relative proteomic changes in gastrocnemius muscle from Mstn knockout (Mstn(-/-) ) and mice treated for 2-weeks with REGN1033, an anti-Mstn antibody. Relative to wild-type animals, Mstn(-/-) mice had a two-fold greater muscle mass and a >1.5-fold change in expression of 12.0% of 1137 quantified muscle proteins. In contrast, mice treated with REGN1033 had minimal changes in muscle proteome (0.7% of 1510 proteins >1.5-fold change, similar to biological difference 0.5% of 1310) even though the treatment induced significant 20% muscle mass increase. Functional annotation of the altered proteins in Mstn(-/-) mice corroborates the mutiple physiological changes including slow-to-fast fiber type switch. Thus, the proteome-wide protein expression differs between Mstn(-/-) mice and mice subjected to specific Mstn blockade post-developmentally, providing molecular-level insights to inform mechanistic hypotheses to explain the observed functional differences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Radiotherapy and immune checkpoint blockades: a snapshot in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Yool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

  9. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  10. Vascular adrenergic receptor responses in skeletal muscle in myotonic dystrophy

    International Nuclear Information System (INIS)

    Mechler, F.; Mastaglia, F.L.

    1981-01-01

    The pharmacological responses of vascular adrenergic receptors to intravenously administered epinephrine, phentolamine, and propranolol were assessed by measuring muscle blood flow (MBF) changes in the tibialis anterior muscle using the xenon 133 clearance technique and were compared in 8 normal subjects and 11 patients with myotonic dystrophy. In cases with advanced involvement of the muscle, the resting MBF was reduced and was not significantly altered by epinephrine before or after alpha- or beta-receptor blockade. In patients in whom the tibialis anterior muscle was normal or only minimally affected clinically, a paradoxical reduction in the epinephrine-induced increase in MBF was found after alpha blockade by phentolamine, and the epinephrine-induced MBF increase was not completely blocked by propranolol as in the normal subjects. These findings point to functional alteration in the properties of vascular adrenergic receptors in muscle in myotonic dystrophy. While this may be another manifestation of a widespread cell membrane defect in the disease, the possibility that the changes are secondary to the myotonic state cannot be excluded

  11. Temporal responses of cutaneous blood flow and plasma catecholamine concentrations to histamine H1- or H2-receptor stimulation in man

    DEFF Research Database (Denmark)

    Knigge, U; Alsbjørn, B; Thuesen, B

    1988-01-01

    continuously with a laser Doppler flowmeter, and noradrenaline and adrenaline concentrations were determined in blood samples drawn every 15 min. The infusion of histamine caused an immediate and sustained vasodilatation. The Concomitant infusion of mepyramine prevented the immediate vasodilatation, but had...... noradrenaline, while the increase during concomitant H1-receptor blockade was delayed but achieved the level observed during the histamine infusion. The response to histamine during H2-receptor blockade was small and transient. The rise in plasma adrenaline was not significant. These findings suggest...

  12. GHRH excess and blockade in X-LAG syndrome.

    Science.gov (United States)

    Daly, Adrian F; Lysy, Philippe A; Desfilles, Céline; Rostomyan, Liliya; Mohamed, Amira; Caberg, Jean-Hubert; Raverot, Veronique; Castermans, Emilie; Marbaix, Etienne; Maiter, Dominique; Brunelle, Chloe; Trivellin, Giampaolo; Stratakis, Constantine A; Bours, Vincent; Raftopoulos, Christian; Beauloye, Veronique; Barlier, Anne; Beckers, Albert

    2016-03-01

    X-linked acrogigantism (X-LAG) syndrome is a newly described form of inheritable pituitary gigantism that begins in early childhood and is usually associated with markedly elevated GH and prolactin secretion by mixed pituitary adenomas/hyperplasia. Microduplications on chromosome Xq26.3 including the GPR101 gene cause X-LAG syndrome. In individual cases random GHRH levels have been elevated. We performed a series of hormonal profiles in a young female sporadic X-LAG syndrome patient and subsequently undertook in vitro studies of primary pituitary tumor culture following neurosurgical resection. The patient demonstrated consistently elevated circulating GHRH levels throughout preoperative testing, which was accompanied by marked GH and prolactin hypersecretion; GH demonstrated a paradoxical increase following TRH administration. In vitro, the pituitary cells showed baseline GH and prolactin release that was further stimulated by GHRH administration. Co-incubation with GHRH and the GHRH receptor antagonist, acetyl-(d-Arg(2))-GHRH (1-29) amide, blocked the GHRH-induced GH stimulation; the GHRH receptor antagonist alone significantly reduced GH release. Pasireotide, but not octreotide, inhibited GH secretion. A ghrelin receptor agonist and an inverse agonist led to modest, statistically significant increases and decreases in GH secretion, respectively. GHRH hypersecretion can accompany the pituitary abnormalities seen in X-LAG syndrome. These data suggest that the pathology of X-LAG syndrome may include hypothalamic dysregulation of GHRH secretion, which is in keeping with localization of GPR101 in the hypothalamus. Therapeutic blockade of GHRH secretion could represent a way to target the marked hormonal hypersecretion and overgrowth that characterizes X-LAG syndrome. © 2016 Society for Endocrinology.

  13. Neuromuscular blockade in the elderly patient

    Directory of Open Access Journals (Sweden)

    Lee LA

    2016-06-01

    Full Text Available Luis A Lee, Vassilis Athanassoglou, Jaideep J Pandit Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK Abstract: Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids. Other drugs (atracurium, cisatracurium have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. Keywords: anesthesia, elderly, drugs, pharmacokinetics, pharmacodynamics 

  14. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral cir...

  15. Pan-Cancer Analyses of the Nuclear Receptor Superfamily

    Directory of Open Access Journals (Sweden)

    Mark D. Long

    2015-12-01

    Full Text Available Nuclear receptors (NR act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate. Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g., NR3C2/MR and NR5A2/LRH-1 whereas others were uniquely down-regulated in one tumor (e.g., NR1B3/RARG. The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.

  16. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    International Nuclear Information System (INIS)

    Memo, M.; Battaini, F.; Spano, P.F.; Trabucchi, M.

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D 1 receptors, associated with adenylyl cyclase activity, and D 2 receptor, uncoupled to a cyclic APM generating system. In order to understand the role of D 1 and D 2 receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D 1 receptors, and sulpiride, a selective antagonist to D 2 receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D 2 receptors. In fact under these conditions 3 H-(-)-sulpiride binding, which is a marker of D 2 receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D 2 receptors. Moreover, sulpiride does not induce supersensitivity of the D 1 receptors, characterized by 3 H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by 3 H-spiroperidol and 3 H-(-)-sulpiride binding. These findings suggest that D 1 and D 2 receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements. (author)

  17. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Memo, M; Battaini, F; Spano, P F; Trabucchi, M [University of Brescia, (Italy). Dept. of Pharmacology

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D/sub 1/ receptors, associated with adenylyl cyclase activity, and D/sub 2/ receptor, uncoupled to a cyclic AMP generating system. In order to understand the role of D/sub 1/ and D/sub 2/ receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D/sub 1/ receptors, and sulpiride, a selective antagonist to D/sub 2/ receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D/sub 2/ receptors. In fact under these conditions /sup 3/H-(-)-sulpiride binding, which is a marker of D/sub 2/ receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D/sub 2/ receptors. Moreover, sulpiride does not induce supersensitivity of the D/sub 1/ receptors, characterized by /sup 3/H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by /sup 3/H-spiroperidol and /sup 3/H-(-)-sulpiride binding. These findings suggest that D/sub 1/ and D/sub 2/ receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements.

  18. Computational assignment of redox states to Coulomb blockade diamonds.

    Science.gov (United States)

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  19. Predicting treatment response from dopamine D2/3 receptor bnding potential? - A study in antipsychotic-naïve patients with schizophrenia

    DEFF Research Database (Denmark)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus

    of antipsychotic compounds on the positive symptoms. Furthermore, blockade of striatal dopamine D2 receptors have in studies shown to associate negatively with subjective well-being. Our main aim was to explore a possible predictive value of striatal dopamine D2/3 receptor binding potential (BPp) for treatment...... of 29 antipsychotic-naïve patients with schizophrenia and 26 matched healthy controls, SPECT with [123l]-IBZM was used to examine the BPP of striatal dopamine D2/3 receptors. The participants were examined at baseline and after 6 weeks of treatment with a selective D2/3 receptor antagonist, amisulpride....... Results: We found a significant inverse correlation between the striatal BPp at baseline and improvement of positive symptoms (p=0.046; R squared = 0.152) after six weeks of treatment with amisulpride. There was no association between the blockade of the D2/3 receptors and improvement of positive symptoms...

  20. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... measured at PACU entry. Zero out of 74 sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch® SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], P

  1. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen

    2013-08-06

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  2. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen; Wang, Xuhui; Manchon, Aurelien

    2013-01-01

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  3. Possible involvement of α- and β-receptors in the natural colour change and the MSH-induced dispersion in Xenopus laevis in vivo

    NARCIS (Netherlands)

    Brouwer, E.; Veerdonk, F.C.G. van de

    Participation of adrenergic receptors in the darkening reaction has been demonstrated in Xenopus laevis in vivo. Blockade of the β-receptors inhibited adaptation to a black background as well as the artificially MSH-induced dispersion. α-Receptors could not be proved to be involved in the dispersion

  4. Blockade of human P2X7 receptor function with a monoclonal antibody.

    Science.gov (United States)

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  5. Blockade by phenoxybenzamine of the contractor response produced by agonists in the isolated ileum of the guinea-pig.

    Science.gov (United States)

    Cook, D A

    1971-09-01

    1. The effects of various concentrations of phenoxybenzamine (dibenzyline) on the contractor response of the isolated ileum of the guinea-pig were investigated. The agonists tested were histamine, 5-hydroxytryptamine (5-HT), acetycholine and potassium chloride.2. In addition, uptake of (14)C-phenoxybenzamine into the ileum was determined as a function of antagonist concentration. The uptake increases sharply at concentrations above 10(-6) g/ml, (3x10(-6)M) and was not saturable at any concentration tested.3. In the presence of low concentrations of phenoxybenzamine, the dose-response curve for histamine undergoes a parallel shift of about 0.5 log units. At higher concentrations of phenoxybenzamine the maximum response is depressed. In the case of the other agonists, the maximum response is depressed as soon as any blockade becomes apparent.4. The ease of blockade with phenoxybenzamine is 5-HT >/= histamine> acetylcholine >/= potassium chloride.5. These results do not lend support to the ;spare-receptor' hypothesis and may be better explained by the ;two-site' hypothesis of Moran & Triggle (1970).6. It may further be concluded that the successful antagonism of potassium-induced contractions in this preparation lies in the ability of phenoxybenzamine to prevent the action of released acetylcholine. In the case of the contraction induced by 5-HT, phenoxybenzamine probably interferes with the 5-HT receptor responsible for neuronal release of acetycholine.

  6. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  7. The impact of acute preoperative beta-blockade on perioperative ...

    African Journals Online (AJOL)

    To determine the impact of acute preoperative β-blockade on the incidence of perioperative cardiovascular morbidity and all- ... Our findings suggest that acute preoperative β-blockade is associated with an increased risk of perioperative cardiac ..... Shammash JB, Trost JC, Gold JM, Berlin JA, Golden MA, Kimmel SE.

  8. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    OpenAIRE

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  9. Circadian rhythm disruption by a novel running wheel: Roles of exercise and arousal in blockade of the luteinizing hormone surge

    Science.gov (United States)

    Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.

    2014-01-01

    Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters (Legan et al, 2010) [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7 hours before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2 days from ZT 5–11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10–14 days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P= 0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as in Expt. 1 except they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15 mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, Pwheel running and circadian phase shifts, indicating that

  10. From Napoleon To Netanyahu: Blockading Through Two Centuries

    Science.gov (United States)

    2016-04-01

    Hemisphere. With a range of only 2,500 miles per load of coal, steam powered ships could not reach Europe without refueling. Blockading actions at Vera ...BIBLIOGRAPHY Calore, Paul. Naval Campaigns of the Civil War. Jefferson, NC: McFarland and Co., 2003. Davis, Lance E . and Stanley L...Lance E . Davis and Stanley L. Engerman, Naval Blockades in Peace and War: An Economic History Since 1750

  11. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology.

    Science.gov (United States)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte; Svarer, Claus; Rasmussen, Hans; Friberg, Lars; Allerup, Peter N; Rostrup, Egill; Pinborg, Lars H; Glenthøj, Birte Y

    2016-05-01

    We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test Automated Battery, scanned with single-photon emission computerized tomography using the dopamine D2/3 receptor ligand [(123)I]epidepride, and scanned with MRI. After 3 months of treatment with either risperidone (n=13) or zuclopenthixol (n=9), 22 patients were reexamined. Blockade of extrastriatal dopamine D2/3 receptors was correlated with decreased attentional focus (r = -0.615, P=.003) and planning time (r = -0.436, P=.048). Moreover, baseline frontal dopamine D2/3 binding potential and positive symptom reduction correlated positively (D2/3 receptor binding potential left frontal cortex rho = 0.56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association between severity of cognitive disturbances and a poor functional outcome in schizophrenia. Additionally, the findings support associations between frontal D2/3 receptor binding potential at baseline and the effect of antipsychotic treatment on positive symptoms. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  12. Mincle suppresses Toll-like receptor 4 activation.

    Science.gov (United States)

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  13. Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator

    NARCIS (Netherlands)

    Zalachoras, I.; Houtman, R.; Atucha, E.; Devos, R.; Tijssen, A.M.I.; Hu, P.; Lockey, P.M.; Datson, N.A.; Belanoff, J.K.; Lucassen, P.J.; Joëls, M.; de Kloet, E.R.; Roozendaal, B.; Hunt, H.; Meijer, O.C.

    2013-01-01

    Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels.

  14. Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty

    DEFF Research Database (Denmark)

    Jenstrup, M T; Jæger, P; Lund, J

    2012-01-01

    Total knee arthroplasty (TKA) is associated with intense post-operative pain. Besides providing optimal analgesia, reduction in side effects and enhanced mobilization are important in this elderly population. The adductor-canal-blockade is theoretically an almost pure sensory blockade. We hypothe...... hypothesized that the adductor-canal-blockade may reduce morphine consumption (primary endpoint), improve pain relief, enhance early ambulation ability, and reduce side effects (secondary endpoints) after TKA compared with placebo.......Total knee arthroplasty (TKA) is associated with intense post-operative pain. Besides providing optimal analgesia, reduction in side effects and enhanced mobilization are important in this elderly population. The adductor-canal-blockade is theoretically an almost pure sensory blockade. We...

  15. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    International Nuclear Information System (INIS)

    Iorio, L.C.; Billiard, W.; Gold, E.H.

    1986-01-01

    This chapter describes the displacement of 3 H-23390 and 3 H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3 H-SCH 23390 and 3 H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D 1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3 H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  16. Blockade of Cannabinoid CB1 Receptors in the Dorsal Periaqueductal Gray Unmasks the Antinociceptive Effect of Local Injections of Anandamide in Mice

    Directory of Open Access Journals (Sweden)

    Diego C. Mascarenhas

    2017-10-01

    Full Text Available Divergent results in pain management account for the growing number of studies aiming at elucidating the pharmacology of the endocannabinoid/endovanilloid anandamide (AEA within several pain-related brain structures. For instance, the stimulation of both Transient Receptor Potential Vanilloid type 1 (TRPV1 and Cannabinoid type 1 (CB1 receptors led to paradoxical effects on nociception. Here, we attempted to propose a clear and reproducible methodology to achieve the antinociceptive effect of exogenous AEA within the dorsal periaqueductal gray (dPAG of mice exposed to the tail-flick test. Accordingly, male Swiss mice received intra-dPAG injection of AEA (CB1/TRPV1 agonist, capsaicin (TRPV1 agonist, WIN (CB1 agonist, AM251 (CB1 antagonist, and 6-iodonordihydrocapsaicin (6-IODO (TRPV1 selective antagonist and their nociceptive response was assessed with the tail-flick test. In order to assess AEA effects on nociception specifically at vanilloid or cannabinoid (CB substrates into the dPAG, mice underwent an intrinsically inactive dose of AM251 or 6-IODO followed by local AEA injections and were subjected to the same test. While intra-dPAG AEA did not change acute pain, local injections of capsaicin or WIN induced a marked TRPV1- and CB1-dependent antinociceptive effect, respectively. Regarding the role of AEA specifically at CB/vanilloid substrates, while the blockade of TRPV1 did not change the lack of effects of intra-dPAG AEA on nociception, local pre-treatment of AM251, a CB1 antagonist, led to a clear AEA-induced antinociception. It seems that the exogenous AEA-induced antinociception is unmasked when it selectively binds to vanilloid substrates, which might be useful to address acute pain in basic and perhaps clinical trials.

  17. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

    Science.gov (United States)

    Holmgaard, Rikke B.; Brachfeld, Alexandra; Gasmi, Billel; Jones, David R.; Mattar, Marissa; Doman, Thompson; Murphy, Mary; Schaer, David; Wolchok, Jedd D.; Merghoub, Taha

    2016-01-01

    ABSTRACT Colony stimulating factor-1 (CSF-1) is produced by a variety of cancers and recruits myeloid cells that suppress antitumor immunity, including myeloid-derived suppressor cells (MDSCs.) Here, we show that both CSF-1 and its receptor (CSF-1R) are frequently expressed in tumors from cancer patients, and that this expression correlates with tumor-infiltration of MDSCs. Furthermore, we demonstrate that these tumor-infiltrating MDSCs are highly immunosuppressive but can be reprogrammed toward an antitumor phenotype in vitro upon CSF-1/CSF-1R signaling blockade. Supporting these findings, we show that inhibition of CSF-1/CSF-1R signaling using an anti-CSF-1R antibody can regulate both the number and the function of MDSCs in murine tumors in vivo. We further find that treatment with anti-CSF-1R antibody induces antitumor T-cell responses and tumor regression in multiple tumor models when combined with CTLA-4 blockade therapy. However, this occurs only when administered after or concurrent with CTLA-4 blockade, indicating that timing of each therapeutic intervention is critical for optimal antitumor responses. Importantly, MDSCs present within murine tumors after CTLA-4 blockade showed increased expression of CSF-1R and were capable of suppressing T cell proliferation, and CSF-1/CSF-1R expression in the human tumors was not reduced after treatment with CTLA-4 blockade immunotherapy. Taken together, our findings suggest that CSF-1R-expressing MDSCs can be targeted to modulate the tumor microenvironment and that timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to checkpoint based immunotherapy. Significance: Infiltration by immunosuppressive myeloid cells contributes to tumor immune escape and can render patients resistant or less responsive to therapeutic intervention with checkpoint blocking antibodies. Our data demonstrate that blocking CSF-1/CSF-1R signaling using a monoclonal antibody directed to CSF-1R can regulate both the number

  18. Angiotensin 1-7 receptor and angiotensin ii receptor 2 blockades prevent the increased serum and kidney nitric oxide levels in response to angiotensin ii administration: Gender-related difference

    Directory of Open Access Journals (Sweden)

    Tahereh Safari

    2013-01-01

    Conclusions: The renal vasculature of male rats may provide more response to Ang II administration-induced NO, which is dependent on masR and AT2R. During dual masR + AT2R blockades, the kidney NO formation wasreduced in a non-gender related manner.

  19. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  20. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    Science.gov (United States)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  1. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Science.gov (United States)

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  2. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  3. Enhancement of cortical extracellular 5-HT by 5-HT1A and 5-HT2C receptor blockade restores the antidepressant-like effect of citalopram in non-responder mice.

    Science.gov (United States)

    Calcagno, Eleonora; Guzzetti, Sara; Canetta, Alessandro; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W

    2009-07-01

    We recently found that the response of DBA/2 mice to SSRIs in the forced swim test (FST) was impaired and they also had a smaller basal and citalopram-stimulated increase in brain extracellular serotonin (5-HT) than 'responder' strains. We employed intracerebral microdialysis, FST and selective antagonists of 5-HT1A and 5-HT2C receptors to investigate whether enhancing the increase in extracellular 5-HT reinstated the anti-immobility effect of citalopram in the FST. WAY 100635 (0.3 mg/kg s.c.) or SB 242084 (1 mg/kg s.c.), respectively a selective 5-HT1A and 5-HT2C receptor antagonist, raised the effect of citalopram (5 mg/kg) on extracellular 5-HT in the medial prefrontal cortex of DBA/2N mice (citalopram alone 5.2+/-0.3 fmol/20 microl, WAY 100635+citalopram 9.9+/-2.1 fmol/20 microl, SB 242084+ citalopram 7.6+/-1.0 fmol/20 microl) to the level reached in 'responder' mice given citalopram alone. The 5-HT receptor antagonists had no effect on the citalopram-induced increase in extracellular 5-HT in the dorsal hippocampus. The combination of citalopram with WAY 100635 or SB 242084 significantly reduced immobility time in DBA/2N mice that otherwise did not respond to either drug singly. Brain levels of citalopram in mice given citalopram alone or with 5-HT antagonists did not significantly differ. The results confirm that impaired 5-HT transmission accounts for the lack of effect of citalopram in the FST and suggest that enhancing the effect of SSRIs on extracellular 5-HT, through selective blockade of 5-HT1A and 5-HT2C receptors, could be a useful strategy to restore the response in treatment-resistant depression.

  4. Two selective novel triterpene glycosides from sea cucumber, Telenata ananas: Inhibitors of chemokine receptor-5

    Digital Repository Service at National Institute of Oceanography (India)

    Hegde, V.R.; Chan, T.-M.; Pu, H.; Gullo, V.P.; Patel, M.G.; Das, P.; Wagner, N.; Parameswaran, P.S.; Naik, C.G.

    mostclinicallyrelevantsince all HIV-1 isolates can utilize one or both of these receptors to gain entry into cells. Recently, much atten- tion has been focused on targeting these receptors for antiviral therapy. The CCR5 receptor has been particu- larly attractive since... and that blockade of these receptors by a specific antagonist will not severely affect normal immune function. Several small molecule antagonists of CCR5 are being developed for HIV therapy, one of which, SCH-C, 3 is currently in clinical trials. As part of our...

  5. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Katharina; Gruner, Janina; Madeja, Michael; Musshoff, Ulrich [Universitaetsklinikum Muenster, Institut fuer Physiologie I, Muenster (Germany); Hartmann, Louise M.; Hirner, Alfred V. [Universitaet Duisburg-Essen, Institut fuer Umweltanalytik, Essen (Germany); Binding, Norbert [Universitaetsklinikum Muenster, Institut fuer Arbeitsmedizin, Muenster (Germany)

    2006-08-15

    Pentavalent and trivalent organoarsenic compounds belong to the major metabolites of inorganic arsenicals detected in humans. Recently, the question was raised whether the organic arsenicals represent metabolites of a detoxification process or methylated species with deleterious biological effects. In this study, the effects of trivalent arsenite (AsO{sub 3} {sup 3-}; iA{sup III}), the pentavalent organoarsenic compounds monomethylarsonic acid (CH{sub 3}AsO(OH){sub 2}; MMA{sup V}) and dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and the trivalent compounds monomethylarsonous acid (CH{sub 3}As(OH){sub 2}, MMA{sup III}) and dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) were tested on glutamate receptors and on voltage-operated potassium and sodium channels heterologously expressed in Xenopus oocytes. Membrane currents of ion channels were measured by conventional two-electrode voltage-clamp techniques. The effects of arsenite were tested in concentrations of 1-1,000 {mu}mol/l and the organic arsenical compounds were tested in concentrations of 0.1-100 {mu}mol/l. We found no significant effects on voltage-operated ion channels; however, the arsenicals exert different effects on glutamate receptors. While MMA{sup V} and MMA{sup III} significantly enhanced ion currents through N-methyl-d-aspartate (NMDA) receptor ion channels with threshold concentrations <10 {mu}mol/l, DMA{sup V} and DMA{sup III} significantly reduced NMDA-receptor mediated responses with threshold concentrations <0.1 {mu}mol/l; iA{sup III} had no effects on glutamate receptors of the NMDA type. MMA{sup III} and DMA{sup V} significantly reduced ion currents through {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor ion channels with threshold concentrations <10 {mu}mol/l (MMA{sup III}) and <1 {mu}mol/l (DMA{sup V}). MMA{sup V} and iA{sup III} had no significant effects on glutamate receptors of the AMPA type. The effects of MMA{sup V}, MMA

  6. Checkpoint blockade in combination with cancer vaccines.

    Science.gov (United States)

    Morse, Michael A; Lyerly, H Kim

    2015-12-16

    Checkpoint blockade, prevention of inhibitory signaling that limits activation or function of tumor antigen-specific T cells responses, is revolutionizing the treatment of many poor prognosis malignancies. Indeed monoclonal antibodies that modulate signaling through the inhibitory molecules CTLA-4 and PD-1 are now clinically available; however, many tumors, demonstrate minimal response suggesting the need for combinations with other therapeutic strategies. Because an inadequate frequency of activated tumor antigen-specific T cells in the tumor environment, the so-called non-inflamed phenotype, is observed in some malignancies, other rationale partners are modalities that lead to enhanced T cell activation (vaccines, cytokines, toll-like receptor agonists, and other anticancer therapies such as chemo-, radio- or targeted therapies that lead to release of antigen from tumors). This review will focus on preclinical and clinical data supporting the use of cancer vaccines with anti-CTLA-4 and anti-PD-1/PD-L1 antibodies. Preliminary preclinical data demonstrate enhanced antitumor activity although the results in human studies are less clear. Broader combinations of multiple immune modulators are now under study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Isoproterenol reduces ischemia-reperfusion lung injury despite beta-blockade.

    Science.gov (United States)

    Takashima, Seiki; Schlidt, Scott A; Koukoulis, Giovanna; Sevala, Mayura; Egan, Thomas M

    2005-06-01

    If lungs could be retrieved from non-heart-beating donors (NHBDs), the shortage of lungs for transplantation could be alleviated. The use of lungs from NHBDs is associated with a mandatory warm ischemic interval, which results in ischemia-reperfusion injury upon reperfusion. In an earlier study, rat lungs retrieved 2-h postmortem from NHBDs had reduced capillary leak measured by filtration coefficient (Kfc) when reperfused with isoproterenol (iso), associated with an increase in lung tissue levels of cyclic AMP (cAMP). The objective was to determine if this decrease in Kfc was because of beta-stimulation, or would persist despite beta-blockade. Donor rats were treated intraperitoneally with beta-blockade (propranolol or pindolol) or carrier, sacrificed, and lungs were retrieved immediately or 2 h postmortem. The lungs were reperfused with or without iso and the beta-blockers in the reperfusate. Outcome measures were Kfc, wet:dry weight ratio (W/D), lung levels of adenine nucleotides and cAMP. Lungs retrieved immediately after death had normal Kfc and W/D. After 2 h of ischemia, Kfc and W/D were markedly elevated in controls (no drug) and lungs reperfused with beta-blockers alone. Isoproterenol-reperfusion decreased Kfc and W/D significantly (P < 0.01) even in the presence of beta-blockade. Lung cAMP levels were increased only with iso in the absence of beta-blockade. The attenuation of ischemia-reperfusion injury because of iso occurs even in the presence of beta-blockade, and may not be a result of beta-stimulated increased cAMP.

  8. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT)

    Science.gov (United States)

    Ramadan, Ronnie; Dhawan, Saurabh S.; Binongo, José Nilo G.; Alkhoder, Ayman; Jones, Dean P.; Oshinski, John N.; Quyyumi, Arshed A.

    2016-01-01

    Background Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of Angiotensin II type-1 receptor (AT1R) blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Methods Subjects (n= 120) with carotid intima-media thickness >0.65mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area (VWA) and wall thickness (WT) were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Results Over 2 years, the carotid bulb VWA decreased with Valsartan (−6.7, 95% CI: (−11.6,−1.9) mm2) but not with placebo (3.4, 95% CI: (−2.8,9.6) mm2)), p=0.01 between groups. Similarly, mean WT decreased with Valsartan (−0.18, 95% CI: (−0.30,−0.06) mm), but not with placebo (0.08, 95% CI: (−0.07,0.23) mm),), p=0.009 between groups. Furthermore, plaque thickness decreased with Valsartan (−0.35, 95% CI: (−0.63,−0.08) mm) but was unchanged with placebo (+0.28, 95% CI: (−0.11,0.69) mm), p=0.01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium–independent vascular function. Conclusions In subjects with carotid wall thickening, AT1R blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with

  9. Serotonin 2A receptor antagonists for treatment of schizophrenia

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn Hylsebeck; Rasmussen, Hans; Arnt, Jørn

    2011-01-01

    Introduction: All approved antipsychotic drugs share an affinity for the dopamine 2 (D2) receptor; however, these drugs only partially ameliorate the symptoms of schizophrenia. It is, therefore, of paramount importance to identify new treatment strategies for schizophrenia. Areas covered......: Preclinical, clinical and post-mortem studies of the serotonin 5-HT2A system in schizophrenia are reviewed. The implications of a combined D2 and 5-HT2A receptor blockade, which is obtained by several current antipsychotic drugs, are discussed, and the rationale for the development of more selective 5-HT2A...... receptor antagonists is evaluated. Moreover, the investigational pipeline of major pharmaceutical companies is examined and an Internet search conducted to identify other pharmaceutical companies investigating 5-HT2A receptor antagonists for the treatment of schizophrenia. Expert opinion: 5-HT2A receptor...

  10. [STUDYING THE ROLE OF BRAIN MELANOCORTIN RECEPTORS IN THE SUPPRESSING OF FOOD INTAKE UNDER ETHER STRESS IN MICE].

    Science.gov (United States)

    Bazhan, N M; Kulikova, E V; Makarova, E N; Yakovleva, T V; Kazantseva, A Yu

    2015-12-01

    Melanocortin (MC) system regulates food intake under the rest conditions. Stress inhibits food intake. It is not clear whether brain MC system is involved in stress-induced anorexia in mice. The aim of the work was to investigate the effect of pharmacological blockade and activation of brain MC receptors on food intake under stress. C57B1/6J male mice were subjected to ether stress (0.5 minute ether anesthesia) before the administration of saline solution or synthetic non-selective blocker (SHU9119) or agonist (Melanotan II) of MC receptors into the lateral brain ventricle. Food intake was pre-stimulated with 17 hours of fasting in all mice. Ether stress decreased food intake, increased the plasma corticosterone level and hypothalamic mRNA AgRP (natural MC receptor antagonist) level at 1 hour after the stress. Pharmacological blockade of the MC receptors weakened stress-induced anorexia and decreased mRNA AgRP level in the hypothalamus. Pharmacological stimulation of the MC receptors enhanced ether stress-induced anorexia and hypercortisolism. Thus, our data demonstrated that the central MC system was involved in the development of stress-induced anorexia in mice.

  11. Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Schaub, M; Issazadeh-Navikas, Shohreh; Stadlbauer, T H

    1999-01-01

    Blockade of the CD28-B7 or CD40L-CD40 T cell costimulatory signals prevents induction of experimental autoimmune encephalomyelitis (EAE). However, the effect of simultaneous blockade of these signals in EAE is unknown. We show that administration of either MR1 (to block CD40L) or CTLA4Ig (to block...... B7) after immunization or after the first attack protects from EAE. Treatment with a combination of CTLA4Ig and MR1 provides additive protection, and is associated with complete absence of mononuclear cell infiltrates in the central nervous system, and marked suppression of proliferation of primed T...... cells in the periphery. Selective B7-1 blockade did not protect from EAE. These observations have implications for therapy of autoimmune diseases....

  12. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  13. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  14. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical...

  15. Involvement of α₂-adrenoceptors, imidazoline, and endothelin-A receptors in the effect of agmatine on morphine and oxycodone-induced hypothermia in mice.

    Science.gov (United States)

    Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil

    2013-10-01

    Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present study was carried out to study the role of α₂-adrenoceptors, imidazoline, and ET(A) receptors in morphine and oxycodone hypothermia in mice. Body temperature was determined over 6 h in male Swiss Webster mice treated with morphine, oxycodone, agmatine, and combination of agmatine with morphine or oxycodone. Yohimbine, idazoxan, and BMS182874 were used to determine involvement of α₂-adrenoceptors, imidazoline, and ET(A) receptors, respectively. Morphine and oxycodone produced significant hypothermia that was not affected by α₂-adrenoceptor antagonist yohimbine, imidazoline receptor/α₂ adrenoceptor antagonist idazoxan, or ET(A) receptor antagonist, BMS182874. Agmatine did not produce hypothermia; however, it blocked oxycodone but not morphine-induced hypothermia. Agmatine-induced blockade of oxycodone hypothermia was inhibited by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared with yohimbine. Combined administration of BMS182874 and agmatine did not produce changes in body temperature in mice. However, when BMS182874 was administered along with agmatine and oxycodone, it blocked agmatine-induced reversal of oxycodone hypothermia. This is the first report demonstrating that agmatine does not affect morphine hypothermia in mice, but reverses oxycodone hypothermia. Imidazoline receptors and α₂-adrenoceptors are involved in agmatine-induced reversal of oxycodone hypothermia. Our findings also suggest that ET(A) receptors may be involved in blockade of oxycodone hypothermia by agmatine. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de

  16. Neuraxial blockade for external cephalic version: a systematic review.

    Science.gov (United States)

    Sultan, P; Carvalho, B

    2011-10-01

    The desire to decrease the number of cesarean deliveries has renewed interest in external cephalic version. The rationale for using neuraxial blockade to facilitate external cephalic version is to provide abdominal muscular relaxation and reduce patient discomfort during the procedure, so permitting successful repositioning of the fetus to a cephalic presentation. This review systematically examined the current evidence to determine the safety and efficacy of neuraxial anesthesia or analgesia when used for external cephalic version. A systematic literature review of studies that examined success rates of external cephalic version with neuraxial anesthesia was performed. Published articles written in English between 1945 and 2010 were identified using the Medline, Cochrane, EMBASE and Web of Sciences databases. Six, randomized controlled studies were identified. Neuraxial blockade significantly improved the success rate in four of these six studies. A further six non-randomized studies were identified, of which four studies with control groups found that neuraxial blockade increased the success rate of external cephalic version. Despite over 850 patients being included in the 12 studies reviewed, placental abruption was reported in only one patient with a neuraxial block, compared with two in the control groups. The incidence of non-reassuring fetal heart rate requiring cesarean delivery in the anesthesia groups was 0.44% (95% CI 0.15-1.32). Neuraxial blockade improved the likelihood of success during external cephalic version, although the dosing regimen that provides optimal conditions for successful version is unclear. Anesthetic rather than analgesic doses of local anesthetics may improve success. The findings suggest that neuraxial blockade does not compromise maternal or fetal safety during external cephalic version. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Effects of acute restraint-induced stress on glucocorticoid receptors and brain-derived neurotrophic factor after mild traumatic brain injury.

    Science.gov (United States)

    Griesbach, G S; Vincelli, J; Tio, D L; Hovda, D A

    2012-05-17

    We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post-injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either an FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30 min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7, and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain-derived neurotrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors was determined by Western blot analysis. Results indicated injury-dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle-treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14. These findings suggest that the increased sensitivity to stressful events during the first post-injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Role of corticosteroid hormones in the dentate gyrus.

    NARCIS (Netherlands)

    Joëls, M.

    2007-01-01

    Dentate granule cells are enriched with receptors for the stress hormone corticosterone, i.e., the high-affinity mineralocorticoid receptor (MR), which is already extensively occupied with low levels of the hormone, and the glucocorticoid receptor (GR), which is particularly activated after stress.

  19. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  20. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    OpenAIRE

    Gutiérrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impa...

  1. Interaction of antibiotics on pipecuronium-induced neuromuscular blockade.

    Science.gov (United States)

    de Gouw, N E; Crul, J F; Vandermeersch, E; Mulier, J P; van Egmond, J; Van Aken, H

    1993-01-01

    To measure the interaction of two antibiotics (clindamycin and colistin) on neuromuscular blockade induced by pipecuronium bromide (a new long-acting, steroidal, nondepolarizing neuromuscular blocking drug). Prospective, randomized, placebo-controlled study. Inpatient gynecologic and gastroenterologic service at a university medical center. Three groups of 20 ASA physical status I and II patients with normal kidney and liver function, taking no medication, and undergoing elective surgery under general anesthesia. Anesthesia was induced with propofol and alfentanil intravenously (IV) and maintained with a propofol infusion and 60% nitrous oxide in oxygen. Pipecuronium bromide 50 micrograms/kg was administered after reaching a stable baseline of single-twitch response. At 25% recovery of pipecuronium-induced neuromuscular blockade, patients received one of two antibiotics, clindamycin 300 mg or colistin 1 million IU, or a placebo. The recovery index (RI, defined as time from 25% to 75% recovery of neuromuscular blockade) was measured using the single-twitch response of the adductor pollicis muscle with supramaximal stimulation of the ulnar nerve at the wrist. RI after administration of an antibiotic (given at 25% recovery) was measured and compared with RI of the control group using Student's unpaired t-test. Statistical analyses of the results showed a significant prolongation of the recovery time (from 25% to 75% recovery) of 40 minutes for colistin. When this type of antibiotic is used during anesthesia with pipercuronium as a muscle relaxant, one must be aware of a significant prolongation of an already long-acting neuromuscular blockade and (although not observed in this study) possible problems in antagonism.

  2. Survey of external cephalic version for breech presentation and neuraxial blockade use.

    Science.gov (United States)

    Weiniger, Carolyn F; Sultan, Pervez; Dunn, Ashley; Carvalho, Brendan

    2016-11-01

    Neuraxial blockade may increase external cephalic version (ECV) success rates. This survey aimed to assess the frequency and characteristics of neuraxial blockade used to facilitate ECV. We surveyed Society for Obstetric Anesthesia and Perinatology members regarding ECV practice using a 15-item survey developed by 3 obstetric anesthesiologists and tested for face validity. The survey was e-mailed in January 2015 and again in February 2015 to the 1056 Society of Obstetric Anesthesiology and Perinatology members. We present descriptive statistics of responses. Our survey response rate was 322 of 1056 (30.5%). Neuraxial blockade was used for ECV always by 18 (5.6%), often by 52 (16.1%), sometimes by 98 (30.4%), rarely by 78 (24.2%), and never by 46 (14.3%) of respondents. An anesthetic sensory block target was selected by 141 (43.8%) respondents, and analgesic by 102 (31.7%) respondents. Epidural drug doses ranged widely, including sufentanil 5-25 μg; lidocaine 1% or 2% 10-20 mL, bupivacaine 0.0625% to 0.5% 6-15 mL, and ropivacaine 0.2% 20 mL. Intrathecal bupivacaine was used by 182 (56.5%) respondents; the most frequent doses were 2.5 mg used by 24 (7.5%), 7.5 mg used by 35 (10.9%), and 12 mg used by 30 (9.3%). Neuraxial blockade is not universally offered to facilitate ECV, and there is wide variability in neuraxial blockade techniques, in drugs and doses administered, and in the sensory blockade (anesthetic or analgesic) targeted. Future studies need to evaluate and remove barriers to allow for more widespread use of neuraxial blockade for pain relief and to optimize ECV success rates. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Reversal of neuromuscular blockade can be accomplished by chemical encapsulation of rocuronium by sugammadex, a synthetic gamma-cyclodextrin derivative. The current study determined the feasibility of reversal of rocuronium-induced profound neuromuscular blockade with sugammadex in the

  4. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation.

    Directory of Open Access Journals (Sweden)

    András Iring

    Full Text Available Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1 receptor blockade and inhibition of cannabinoid reuptake, respectively on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H.In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v. failed to influence blood pressure (BP, cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v. induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H.Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the

  5. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Towards the therapeutics of cognitive impairment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Takashi eUehara

    2014-09-01

    Full Text Available Rationale Augmentation therapy with serotonin-1A (5-HT1A receptor partial agonists has been suggested to improve cognitive deficits in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production.Objectives and methods The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days of tandospirone (0.05 and 5 mg/kg on brain energy metabolism, as represented by extracellular lactate concentration (eLAC in the medial prefrontal cortex (mPFC of young adult rats..Results Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot shock stress (FS. Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment.Conclusions These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism based on brain energy metabolism by which 5-HT1A agonism improve cognitive impairment in schizophrenia and related disorders.

  6. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Frost, M; Nielsen, T L; Wraae, K

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...... receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution....

  7. Effect of spinal sympathetic blockade upon postural changes of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Skagen, K; Haxholdt, O; Henriksen, O

    1982-01-01

    local nervous blockade was induced by Lidocaine in 133Xe labelled subcutaneous tissue on one side. During epidural blockade and tilt blood flow increased by 12% whereas blood flow decreased by 30% on the control side. Thus epidural blockade had no influence on the vasoconstrictor response...

  8. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block.

    Science.gov (United States)

    De Sarro, Giovambattista; Chimirri, Alba; Meldrum, Brian S

    2002-09-06

    We report the anticonvulsant action in DBA/2 mice of two mGlu Group III receptor agonists: (R,S)-4-phosphonophenylglycine, (R,S)-PPG, a compound with moderate mGlu8 selectivity, and of (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid, ACPT-1, a selective agonist for mGlu4alpha receptors. Both compounds, given intracerebroventricularly at doses which did not show marked anticonvulsant activity, produced a consistent shift to the left of the dose-response curves (i.e. enhanced the anticonvulsant properties) of 1-(4'-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one hydrochloride, CFM-2, a noncompetitive AMPA receptor antagonist, and 3-((+/-)-2-carboxypiperazin-4-yl)-1-phosphonic acid, CPPene, a competitive NMDA receptor antagonist, in DBA/2 mice. In addition, (R,S)-PPG and ACPT-1 administered intracerebroventricularly prolonged the time course of the anticonvulsant properties of CFM-2 (33 micromol/kg, i.p.) and CPPene (3.3 micromol/kg, i.p.) administered intraperitoneally. We conclude that modest reduction of synaptic glutamate release by activation of Group III metabotropic receptors potentiates the anticonvulsant effect of AMPA and NMDA receptor blockade. Copyright 2002 Elsevier Science B.V.

  9. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    Science.gov (United States)

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of stress-induced changes in adults and pups: is aldosterone the main adrenocortical stress hormone during the perinatal period in rats?

    Directory of Open Access Journals (Sweden)

    János Varga

    Full Text Available Positive developmental impact of low stress-induced glucocorticoid levels in early development has been recognized for a long time, while possible involvement of mineralocorticoids in the stress response during the perinatal period has been neglected. The present study aimed at verifying the hypothesis that balance between stress-induced glucocorticoid and mineralocorticoid levels is changing during postnatal development. Hormone responses to two different stressors (insulin-induced hypoglycaemia and immune challenge induced by bacterial lipopolysaccharid measured in 10-day-old rats were compared to those in adults. In pups corticosterone responses to both stressors were significantly lower than in adults, which corresponded well with the stress hyporesponsive period. Importantly, stress-induced elevations in aldosterone concentration were significantly higher in pups compared both to corticosterone elevations and to those in adulthood with comparable adrenocorticotropin concentrations in the two age groups. Greater importance of mineralocorticoids compared to glucocorticoids in postnatal period is further supported by changes in gene expression and protein levels of gluco- (GR and mineralocorticoid receptors (MR and selected enzymes measured by quantitative PCR and immunohystochemistry in the hypothalamus, hippocampus, prefrontal cortex, liver and kidney. Gene expression of 11beta-hydroxysteroid dehydrogenase 2 (11β-HSD2, an enzyme enabling preferential effects of aldosterone on mineralocorticoid receptors, was higher in 10-day-old pups compared to adult animals. On the contrary, the expression and protein levels of GR, MR and 11β-HSD1 were decreased. Presented results clearly show higher stress-induced release of aldosterone in pups compared to adults and strongly suggest greater importance of mineralocorticoids compared to glucocorticoids in stress during the postnatal period.

  11. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Laura Tiberio

    Full Text Available Angiogenesis plays a crucial role in tumor growth and progression. Low expression of mineralocorticoid receptor (MR in several malignant tumors correlates with disease recurrence and overall survival. Previous studies have shown that MR expression is decreased in colorectal cancer (CRC. Here we hypothesize that decreased MR expression can contribute to angiogenesis and poor patient survival in colorectal malignancies. In a cohort of CRC patients, we analyzed tumor MR expression, its correlation with tumor microvascular density and its impact on survival. Subsequently, we interrogated the role of MR in angiogenesis in an in vitro model, based on the colon cancer cell line HCT116, ingenierized to re-express a physiologically controlled MR. In CRC, decreased MR expression was associated with increased microvascular density and poor patient survival. In pchMR transfected HCT116, aldosterone or natural serum steroids largely inhibited mRNA expression levels of both VEGFA and its receptor 2/KDR. In CRC, MR activation may significantly decrease angiogenesis by directly inhibiting dysregulated VEGFA and hypoxia-induced VEGFA mRNA expression. In addition, MR activation attenuates the expression of the VEGF receptor 2/KDR, possibly dampening the activation of a VEGFA/KDR dependent signaling pathway important for the survival of tumor cells under hypoxic conditions.

  12. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    Science.gov (United States)

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  13. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy.

    Science.gov (United States)

    Camozzi, Valentina; Betterle, Corrado; Frigo, Anna Chiara; Zaccariotto, Veronica; Zaninotto, Martina; De Caneva, Erica; Lucato, Paola; Gomiero, Walter; Garelli, Silvia; Sabbadin, Chiara; Salvà, Monica; Costa, Miriam Dalla; Boscaro, Marco; Luisetto, Giovanni

    2018-02-01

    to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.

  14. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors

    International Nuclear Information System (INIS)

    Chang, C.; Kokontis, J.; Liao, S.

    1988-01-01

    Structural analysis of cDNAs for human and rat androgen receptors (ARs) indicates that the amino-terminal regions of ARs are rich in oligo- and poly(amino acid) motifs as in some homeotic genes. The human AR has a long stretch of repeated glycines, whereas rat AR has a long stretch of glutamines. There is a considerable sequence similarity among ARs and the receptors for glucocorticoids, progestins, and mineralocorticoids within the steroid-binding domains. The cysteine-rich DNA-binding domains are well conserved. Translation of mRNA transcribed from AR cDNAs yielded 94- and 76-kDa proteins and smaller forms that bind to DNA and have high affinity toward androgens. These rat or human ARs were recognized by human autoantibodies to natural Ars. Molecular hybridization studies, using AR cDNAs as probes, indicated that the ventral prostate and other male accessory organs are rich in AR mRNA and that the production of AR mRNA in the target organs may be autoregulated by androgens

  15. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  16. Relationship between Fc receptors and Ia alloantigens: analysis with a sensitive radioimmunoassay

    International Nuclear Information System (INIS)

    Rieber, E.P.; Wernet, P.

    1977-01-01

    This paper describes the successful use of 125 I-labeled lgG aggregate to detect la-type alloantibodies in pregnancy sera. The blockade of aggregate uptake of a variety of normal mononuclear and leukemic cell types by anti-Ia alloantibodies is analyzed. Fc receptors and la alloantigens are clearly two distinct molecular entities. The association between Fc receptors and Ia alloantigens on a quantitative level seems to depend on a ligand-binding mechanism to control their interaction rather than the presence of a topographical molecular tandem arrangement. (Auth.)

  17. Increased renal alpha-epithelial sodium channel (ENAC) protein and increased ENAC activity in normal pregnancy.

    Science.gov (United States)

    West, Crystal; Zhang, Zheng; Ecker, Geoffrey; Masilamani, Shyama M E

    2010-11-01

    Pregnancy-mediated sodium (Na) retention is required to provide an increase in plasma volume for the growing fetus. The mechanisms responsible for this Na retention are not clear. We first used a targeted proteomics approach and found that there were no changes in the protein abundance compared with virgin rats of the β or γ ENaC, type 3 Na(+)/H(+) exchanger (NHE3), bumetanide-sensitive cotransporter (NKCC2), or NaCl cotransporter (NCC) in mid- or late pregnancy. In contrast, we observed marked increases in the abundance of the α-ENaC subunit. The plasma volume increased progressively during pregnancy with the greatest plasma volume being evident in late pregnancy. ENaC inhibition abolished the difference in plasma volume status between virgin and pregnant rats. To determine the in vivo activity of ENaC, we conducted in vivo studies of rats in late pregnancy (days 18-20) and virgin rats to measure the natriuretic response to ENaC blockade (with benzamil). The in vivo activity of ENaC (U(Na)V postbenzamil-U(Na)V postvehicle) was markedly increased in late pregnancy, and this difference was abolished by pretreatment with the mineralocorticoid receptor antagonist, eplerenone. These findings demonstrate that the increased α-ENaC subunit of pregnancy is associated with an mineralocorticoid-dependent increase in ENaC activity. Further, we show that ENaC activity is a major contributor of plasma volume status in late pregnancy. These changes are likely to contribute to the renal sodium retention and plasma volume expansion required for an optimal pregnancy.

  18. Current hot spot in the spin-valley blockade in carbon nanotubes

    Science.gov (United States)

    Széchenyi, Gábor; Pályi, András

    2013-12-01

    We present a theoretical study of the spin-valley blockade transport effect in a double quantum dot defined in a straight carbon nanotube. We find that intervalley scattering due to short-range impurities completely lifts the spin-valley blockade and induces a large leakage current in a certain confined range of the external magnetic field vector. This current hot spot emerges due to different effective magnetic fields acting on the spin-valley qubit states of the two quantum dots. Our predictions are compared to a recent measurement [F. Pei , Nat. Nanotech.1748-338710.1038/nnano.2012.160 7, 630 (2012)]. We discuss the implications for blockade-based schemes for qubit initialization/readout and motion sensing of nanotube-based mechanical resonators.

  19. Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis

    OpenAIRE

    Lebre, M.C.; Vergunst, C.E.; Choi, I.Y.K.; Aarrass, S.; Oliveira, A.S.F.; Wyant, T.; Horuk, R.; Reedquist, K.A.; Tak, P.P.

    2011-01-01

    BACKGROUND: The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model. METHODOLOGY/PRINCIPAL FINDINGS: Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either ...

  20. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study.

    Science.gov (United States)

    Brueckmann, B; Sasaki, N; Grobara, P; Li, M K; Woo, T; de Bie, J; Maktabi, M; Lee, J; Kwo, J; Pino, R; Sabouri, A S; McGovern, F; Staehr-Rye, A K; Eikermann, M

    2015-11-01

    This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. Adult patients undergoing abdominal surgery received rocuronium, followed by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual neuromuscular blockade at PACU admission, defined as a train-of-four (TOF) ratio sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], Psugammadex vs usual care (14.7 vs. 18.6 min respectively; P=0.02). After abdominal surgery, sugammadex reversal eliminated residual neuromuscular blockade in the PACU, and shortened the time from start of study medication administration to the time the patient was ready for discharge from the operating room. Clinicaltrials.gov:NCT01479764. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The role of striatal NMDA receptors in drug addiction.

    Science.gov (United States)

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  2. Neuropeptide Y2 receptors in anteroventral BNST control remote fear memory depending on extinction training.

    Science.gov (United States)

    Verma, Dilip; Tasan, Ramon; Sperk, Guenther; Pape, Hans-Christian

    2018-03-01

    The anterior bed nucleus of stria terminalis (BNST) is involved in reinstatement of extinguished fear, and neuropeptide Y2 receptors influence local synaptic signaling. Therefore, we hypothesized that Y2 receptors in anteroventral BNST (BNSTav) interfere with remote fear memory and that previous fear extinction is an important variable. C57BL/6NCrl mice were fear-conditioned, and a Y2 receptor-specific agonist (NPY 3-36 ) or antagonist (JNJ-5207787) was applied in BNSTav before fear retrieval at the following day. Remote fear memory was tested on day 16 in two groups of mice, which had (experiment 1) or had not (experiment 2) undergone extinction training after conditioning. In the group with extinction training, tests of remote fear memory revealed partial retrieval of extinction, which was prevented after blockade of Y2 receptors in BNSTav. No such effect was observed in the group with no extinction training, but stimulation of Y2 receptors in BNSTav mimicked the influence of extinction during tests of remote fear memory. Pharmacological manipulation of Y2 receptors in BNSTav before fear acquisition (experiment 3) had no effect on fear memory retrieval, extinction or remote fear memory. Furthermore, partial retrieval of extinction during tests of remote fear memory was associated with changes in number of c-Fos expressing neurons in BNSTav, which was prevented or mimicked upon Y2 blockade or stimulation in BNSTav. These results indicate that Y2 receptor manipulation in BNSTav interferes with fear memory and extinction retrieval at remote stages, likely through controlling neuronal activity in BNSTav during extinction training. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Acute serotonin 2A receptor blocking alters the processing of fearful faces in the orbitofrontal cortex and amygdala

    DEFF Research Database (Denmark)

    Hornboll, Bettina; Macoveanu, Julian; Rowe, James

    2013-01-01

    judging the gender of neutral, fearful and angry faces. Methods: 5-HT2A receptors were blocked with ketanserin to a variable degree across subjects by adjusting the time between ketanserin-infusion and onset of the fMRI protocol. Neocortical 5-HT2A receptor binding in terms of the binding potential (BPp...... blockade reduced the neural response to fearful faces in the medial orbitofrontal cortex (OFC), independently of 5-HT2A receptor occupancy or neocortical 5-HT2A receptor BPp . The medial OFC also showed increased functional coupling with the left amygdala during processing of fearful faces depending...

  4. CGRP receptor antagonist olcegepant (BIBN4096BS) does not prevent glyceryl trinitrate-induced migraine

    DEFF Research Database (Denmark)

    Tvedskov, J F; Tfelt-Hansen, P; Petersen, K A

    2010-01-01

    and in nine of 13 with placebo (p=0.68). The headache scores were similar after the two treatments (p=0.58). Thus CGRP receptor blockade did not prevent GTN-induced migraine. CONCLUSIONS: The present study indicates that NO does not induce migraine by liberating CGRP. The most likely explanation for our...

  5. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys...

  6. Adrenal Steroids: Biphasic Effects on Neurons

    NARCIS (Netherlands)

    Joels, M.; Karst, H.; Squire, L.R.

    2009-01-01

    Corticosteroid hormones are released from the adrenal gland after stress. They enter the brain and bind to high-affinity mineralocorticoid and lower affinity glucocorticoid receptors. Through these nuclear receptors, corticosteroids exert long-lasting effects on essential properties of neurons, such

  7. Renal graft failure after addition of an angiotensin II receptor antagonist to an angiotensin-converting enzyme inhibitor

    DEFF Research Database (Denmark)

    Kamper, Anne-Lise; Nielsen, Arne Høj; Baekgaard, Niels

    2002-01-01

    Combined treatment with an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin II (Ang II) receptor blocker (ARB) has been suggested in order to achieve a more complete blockade of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. The present report descri...

  8. Surgical Space Conditions During Low-Pressure Laparoscopic Cholecystectomy with Deep Versus Moderate Neuromuscular Blockade

    DEFF Research Database (Denmark)

    Staehr-Rye, Anne K; Rasmussen, Lars S.; Rosenberg, Jacob

    2014-01-01

    : In this assessor-blinded study, 48 patients undergoing elective laparoscopic cholecystectomy were administered rocuronium for neuromuscular blockade and randomized to either deep neuromuscular blockade (rocuronium bolus plus infusion maintaining a posttetanic count 0-1) or moderate neuromuscular blockade...... (rocuronium repeat bolus only for inadequate surgical conditions with spontaneous recovery of neuromuscular function). Patients received anesthesia with propofol, remifentanil, and rocuronium. The primary outcome was the proportion of procedures with optimal surgical space conditions (assessed by the surgeon...

  9. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  10. Neural Blockade for Persistent Pain After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Andersen, Kenneth Geving; Kehlet, Henrik

    2014-01-01

    involved in neuropathic pain syndromes or to be used as a treatment in its own right. The purpose of this review was to examine the evidence for neural blockade as a potential diagnostic tool or treatment for persistent pain after breast cancer surgery. In this systematic review, we found only 7 studies (n......Persistent pain after breast cancer surgery is predominantly a neuropathic pain syndrome affecting 25% to 60% of patients and related to injury of the intercostobrachial nerve, intercostal nerves, and other nerves in the region. Neural blockade can be useful for the identification of nerves...

  11. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  12. Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion.

    Science.gov (United States)

    Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S

    2018-01-01

    Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle

  13. Dynamic 123I-BMIPP single-photon emission computed tomography in patients with congestive heart failure: effect of angiotensin II type-1 receptor blockade.

    Science.gov (United States)

    Takeishi, Yasuchika; Minamihaba, Osamu; Yamauchi, Sou; Arimoto, Takanori; Hirono, Osamu; Takahashi, Hiroki; Akiyama, Hideyuki; Miyamoto, Takuya; Nitobe, Joji; Nozaki, Naoki; Tachibana, Hidetada; Okuyama, Masaki; Fukui, Akio; Kubota, Isao; Okada, Akio; Takahashi, Kazuei

    2004-04-01

    Heart failure is a major and growing public health problem with a high mortality rate. Although recent studies have demonstrated that a variety of metabolic and/or neurohumoral factors are involved in the progression of this syndrome, the precise mechanisms responsible for this complex condition are poorly understood. To examine 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) kinetics in the early phase soon after tracer injection in patients with congestive heart failure (CHF), we performed dynamic single-photon emission computed tomography (SPECT). Twenty-six patients with CHF and eight control subjects were examined. The consecutive 15 images of 2-min dynamic SPECT were acquired for 30 min after injection. In the early phase after injection (0-4 min), a significant amount of radioactivity existed in the blood pool. After 6 min, the myocardial 123I-BMIPP image was clear and thus the washout rate of 123I-BMIPP from 6 to 30 min was calculated. The washout rate of 123I-BMIPP from the myocardium was faster in patients with CHF than in the controls (8 +/- 4 vs. -5 +/- 3%, p acid metabolism may represent a new mechanism for beneficial effects of angiotensin II receptor blockade on cardiac function and survival in patients with heart failure. 123I-BMIPP washout in the early phase obtained from dynamic SPECT may be a new marker for evaluating the severity of heart failure and the effects of medical treatment.

  14. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    Science.gov (United States)

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers.

    Science.gov (United States)

    Khodadadi, M; Zendehdel, M; Baghbanzadeh, A; Babapour, V

    2017-10-01

    1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB 1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.

  16. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives

    Directory of Open Access Journals (Sweden)

    Carron M

    2017-12-01

    Full Text Available Michele Carron, Francesco Bertoncello, Giovanna Ieppariello Department of Medicine, Anesthesiology, and Intensive Care, University of Padova, Padua, Italy Abstract: The number of elderly patients is increasing worldwide. This will have a significant impact on the practice of anesthesia in future decades. Anesthesiologists must provide care for an increasing number of elderly patients, who have an elevated risk of perioperative morbidity and mortality. Complications related to postoperative residual neuromuscular blockade, such as muscle weakness, airway obstruction, hypoxemia, atelectasis, pneumonia, and acute respiratory failure, are more frequent in older than in younger patients. Therefore, neuromuscular blockade in the elderly should be carefully monitored and completely reversed before awakening patients at the end of anesthesia. Acetylcholinesterase inhibitors are traditionally used for reversal of neuromuscular blockade. Although the risk of residual neuromuscular blockade is reduced by reversal with neostigmine, it continues to complicate the postoperative course. Sugammadex represents an innovative approach to reversal of neuromuscular blockade induced by aminosteroid neuromuscular-blocking agents, particularly rocuronium, with useful applications in clinical practice. However, aging is associated with certain changes in the pharmacokinetics of sugammadex, and to date there has been no thorough evaluation of the use of sugammadex in elderly patients. The aim of this review was to perform an analysis of the use of sugammadex in older adults based on the current literature. Major issues surrounding the physiologic and pharmacologic effects of aging in elderly patients and how these may impact the routine use of sugammadex in elderly patients are discussed. Keywords: sugammadex, aging, elderly, neuromuscular blockade, rocuronium, anesthesia, safety

  17. Expression of nicotinic acetylcholine receptors on human B-lymphoma cells

    Directory of Open Access Journals (Sweden)

    Skok M. V.

    2009-12-01

    Full Text Available Aim. To find a correlation between the level of nicotinic acetylcholine receptor (nAChR expression and B lymphocyte differentiation or activation state. Methods. Expression of nAChRs in the REH, Ramos and Daudi cell lines was studied by flow cytometry using nAChR subunit-specific antibodies; cell proliferation was studied by MTT test. Results. It is shown that the level of 42/4 and 7 nAChRs expression increased along with B lymphocyte differentiation (Ramos > REH and activation (Daudi > > Ramos and depended on the antigen-specific receptor expression. The nAChR stimulation/blockade did not influence the intensity of cell proliferation.

  18. The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes

    International Nuclear Information System (INIS)

    Souhami, R.L.; Patel, H.M.; Ryman, B.E.

    1981-01-01

    The blood clearance and tissue distribution of liposomes have been studied in mice subjected to reticuloendothelial blockade with dextran sulphate or carbon. The liposomes have been labelled in the lipid membranes with [ 3 H]-cholesterol, [ 14 C]phosphatidylcholine and/or 99 sup(m)Tc and the content with [ 14 C]inulin. Reticuloendothelial blockade has been shown to slow the rate of clearance of neutral, positively and negatively charged liposomes and of both small unilamellar vesicles and large multilamellar vesicles. In normal animals, the liver uptake accounted for only 20-55% of the total injected radioactivity, the amount varying with the charge and size of the liposomes. Following blockade, the liver uptake of charged and neutral multilamellar liposomes was depressed. This was also true for negatively charged small unilamellar vesicles. The degree of depression of hepatic uptake was between 25-50%, which contrasts with the 80-90% reduction in uptake of a wholly phagocytosed particle (sheep red cells). This difference suggets that mechanisms other than Kupffer cell phagocytosis are also responsible for the normal uptake of liposomes into the liver. In the case of neutral and positively charged small unilamellar vesicles, delayed clearance due to blockade was not associated with depressed hepatic uptake. The site of action of blockading agents for these preparations is not clear. With all preparations of liposomes, blockade produced a slight and variable increase in uptake in the lung and spleen. The alteration of distribution of liposomes by reticuloendothelial blockade is therefore not great and the value of the technique in modifying the tissue distribution of substances within liposomes may be limited. (orig.)

  19. Nilotinib Enhances Tumor Angiogenesis and Counteracts VEGFR2 Blockade in an Orthotopic Breast Cancer Xenograft Model with Desmoplastic Response

    Directory of Open Access Journals (Sweden)

    Sara Zafarnia

    2017-11-01

    Full Text Available Vascular endothelial growth factor (VEGF/VEGF receptor (VEGFR-targeted therapies predominantly affect nascent, immature tumor vessels. Since platelet-derived growth factor receptor (PDGFR blockade inhibits vessel maturation and thus increases the amount of immature tumor vessels, we evaluated whether the combined PDGFR inhibition by nilotinib and VEGFR2 blockade by DC101 has synergistic therapy effects in a desmoplastic breast cancer xenograft model. In this context, besides immunohistological evaluation, molecular ultrasound imaging with BR55, the clinically used VEGFR2-targeted microbubbles, was applied to monitor VEGFR2-positive vessels noninvasively and to assess the therapy effects on tumor angiogenesis. DC101 treatment alone inhibited tumor angiogenesis, resulting in lower tumor growth and in significantly lower vessel density than in the control group after 14 days of therapy. In contrast, nilotinib inhibited vessel maturation but enhanced VEGFR2 expression, leading to markedly increased tumor volumes and a significantly higher vessel density. The combination of both drugs led to an almost similar tumor growth as in the DC101 treatment group, but VEGFR2 expression and microvessel density were higher and comparable to the controls. Further analyses revealed significantly higher levels of tumor cell–derived VEGF in nilotinib-treated tumors. In line with this, nilotinib, especially in low doses, induced an upregulation of VEGF and IL-6 mRNA in the tumor cells in vitro, thus providing an explanation for the enhanced angiogenesis observed in nilotinib-treated tumors in vivo. These findings suggest that nilotinib inhibits vessel maturation but counteracts the effects of antiangiogenic co-therapy by enhancing VEGF expression by the tumor cells and stimulating tumor angiogenesis.

  20. Social information changes stress hormone receptor expression in the songbird brain.

    Science.gov (United States)

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Angiotensin receptor blockade in acute stroke. The Scandinavian Candesartan Acute Stroke Trial

    DEFF Research Database (Denmark)

    Sandset, Else Charlotte; Murray, Gordon; Boysen, Gudrun

    2010-01-01

    BACKGROUND: Elevated blood pressure following acute stroke is common, and yet early antihypertensive treatment is controversial. ACCESS suggested a beneficial effect of the angiotensin receptor blocker candesartan in the acute phase of stroke, but these findings need to be confirmed in new, large...

  2. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  3. Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection

    Science.gov (United States)

    Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.

    2011-01-01

    Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630

  4. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  5. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    Science.gov (United States)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  6. Benefits and harms of perioperative beta-blockade

    DEFF Research Database (Denmark)

    Wetterslev, Jørn; Juul, Anne Benedicte

    2006-01-01

    randomized trials. However, confidence intervals of the intervention effects in the meta-analyses are wide, leaving room for both benefits and harms. The largest observational study performed suggests that perioperative beta-blockade is associated with higher mortality in patients with low cardiac risk...

  7. Negative differential resistance in nanoscale transport in the Coulomb blockade regime

    International Nuclear Information System (INIS)

    Parida, Prakash; Lakshmi, S; Pati, Swapan K

    2009-01-01

    Motivated by recent experiments, we have studied the transport behavior of coupled quantum dot systems in the Coulomb blockade regime using the master (rate) equation approach. We explore how electron-electron interactions in a donor-acceptor system, resembling weakly coupled quantum dots with varying charging energy, can modify the system's response to an external bias, taking it from normal Coulomb blockade behavior to negative differential resistance (NDR) in the current-voltage characteristics.

  8. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    Science.gov (United States)

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  9. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Kanamarlapudi

    Full Text Available Adenosine diphosphate (ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1 and P2Y(12 purinoceptors. Recently, we demonstrated that P2Y(1 and P2Y(12 purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6 in the internalization and function of P2Y(1 and P2Y(12 purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1 or P2Y(12 purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  10. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  11. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  12. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives.

    Science.gov (United States)

    Carron, Michele; Bertoncello, Francesco; Ieppariello, Giovanna

    2018-01-01

    The number of elderly patients is increasing worldwide. This will have a significant impact on the practice of anesthesia in future decades. Anesthesiologists must provide care for an increasing number of elderly patients, who have an elevated risk of perioperative morbidity and mortality. Complications related to postoperative residual neuromuscular blockade, such as muscle weakness, airway obstruction, hypoxemia, atelectasis, pneumonia, and acute respiratory failure, are more frequent in older than in younger patients. Therefore, neuromuscular blockade in the elderly should be carefully monitored and completely reversed before awakening patients at the end of anesthesia. Acetylcholinesterase inhibitors are traditionally used for reversal of neuromuscular blockade. Although the risk of residual neuromuscular blockade is reduced by reversal with neostigmine, it continues to complicate the postoperative course. Sugammadex represents an innovative approach to reversal of neuromuscular blockade induced by aminosteroid neuromuscular-blocking agents, particularly rocuronium, with useful applications in clinical practice. However, aging is associated with certain changes in the pharmacokinetics of sugammadex, and to date there has been no thorough evaluation of the use of sugammadex in elderly patients. The aim of this review was to perform an analysis of the use of sugammadex in older adults based on the current literature. Major issues surrounding the physiologic and pharmacologic effects of aging in elderly patients and how these may impact the routine use of sugammadex in elderly patients are discussed.

  13. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups.

    Science.gov (United States)

    Arnal, Ashley V; Gore, Julie L; Rudkin, Alison; Bartlett, Donald; Leiter, J C

    2013-03-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex, HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Involvement of norepinephrine activity in the regulation of α1 adrenergic receptors in the medial preoptic nucleus of estradiol-treated rats

    International Nuclear Information System (INIS)

    Sortino, M.A.; Weiland, N.G.; Wise, P.M.

    1989-01-01

    To establish whether the diurnal decrease in the density of α1 receptors observed in the medial preoptic nucleus (MPN) of estrogen (E 2 )-treated rats is related to the concomitant diurnal increase in norepinephrine (NE) turnover rates, we quantitiated the density of [ 3 H]-Prazosin binding to α1 receptors after blockade of NE turnover with alpha-methyl-paratyrosine (αMPT). A series of preliminary studies was performed to rule out an interference of this drug with [ 3 H]-Prazosin binding to α1 adrenergic receptors in vitro and in vivo. Incubation of brain slices with αMPT produced a dose-dependent inhibition of [ 3 H]-Prazosin binding to α1 adrenergic receptors with an IC 50 of approximately 6 mM. Scatchard analysis demonstrated that αMPT exhibited a simple competitive interaction with [ 3 H]-Prazosin binding sites as shown by an increase in the apparent dissociation constant (Kd) of the ligand and no change in the number of α1 receptors (B/sub max/). In contrast, preincubation of brain slices with αMPT and prior in vivo administration of αMPT did not affect [ 3 H]-Prazosin binding to α1 adrenergic receptors. The density of α1 adrenergic receptors in MPN was quantitated autoradiographically. Blockade of NE turnover with αMPT only partially prevented the reduction in α1 receptor density observed in the E 2 -treated rats, suggesting that the decrease in the level of [ 3 H]-Prazosin binding sites cannot be completely ascribed to increased NE turnover rates

  15. Evaluation of PET Radioligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Schoenbaechler, R.; Westera, G.; Nan-Horng Lin

    2002-01-01

    Full text: A-186253.1, a compound made by Abbott laboratories, was labelled with carbon-11 and evaluated as a PET ligand for the neuronal nicotinic acetylcholine receptor (nAChR). The compound was labelled with C-11 by methylation with 11C-MeI of the desmethyl precursor A-183828.1. The affinity of A-186253.1 for the α4β2 and the α7 subtype of the nAChR was determined in displacement studies. PET-studies were performed in rats and pigs Inhibitory constants (K i ) versus cytsine were 461 ± 99 pM for A-186253.1 and versus α-Bungarotoxin >100 μM. which means a very high selectivity for the α4β2-receptor (>227,000). Highest uptake of [ 11 C]-A-186253.1 was observed in the thalamus where an increase in radiotracer uptake was seen until 45 min p.i.. Thereafter, the radiotracer concentration remained constant until the end of the scan indicating slow washout of [ 11 C]-A-186253.1. Application of cold A-186253.1 (0.5 mg/kg) 40 min p.i. resulted in a decrease in radiotracer concentration in the thalamus and the cortex indicating displacement of [ 11 C]-A-186253.1. Blockade studies with cytisine (0.5 mg/kg), a selective ligand for the α4β2 nicotinic receptor, showed just a slight reduction of the radioligand uptake in the thalamus and in the cortex whereas the blockade with cold A-186253.1 (1 mg/kg) resulted in a 50 % reduction. These results suggest, that 50 % of the [ 11 C]-A-186253.1 in the brain corresponds to specifically bound radioligand, but not to the α4β2 subtype of the nicotinic receptor. (author)

  16. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  17. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  18. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    Science.gov (United States)

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  19. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tsigos, C.; Arai, K.; Latronico, A.C. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)]|[Temple Univ. School of Medicine, Philadelphia, PA (United States)]|[Children`s Hospital of New Jersey, Newark, NJ (United States)] [and others

    1995-07-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, usually without mineralocorticoid deficiency. Occasionally, the disorder is associated with alacrima and achalasia of the esophagus (triple A syndrome), suggesting potential heterogeneity in its etiology. Mutations in the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in 1 other family with IGD and 2 famlies with triple A syndrome. The proband with IGD was a homozygote for an A {r_arrow}G substitution, changing tyrosine 254 to cysteine in the third extracellular loop of the receptor protein, probably interfering with ligand binding. Both of her parents were heterozygotes for this mutation, which was not detected in 100 normal alleles. No mutations were identified in the entire coding area of the ACTH receptor in the 2 families with triple A syndrome, supporting the idea of a developmental or postreceptor defect in this syndrome. 19 refs., 1 fig.

  20. Renin-Angiotensin System Blockade Improves Cardiac Indices in Acromegaly Patients.

    Science.gov (United States)

    Thomas, Julia D J; Dattani, Abhishek; Zemrak, Filip; Burchell, Thomas; Akker, Scott A; Kaplan, Felicity J L; Khoo, Bernard; Aylwin, Simon; Grossman, Ashley B; Davies, L Ceri; Korbonits, Márta

    2017-06-01

    Blockade of the angiotensin-renin system, with angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs), has been shown to improve cardiac outcomes following myocardial infarction and delay progression of heart failure. Acromegaly is associated with a disease-specific cardiomyopathy, the pathogenesis of which is poorly understood.The cardiac indices of patients with active acromegaly with no hypertension (Group A, n=4), established hypertension not taking ACEi/ARBs (Group B, n=4) and established hypertension taking ACEi/ARBs (Group C, n=4) were compared using cardiac magnetic imaging.Patients taking ACEi/ARBs had lower end diastolic volume index (EDVi) and end systolic volume index (ESVi) than the other 2 groups ([C] 73.24 vs. [A] 97.92 vs. [B] 101.03 ml/m 2 , ANOVA p=0.034, B vs. C pAcromegaly patients on ACEi/ARBs for hypertension demonstrate improved cardiac indices compared to acromegaly patients with hypertension not taking these medications. Further studies are needed to determine if these drugs have a beneficial cardiac effect in acromegaly in the absence of demonstrable hypertension. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats.

    Directory of Open Access Journals (Sweden)

    Agnieszka Nikiforuk

    Full Text Available A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg or amisulpride (3 mg/kg ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia.

  2. Sexual dysfunctions in men affected by autoimmune Addison's disease before and after short-term gluco- and mineralocorticoid replacement therapy.

    Science.gov (United States)

    Granata, Antonio; Tirabassi, Giacomo; Pugni, Valeria; Arnaldi, Giorgio; Boscaro, Marco; Carani, Cesare; Balercia, Giancarlo

    2013-08-01

    There is evidence suggesting that autoimmune Addison's disease (AD) could be associated with sexual dysfunctions probably caused by gluco- and mineralocorticoid deficiency; however, no study has yet treated this subject in males. To evaluate male sexuality and psychological correlates in autoimmune AD before and after gluco- and mineralocorticoid replacement therapy. Twelve subjects with a first diagnosis of autoimmune AD were studied before (baseline) and 2 months after (recovery phase) initiating hormone replacement therapy. Erectile function (EF), orgasmic function (OF), sexual desire (SD), intercourse satisfaction (IS), overall satisfaction (OS), depression, and anxiety were studied using a number of questionnaires (International Index of Erectile Function, Beck Depression Inventory, and Spielberger State-Trait Anxiety Inventory); clinical, biochemical, and hormone data were included in the analysis. At baseline, low values were found for EF, OF, SD, IS, and OS and high values for depression and anxiety; all of these parameters improved significantly in the recovery phase compared with baseline. EF variation between the two phases correlated significantly and positively with the variation of serum cortisol, urinary free cortisol, systolic blood pressure, and diastolic blood pressure and inversely with that of upright plasma renin activity. Multiple linear regression analysis using EF variation as dependent variable confirmed the relationship of the latter with variation of serum cortisol, urinary free cortisol, and upright plasma renin activity but not with variation of systolic and diastolic blood pressure. Our study showed that onset of autoimmune AD in males is associated with a number of sexual dysfunctions, all reversible after initiating replacement hormone therapy; cortisol and aldosterone deficiency seems to play an important role in the genesis of erectile dysfunction although the mechanism of their activity is not clear. © 2012 International Society

  3. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    Energy Technology Data Exchange (ETDEWEB)

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K. (GSKPA)

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  4. Predominance of AT1 Blockade Over Mas–Mediated Angiotensin-(1–7) Mechanisms in the Regulation of Blood Pressure and Renin–Angiotensin System in mRen2.Lewis Rats

    Science.gov (United States)

    2013-01-01

    BACKGROUND We investigated whether the antihypertensive actions of the angiotensin II (Ang II) receptor (AT1-R) blocker, olmesartan medoxomil, may in part be mediated by increased Ang-(1–7) in the absence of significant changes in plasma Ang II. METHODS mRen2.Lewis congenic hypertensive rats were administered either a vehicle (n = 14) or olmesartan (0.5mg/kg/day; n = 14) by osmotic minipumps. Two weeks later, rats from both groups were further randomized to receive either the mas receptor antagonist A-779 (0.5mg/kg/day; n = 7 per group) or its vehicle (n = 7 per group) for the next 4 weeks. Blood pressure was monitored by telemetry, and circulating and tissue components of the renin–angiotensin system (RAS) were measured at the completion of the experiments. RESULTS Antihypertensive effects of olmesartan were associated with an increase in plasma renin concentration, plasma Ang I, Ang II, and Ang-(1–7), whereas serum aldosterone levels and kidney Ang II content were reduced. Preserved Ang-(1–7) content in kidneys was associated with increases of ACE2 protein but not activity and no changes on serum and kidney ACE activity. There was no change in cardiac peptide levels after olmesartan treatment. The antihypertensive effects of olmesartan were not altered by concomitant administration of the Ang-(1–7) receptor antagonist except for a mild further increase in plasma renin concentration. CONCLUSIONS Our study highlights the independent regulation of RAS among plasma, heart, and kidney tissue in response to AT1-R blockade. Ang-(1–7) through the mas receptor does not mediate long-term effects of olmesartan besides counterbalancing renin release in response to AT1-R blockade. PMID:23459599

  5. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    Science.gov (United States)

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  6. Interleukin-1 antagonists and other cytokine blockade strategies for type 1 diabetes

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, Thomas

    2012-01-01

    Proinflammatory cytokines stimulate adaptive immunity and attenuate T cell regulation and tolerance induction. They also profoundly impair β-cell function, proliferation, and viability, activities of similar importance in the context of type 1 diabetes (T1D). Detailed knowledge of the molecular...... mechanisms of β-cell toxicity has been gathered within the last 2-3 decades. However, the efficacy of individual proinflammatory cytokine blockade in animal models of T1D has been inconsistent and generally modest, except in the context of islet transplantation. This suggests that the timing of the cytokine...... blockade relative to anti-β-cell immune activation is critical, and that combination therapy may be required. In randomized, placebo-controlled, clinical trials of limited power, TNF-α (but not IL-1) blockade has yielded moderate but significant improvements in glycemia, insulin requirement, and β...

  7. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    Science.gov (United States)

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  8. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall.

    Science.gov (United States)

    Mikics, Eva; Toth, Mate; Biro, Laszlo; Bruzsik, Biborka; Nagy, Boglarka; Haller, Jozsef

    2017-08-01

    N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall. To investigate the specific role of NMDA receptor subpopulations with different GluN2 subunit compositions in the formation of lasting traumatic memories, we contrasted the effects of general NMDA receptor blockade with GluN2A-, GluN2B-, and GluN2C/D subunit selective antagonists (MK-801, PEAQX, Ro25-6981, PPDA, respectively). To investigate acute and lasting consequences, behavioral responses were investigated 1 and 28days after fear conditioning. We found that MK-801 (0.05 and 0.1mg/kg) decreased fear recall at both time points. GluN2B receptor subunit blockade produced highly similar effects, albeit efficacy was somewhat smaller 28days after fear conditioning. Unlike MK-801, Ro25-6981 (3 and 10mg/kg) did not affect locomotor activity in the open-field. In contrast, GluN2A and GluN2C/D blockers (6 and 20mg/kg PEAQX; 3 and 10mg/kg PPDA, respectively) had no effect on conditioned fear recall at any time point and dose. This sharp contrast between GluN2B- and other subunit-containing NMDA receptor function indicates that GluN2B receptor subunits are intimately involved in fear memory formation, and may provide a novel pharmacological target in post-traumatic stress disorder or other fear-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. S32006, a novel 5-HT(2C) receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models

    NARCIS (Netherlands)

    Dekeyne, Anne; la Cour, Clotilde Mannoury; Gobert, Alain; Brocco, Mauricette; Lejeune, Francoise; Serres, Florence; Sharp, Trevor; Daszuta, Annie; Soumier, Amelie; Papp, Mariusz; Rivet, Jean-Michel; Flik, Gunnar; Cremers, Thomas I.; Muller, Olivier; Lavielle, Gilbert; Millan, Mark J.

    Rationale Serotonin (5-HT)(2C) receptors are implicated in the control of mood, and their blockade is of potential interest for the management of anxiodepressive states. Objectives Herein, we characterized the in vitro and in vivo pharmacological profile of the novel benzourea derivative, S32006.

  10. Endothelin receptor antagonism in single ventricle physiology with fontan palliation: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Gwendolyn Derk

    2015-04-01

    Conclusions: Bosentan was found to be a safe and well tolerated endothelin receptor antagonist in Fontan patients over 3–6 months of therapy. Bosentan use was associated with improved functional capacity. Future studies with larger sample size and longer duration are warranted to examine the long-term safety and efficacy of endothelin blockade in Fontan physiology.

  11. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral...... group. CBF was measured by the intracarotid 133xenon injection method and BP was raised by noradrenaline infusion and lowered by controlled haemorrhage in separate groups of rats. The limits of autoregulation were determined by computed least-sum-of-squares analysis. PD 123319 did not influence baseline...

  12. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  13. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  14. The roles of complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) in the regulation of the immune complex-elicited respiratory burst of polymorphonuclear leukocytes in whole blood

    DEFF Research Database (Denmark)

    Nielsen, C H; Antonsen, S; Matthiesen, S H

    1997-01-01

    The binding of immune complexes (IC) to polymorphonuclear leukocytes (PMN) and the consequent respiratory burst (RB) were investigated in whole blood cell preparations suspended in 75% human serum, using flow cytometry. Blockade of the complement receptor (CR)1 receptor sites for C3b on whole blood...... cells using the monoclonal antibody (mAb) 3D9 resulted in a 1.9-fold increase in the IC-elicited PMN RB after 5 min of incubation, rising to 3.1-fold after 40 min. This enhancement was not due to increased IC deposition on PMN. Blockade of CR3 abrogated the mAb 3D9-induced rise in RB activity...

  15. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  16. NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use.

    Science.gov (United States)

    McCaffrey, Gwen; Thompson, Michelle L; Majuta, Lisa; Fealk, Michelle N; Chartier, Stephane; Longo, Geraldine; Mantyh, Patrick W

    2014-12-01

    Studies in animals and humans show that blockade of nerve growth factor (NGF) attenuates both malignant and nonmalignant skeletal pain. While reduction of pain is important, a largely unanswered question is what other benefits NGF blockade might confer in patients with bone cancer. Using a mouse graft model of bone sarcoma, we demonstrate that early treatment with an NGF antibody reduced tumor-induced bone destruction, delayed time to bone fracture, and increased the use of the tumor-bearing limb. Consistent with animal studies in osteoarthritis and head and neck cancer, early blockade of NGF reduced weight loss in mice with bone sarcoma. In terms of the extent and time course of pain relief, NGF blockade also reduced pain 40% to 70%, depending on the metric assessed. Importantly, this analgesic effect was maintained even in animals with late-stage disease. Our results suggest that NGF blockade immediately upon detection of tumor metastasis to bone may help preserve the integrity and use, delay the time to tumor-induced bone fracture, and maintain body weight. ©2014 American Association for Cancer Research.

  17. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  18. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    Science.gov (United States)

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The physiological role of AT1 receptors in the ventrolateral medulla

    Directory of Open Access Journals (Sweden)

    T. Tagawa

    2000-06-01

    Full Text Available Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.

  20. 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase-Dependent Stimulation of Renal Klotho Expression by Spironolactone

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-11-01

    Full Text Available Background: Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney, is required for the suppression of 1,25(OH2D3-generating 25-hydroxyvitamin D3 1-alpha-hydroxylase (Cyp27b1 by FGF23. Conversely, 1,25(OH2D3 stimulates, by activating the vitamin D3 receptor (Vdr, the expression of klotho, thus establishing a negative feedback loop. Klotho protects against renal and vascular injury. Klotho deficiency accelerates aging and early death, effects at least partially due to excessive formation of 1,25(OH2D3 and subsequent hyperphosphatemia. Klotho expression is inhibited by aldosterone. The present study explored the interaction of aldosterone and DOCA as well as the moderately selective mineralocorticoid receptor antagonist spironolactone on klotho expression. Methods: mRNA levels were determined utilizing quantitative RT-PCR in human embryonic kidney cells (HEK293 or in renal tissues from mice without or with prior mineralocorticoid (aldosterone or DOCA and/or spironolactone treatment. In HEK293 cells, protein levels were determined by western blotting. The experiments in HEK293 cells were performed without or with silencing of CYP27B1, of vitamin D3 receptor (VDR or of mineralocorticoid receptor (NR3C2. Results: In HEK293 cells aldosterone and in mice DOCA significantly decreased KLOTHO gene expression, effects opposed by spironolactone treatment. Spironolactone treatment alone significantly increased KLOTHO and CYP27B1 transcript levels in HEK293 cells (24 hours and mice (8 hours or 5 days. Moreover, spironolactone significantly increased klotho and CYP27B1 protein levels in HEK293 cells (48 hours. Reduced NR3C2 expression following silencing did not significantly affect KLOTHO and CYP27B1 transcript levels in presence or absence of spironolactone. Silencing of CYP27B1 and VDR significantly blunted the stimulating effect of spironolactone on KLOTHO mRNA levels in HEK293 cells. Conclusion: Besides blocking the effects of

  1. Continuous adductor-canal-blockade for adjuvant post-operative analgesia after major knee surgery: preliminary results

    DEFF Research Database (Denmark)

    Lund, J; Jenstrup, M T; Jæger, P

    2011-01-01

    -canal-blockade) after total knee arthroplasty (TKA). Finally, we performed cross-sectional MR scans of the adductor canal after injection of ropivacaine 30ml in one patient. The systematic literature search revealed only one controlled study, where selective blockade of the saphenous nerve was investigated...

  2. Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury

    DEFF Research Database (Denmark)

    Hostrup, Anders; Christensen, Gitte Lund; Bentzen, Bo Hjort

    2012-01-01

    of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia......]AngII had a protective effect. Together these results demonstrate a cardioprotective effect of simultaneous blockade of G protein signaling and activation of G protein independent signaling through AT(1 )receptors....

  3. Blockade of the SNARE protein syntaxin 1 inhibits glioblastoma tumor growth.

    Directory of Open Access Journals (Sweden)

    Fausto Ulloa

    Full Text Available Glioblastoma (GBM is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1 function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.

  4. Intractable diarrhea in hyperthyroidism: management with beta-adrenergic blockade.

    Science.gov (United States)

    Bricker, L A; Such, F; Loehrke, M E; Kavanaugh, K

    2001-01-01

    To describe a patient with intractable diarrhea and thyrotoxic Graves' disease, for whom b-adrenergic blockade ultimately proved to be effective therapy for the diarrhea, and to review the types of hyperthyroidism-associated diarrhea. We present the clinical course of a young man with a prolonged siege of diarrhea that proved elusive to diagnostic inquiries and resistant to all means of management until its endocrine basis was discovered. Control of such cases with b-adrenergic blockade is discussed, as are the pathophysiologic bases of intestinal hypermotility in hyperthyroidism. A 26-year-old man with Down syndrome, and no prior gastrointestinal disorder, had insidious, chronic, constant diarrhea, which was associated with loss of 14 kg during a 5-month period. Numerous laboratory and imaging studies and endoscopic examinations failed to disclose the cause of the diarrhea. Furthermore, a broad range of antibiotics and other empiric remedies failed to control the problem. No other symptoms of hyperthyroidism were reported, but when the endocrinopathy was suspected and identified, the diarrhea was promptly controlled by treatment with propranolol. In patients with hyperthyroidism, two types of diarrheal disorders have been described-secretory diarrhea and steatorrhea; bile acid malabsorption may have a role in either of these settings. In addition to its capacity for blocking the peripheral effects of thyroid hormone on the heart and central nervous system, b-adrenergic blockade is effective in slowing intestinal transit time and ameliorating the uncommon diarrhea associated with hyperthyroidism. Thyroid hormone in excess, among its other possible effects on the gastrointestinal tract, may exert a stimulatory effect by means of intermediary sympathetic activation, as it does with the heart. Thus, sympathetic blockade can mimic the salutary effects on the gastrointestinal tract conventionally brought about by direct antithyroid therapy, and well before the

  5. Disease: H00603 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available pertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. ... JOURNAL ... Endocrinology 144:528-33 (2003) DOI:10.1210/en.2002-220708

  6. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Ellen Mueller Fox

    Full Text Available Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks-one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

  7. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    Science.gov (United States)

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    Directory of Open Access Journals (Sweden)

    Marcondes Alves Barbosa Da Silva

    2015-10-01

    Full Text Available Type 2 diabetes (DM2 increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR with spironolactone decreases ROS-associated vascular dysfunction and improves vascular NO signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+ mice] received spironolactone (50 mg/kg body weight/day or vehicle (ethanol 1% via oral per gavage for 6 weeks. Spironolactone treatment abolished the endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS phosphorylation (Ser1177, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 (SOD1 and catalase expression, improved sodium nitroprusside (SNP and BAY 41-2272-induced relaxation, as well as increased soluble guanylyl cyclase (sGC subunit β protein expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

  9. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  10. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Blecharz-Lang, Kinga G; Wagner, Josephin; Fries, Alexa; Nieminen-Kelhä, Melina; Rösner, Jörg; Schneider, Ulf C; Vajkoczy, Peter

    2018-02-10

    Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.

  11. Mesotocin and nonapeptide receptors promote estrildid flocking behavior.

    Science.gov (United States)

    Goodson, James L; Schrock, Sara E; Klatt, James D; Kabelik, David; Kingsbury, Marcy A

    2009-08-14

    Proximate neural mechanisms that influence preferences for groups of a given size are almost wholly unknown. In the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata), blockade of nonapeptide receptors by an oxytocin (OT) antagonist significantly reduced time spent with large groups and familiar social partners independent of time spent in social contact. Opposing effects were produced by central infusions of mesotocin (MT, avian homolog of OT). Most drug effects appeared to be female-specific. Across five estrildid finch species, species-typical group size correlates with nonapeptide receptor distributions in the lateral septum, and sociality in female zebra finches was reduced by OT antagonist infusions into the septum but not a control area. We propose that titration of sociality by MT represents a phylogenetically deep framework for the evolution of OT's female-specific roles in pair bonding and maternal functions.

  12. Evaluation of stereoisomers of 4-fluoroalkyl analogues of 3-quinuclidinyl benzilate in in vivo competition studies for the M1, M2, and M3 muscarinic receptor subtypes in brain

    International Nuclear Information System (INIS)

    Kiesewetter, Dale O.; Eckelman, William C.; Jaetae, Lee; Paik, Chang H.; Park, Seok G.

    1995-01-01

    To develop a subtype selective muscarinic acetylcholine receptor (mAChR) antagonist for PET, fluorine-19 labeled alkyl analogues of quinuclidinyl benzilate (QNB) were synthesized by stereoselective reactions. To investigate these analogues for tissue subtype specificity, in vivo competitive binding studies were performed in rat brain using (R)-3-quinuclidinyl (R)-4-[ 125 I]Iodobenzilate (IQNB). Five, fifty, or five-hundred nmol of the non-radioactive ligands were coinjected intravenously with 8 pmol of the radioligand. Cold (R,R)-IQNB blocked (R,R)-[ 125 I]IQNB in a dose-dependent manner, without showing regional specificity. For the (R,S)-fluoromethyl, -fluoroethyl, and -fluoropropyl derivatives, a higher percent blockade was seen at 5 and 50 nmol levels in M2 predominant tissues (medulla, pons, and cerebellum) than in M1 predominant tissues (cortex, striatum and hippocampus). The blockade pattern of the radioligand also correlated qualitatively with the percentage of M2 receptors in the region. The S-quinuclidinyl analogues showed M2 selectivity but less efficient blockade of the radioligand, indicating lower affinities. Radioligand bound to the medulla was inversely correlated to the M2 relative binding affinity of the fluoroalkyl analogues. These results indicate that the nonradioactive ligand blocks the radioligand based on the affinity of the nonradioactive ligand for a particular receptor subtype compared to the affinity of the radioligand for the same receptor subtype. Of the seven compounds evaluated, (R,S)-fluoromethyl-QNB appears to show the most selectivity for the M2 subtypes in competition studies in vivo

  13. GABAergic mechanism mediated via D receptors in the rat periaqueductal gray participates in the micturition reflex: an in vivo microdialysis study.

    Science.gov (United States)

    Kitta, Takeya; Matsumoto, Machiko; Tanaka, Hiroshi; Mitsui, Takahiko; Yoshioka, Mitsuhiro; Nonomura, Katsuya

    2008-06-01

    The periaqueductal gray (PAG) is critically involved in the micturition reflex, but little is known about the neuronal mechanisms involved. The present study elucidated dynamic changes in dopamine (DA), glutamate and gamma-aminobutyric acid (GABA) in the rat PAG during the micturition reflex, with a focus on dopaminergic modulation using in vivo microdialysis combined with cystometrography. Extracellular levels of DA and glutamate increased, whereas levels of GABA decreased, in parallel with the micturition reflex. Application of a D(1) receptor antagonist into the PAG produced increases in maximal voiding pressure (MVP) and decreases in intercontraction interval (ICI), suggesting that the micturition reflex was facilitated by D(1) receptor blockade. The D(1) receptor antagonist prevented micturition-induced decreases in GABA efflux but had no effect on DA or glutamate. Neither a D(2) receptor antagonist nor a D(1)/D(2) receptor agonist affected these neurochemical and physiological parameters. Micturition-induced inhibition of GABA was not observed in 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of Parkinson's disease. 6-OHDA-lesioned rats exhibited bladder hyperactivity evaluated by increases in MVP and decreases in ICI, mimicking facilitation of the micturition reflex induced by D(1) receptor blockade. These findings suggest that the micturition reflex is under tonic dopaminergic regulation through D(1) receptors, in which a GABAergic mechanism is involved. Bladder hyperactivity observed in 6-OHDA-lesioned rats may be caused by dysfunction of GABAergic regulation underlying the micturition reflex. The present findings contribute to our understanding not only of the neurophysiology of the micturition reflex but also of the pathophysiology of lower urinary tract dysfunction in patients with Parkinson's disease.

  14. Steroid receptor profiling of vinclozolin and its primary metabolites

    International Nuclear Information System (INIS)

    Molina-Molina, Jose-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernandez, Mariana-Fatima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolas; Balaguer, Patrick

    2006-01-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERα and ERβ). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR >> PR > GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERβ. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process

  15. Steroid receptor profiling of vinclozolin and its primary metabolites.

    Science.gov (United States)

    Molina-Molina, José-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernández, Mariana-Fátima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolás; Balaguer, Patrick

    2006-10-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERalpha and ERbeta). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR>PR>GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERbeta. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.

  16. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2008-09-01

    Full Text Available Abstract Background MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2. Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. Methods and result Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1, the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. Conclusion Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.

  17. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Nappi J

    2011-06-01

    Full Text Available Jean M Nappi, Adam SiegClinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, Charleston, SC, USAAbstract: Aldosterone is a mineralocorticoid hormone synthesized by the adrenal glands that has several regulatory functions to help the body maintain normal volume status and electrolyte balance. Studies have shown significantly higher levels of aldosterone secretion in patients with congestive heart failure compared with normal patients. Elevated levels of aldosterone have been shown to elevate blood pressure, cause left ventricular hypertrophy, and promote cardiac fibrosis. An appreciation of the true role of aldosterone in patients with chronic heart failure did not become apparent until the publication of the Randomized Aldactone Evaluation Study. Until recently, the use of aldosterone receptor antagonists has been limited to patients with severe heart failure and patients with heart failure following myocardial infarction. The Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF study added additional evidence to support the expanded use of aldosterone receptor antagonists in heart failure patients. The results of the EMPHASIS-HF trial showed that patients with mild-to-moderate (New York Heart Association Class II heart failure had reductions in mortality and hospitalizations from the addition of eplerenone to optimal medical therapy. Evidence remains elusive about the exact mechanism by which aldosterone receptor antagonists improve heart failure morbidity and mortality. The benefits of aldosterone receptor antagonist use in heart failure must be weighed against the potential risk of complications, ie, hyperkalemia and, in the case of spironolactone, possible endocrine abnormalities, in particular gynecomastia. With appropriate monitoring, these risks can be minimized. We now have evidence that patients with mild-to-severe symptoms

  18. A novel mutation in HSD11B2 causes apparent mineralocorticoid excess in an Omani kindred.

    Science.gov (United States)

    Yau, Mabel; Azkawi, Hanan Said Al; Haider, Shozeb; Khattab, Ahmed; Badi, Maryam Al; Abdullah, Wafa; Senani, Aisha Al; Wilson, Robert C; Yuen, Tony; Zaidi, Mone; New, Maria I

    2016-07-01

    Apparent mineralocorticoid excess (AME) is a rare autosomal recessive genetic disorder causing severe hypertension in childhood due to a deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), which is encoded by HSD11B2. Without treatment, chronic hypertension leads to early development of end-organ damage. Approximately 40 causative mutations in HSD11B2 have been identified in ∼100 AME patients worldwide. We have studied the clinical presentation, biochemical parameters, and molecular genetics in six patients from a consanguineous Omani family with AME. DNA sequence analysis of affected members of this family revealed homozygous c.799A>G mutations within exon 4 of HSD11B2, corresponding to a p.T267A mutation of 11βHSD2. The structural change and predicted consequences owing to the p.T267A mutation have been modeled in silico. We conclude that this novel mutation is responsible for AME in this family. © 2016 New York Academy of Sciences.

  19. Astrocyte reactivity to unconjugated bilirubin requires TNF-α and IL-1β receptor signaling pathways.

    Science.gov (United States)

    Fernandes, Adelaide; Barateiro, Andreia; Falcão, Ana Sofia; Silva, Sandra Leit-Ao; Vaz, Ana Rita; Brito, Maria Alexandra; Silva, Rui Fernando Marques; Brites, Dora

    2011-01-01

    Jaundice and sepsis are common neonatal conditions that can lead to neurodevelopment sequelae, namely if present at the same time. We have reported that tumor necrosis factor (TNF)-α and interleukin (IL)-1β are produced by cultured neurons and mainly by glial cells exposed to unconjugated bilirubin (UCB). The effects of these cytokines are mediated by cell surface receptors through a nuclear factor (NF)-κB-dependent pathway that we have showed to be activated by UCB. The present study was designed to evaluate the role of TNF-α and IL-1β signaling on astrocyte reactivity to UCB in rat cortical astrocytes. Exposure of astrocytes to UCB increased the expression of both TNF-α receptor (TNFR)1 and IL-1β receptor (IL-1R)1, but not TNFR2, as well as their activation, observed by augmented binding of receptors' molecular adaptors, TRAF2 and TRAF6, respectively. Silencing of TNFR1, using siRNA technology, or blockade of IL-1β cascade, using its endogenous antagonist, IL-1 receptor antagonist (IL-1ra), prevented UCB-induced cytokine release and NF-κB activation. Interestingly, lack of TNF-α signal transduction reduced UCB-induced cell death for short periods of incubation, although an increase was observed after extended exposure; in contrast, inhibition of IL-1β cascade produced a sustained blockade of astrocyte injury by UCB. Together, our data show that inflammatory pathways are activated during in vitro exposure of rat cortical astrocytes to UCB and that this activation is prolonged in time. This supports the concept that inflammatory pathways play a role in brain damage by UCB, and that they may represent important pharmacological targets. Copyright © 2010 Wiley-Liss, Inc.

  20. Harmaline competitively inhibits [3H]MK-801 binding to the NMDA receptor in rabbit brain.

    Science.gov (United States)

    Du, W; Aloyo, V J; Harvey, J A

    1997-10-03

    Harmaline, a beta-carboline derivative, is known to produce tremor through a direct activation of cells in the inferior olive. However, the receptor(s) through which harmaline acts remains unknown. It was recently reported that the tremorogenic actions of harmaline could be blocked by the noncompetitive NMDA channel blocker, MK-801. This study examined whether the blockade of harmaline's action, in the rabbit, by MK-801 was due to a pharmacological antagonism at the MK-801 binding site. This was accomplished by measurement of [3H]MK-801 binding in membrane fractions derived from tissue containing the inferior olivary nucleus and from cerebral cortex. Harmaline completely displaced saturable [3H]MK-801 binding in both the inferior olive and cortex with apparent IC50 values of 60 and 170 microM, respectively. These IC50 values are consistent with the high doses of harmaline required to produce tremor, e.g., 10-30 mg/kg. Non-linear curve fitting analysis of [3H]MK-801 saturation experiments indicated that [3H]MK-801 bound to a single site and that harmaline's displacement of [3H]MK-801 binding to the NMDA receptor was competitive as indicated by a shift in Kd but not in Bmax. In addition, a Schild plot gave a slope that was not significantly different from 1 indicating that harmaline was producing a displacement of [3H]MK-801 from its binding site within the NMDA cation channel and not through an action at the glutamate or other allosteric sites on the NMDA receptor. These findings provide in vitro evidence that the competitive blockade of harmaline-induced tremor by MK-801 occurs within the calcium channel coupled to the NMDA receptor. Our hypothesis is that harmaline produces tremor by acting as an inverse agonist at the MK-801 binding site and thus opening the cation channel.

  1. The effect of renin-angiotensin system blockade on renal protection in chronic kidney disease patients with hyperkalemia.

    Science.gov (United States)

    Lee, Ju-Hyun; Kwon, Young Eun; Park, Jung Tak; Lee, Mi Jung; Oh, Hyung Jung; Han, Seung Hyeok; Kang, Shin-Wook; Choi, Kyu Hun; Yoo, Tae-Hyun

    2014-12-01

    The aim of this study was to determine the effects of renin-angiotensin system (RAS) blockade maintenance on renal protection in chronic kidney disease (CKD) patients with hyperkalemia occurring during treatment with RAS blockade. CKD III or IV patients, who were prescribed with RAS blockers and also had hyperkalemia, were included. The study population was divided into two groups based on maintenance or withdrawal of RAS blocker. Renal outcomes (doubling of creatinine or end-stage renal disease) and incidence of hyperkalemia were compared between the two groups. Out of 258 subjects who developed hyperkalemia during treatment with RAS blockers, 150 (58.1%) patients continued on RAS blockades, while RAS blockades were discontinued for more than 3 months in the remaining 108 patients. Renal event-free survival was significantly higher in the maintenance group compared with the withdrawal group. Cox proportional hazard ratio for renal outcomes was 1.35 (95% CI: 1.08-1.92, p=0.04) in the withdrawal group compared with the maintenance group. However, the incidence of hyperkalemia and hyperkalemia-related hospitalization or mortality did not differ between the two groups. This study demonstrated that the maintenance of RAS blockade is beneficial for the preservation of renal function and relatively tolerable in patients with CKD and hyperkalemia occurring during treatment with RAS blockade. © The Author(s) 2014.

  2. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.

    Science.gov (United States)

    Lintas, Alessandra; Chi, Ning; Lauzon, Nicole M; Bishop, Stephanie F; Gholizadeh, Shervin; Sun, Ninglei; Tan, Huibing; Laviolette, Steven R

    2011-08-03

    The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.

  3. Neuromuscular blockade in cardiac surgery: An update for clinicians

    Directory of Open Access Journals (Sweden)

    Hemmerling Thomas

    2008-01-01

    Full Text Available There have been great advancements in cardiac surgery over the last two decades; the widespread use of off-pump aortocoronary bypass surgery, minimally invasive cardiac surgery, and robotic surgery have also changed the face of cardiac anaesthesia. The concept of "Fast-track anaesthesia" demands the use of nondepolarising neuromuscular blocking drugs with short duration of action, combining the ability to provide (if necessary sufficiently profound neuromuscular blockade during surgery and immediate re-establishment of normal neuromuscular transmission at the end of surgery. Postoperative residual muscle paralysis is one of the major hurdles for immediate or early extubation after cardiac surgery. Nondepolarising neuromuscular blocking drugs for cardiac surgery should therefore be easy to titrate, of rapid onset and short duration of action with a pathway of elimination independent from hepatic or renal dysfunction, and should equally not affect haemodynamic stability. The difference between repetitive bolus application and continuous infusion is outlined in this review, with the pharmacodynamic and pharmacokinetic characteristics of vecuronium, pancuronium, rocuronium, and cisatracurium. Kinemyography and acceleromyography are the most important currently used neuromuscular monitoring methods. Whereas monitoring at the adductor pollicis muscle is appropriate at the end of surgery, monitoring of the corrugator supercilii muscle better reflects neuromuscular blockade at more central, profound muscles, such as the diaphragm, larynx, or thoraco-abdominal muscles. In conclusion, cisatracurium or rocuronium is recommended for neuromuscular blockade in modern cardiac surgery.

  4. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Epidural anaesthesia with levobupivacaine and ropivacaine : effects of age on the pharmacokinetics, neural blockade and haemodynamics

    NARCIS (Netherlands)

    Simon, Mischa J.G.

    2006-01-01

    Epidural neural blockade results from processes after the administration of a local anaesthetic in the epidural space until the uptake in neural tissue. The pharmacokinetics, neural blockade and haemodynamics after epidural anaesthesia may be influenced by several factors, with age as the most

  6. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells.

    Science.gov (United States)

    Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P

    2011-05-01

    Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.

  7. Effect of axillary blockade on regional cerebral blood flow during static handgrip

    DEFF Research Database (Denmark)

    Friedman, D B; Friberg, L; Mitchell, J H

    1991-01-01

    Regional cerebral blood flow (rCBF) was determined at rest and during static handgrip before and after regional blockade with lidocaine. A fast rotating single photon emission computer tomograph system with 133Xe inhalation was used at orbitomeatal plane (OM) +2.5 and +6.5 cm in eight subjects. M...... static handgrip, there was no increase in rCBF after partial sensory and motor blockade. Thus bilateral activation occurs in the premotor and motor sensory cortex during static handgrip, and this activation requires neural feedback from the contracting muscles....

  8. Rocuronium blockade reversal with sugammadex vs. neostigmine

    DEFF Research Database (Denmark)

    Wu, Xinmin; Oerding, Helle; Liu, Jin

    2014-01-01

    BACKGROUND: This study compared efficacy and safety of the selective relaxant binding agent sugammadex (2 mg/kg) with neostigmine (50 μg/kg) for neuromuscular blockade (NMB) reversal in Chinese and Caucasian subjects. METHODS: This was a randomized, active-controlled, multicenter, safety-assessor......BACKGROUND: This study compared efficacy and safety of the selective relaxant binding agent sugammadex (2 mg/kg) with neostigmine (50 μg/kg) for neuromuscular blockade (NMB) reversal in Chinese and Caucasian subjects. METHODS: This was a randomized, active-controlled, multicenter, safety...... twitch reappearance, after last rocuronium dose, subjects received sugammadex 2 mg/kg or neostigmine 50 μg/kg plus atropine 10-20 μg/kg, according to randomization. Primary efficacy variable was time from sugammadex/neostigmine to recovery of the train-of-four (TOF) ratio to 0.9. RESULTS: Overall, 230...... Chinese subjects (sugammadex, n = 119, neostigmine, n = 111); and 59 Caucasian subjects (sugammadex, n = 29, neostigmine, n = 30) had evaluable data. Geometric mean (95% CI) time to recovery to TOF ratio 0.9 was 1.6 (1.5-1.7) min with sugammadex vs 9.1 (8.0-10.3) min with neostigmine in Chinese subjects...

  9. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress.

    Science.gov (United States)

    Kiilerich, Pia; Servili, Arianna; Péron, Sandrine; Valotaire, Claudiane; Goardon, Lionel; Leguen, Isabelle; Prunet, Patrick

    2018-03-01

    This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Science.gov (United States)

    Ducrot, Charles; Fortier, Emmanuel; Bouchard, Claude; Rompré, Pierre-Paul

    2013-01-01

    Previous studies have shown that blockade of ventral tegmental area (VTA) glutamate N-Methyl-D-Aspartate (NMDA) receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VTA neurons, a fast and short lasting depolarization mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VTA neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VTA neuronal activity, we studied the effects of VTA AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for 2 h after bilateral VTA microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5 μl/side) and of a single dose (0.825 nmol/0.5 μl/side) of the NMDA antagonist, PPPA (2R,4S)-4-(3-Phosphonopropyl)-2-piperidinecarboxylic acid). NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VTA sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected, respectively, into the anterior and posterior VTA. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VTA neurons, to

  11. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Charles eDucrot

    2013-10-01

    Full Text Available Previous studies have shown that blockade of ventral midbrain (VM glutamate N-Methyl-D-Aspartate (NMDA receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VM neurons, a fast and short lasting depolarisation mediated by a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VM neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VM neuronal activity, we studied the effects of VM AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for two hours after bilateral VM microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(fquinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5ul/side and of a single dose (0.825 nmol/0.5ul/side of the NMDA antagonist, PPPA (2R,4S-4-(3-Phosphonopropyl-2-piperidinecarboxylic acid. NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VM sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected respectively into the anterior and posterior VM. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VM neurons, to modulate

  12. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    Science.gov (United States)

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p GABA(A) receptor interaction on food intake in broiler cockerels.

  13. Reversal of prolonged rocuronium neuromuscular blockade with sugammadex in an obstetric patient with transverse myelitis.

    LENUS (Irish Health Repository)

    Weekes, G

    2010-07-01

    A 38-year-old wheelchair-bound primigravida with transverse myelitis presented at 38 weeks of gestation for elective caesarean section. Transverse myelitis, which is characterised by bilateral inflammation of the spinal cord and myelin destruction, is associated with myopathy, autonomic dysreflexia and pulmonary aspiration. Regional anaesthesia was contraindicated in this case as the patient had undergone two previous lumbar spinal fusion procedures. Rocuronium 1.2 mg\\/kg was used to facilitate rapid intubating conditions. The caesarean section proceeded uneventfully, but even after administration of neostigmine the patient exhibited prolonged neuromuscular blockade. After 3 h and 15 min sugammadex was obtained to reverse neuromuscular blockade; the drug was not stocked in our hospital. Sugammadex 4 mg\\/kg resulted in complete reversal of blockade after 2 min. We believe that myopathy associated with transverse myelitis led to the prolonged duration of action of rocuronium. Sugammadex is a relatively new drug with few reported side effects. In this case it was used to reverse neuromuscular blockade and prevented prolonged postoperative ventilatory support.

  14. Reversal of prolonged rocuronium neuromuscular blockade with sugammadex in an obstetric patient with transverse myelitis.

    LENUS (Irish Health Repository)

    Weekes, G

    2012-02-01

    A 38-year-old wheelchair-bound primigravida with transverse myelitis presented at 38 weeks of gestation for elective caesarean section. Transverse myelitis, which is characterised by bilateral inflammation of the spinal cord and myelin destruction, is associated with myopathy, autonomic dysreflexia and pulmonary aspiration. Regional anaesthesia was contraindicated in this case as the patient had undergone two previous lumbar spinal fusion procedures. Rocuronium 1.2 mg\\/kg was used to facilitate rapid intubating conditions. The caesarean section proceeded uneventfully, but even after administration of neostigmine the patient exhibited prolonged neuromuscular blockade. After 3 h and 15 min sugammadex was obtained to reverse neuromuscular blockade; the drug was not stocked in our hospital. Sugammadex 4 mg\\/kg resulted in complete reversal of blockade after 2 min. We believe that myopathy associated with transverse myelitis led to the prolonged duration of action of rocuronium. Sugammadex is a relatively new drug with few reported side effects. In this case it was used to reverse neuromuscular blockade and prevented prolonged postoperative ventilatory support.

  15. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    Science.gov (United States)

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  16. Ultrasound Guided Intercostobrachial Nerve Blockade in Patients with Persistent Pain after Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Duriaud, Helle M; Kehlet, Henrik

    2016-01-01

    BACKGROUND: Persistent pain after breast cancer surgery (PPBCS) affects 25 - 60% of breast cancer survivors and damage to the intercostobrachial nerve (ICBN) has been implicated as the cause of this predominantly neuropathic pain. Local anesthetic blockade of the ICBN could provide clues...... determined the sonoanatomy of the ICBN and part 2 examined effects of the ultrasound-guided ICBN blockade in patients with PPBCS. SETTING: Section for Surgical Pathophysiology at Rigshospitalet, Copenhagen, Denmark. METHODS: Part 1: Sixteen unoperated, pain free breast cancer patients underwent systematic...... to pathophysiological mechanisms as well as aiding diagnosis and treatment of PPBCS but has never been attempted. OBJECTIVES: To assess the feasibility of ICBN blockade and assess its effects on pain and sensory function in patients with PPBCS. STUDY DESIGN: This prospective pilot study was performed in 2 parts: Part 1...

  17. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    Science.gov (United States)

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Chronic stress alters concentrations of corticosterone receptors in a tissue-specific manner in wild house sparrows (Passer domesticus).

    Science.gov (United States)

    Lattin, Christine R; Romero, L Michael

    2014-07-15

    The physiological stress response results in release of glucocorticoid hormones such as corticosterone (CORT). Whereas short-term activation of this response helps animals cope with environmental stressors, chronic activation can result in negative effects including metabolic dysregulation and reproductive failure. However, there is no consensus hormonal profile of a chronically stressed animal, suggesting that researchers may need to look beyond hormone titers to interpret the impacts of chronic stress. In this study, we brought wild house sparrows (Passer domesticus) into captivity. We then compared glucocorticoid and mineralocorticoid receptor concentrations in sparrows exposed either to a standardized chronic stress protocol (n=26) or to standard husbandry conditions (controls; n=20). We used radioligand binding assays to quantify receptors in whole brain, liver, kidneys, spleen, gonads, gastrocnemius and pectoralis muscle, omental and subcutaneous fat, and bib and back skin. In most tissues, CORT receptors did not differ between controls and stressed animals, although we found marginal increases in receptor density in kidney and testes in stressed birds at some time points. Only in pectoralis muscle was there a robust effect of chronic stress, with both receptor types higher in stressed animals. Increased pectoralis sensitivity to CORT with chronic stress may be part of the underlying mechanism for muscle wasting in animals administered exogenous CORT. Furthermore, the change in pectoralis was not paralleled by gastrocnemius receptors. This difference may help explain previous reports of a greater effect of CORT on pectoralis than on other muscle types, and indicate that birds use this muscle as a protein reserve. © 2014. Published by The Company of Biologists Ltd.

  19. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    Science.gov (United States)

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  20. Cell surface-bound TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival pathways.

    Directory of Open Access Journals (Sweden)

    Christina Koers-Wunrau

    exclusively cell surface-bound endogenous TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival signaling pathways.

  1. Immunogenic Chemotherapy Sensitizes Renal Cancer to Immune Checkpoint Blockade Therapy in Preclinical Models.

    Science.gov (United States)

    Cui, Shujin

    2017-07-11

    BACKGROUND Renal cell carcinoma (RCC) is among the most common malignant cancers of males worldwide. For advanced RCC patients, there still is no effective therapy. Immune checkpoint blockade therapies have shown benefits for many cancers, but previous clinical trials of immune checkpoint blockade therapies in RCC patients achieved only modest results. MATERIAL AND METHODS We explored the effects of combining chemotherapy with immune checkpoint blockade therapy in RCC xenograft mouse models. We also studied the potential mechanisms by which chemotherapy might enhance the efficacy of immune checkpoint blockade therapy, both in vitro and in vivo. RESULTS Our results showed that many commonly used chemotherapy agents can induce immunogenic marker release in RCC cell lines. Importantly, the RCC xenograft mouse model mice who received the combination treatment of 5-fluorouracil (5-FU) and anti-programmed cell death-ligand 1 (PD-L1) antibodies (Abs) had longer survival times compared to those who received 5-FU or anti-PD-L1 Abs alone. Also, increased key cytokines that promote tumor immunity, such as IL-2, IFN-γ, and TNF-α, as well as tumor-infiltrating cytotoxic T cells, were also increased after the combination treatment. CONCLUSIONS We conclude that 5-FU can sensitize RCC to anti-PD-L1 treatment by releasing the immune suppression in the tumor microenvironment.

  2. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer.

    Science.gov (United States)

    Einstein, David J; McDermott, David F

    2017-06-01

    Targeted and immune-based therapies have improved outcomes in advanced kidney cancer, yet novel strategies are needed to extend the duration of these benefits and expand them to more patients. Combined inhibition of vascular endothelial growth factor (VEGF) and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathways with therapeutic agents already in clinical use may offer such a strategy. Here, we describe the development and clinical evaluation of VEGF inhibitors and, separately, PD-1/PD-L1 inhibitors. We present preclinical evidence of interaction between these pathways and the rationale for combined blockade. Beyond well-known effects on pathologic angiogenesis, VEGF blockade also may decrease immune tolerance and enhance PD-1/PD-L1 blockade. We conclude with the results of several early trials of combined VEGF and PD-1/PD-L1 blockade, which demonstrate encouraging antitumor activity, and we pose questions for future study.

  3. Enhancing Brain Pregnenolone May Protect Cannabis Intoxication but Should Not Be Considered as an Anti-addiction Therapeutic: Hypothesizing Dopaminergic Blockade and Promoting Anti-Reward

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Braverman, Eric R.; Febo, Marcelo; Li, Mona; Gold, Mark S.

    2015-01-01

    Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction, and intoxication. Some research into those harms will be reviewed here and misgivings about the use of Pregnenolone, to treat cannabis addiction and intoxication explained. Pregnenolone considered the inactive precursor of all steroid hormones, has recently been shown to protect the brain from Cannabis intoxication. The major active ingredient of Cannabis sativa (marijuana), Δ9-tetrahydrocannabinol (THC) enhances Pregnenolone synthesis in the brain via stimulation of the type-1 cannabinoid (CB1) receptor. This steroid has been shown to inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee et al., incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. In this hypothesis, we caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718) have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. Blocking CB1 receptors would result in reduced neuronal release of Dopamine by disinhibition of GABA signaling. Long-term blockade of cannabinoid receptors could occur with raising Pregnenolone brain levels, may induce a hypodopaminergic state, and lead to aberrant substance and non-substance (behavioral) addictions. PMID:26306328

  4. Evaluation of epidural blockade as therapy for patients with sciatica secondary to lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    Rogerio Carlos Sanfelice Nunes

    2016-08-01

    Full Text Available ABSTRACT OBJECTIVE: Sciatic pain secondary to lumbar disc herniation is a complex condition that is often highly limiting. The causes of pain in disc herniation are multifactorial. Two physiopathological mechanisms are involved in discogenic pain: mechanical deformation of nerve roots and a biochemical inflammatory component resulting from contact between the intervertebral disc and neural tissue, by way of the nucleus pulposus. The aim of this study was to evaluate the efficacy and safety of epidural blockade as therapy for bulging lumbar disc herniation. METHODS: A clinical study was conducted based on a retrospective and prospective survey. The blockade consisted of interlaminar puncture and bolus drug delivery. The number of procedures varied according to the clinical response, as determined through weekly evaluations and then 30, 90, and 180 days after the final session. A total of 124 patients who received one to five blockades were evaluated. RESULTS: The success rate (defining success as a reduction in sciatic pain of at least 80% was 75.8%. CONCLUSION: The results demonstrated the therapeutic action of epidural blockade over the short term, i.e. in cases of acute pain, thus showing that intense and excruciating sciatic pain can be relieved through this technique. Because of the multifactorial genesis of sciatica and the difficulties encountered by healthcare professionals in treating this condition, epidural blockade can become part of therapeutic arsenal available. This procedure is situated between conservative treatment with an eminently clinical focus and surgical approaches.

  5. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    NARCIS (Netherlands)

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  6. Continuous positive airway pressure breathing increases cranial spread of sensory blockade after cervicothoracic epidural injection of lidocaine.

    NARCIS (Netherlands)

    Visser, W.A.; Eerd, M.J. van; Seventer, R. van; Gielen, M.J.M.; Giele, J.L.P.; Scheffer, G.J.

    2007-01-01

    BACKGROUND: Continuous positive airway pressure (CPAP) increases the caudad spread of sensory blockade after low-thoracic epidural injection of lidocaine. We hypothesized that CPAP would increase cephalad spread of blockade after cervicothoracic epidural injection. METHODS: Twenty patients with an

  7. Contraceptive applications of progesterone receptor modulators.

    Science.gov (United States)

    Chabbert-Buffet, Nathalie; Ouzounian, Sophie; Kairis, Axelle Pintiaux; Bouchard, Philippe

    2008-09-01

    Currently developed progesterone receptor modulators (PRMs) are steroid-derived compounds with mild or potent antiprogestin activity. PRMs may exert a contraceptive activity by different mechanisms such as blockade of ovulation and endometrial desynchronization. Their potential clinical applications are manifold and are very promising in major public health areas, including emergency contraception, long term oestrogen-free contraception (administered alone, or in association with a progestin-only pill to improve bleeding patterns), endometriosis and myoma treatment. The mechanisms of their anti-ovulatory effects and of the endometrial modifications elicited during long term PRM treatment are still not fully elucidated. In future clinical applications, PRMs will be administered orally, via intrauterine systems or vaginal rings.

  8. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  9. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  10. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  11. CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action.

    Science.gov (United States)

    Degroot, Aldemar; Köfalvi, Attila; Wade, Mark R; Davis, Richard J; Rodrigues, Ricardo J; Rebola, Nelson; Cunha, Rodrigo A; Nomikos, George G

    2006-10-01

    Evidence indicates that blockade of cannabinoid receptors increases acetylcholine (ACh) release in brain cortical regions. Although it is assumed that this type of effect is mediated through CB1 receptor (CB1R) antagonism, several in vitro functional studies recently have suggested non-CB1R involvement. In addition, neither the precise neuroanatomical site nor the exact mechanisms underlying this effect are known. We thoroughly examined these issues using a combination of systemic and local administration of CB1R antagonists, different methods of in vivo microdialysis, CB1R knockout (KO) mice, tissue measurements of ACh, and immunochemistry. First, we showed that systemic injections of the CB1R antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR-141716A) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) dose-dependently increased hippocampal ACh efflux. Likewise, local hippocampal, but not septal, infusions of SR141716A or AM251 increased hippocampal ACh release. It is noteworthy that the stimulatory effects of systemically administered CB1R antagonists on hippocampal ACh release were completely abolished in CB1R KO mice. CB1R KO mice had similar basal but higher stress-enhanced hippocampal ACh levels compared with wild-type controls. It is interesting that dopamine D1 receptor antagonism counteracted the stimulatory effect of CB1R blockade on hippocampal ACh levels. Finally, immunohistochemical methods revealed that a high proportion of CB1R-positive nerve terminals were found in hippocampus and confirmed the colocalization of CB1 receptors with cholinergic and dopaminergic nerve terminals. In conclusion, hippocampal ACh release may specifically be controlled through CB1Rs located on both cholinergic and dopaminergic neuronal projections, and CB1R antagonism increases hippocampal ACh release, probably through both a direct

  12. Combined Angiotensin Receptor Modulation in the Management of Cardio-Metabolic Disorders

    DEFF Research Database (Denmark)

    Paulis, Ludovit; Foulquier, Sébastien; Namsolleck, Pawel

    2016-01-01

    Cardiovascular and metabolic disorders, such as hypertension, insulin resistance, dyslipidemia or obesity are linked with chronic low-grade inflammation and dysregulation of the renin-angiotensin system (RAS). Consequently, RAS inhibition by ACE inhibitors or angiotensin AT1 receptor (AT1R...... blockade abolishes the AT1R-linked RAS almost completely with subsequent risk of hypotension and hypotension-related events, i.e. syncope or renal dysfunction. Such complications might be especially prominent in patients with renal impairment or patients with isolated systolic hypertension and normal...

  13. Blockade of αEβ7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo.

    Science.gov (United States)

    Zundler, Sebastian; Schillinger, Daniela; Fischer, Anika; Atreya, Raja; López-Posadas, Rocío; Watson, Alastair; Neufert, Clemens; Atreya, Imke; Neurath, Markus F

    2017-11-01

    Therapeutically targeting lymphocyte adhesion is of increasing relevance in IBD. Yet, central aspects of the action of antiadhesion compounds are incompletely understood. We investigated the role of αEβ7 and α4β7 integrins and their blockade by vedolizumab and etrolizumab for trafficking of IBD T lymphocytes in an in vivo model of homing to and retention in the inflamed gut. We explored integrin expression in patients with IBD by flow cytometry and immunohistochemistry, while regulation of integrins was studied in T cell cultures. The functional relevance of integrins was assessed by adhesion assays and a recently established humanised mouse model in dextran sodium sulfate-treated immunodeficient mice. High expression of αEβ7 was noted on CD8 + and CD4 + Th9 cells, while α4β7 was expressed on CD8 + , Th2 and Th17 cells. T cell receptor stimulation and transforming growth factor β were key inducers of αEβ7 on human T cells, while butyric acid suppressed αEβ7. In comparison to α4β7 blockade via vedolizumab, blockade of β7 via etrolizumab surrogate antibody superiorly reduced colonic numbers of CD8 + and Th9 cells in vivo after 3 hours, while no difference was noted after 0.5 hours. AEβ7 expression was higher on CD8 + T cells from patients with IBD under vedolizumab therapy. AEβ7 is of key relevance for gut trafficking of IBD CD8 + T cells and CD4 + Th9 cells in vivo and mainly retention might account for this effect. These findings indicate that blockade of αEβ7 in addition to α4β7 may be particularly effective in intestinal disorders with expansion of CD8 + and Th9 cells such as IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. The effect of purinergic P2 receptor blockade on skeletal muscle exercise hyperemia in miniature swine

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; McAllister, R M; Yang, H T

    2014-01-01

    PURPOSE: ATP could play an important role in skeletal muscle blood flow regulation by inducing vasodilation via purinergic P2 receptors. This study investigated the role of P2 receptors in exercise hyperemia in miniature swine. METHODS: We measured regional blood flow with radiolabeled......-microsphere technique and systemic hemodynamics before and after arterial infusion of the P2 receptor antagonist reactive blue 2 during treadmill exercise (5.2 km/h, ~60 % VO2max) and arterial ATP infusion in female Yucatan miniature swine (~29 kg). RESULTS: Mean blood flow during exercise from the 16 sampled skeletal...... muscle tissues was 138 ± 18 mL/min/100 g (mean ± SEM), and it was reduced in 11 (~25 %) of the 16 sampled skeletal muscles after RB2 was infused. RB2 also lowered diaphragm blood flow and kidney blood flow, whereas lung tissue blood flow was increased (all P

  15. Neuromuscular blockade for improvement of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Scheppan, Susanne; Kissmeyer, Peter

    2015-01-01

    neuromuscular blockade (NMB), defined as a post-tetanic-count (PTC) of 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesised that deep NMB (PTC 0-1) would improve surgical conditions during upper laparotomy as compared to standard NMB with bolus administration. METHODS...

  16. Dopamine D3 receptors regulate reconsolidation of cocaine memory.

    Science.gov (United States)

    Yan, Y; Kong, H; Wu, E J; Newman, A H; Xu, M

    2013-06-25

    Memories of learned associations between the rewarding properties of drugs of abuse and environmental cues contribute to craving and relapse in humans. Disruption of reconsolidation dampens or even erases previous memories. Dopamine (DA) mediates the acquisition of reward memory and drugs of abuse can pathologically change related neuronal circuits in the mesolimbic DA system. Previous studies showed that DA D3 receptors are involved in cocaine-conditioned place preference (CPP) and reinstatement of cocaine-seeking behavior. However, the role of D3 receptors in reconsolidation of cocaine-induced reward memory remains unclear. In the present study, we combined genetic and pharmacological approaches to investigate the role of D3 receptors in reconsolidation of cocaine-induced CPP. We found that the mutation of the D3 receptor gene weakened reconsolidation of cocaine-induced CPP in mice triggered by a 3-min (min) retrieval. Furthermore, treatment of a selective D3 receptor antagonist PG01037 immediately following the 3-min retrieval disrupted reconsolidation of cocaine-induced CPP in wild-type mice and such disruption remained at least 1 week after the 3-min retrieval. These results suggest that D3 receptors play a key role in reconsolidation of cocaine-induced CPP in mice, and that pharmacological blockade of these receptors may be therapeutic for the treatment of cocaine craving and relapse in clinical settings. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Preservation of peripheral benzodiazepine receptors: differential effects of freezing on [3H]Ro 5-4864 and [3H]PK 11195 binding

    International Nuclear Information System (INIS)

    Basile, A.S.; Ostrowski, N.L.; Skolnick, P.

    1987-01-01

    A statistically significant decrease in the density of peripheral benzodiazepine receptors was observed in renal membranes of rats beginning 2 weeks after adrenalectomy when compared with sham-operated controls. This decrease in peripheral benzodiazepine receptor density was manifest as a decrease in the Bmax of two ligands [ 3 H]Ro 5-4864 and [ 3 H]PK 11195, without accompanying changes in their apparent affinity (Kd) for this site. Similar changes were not seen in another aldosterone-sensitive organ, the submandibular salivary gland. The decrease in peripheral benzodiazepine receptor density in observed in adrenalectomized rat renal membranes was restored to control levels after 1 week of aldosterone administration using a dose (12.5 micrograms/kg/day) that had no effect on peripheral benzodiazepine receptor density in sham-operated animals. In contrast, dexamethasone administration (50 micrograms/kg/day, 1 week) had no effect on renal peripheral benzodiazepine receptor density when administered to either adrenalectomized or sham-operated rats. Further, adrenal demedullation had no effect on renal peripheral benzodiazepine receptor density or affinity. The decrease in peripheral benzodiazepine receptor density was localized to the renal cortex and the outer stripe of the medulla by gross dissection of renal slices and renal tissue section autoradiography. The specific effect of adrenalectomy on renal peripheral benzodiazepine receptor density, the lack of direct effect of aldosterone on [ 3 H]Ro 5-4864 binding, and the localization of the change in peripheral benzodiazepine receptor density to the renal cortex and outer stripe suggests that these changes may reflect an adaptation of the renal nephron (possibly the distal convoluted tubule, intermediate tubule and/or the collecting duct) to the loss of mineralocorticoid hormones

  18. 5-HT1A receptor blockade reverses GABA(A) receptor alpha(3) subunit-mediated anxiolytic effects on stress-induced hyperthermia

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABA(A) and the serotonin receptor system interact, a serotonergic component in the

  19. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control...... of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  20. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas.

    Science.gov (United States)

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-02-01

    Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.

  1. Amyotrophic Lateral Sclerosis (ALS and Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Ana M. Sebastião

    2018-04-01

    Full Text Available In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS. Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A2A receptors (A2AR, most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A2AR antagonists. It may happen that there are time windows where A2AR prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  2. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  3. Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Chen-Hui Ju

    2015-07-01

    Full Text Available Background/Aims: After myocardial infarction (MI, cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1 has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. Methods: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs stimulated by angiotensin II (Ang II was tested. Results: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. Conclusion: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.

  4. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.

    Science.gov (United States)

    Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R

    2013-09-25

    Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways.

  5. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    ), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. CONCLUSION: Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced...... the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. METHODS AND RESULT: Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression...... of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed...

  6. Sigma-1 receptor and inflammatory pain.

    Science.gov (United States)

    Gris, Georgia; Cobos, Enrique José; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-06-01

    The sigma-1 receptor (Sig-1R) is a unique ligand-regulated molecular chaperone that interacts with several protein targets such as G protein-coupled receptors and ion channels to modulate their activity. Sig-1R is located in areas of the central and peripheral nervous system that are key to pain control. Previous preclinical studies have suggested a potential therapeutic use of Sig-1R antagonists for the management of neuropathic pain. Recent studies using pharmacological and genetic tools have explored the role of Sig-1R in inflammatory pain conditions. Mice lacking the Sig-1R have shown different patterns of phenotypic responses to inflammatory injury. Systemic or peripheral administration of several Sig-1R antagonists, including the selective Sig-1R antagonist S1RA, inhibited both mechanical and thermal hypersensitivity in several preclinical models of inflammatory pain. These recent studies are summarized in the present commentary. Central and peripheral pharmacological blockade of Sig-1R could be an effective option to treat inflammatory pain.

  7. Steroid hormones as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1988-01-01

    Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.

  8. The effects of calcium channel blockade on agouti-induced obesity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Moustaid, N.; Zemel, M.B. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-01

    We have previously observed that obese viable yellow (A{sup vy}/a) mice exhibit increased intracellular Ca{sup 2+} ([Ca{sup 2+}]i) and fatty acid synthase (FAS) gene expression; further, recombinant agouti protein increases in cultured adipocytes and these effects are inhibited by Ca{sup 2+} channel blockade. Accordingly, we determined the effect of Ca{sup 2+} channel blockade (nifedipine for 4 wk) on FAS and obesity in transgenic mice expressing the agouti gene in a ubiquitous manner. The transgenic mice initially were significantly heavier (30.5 {+-} 0.6 vs. 27.3 {+-} 0.3 g; P<0.001) and exhibited a 0.81{degrees}C lower initial core temperature (P<0.0005), an approximately twofold increase in fat pad weights (P=0.002), a sevenfold increase in adipose FAS activity (P=0.009), and a twofold increase in plasma insulin level (P<0.05) compared to control mice. Nifedipine treatment resulted in an 18% decrease in fat pad weights (P<0.007) and a 74% decrease in adipose FAS activity (P=0.03), normalized circulating insulin levels and insulin sensitivity (P,0.05), and transiently elevated core temperature in the transgenic mice, but was without effect in the control mice. These data suggest that agouti regulates FAS, fat storage, and possibly thermogenesis, at least partially, via a [Ca{sup 2+}]{sub i}-dependent mechanism, and that Ca{sup 2+} channel blockade may partially attenuate agouti-induced obesity. 42 refs., 4 figs., 1 tab.

  9. On the clinical impact of cerebral dopamine D2 receptor scintigraphy

    International Nuclear Information System (INIS)

    Larisch, R.; Klimke, A.

    1998-01-01

    The present review describes findings and clinical indications for the dopamine D 2 receptor scintigraphy. Methods for the examination of D 2 receptors are positron emission tomography (PET) using 11 C- or 18 F-labelled butyrophenones or benzamides or single photon emission tomography (SPECT) using 123 I-iodobenzamide (IBZM) respectively. The most important indication in neurology is the differential diagnosis of Parkinsonism: Patients with early Parkinson's disease show an increased D 2 receptor binding (D 2 -RB) compared to control subjects. However, patients suffering from Steele-Richardson-Olszewski-Syndrome or Multiple System Atrophy show a decreased D 2 -RB and are generally non-responsive to treatment. Postsynaptic blockade of D 2 receptors results in a drug induced Parkinsonian syndrome, which can be diagnosed by D 2 scintigraphy. Further possible indications occur in psychiatry: The assessment of receptor occupancy is useful in schizophrenic patients treated with neuroleptics. Additionally, D 2 receptor scintigraphy might help to clarify the differential diagnosis between neuroleptic malignant syndrome and lethal catatonia. The method might be useful for supervising neurobiochemical changes in drug dependency and during withdrawal. Assessment of dopamine D 2 receptor binding can simplify the choice of therapy in depressive disorder: Patients showing a low D 2 binding are likely to improve following an antidepressive drug treatment whereas sleep deprivation is promising in patients with high D 2 binding. (orig.) [de

  10. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  11. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    Science.gov (United States)

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  12. The Roles of Dopamine D2 Receptor in the Social Hierarchy of Rodents and Primates

    OpenAIRE

    Yamaguchi, Yoshie; Lee, Young-A.; Kato, Akemi; Jas, Emanuel; Goto, Yukiori

    2017-01-01

    Dopamine (DA) plays significant roles in regulation of social behavior. In social groups of humans and other animals, social hierarchy exists, which is determined by several behavioral characteristics such as aggression and impulsivity as well as social affiliations. In this study, we investigated the effects of pharmacological blockade of DA D2 receptor on social hierarchy of Japanese macaque and mouse social groups. We found acute administration of the D2 antagonist, sulpiride, in socially ...

  13. IL-6 blockade in the management of non-infectious uveitis.

    Science.gov (United States)

    Lopalco, Giuseppe; Fabiani, Claudia; Sota, Jurgen; Lucherini, Orso Maria; Tosi, Gian Marco; Frediani, Bruno; Iannone, Florenzo; Galeazzi, Mauro; Franceschini, Rossella; Rigante, Donato; Cantarini, Luca

    2017-07-01

    Several pathogenetic studies have paved the way for a newer more rational therapeutic approach to non-infectious uveitis, and treatment of different forms of immune-driven uveitis has drastically evolved in recent years after the advent of biotechnological drugs. Tumor necrosis factor-α targeted therapies, the first-line recommended biologics in uveitis, have certainly led to remarkable results in patients with non-infectious uveitis. Nevertheless, the decision-making process turns out to be extremely difficult in anti-tumor necrosis factor or multidrug-resistant cases. Interleukin (IL)-6 holds a critical role in the pathogenic pathways of uveitis, due to its extended and protean range of effects. On this background, manipulation of IL-6 inflammatory cascade has unraveled encouraging outcomes. For instance, rising evidence has been achieved regarding the successful use of tocilizumab, the humanized monoclonal antibody targeted against the IL-6 receptor, in treating uveitis related to juvenile idiopathic arthritis or Behçet's disease. Similar findings have also been reported for uveitis associated with systemic disorders, such as rheumatoid arthritis or multicentric Castleman disease, but also for idiopathic uveitis, the rare birdshot chorioretinopathy, and even in cases complicated by macular edema. This work provides a digest of all current experiences and evidences concerning IL-6 blockade, as suggested by the medical literature, proving its potential role in the management of non-infectious uveitis.

  14. Autonomic Blockade Reverses Endothelial Dysfunction in Obesity-Associated Hypertension.

    Science.gov (United States)

    Gamboa, Alfredo; Figueroa, Rocío; Paranjape, Sachin Y; Farley, Ginnie; Diedrich, Andre; Biaggioni, Italo

    2016-10-01

    Impaired nitric oxide (NO) vasodilation (endothelial dysfunction) is associated with obesity and thought to be a factor in the development of hypertension. We previously found that NO synthesis inhibition had similar pressor effects in obese hypertensives compared with healthy control during autonomic blockade, suggesting that impaired NO vasodilation is secondary to sympathetic activation. We tested this hypothesis by determining the effect of autonomic blockade (trimethaphan 4 mg/min IV) on NO-mediated vasodilation (increase in forearm blood flow to intrabrachial acetylcholine) compared with endothelial-independent vasodilation (intrabrachial sodium nitroprusside) in obese hypertensive subjects (30blood flow (from 3.9±0.7 to 5.2±1.2 mL/100 mL per minute, P=0.078). As expected, NO-mediated vasodilation was blunted on the intact day compared with NO-independent vasodilation; forearm blood flow increased from 3.6±0.6 to 10.1±1.1 with the highest dose of nitroprusside, but only from 3.7±0.4 to 7.2±0.8 mL/100 mL per minute with the highest dose of acetylcholine, Pblood flow responses to acetylcholine were restored by autonomic blockade and were no longer different to nitroprusside (from 6.2±1.1 to 11.4±1.6 mL/100 mL per minute and from 5.2±0.9 to 12.5±0.9, respectively, P=0.58). Our results support the concept that sympathetic activation contributes to the impairment in NO-mediated vasodilation seen in obesity-associated hypertension and provides further rationale to explore it as a therapeutic target. © 2016 American Heart Association, Inc.

  15. Mineralocorticoid hypertension: clinical and laboratory studies with special reference to selective percutaneous venography combined with aldosterone assay in the adrenal venous blood

    International Nuclear Information System (INIS)

    Wajchenberg, B.L.; Liberman, B.; Novaes, M.

    1977-01-01

    With the purpose of demonstrating the presence of hypertension, hypokalemia and alkalosis were studied. The presence of daily aldosteronism was verified in five patients; the sixth one presented no daily aldosteronism but an increase of 18-OH-DOCA production, an ACTH dependente mineralocorticoid. The presence of tumor (less than 0.9cm) could not be shown in two patients by bilateral selective adrenal venography. The aldosterone assay during catherization of adrenal vein of those patients permitted to determine the tumoral side. Attention must be given to the fact that the blood collection of adrenal vein must always be made during adrenal venography to demonstrate the presence of short unilateral tumor or bilateral disease [pt

  16. Topological matter with collective encoding and Rydberg blockade

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2010-01-01

    We propose to use a permutation symmetric sample of multilevel atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string-net condens......-net condensates and to create and study the properties of their quasi-particle-like fundamental excitations....

  17. Integrative function of adrenaline receptors for glucagon-like peptide-1 exocytosis in enteroendocrine L cell line GLUTag.

    Science.gov (United States)

    Harada, Kazuki; Kitaguchi, Tetsuya; Tsuboi, Takashi

    2015-05-15

    Adrenaline reacts with three types of adrenergic receptors, α1, α2 and β-adrenergic receptors (ARs), inducing many physiological events including exocytosis. Although adrenaline has been shown to induce glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells, the precise molecular mechanism by which adrenaline regulates GLP-1 secretion remains unknown. Here we show by live cell imaging that all types of adrenergic receptors are stimulated by adrenaline in enteroendocrine L cell line GLUTag cells and are involved in GLP-1 exocytosis. We performed RT-PCR analysis and found that α1B-, α2A-, α2B-, and β1-ARs were expressed in GLUTag cells. Application of adrenaline induced a significant increase of intracellular Ca(2+) and cAMP concentration ([Ca(2+)]i and [cAMP]i, respectively), and GLP-1 exocytosis in GLUTag cells. Blockade of α1-AR inhibited adrenaline-induced [Ca(2+)]i increase and exocytosis but not [cAMP]i increase, while blockade of β1-AR inhibited adrenaline-induced [cAMP]i increase and exocytosis but not [Ca(2+)]i increase. Furthermore, overexpression of α2A-AR suppressed the adrenaline-induced [cAMP]i increase and exocytosis. These results suggest that the fine-turning of GLP-1 secretion from enteroendocrine L cells is established by the balance between α1-, α2-, and β-ARs activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-α Inhibition.

    Science.gov (United States)

    Zhu, Lin; Giunzioni, Ilaria; Tavori, Hagai; Covarrubias, Roman; Ding, Lei; Zhang, Youmin; Ormseth, Michelle; Major, Amy S; Stafford, John M; Linton, MacRae F; Fazio, Sergio

    2016-08-01

    Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages. Lethally irradiated low-density lipoprotein receptor (LDLR)(-/-) mice were reconstituted with bone marrow from either wild-type, MΦLRP1(-/-), apoE(-/-) or apoE(-/-)/MΦLRP1(-/-)(DKO) mice, and then treated with the TNF-α inhibitor adalimumab while fed a Western-type diet. Adalimumab reduced plasma TNF-α concentration, suppressed blood ly6C(hi) monocyte levels and their migration into the lesion, and reduced lesion cellularity and inflammation in both wild-type→LDLR(-/-) and apoE(-/-)→LDLR(-/-) mice. Overall, adalimumab reduced lesion burden by 52% to 57% in these mice. Adalimumab reduced TNF-α and blood ly6C(hi) monocyte levels in MΦLRP1(-/-)→LDLR(-/-) and DKO→LDLR(-/-) mice, but it did not suppress ly6C(hi) monocyte migration into the lesion or atherosclerosis progression. Our results show that TNF-α blockade exerts antiatherosclerotic effects that are dependent on the presence of macrophage LRP1. © 2016 American Heart Association, Inc.

  19. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  20. Effect of adductor-canal-blockade on established, severe post-operative pain after total knee arthroplasty

    DEFF Research Database (Denmark)

    Jaeger, P; Grevstad, Ulrik; Henningsen, Maja

    2012-01-01

    In this proof-of-concept study, we investigated the effect of the predominantly sensory adductor-canal-blockade on established pain in the early post-operative period after total knee arthroplasty (TKA). We hypothesised that the adductor-canal-blockade would reduce pain during flexion of the knee...... (primary end point) and at rest, as well as reducing morphine consumption and morphine-related side effects (secondary outcomes) compared with placebo....

  1. Effects of dopamine D1 receptor blockade in the prelimbic prefrontal cortex or lateral dorsal striatum on frontostriatal function in Wistar and Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Gauthier, Jamie M; Tassin, David H; Dwoskin, Linda P; Kantak, Kathleen M

    2014-07-15

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with dysfunctional prefrontal and striatal circuitry and dysregulated dopamine neurotransmission. Spontaneously Hypertensive Rats (SHR), a heuristically useful animal model of ADHD, were evaluated against normotensive Wistar (WIS) controls to determine whether dopamine D1 receptor blockade of either prelimbic prefrontal cortex (plPFC) or lateral dorsal striatum (lDST) altered learning functions of both interconnected sites. A strategy set shifting task measured plPFC function (behavioral flexibility/executive function) and a reward devaluation task measured lDST function (habitual responding). Prior to tests, rats received bilateral infusions of SCH 23390 (1.0 μg/side) or vehicle into plPFC or lDST. Following vehicle, SHR exhibited longer lever press reaction times, more trial omissions, and fewer completed trials during the set shift test compared to WIS, indicating slower decision-making and attentional/motivational impairment in SHR. After reward devaluation, vehicle-treated SHR responded less than WIS, indicating relatively less habitual responding in SHR. After SCH 23390 infusions into plPFC, WIS expressed the same behavioral phenotype as vehicle-treated SHR during set shift and reward devaluation tests. In SHR, SCH 23390 infusions into plPFC exacerbated behavioral deficits in the set shift test and maintained the lower rate of responding in the reward devaluation test. SCH 23390 infusions into lDST did not modify set shifting in either strain, but produced lower rates of responding than vehicle infusions after reward devaluation in WIS. This research provides pharmacological evidence for unidirectional interactions between prefrontal and striatal brain regions, which has implications for the neurological basis of ADHD and its treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The inositol trisphosphate receptor in the control of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.

  3. Effective dermatomal blockade after subcostal transversus abdominis plane block

    DEFF Research Database (Denmark)

    Mitchell, Anja Ulrike; Torup, Henrik; Hansen, Egon G

    2012-01-01

    . Sensory assessment of a TAP block may guide the decision on the extent of the block. The purpose of this study was to investigate if the dermatomal extent of sensory blockade after injection of 20 ml 0.5% ropivacaine bilaterally into the TAP can be assessed using cold and pinprick sensation....

  4. Inhibition of hippocampal β-adrenergic receptors impairs retrieval but not reconsolidation of cocaine-associated memory and prevents subsequent reinstatement.

    Science.gov (United States)

    Otis, James M; Fitzgerald, Michael K; Mueller, Devin

    2014-01-01

    Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.

  5. First evidence of the possible implication of the 11-deoxycorticosterone (DOC) in immune activity of Eurasian perch (Perca fluviatilis, L.): comparison with cortisol.

    Science.gov (United States)

    Mathieu, Cédric; Milla, Sylvain; Mandiki, S N M; Douxfils, Jessica; Douny, Caroline; Scippo, Marie-Louise; De Pauw, Edwin; Kestemont, Patrick

    2013-06-01

    Cortisol, the main corticosteroid in fish, is frequently described as a modulator of fish immune system. Moreover, 11-deoxycorticosterone (DOC) was shown to bind and transcriptionally activate the mineralocorticoid receptor and may act as a mineralocorticoid in fish. Immune modulations induced by intraperitoneal injections of these two corticosteroids were assessed in Eurasian perch juveniles. Cortisol and DOC were injected at 0.8 mg kg(-1) and 0.08 mg kg(-1) body weight respectively. Cortisol increased plasma lysozyme activity 72 h post-injection, C-type lysozyme expression in spleen from 1 to 72 h post-injection, and favoured blood neutrophils at the expense of a mixture of lymphocytes and thrombocytes. Moreover, 6 h after injection, cortisol reduced expression levels of the pro-inflammatory cytokine TNF-α in spleen. DOC had no effects on the immune variables measured in plasma, but increased expression levels of C-type lysozyme and apolipoprotein A1 mRNA in both gills and spleen. Meanwhile, DOC stimulated its putative signalling pathway by increasing expression of mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 in spleen. These results confirmed the role of cortisol as an innate, short term immune stimulator. For the first time, DOC is described as a possible immune stimulator in fish. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Analgesic efficacy of the ultrasound-guided blockade of the transversus abdominis plane - a systematic review

    Directory of Open Access Journals (Sweden)

    Javier Ripollés

    2015-08-01

    Full Text Available BACKGROUND: The transverse abdominal plan blockade is a block of abdominal wall that has diffused rapidly in the clinical practice as part of a multimodal analgesia for abdominal surgery. The performance of the ultrasound-guided technique has allowed the lowering of potential complications, as well as new approaches that were carried out according to the descriptions, and the prospective studies would make it possible to utilize the transverse abdominal plan blockade in different surgical interventions; however, the results obtained in randomized clinical trials are inconsistent.OBJECTIVES: To prepare a systematic review aiming to determine the efficacy of the ultrasound-guided transverse abdominal plan blockade for different surgical interventions, as well as the indications according to the approaches and their influences.METHODS: Two research approaches, one manual, and the other in Pubmed returned 28 randomized clinical trials where intervention with ultrasound-guided transverse abdominal plan blockades was performed to compare the analgesic efficacy in contrast to another technique in adults, published between 2007 and October 2013, in English or Spanish, with Jadad score > 1, according to the inclusion criteria for this review. The authors analyzed independently all the randomized clinical trials.CONCLUSIONS: The transverse abdominal plan blockades have been shown to be an effective technique in colorectal surgery, cesarean section, cholecystectomy, hysterectomy, appendectomy, donor nephrectomy, retropubic prostatectomy, and bariatric surgery. However, the data found in randomized clinical trial are not conclusive, and as a result, it is necessary to develop new and well designed randomized clinical trial, with enough statistical power to compare different approaches, drugs, doses, and volumes for the same intervention, aiming to answer the current questions and their effects in the habitual clinical practice.

  7. Does perioperative tactile evaluation of the train-of-four response influence the frequency of postoperative residual neuromuscular blockade?

    DEFF Research Database (Denmark)

    Pedersen, T; Viby-Mogensen, J; Bang, U

    1990-01-01

    pancuronium), the anesthetists assessed the degree of neuromuscular blockade during operation and during recovery from neuromuscular blockade by manual evaluation of the response to TOF nerve stimulation. In the other two groups, one of which received vecuronium and the other pancuronium, the anesthetists...... evaluated the degree of neuromuscular blockade solely by clinical criteria. The use of a nerve stimulator was found to have no effect on the dose of relaxant given during anesthesia, on the need for supplementary doses of anticholinesterase in the recovery room, on the time from end of surgery to end...... of anesthesia, or on the incidence of postoperative residual neuromuscular blockade evaluated clinically. The median (and range of) TOF ratios recorded in the recovery room were 0.75 (0.33-0.96) and 0.79 (0.10-0.97) in the vecuronium groups monitored with and without a nerve stimulator, respectively...

  8. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  9. Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: evidence from fMRI in healthy subjects.

    Science.gov (United States)

    Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J

    2012-06-01

    The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.

  10. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  11. In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons.

    Science.gov (United States)

    Carzoli, Kathryn L; Hyson, Richard L

    2011-02-01

    Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons

  12. Time-specific blockade of PDGFR with Imatinib (Glivec®) causes cataract and disruption of lens fiber cells in neonatal mice.

    Science.gov (United States)

    Zhou, Yin-Pin; He, Yang-Tao; Chen, Cheng-Li; Ji, Jun; Niu, Jian-Qin; Wang, Han-Zhi; Li, Shi-Feng; Huang, Lan; Mei, Feng

    2011-03-01

    This study aimed at investigating the response of lens epithelial cells in postnatal mice to Imatinib (Glivec®, a potent inhibitor of platelet-derived growth factor receptor (PDGFR)) treatment. Mouse eyes were sampled 10 days after administration of Imatinib (0.5 mg·g(-1)·day(-1)) for 3 days, at either 7, 14, or 21 days postpartum. Structural changes of lens were revealed by routine H.E. staining. Levels of proliferation and apoptosis were revealed by BrdU incorporation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively, and immunofluorescent staining with anti-PDGFRα antibody was carried out on the sections of eyeball. PDGFRα and p-PDGFRαprotein levels were evaluated by Western blot. Our results indicated that administration of Imatinib led to blockade of PDGFR signaling. Formation of cataracts was found only in those mice where treatment started from 7 days postpartum (P7), but was not observed in those samples from P14 nor P21. Fiber cells were disorganized in cataract lens core as observed histologically, and migration of epithelial cells was also inhibited. No apoptosis was detected with the TUNEL method. Our results indicated blockade of PDGFR at the neonatal stage (P7) would lead to cataracts and lens fiber cells disorganization, suggesting that PDGFR signaling plays a time-specific and crucial role in the postnatal development of lens in the mouse, and also may provide a new approach to produce a congenital cataract animal model.

  13. Why not treat human cancer with interleukin-1 blockade?

    NARCIS (Netherlands)

    Dinarello, C.A.

    2010-01-01

    The clinical successes of targeting angiogenesis provide a basis for trials of interleukin-1 (IL-1) blockade and particularly anti-IL-1beta as an add-on therapy in human metastatic disease. In animal studies for over 20 years, IL-1 has been demonstrated to increase adherence of tumor cells to the

  14. Effect of Dual Blockade of Renin-Angiotensin Aldosterone System ...

    African Journals Online (AJOL)

    Purpose: To investigate the dual effect of angiotensin blockade by irbesartan and enalapril on proteinuria in diabetic patients with azotemia. Methods: Patients with diabetes of > 5 years duration, proteinuria at a nephrotic level and serum creatinine > 1.5 mg/dL were enrolled in the study. Forty-five enrolled patients were ...

  15. Pharmacokinetic/Pharmacodynamic Modelling of Receptor Internalization with CRTH2 Antagonists to Optimize Dose Selection.

    Science.gov (United States)

    Krause, Andreas; Zisowsky, Jochen; Strasser, Daniel S; Gehin, Martine; Sidharta, Patricia N; Groenen, Peter M A; Dingemanse, Jasper

    2016-07-01

    The chemoattractant receptor-homologous molecule expressed on T helper-2 cells (CRTH2) is a G-protein-coupled receptor for prostaglandin D2 (PGD2), a key mediator in inflammatory disorders. Two selective and potent CRTH2 antagonists currently in clinical development, ACT-453859 and setipiprant, were compared with respect to their (predicted) clinical efficacy. Population pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to characterize how plasma concentrations (PK) of ACT-453859, its active metabolite ACT-463036 and setipiprant related to their effect on blocking PGD2-induced internalization of CRTH2 on eosinophils (PD). Simulations were used to identify doses and dosing regimens leading to 90 % of maximum blockade of CRTH2 internalization at trough. A combined concentration of ACT-453859 and its metabolite ACT-463036, with weights proportional to potency (based on an eosinophil shape change assay), enabled good characterization of the PD effect. The modelling and simulation results facilitated decision making by suggesting an ACT-453859 dose of 400 mg once daily (or 100 mg twice daily) for clinically relevant CRTH2 antagonism. Pharmacometric quantification demonstrated that CRTH2 internalization is a useful new biomarker to study CRTH2 antagonism. Ninety percent of maximum blockade of CRTH2 internalization at trough is suggested as a quantitative PD target in clinical studies.

  16. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  17. Rationale, Design, and Baseline Characteristics of ARTS-DN : A Randomized Study to Assess the Safety and Efficacy of Finerenone in Patients with Type 2 Diabetes Mellitus and a Clinical Diagnosis of Diabetic Nephropathy

    NARCIS (Netherlands)

    Ruilope, Luis M.; Agarwal, Rajiv; Chan, Juliana C.; Cooper, Mark E.; Gansevoort, Ron T.; Haller, Hermann; Remuzzi, Giuseppe; Rossing, Peter; Schmieder, Roland E.; Nowack, Christina; Ferreira, Anna C.; Pieper, Alexander; Kimmeskamp-Kirschbaum, Nina; Bakris, George L.

    2014-01-01

    Background/Aims: Finerenone decreases albuminuria in patients having heart failure with reduced ejection fraction and mild-to-moderate (stage 2-3) chronic kidney disease. The MinerAlocorticoid Receptor Antagonist Tolerability Study-Diabetic Nephropathy (ARTS-DN; NCT01874431) is a multicenter,

  18. Analysis of the 5-HT receptor in rabbit saphenous vein exemplifies the problems of using exclusion criteria for receptor classification.

    Science.gov (United States)

    Martin, G R; MacLennan, S J

    1990-08-01

    5-Hydroxytryptamine (5-HT) contracts ring preparations of rabbit saphenous vein via direct and indirect components, the latter being compatible with a "tyramine-like" action at sympathetic nerve terminals. Here an attempt was made to establish the identity of the receptor mediating contraction directly, in terms of the currently accepted proposals (Bradley et al. 1986). Results with agonists suggested 5-HT1-like receptor activation: methylsergide behaved as a partial agonist with microcolar affinity and 5-HT effects were mimicked by 5-carboxamidotryptamine (5-CT) and GR43175. The agonist potency order was 5-CT greater than 5-HT greater than methysergide greater than or equal to GR43175, the same as that reported at the 5-HT1-like receptor in dog saphenous vein (Feniuk et al. 1985; Humphrey et al. 1988). Consistent with this, 5-HT effects were resistant to blockade by the selective 5-HT3 receptor antagonist MDL72222 (1.0 mumol/l). In contrast, methiothepin (0.01-0.3 mumol/l), ketanserin (0.3-30.0 mumol/l) and spiperone (0.3-30.0 mumol/l) each produced surmountable antagonism which, although competitive in nature only for methiothepin (pKB = 9.45 +/- 0.09, 17 d.f.), implied 5-HT2 receptor involvement. The possibility that these discrepancies resulted from mixed populations of 5-HT1-like and 5-HT2 receptors can be excluded because; 1). Ketanserin and spiperone blocked the actions of 5-HT and the selective 5-HT1-like receptor agonist GR43175 with equal facility and 2). Responses to all of the agonists studied were similarly antagonised by flesinoxan (pKB approximately 6.4), a simple competitive antagonist at the receptor in rabbit saphenous vein.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Isotopic rubidium ion efflux assay for the functional characterization of nicotinic acetylcholine receptors on clonal cell lines

    International Nuclear Information System (INIS)

    Lukas, R.J.; Cullen, M.J.

    1988-01-01

    An isotopic rubidium ion efflux assay has been developed for the functional characterization of nicotinic acetylcholine receptors on cultured neurons. This assay first involves the intracellular sequestration of isotopic potassium ion analog by the ouabain-sensitive action of a sodium-potassium ATPase. Subsequently, the release of isotopic rubidium ion through nicotinic acetylcholine receptor-coupled monovalent cation channels is activated by application of nicotinic agonists. Specificity of receptor-mediated efflux is demonstrated by its sensitivity to blockade by nicotinic, but not muscarinic, antagonists. The time course of agonist-mediated efflux, within the temporal limitations of the assay, indicates a slow inactivation of receptor function on prolonged exposure to agonist. Dose-response profiles (i) have characteristic shapes for different nicotinic agonists, (ii) are described by three operationally defined parameters, and (iii) reflect different affinities of agonists for binding sites that control receptor activation and functional inhibition. The rubidium ion efflux assay provides fewer hazards but greater sensitivity and resolution than isotopic sodium or rubidium ion influx assays for functional nicotinic receptors