WorldWideScience

Sample records for mineral fiber manufacture

  1. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength...... and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved...... understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization...

  2. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  3. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  4. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  5. Carbon fiber manufacturing via plasma technology

    Science.gov (United States)

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  6. UTILIZATION OF MINERAL FIBER WASTE IN THE PRODUCTION OF GYPSUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Solov'ev Vitaliy Nikolaevich

    2018-01-01

    Full Text Available Subject: the effectiveness of using compositions with the use of basalt fibers is proven, but the composition must be selected depending on the binder and additives chosen. Research objectives: we examine the possibility of waste recycling of basalt fiber production during manufacturing of modified gypsum composite material with improved characteristics. Materials and methods: as a raw material, a gypsum binder of Samara production was used. As a reinforcement additive, a disperse waste of basalt fiber production of Tver region was used. Studying characteristics of the gypsum binder and modified mixture, and also comparative analysis of these characteristics by average density, total porosity, strength in compression and flexure of the gypsum composite were carried out using standard techniques. Results: dependence of physical and mechanical properties of the modified gypsum material on the content of the basalt fiber additive is established. It was found that an increase in concentration of the additive requires an increased water content or additional use of plasticizer. Conclusions: modification of gypsum stone with a mineral basalt additive will increase the strength, density and durability of thin-walled gypsum products, and, consequently, the demand for products due to ensuring their high quality in transportation and installation.

  7. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  8. A new approach for high performance fiber manufacturing via simultaneous fiber spinning and UV initiated polymerization

    Science.gov (United States)

    Ellison, Chris

    Synthetic fibers have been manufactured for decades using solvents or heat to reduce the viscosity of pre-formed polymers and promote drawing. However, nature has engineered spiders and silkworms with benign ways of making silk fibers with high strength and toughness. Conceptually, their approach of chemically linking small functional units (i.e., proteins) into long chain molecules and solid fibrillar structures ``on-demand'' is fundamentally different from current synthetic fiber manufacturing methods. Drawing inspiration from nature, a method will be described that uses light to trigger a thiol-ene photopolymerization to rapidly transform reactive liquid mixtures into solid thread-like structures as they are forced out of a capillary at high speeds. Besides being manufactured without using solvents/volatile components or heat, these fibers are mechanically robust and have excellent chemical and thermal stability due to their crosslinked nature. During processing, the balance between curing kinetics, fiber flight time, and monomer mixture viscoelasticity is essential for the formation of defect free fibers. This work focuses on developing a universal operating diagram to show how the intricate interplay of gel time, flight time, and fluid relaxation time leads to the formation of uniform fibers and other undesirable fiber morphologies such as beads-on-string, fused fibers, non-uniform fibers, and droplets. This predictive capability enables adaptation of this spinning concept to all existing fiber spinning platforms, and customization of monomer formulations to target desired properties.

  9. Radiation shielding fiber and its manufacturing method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Koji; Ono, Hiroshi.

    1988-08-17

    Purpose: To manufacture radiation shielding fibers of excellent shielding effects. Method: Fibers containing more than 1 mmol/g of carboxyl groups are bonded with heavy metals, or they are impregnated with an aqueous solution containing water-soluble heavy metal salts dissolved therein. Fibers as the substrate may be any of forms such as short fibers, long fibers, fiber tows, webs, threads, knitting or woven products, non-woven fabrics, etc. It is however necessary that fibers contain more than 1 mmol/g, preferably, from 2 to 7 mmol/g of carboxylic groups. Since heavy metals having radiation shielding performance are bonded to the outer layer of the fibers and the inherent performance of the fibers per se is possessed, excellent radiation shielding performance can be obtained, as well as they can be applied with spinning, knitting or weaving, stitching, etc. thus can be used for secondary fiber products such as clothings, caps, masks, curtains, carpets, cloths, etc. for use in radiation shieldings. (Kamimura, M.).

  10. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  11. Sustainability of fiber reinforced laminate and honeycomb composites in manufacturing industries

    Science.gov (United States)

    Asmatulu, Eylem; Alonayni, Abdullah; Alamir, Mohammed; Rahman, Muhammad M.

    2018-03-01

    Fiber reinforced polymer (FRP) composites provide a lot of benefits, including strength-to-weight ratio / light weight, superior mechanical properties, low maintenance, prolonged service life, as well as corrosion, fatigue and creep resistance. However, sustainability of the FRP composites have not been studied in detail in terms of long term productions in various industries, such as aerospace, wind energy, automotive and defense. Carbon fibers are relatively expensive because of the energy intensive production systems, and lack of easy production options, which forces many companies to recycle and reuse the FRP composites in the same or different manufacturing industries. This study mainly deals with two important issues, including the disposal of composite wastes generated during the manufacturing of composite parts, and the disposal of the products at the end of their useful life. It is believed that the carbon fibers in the used composites will have still high mechanical strengths to use in different composite manufacturing after its end of life. The major manufacturing costs come from the labor and raw materials, so using the recycled carbon fibers will make sustainable composite productions in other industries. This paper presents the current status and outlook of the FRP composite recycling and re-manufacturing techniques in the same or different industries. A future vision of the FRP composites will be investigated with sustainability point of views. This study will also mention about the sustainability issues in laminate and honeycomb composites, new product design and developments and potential applications in different manufacturing industries.

  12. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    Science.gov (United States)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  13. the effect of cooking time on the vitamin c, dietary fiber and mineral

    African Journals Online (AJOL)

    Administrator

    (Sandra, 1995). Several methods of processing the vegetables are being use without considering the effect on the vitamin C, dietary fiber and minerals components. This study is designed to determine the effect of cooking time on the Vitamin C, dietary fiber. & mineral constituents of T. occidentalis (FP), V. amygdalina (BL),.

  14. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    Science.gov (United States)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  15. Use of solar power for the production of basalt-based mineral fibers

    International Nuclear Information System (INIS)

    Gulamova, D. D.; Shevchenko, V. P.; Tokunov, S. G.; Kim, R. B.

    2012-01-01

    The possibility of obtaining basalt mineral fibers using concentrating solar power and melt-quench technique is shown. The microstructure and physicochemical properties of basalt fibers are analyzed. (author)

  16. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  17. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  18. Assessment of different dietary fibers (tomato fiber, beet root fiber, and inulin) for the manufacture of chopped cooked chicken products.

    Science.gov (United States)

    Cava, Ramón; Ladero, Luis; Cantero, V; Rosario Ramírez, M

    2012-04-01

    Three dietary fibers (tomato fiber [TF], beet root fiber [BRF], and inulin) at 3 levels of addition (1%, 2%, and 3%) were assessed for the manufacture of chopped, cooked chicken products and compared with a control product without fiber added. The effect of fiber incorporation on (i) batters, (ii) cooked (30 min at 70 °C), and (iii) cooked and stored (for 10 d at 4 °C) chicken products were studied. The addition of the fiber to chicken meat products reduced the pH of chicken batters in proportional to the level of fiber addition. Fiber incorporation increased water-holding capacity but only the addition of TF reduced cook losses. The color of batters and cooked products was significantly modified by the type and level of fiber added. These changes were more noticeable when TF was added. Texture parameters were affected by the incorporation of TF and BRF; they increased the hardness in proportional to the level of addition. The addition of tomato and BRF to chicken meat products reduced lipid oxidation processes. These changes were dependent on the level of fiber added. The reduction of lipid oxidation processes was more marked in TF meat products than in products with other types of fibers. In contrast, the addition level of inulin increased TBA-RS numbers in chicken meat products. Although the addition of TF increased the redness of the meat products, the use of this fiber was more suitable as it reduced the extent of lipid oxidation processes. INDUSTRIAL APPLICATION: Nowadays, the reduction of fat and the increase of fiber content in meat products is one of the main goals of meat industry. Numerous sources of fiber can be added to the meat products; however, before that it is necessary to study their technological effect on raw and cooked meat products in order to evaluate their suitability for meat products manufacture. In addition, some of them could have beneficial effect on meat products conservation that could also increase their shelf life. © 2012

  19. The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers.

    Science.gov (United States)

    Borelli, Violetta; Trevisan, Elisa; Francesca, Vita; Zabucchi, Giuliano

    2018-01-10

    Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.

  20. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Laboratories, Waterloo, ON (Canada); Fox, M. J. [Building Science Laboratories, Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  1. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Labs., Waterloo, ON (Canada); Fox, M. J. [Building Science Labs., Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  2. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: An in vitro study.

    Science.gov (United States)

    Mohan, Neethu; Wilson, Jijo; Joseph, Dexy; Vaikkath, Dhanesh; Nair, Prabha D

    2015-12-01

    The study investigated the potential of electrospun fiber assembled hydrogel, with physical gradients of chondroitin sulfate (CS) and sol-gel-derived bioactive glass (BG), to engineer hyaline and mineralized cartilage in a single 3D system. Electrospun poly(caprolactone) (PCL) fibers incorporated with 0.1% w/w of CS (CSL) and 0.5% w/w of CS (CSH), 2.4% w/w of BG (BGL) and 12.5% w/w of BG (BGH) were fabricated. The CS showed a sustained release up to 3 days from CSL and 14 days from CSH fibers. Chondrocytes secreted hyaline like matrix with higher sulfated glycosaminoglycans (sGAG), collagen type II and aggrecan on CSL and CSH fibers. Mineralization was observed on BGL and BGH fibers when incubated in simulated body fluid for 14 days. Chondrocytes cultured on these fibers secreted a mineralized matrix that consisted of sGAG, hypertrophic proteins, collagen type X, and osteocalcin. The CS and BG incorporated PCL fiber mats were assembled in an agarose-gelatin hydrogel to generate a 3D hybrid scaffold. The signals in the fibers diffused and generated continuous opposing gradients of CS (chondrogenic signal) and BG (mineralization) in the hydrogel. The chondrocytes were encapsulated in hybrid scaffolds; live dead assay at 48 h showed viable cells. Cells maintained their phenotype and secreted specific extracellular matrix (ECM) in response to signals within the hydrogel. Continuous opposing gradients of sGAG enriched and mineralized ECM were observed surrounding each cell clusters on gradient hydrogel after 14 days of culture in response to the physical gradients of raw materials CS and BG. A construct with gradient mineralization might accelerate integration to subchondral bone during in vivo regeneration. © 2015 Wiley Periodicals, Inc.

  3. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  4. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1914] Authority To Manufacture Carbon... behalf of Toho Tenax America, Inc. (TTA), to manufacture carbon fiber under zone procedures for the U.S... approve the application requesting authority to manufacture carbon fiber for the U.S. market under zone...

  5. Environmental exposure to mineral fibers in New Caledonia: an ecological study

    Science.gov (United States)

    Baumann, F.; Ambrosi, J.

    2013-05-01

    Inhalation of asbestos and other fibrous minerals causes lung cancer and other malignancies, specifically malignant mesothelioma (MM). MM is an aggressive pleural tumor that presents with a median latency period of 30-40 years from initial fiber exposure. Due to occupational exposure, MM incidence is 4-8 times higher in men as compared to women. In New Caledonia (NC), very high incidences of MM and lung cancer were observed in both men and women, suggesting an environmental origin of exposure. Although nickel mining and the traditional use of tremolite-containing whitewash were suspected causes of MM, numerous MM cases have been observed in areas lacking these risk factors. We carried out an ecological study of MM incidence in NC and identified a study area that included those counties having the highest MM incidences as well as counties lacking MM. We conducted epidemiological and environmental investigations for each of the 100 tribes living within this area. Residential history was assessed for each MM case, and samples of each quarry, road, and whitewash were analyzed to determine the nature of any mineral fibers. We analyzed the environmental determinants of MM, including geology, mineralogy, plant cover, land shape and human activities as well as use of whitewash, by using two univariate and multivariate statistical methods: 1) a logistic regression to compare tribes with and without MM cases and calculate the odds ratios, (OR) 2) the Poisson regression to calculate incidence rate ratios (IRR) for each factor. While most MM cases among Caucasians were observed in men with a mean age of 72, indicating occupational exposure, Melanesians exhibited elevated MM incidence in both men and women at a mean age of 60. A sex ratio close to 1 compounded with the relatively young ages of MM cases confirmed environmental causation within the Melanesian population. We found one significant and two secondary spatial clusters of MM in tribal areas. No temporal cluster was

  6. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    International Nuclear Information System (INIS)

    Karavaeva, E; Rogozhnikov, A; Nikitin, V; Cherepennikov, Yu; Lysakov, A

    2015-01-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice. (paper)

  7. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    Science.gov (United States)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  8. Life Cycle Assessment of Fiber-Reinforced Additive Manufacturing for Injection Molding Insert Production

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Stotz, Philippe Maurice; Bey, Niki

    2017-01-01

    Additively manufactured (AM) injection molding (IM) inserts have proved to be capable to substitute conventionally manufactured metal inserts with polymer-based insert enforced with short, virgin, unseized carbon fibers (CFs). It has been shown that the implementation of AM technology resulted......, this contribution provides a comparison of environmental performance of conventionally vs. additively manufactured inserts in a full life cycle perspective indicated in Figure 1, including materials, production, use and end-of-life (EoL) stages....

  9. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K. [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  10. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  11. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  12. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  13. Internal Fiber Structure of a High-Performing, Additively Manufactured Injection Molding Insert

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Baier, Sina; Trinderup, Camilla H.

    A standard mold is equipped with additively manufactured inserts in a rectangular shape produced with vat photo polymerization. While the lifetime compared to conventional materials such as brass, steel, and aluminum is reduced, the prototyping and design phase can be shortened significantly...... by using flexible and cost-effective additive manufacturing technologies. Higher production volumes still exceed the capability of additively manufactured inserts, which are overruled by the stronger performance of less-flexible but mechanically advanced materials. In this contribution, the internal...... structure of a high-performing, fiber-reinforced injection molding insert has been analyzed. The insert reached a statistically proven and reproducible lifetime of 4,500 shots, which significantly outperforms any other previously published additively manufactured inserts. Computer tomography, tensile tests...

  14. 16 CFR 303.33 - Country where textile fiber products are processed or manufactured.

    Science.gov (United States)

    2010-01-01

    ... [Foreign Country]”. (ii) When the U.S. Customs Service requires an origin label on the unfinished product... manufactured. Further work or material added to the textile fiber product in another country must effect a...

  15. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  16. The manufacturing engineering of a hermetic cast fiber calorimeter

    International Nuclear Information System (INIS)

    Coan, T.; Higby, D.; Sulak, L.; Worstell, W.; Winn, D.; Ayer, F.; Elder, C.; Sullivan, D.

    1990-01-01

    The authors have made the first pass at designing and engineering a cast lead calorimeter with a rapidity coverage to η = 5.5. The design preserves detector hermeticity. Plastic scintillating fibers provide a fast, hadronically compensated, high-resolution device. A lead-eutectic, which melts below the softening point of the plastic, provides an easily manufactured high Z absorber. This calorimeter, designed with the TEXAS SSC detector as a baseline, is easily scaled in size and in segmentation without major design changes

  17. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats.

    Science.gov (United States)

    Sindurani, J A; Rajamohan, T

    2000-01-01

    The effect of neutral detergent fiber (NDF) from coconut kernel (Cocos nucifera L) in rats fed 5%, 15% and 30% level on the concentration of blood glucose, serum insulin and excretion of minerals was studied. Increase in the intake of fiber resulted in significant decrease in the level of blood glucose and serum insulin. Faecal excretion of Cu, Cr, Mn, Mg, Zn and Ca was found to increase in rats fed different levels of coconut fiber when compared to fiber free group. The result of the present investigation suggest that inclusion of coconut fiber in the diet results in significant hypoglycemic action.

  18. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    Science.gov (United States)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  19. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  20. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  1. Current man-made mineral fibers (MMMF) exposures among ontario construction workers.

    Science.gov (United States)

    Verma, Dave K; Sahai, Dru; Kurtz, Lawrence A; Finkelstein, Murray M

    2004-05-01

    Current occupational exposures to man-made mineral fibers (MMMF), including refractory ceramic fibers (RCF), were measured as part of an exposure assessment program for an epidemiological study pertaining to cancer and mortality patterns of Ontario construction workers. The assessments were carried out at commercial and residential sites. A total of 130 MMMF samples (104 personal and 26 area) was collected and included 21 RCF (16 personal and 5 area). The samples were analyzed by the World Health Organization method in which both respirable and nonrespirable airborne fibers are counted. The results show that Ontario construction workers' full-shift exposure to MMMF (excluding RCF) is generally lower than the American Conference of Governmental Industrial Hygienists' (ACGIH) recommended threshold limit value-time-weighted average (TLV-TWA) of 1 fibers/cc and thus should not present any significant hazard. However, approximately 40% of the occupational exposures to RCF are higher than ACGIH's TLV-TWA of 0.2 fibers/cc and present a significant potential hazard. Workers generally wore adequate approved respiratory protection, especially while performing particularly dusty tasks such as blowing, spraying, and cutting, so the actual exposure received by workers was lower than the reported values. Adequate control measures such as ventilation and respiratory protection should always be used when work involves RCF.

  2. Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique.

    Science.gov (United States)

    Magaia, Telma; Uamusse, Amália; Sjöholm, Ingegerd; Skog, Kerstin

    2013-12-01

    The harvesting, utilization and marketing of indigenous fruits and nuts have been central to the livelihoods of the majority of rural communities in African countries. In this study we report on the content of dietary fiber, minerals and selected organic acids in the pulps and kernels of the wild fruits most commonly consumed in southern Mozambique. The content of soluble fiber in the pulps ranged from 4.3 to 65.6 g/100 g and insoluble fiber from 2.6 to 45.8 g/100 g. In the kernels the content of soluble fiber ranged from 8.4 to 42.6 g/100 g and insoluble fiber from 14.7 to 20.9 g/100 g. Citric acid was found in all fruits up to 25.7 g/kg. The kernels of Adansonia digitata and Sclerocarya birrea were shown to be rich in calcium, iron, magnesium and zinc. The data may be useful in selecting wild fruit species appropriate for incorporation into diets.

  3. Manufacture of mineral-insulated conductor for ITER prototype ELM and VS coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Jin, Huan; Yu, Min; Han, Qiyang; Ling, Feng; Kalish, Michael

    2015-01-01

    Highlights: • Compaction method is successfully developed for MIC manufacture. • Manufactured MICs show well controlled outer diameter and good electrical properties. • Insulation resistance of all the MICs is higher than 100 GΩ@DC 2500 V. - Abstract: An ITER Organization (IO) Task Agreement (TA) “Final Design and Prototyping of the ITER In-Vessel Coils (IVC) and Feeders” is almost finished by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). ITER IVCs consist of edge-localized mode (ELM) and vertical stabilization (VS) coils. One prototype Mid-ELM coil complete with 19 brackets brazed with the conductors and one prototype 120° section of upper VS coil with structural components brazed to the conductors have been fabricated. Compaction method is developed successfully for the mineral-insulated conductor (MIC) manufacture. Approximate 110 m Inconel 625 jacket MICs for Mid-ELM prototype coil and 80 m stainless steel 316L jacket MICs for VS prototype coil were manufactured. Most of the copper tubes used for the MICs fabrication failed the ultrasonic testing (UT), but the jacket tubes have good passing rate. Manufacture processes and inspection for the MICs are presented in this paper

  4. Manufacture of mineral-insulated conductor for ITER prototype ELM and VS coil

    Energy Technology Data Exchange (ETDEWEB)

    Long, Feng, E-mail: longf@ipp.ac.cn [Institute of Plasma Physics of Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu; Jin, Huan; Yu, Min; Han, Qiyang; Ling, Feng [Institute of Plasma Physics of Chinese Academy of Sciences, Hefei 230031 (China); Kalish, Michael [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2015-06-15

    Highlights: • Compaction method is successfully developed for MIC manufacture. • Manufactured MICs show well controlled outer diameter and good electrical properties. • Insulation resistance of all the MICs is higher than 100 GΩ@DC 2500 V. - Abstract: An ITER Organization (IO) Task Agreement (TA) “Final Design and Prototyping of the ITER In-Vessel Coils (IVC) and Feeders” is almost finished by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). ITER IVCs consist of edge-localized mode (ELM) and vertical stabilization (VS) coils. One prototype Mid-ELM coil complete with 19 brackets brazed with the conductors and one prototype 120° section of upper VS coil with structural components brazed to the conductors have been fabricated. Compaction method is developed successfully for the mineral-insulated conductor (MIC) manufacture. Approximate 110 m Inconel 625 jacket MICs for Mid-ELM prototype coil and 80 m stainless steel 316L jacket MICs for VS prototype coil were manufactured. Most of the copper tubes used for the MICs fabrication failed the ultrasonic testing (UT), but the jacket tubes have good passing rate. Manufacture processes and inspection for the MICs are presented in this paper.

  5. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  6. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    Science.gov (United States)

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  7. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Investigation of Electrospun Poly Vinyl Alcohol Fibers Towards the Development of Manufacturable Wound Dressings

    Science.gov (United States)

    Vora, Asad

    Polymers such as polyvinyl alcohol, chitosan, and starch have excellent bio-compatible and bio-degradable properties. Their applications in drug delivery, wound dressings, artificial cartilage materials have increased dramatically due to their much sought-after renewable and biological properties. Hence, polyvinyl alcohol has been chosen for this study to test the feasibility of polyvinyl alcohol nanofibers towards the manufacturable wound dressings. Polyvinyl alcohol nanofibers are prepared via electrospinning technique, where different wt% polyvinyl alcohol solutions are prepared. The fibers were optimized by varying important electrospninning parameters which include voltage applied, the collector-needle distance and flow rate. Morphology and structure of the electrospun fibers are analysed using scanning electron microscopy and fourier transform infrared respectively. The diameter of fibers obtained was found to be in the range of 100 nm-160 nm. Thermal stability was examined using DSC and TGA characterization technique and fibers are found to be stable up to 220oC. Finally, each weight sample of PVA fibers are analysed by goniometer for wettability and is found to be hydrophilic.

  9. Basalt fiber insulating material with a mineral binding agent for industrial use

    Science.gov (United States)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  10. Design, Manufacturing and Experimental Validation of Optical Fiber Sensors Based Devices for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Angela CORICCIATI

    2016-06-01

    Full Text Available The use of optical fiber sensors is a promising and rising technique used for Structural Health Monitoring (SHM, because permit to monitor continuously the strain and the temperature of the structure where they are applied. In the present paper three different types of smart devices, that are composite materials with an optical fiber sensor embedded inside them during the manufacturing process, are described: Smart Patch, Smart Rebar and Smart Textile, which are respectively a plate for local exterior intervention, a rod for shear and flexural interior reinforcement and a textile for an external whole application. In addition to the monitoring aim, the possible additional function of these devices could be the reinforcement of the structures where they are applied. In the present work, after technology manufacturing description, the experimental laboratory characterization of each device is discussed. At last, smart devices application on medium scale masonry walls and their validation by mechanical tests is described.

  11. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2014-05-01

    Full Text Available The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i responsible minerals supply chains and (ii additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores future interlinked questions which arise in the circular economy for responsible supply chains, additive manufacturing, and metals recycling. For example, where do mined and recycled resources fit in responsible supply chains as inputs to responsible production? What is required to ensure 3D production systems are resource efficient? How could more distributed models of production, enabled by additive manufacturing, change the geographical scale at which it is economic or desirable to close the loop? Examples are given to highlight the need for an integrated research agenda to address these questions and to foster Australian opportunities in the circular economy.

  12. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... applications, strength and stiffness are crucial factors to a successful implementation of cured photopolymer thermosets. Hence, fiber-reinforced polymers have recently been introduced. The behavior and especially orientation of fibers during the vat photopolymerization process has yet not been fully...

  13. Occupational exposure to natural radioactivity in the zirconium mineral manufacturing industries

    International Nuclear Information System (INIS)

    Ballesteros, L.; Zarza, I.; Ortiz, J.; Serradell, V.

    2006-01-01

    The spanish 'Real Decatur 783/2001', published as result of the adaptation of the European Council directive 96/29/EURATOM (B.S.S. directive), regulates in Spain the use of natural radioactive substances. This decree establishes the need to study and control those activities in which significant increases of the exposure of workers or members of the public could take place. One of these natural radioactive substances are zirconium minerals. They are widely employed in some industrial activities, such as the production of zirconia and zirconium chemicals, glazed ceramic products manufacture, refractories, foundry sands (including investment casting) and zirconium mineral manufacturing. Its major end uses are fine ceramics where it acts as an opacifier in glazes and enamels and also as an additive in special glass (i.e. TV glass). This paper provides a description of a measurement campaign carried out to estimate the risk of occupational exposure to natural radioactivity in the zirconium mineral manufacturing industries. Zirconium raw sands have generally a granular size of 100 to 200 μm, which may be reduced to around 2 μm for use in ceramics and paint applications by milling to flour. These sands contain varying concentrations of natural radionuclides: 232 Th, 235 U, and mostly 238 U, together with their progenies. The first part of the study is to identify situations and areas where worker s are exposed to radiation. Five pathways of exposure were found: inhalation of dust, ingestion of dust, inhalation of radon, skin contamination and external irradiation. Samples from raw materials and from the environment at the work areas are performed; both where the zircon sands are unloaded and stored and at the milling area. Secondly, collected samples are analysed to evaluate activities on those natural radionuclides. Gamma spectrometry analysis is performed for the whole of the samples. For this purpose, a Ge-HP detector (high purity Ge detectors) is used. Dust samples

  14. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... understood. Research indicates an orientation within the manufacturing layer and efforts have been made to achieve a more uniform orientation within the part. A vat polymerization machine consisting of a resin vat and a moving build plate has been simulated using the fluid flow module of Comsol Multiphysics...... photopolymer resin. The prediction can be used to identify potential clusters or misalignment of fibers and in the future allow for optimization of the machine design and manufacturing process....

  15. Templated Biomineralization on Self-Assembled Protein Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Subburaman,K.; Pernodet, N.; Kwak, S.; DiMasi, E.; Ge, S.; Zaitsev, V.; Ba, X.; Yang, N.; Rafailovich, M.

    2006-01-01

    Biological mineralization of tissues in living organisms relies on proteins that preferentially nucleate minerals and control their growth. This process is often referred to as 'templating', but this term has become generic, denoting various proposed mineral-organic interactions including both chemical and structural affinities. Here, we present an approach using self-assembled networks of elastin and fibronectin fibers, similar to the extracellular matrix. When induced onto negatively charged sulfonated polystyrene surfaces, these proteins form fiber networks of {approx}10-{mu}m spacing, leaving open regions of disorganized protein between them. We introduce an atomic force microscopy-based technique to measure the elastic modulus of both structured and disorganized protein before and during calcium carbonate mineralization. Mineral-induced thickening and stiffening of the protein fibers during early stages of mineralization is clearly demonstrated, well before discrete mineral crystals are large enough to image by atomic force microscopy. Calcium carbonate stiffens the protein fibers selectively without affecting the regions between them, emphasizing interactions between the mineral and the organized protein fibers. Late-stage observations by optical microscopy and secondary ion mass spectroscopy reveal that Ca is concentrated along the protein fibers and that crystals form preferentially on the fiber crossings. We demonstrate that organized versus unstructured proteins can be assembled mere nanometers apart and probed in identical environments, where mineralization is proved to require the structural organization imposed by fibrillogenesis of the extracellular matrix.

  16. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of aging effects on the mineral fibers treated with aminopropylsilane and quaternary ammonium compounds

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2012-01-01

    (PCA) was applied to the time-of-flight secondary ion mass spectrometry spectra, and an increase in the intensities of APS characteristic peaks were observed after aging. The observed increase in the signals of APS originates from underlying silanized fibers after the removal of the surfactant......X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry were used to investigate the aging effects on the aminopropylsilane (APS) and quaternary ammonium surfactant-treated mineral fibers. APS-coated mineral fiber samples were treated with cationic surfactant...

  17. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A [ORNL; Lindahl, John M [ORNL; JohnsonPhD, DR Joseph E. [Nanocomp Technologies, Inc.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  18. Effect of Fibers on Mixture Design of Stone Matrix Asphalt

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-03-01

    Full Text Available Lignin fibers typically influence the mixture performance of stone matrix asphalt (SMA, such as strength, stability, durability, noise level, rutting resistance, fatigue life, and water sensitivity. However, limited studies were conducted to analyze the influence of fibers on the percent voids in mineral aggregate in bituminous mixture (VMA during the mixture design. This study analyzed the effect of different fibers and fiber contents on the VMA in SMA mixture design. A surface-dry condition method test and Marshall Stability test were applied on the SMA mixture with four different fibers (i.e., flocculent lignin fiber, mineral fiber, polyester fiber, blended fiber. The test results indicated that the bulk specific gravity of SMA mixtures and asphalt saturation decreased with the increasing fiber content, whilst the percent air voids in bituminous mixtures (VV, Marshall Stability and VMA increased. Mineral fiber had the most obvious impact on the bulk specific gravity of bituminous mixtures, while flocculent lignin fiber had a minimal impact. The mixture with mineral fiber and polyester fiber had significant effects on the volumetric properties, and, consequently, exhibited better VMA over the conventional SMA mixture with lignin fiber. Modified fiber content range was also provided, which will widen the utilization of mineral fiber and polyester fiber in the applications of SMA mixtures. The mixture evaluation suggested no statistically significant difference between lignin fiber and polyester fiber on the stability. The mineral fiber required a much larger fiber content to improve the mixture performance than other fibers. Overall, the results can be a reference to guide SMA mixture design.

  19. Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    Additive manufacturing technologies applied to injection molding process chain have acquired an increasingly important role in the context of tool inserts production, especially by vat polymerization. Despite the decreased lifetime during their use in the injection molding process, the inserts come...... with improvements in terms of production time, costs, exibility, as well as potentially improved environmental performance as compared to conventional materials in a life cycle perspective.This contribution supports the development of additively manufactured injection molding inserts with the use of fiber...

  20. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  1. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Science.gov (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  2. Manufacturing a Long-Period Grating with Periodic Thermal Diffusion Technology on High-NA Fiber and Its Application as a High-Temperature Sensor.

    Science.gov (United States)

    Shen, Xiang; Dai, Bin; Xing, Yingbin; Yang, Luyun; Li, Haiqing; Li, Jinyan; Peng, Jingang

    2018-05-08

    We demonstrated a kind of long-period fiber grating (LPFG), which is manufactured with a thermal diffusion treatment. The LPFG was inscribed on an ultrahigh-numerical-aperture (UHNA) fiber, highly doped with Ge and P, which was able to easily diffuse at high temperatures within a few seconds. We analyzed how the elements diffused at a high temperature over 1300 °C in the UHNA fiber. Then we developed a periodically heated technology with a CO₂ laser, which was able to cause the diffusion of the elements to constitute the modulations of an LPFG. With this technology, there is little damage to the outer structure of the fiber, which is different from the traditional LPFG, as it is periodically tapered. Since the LPFG itself was manufactured under high temperature, it can withstand higher temperatures than traditional LPFGs. Furthermore, the LPFG presents a higher sensitivity to high temperature due to the large amount of Ge doping, which is approximately 100 pm/°C. In addition, the LPFG shows insensitivity to the changing of the environment’s refractive index and strain.

  3. Colloidal-based additive manufacturing of bio-inspired composites

    Science.gov (United States)

    Studart, Andre R.

    Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.

  4. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  5. Single-mode annular chirally-coupled core fibers for fiber lasers

    Science.gov (United States)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  6. [Use of algarrobo (Prosopis chilensis (Mol) Stuntz) flour as protein and dietary fiber source in cookies and fried chips manufacture].

    Science.gov (United States)

    Escobar, Berta; Estévez, Ana María; Fuentes, Carolina; Venegas, Daniela

    2009-06-01

    Limiting amino acids of the protein from chilean "algarrobo" are isoleucine, theronine and methionine/cyteine. Cereals and legume blends allow to improve the amino acid balance, since legume have more lysine, and cereals are richer in sulphur amino acids. Due to the nutritional interest of "algarrobo" cotyledons, the use of "algarrobo cotyledon" flour (ACF) in sweet and salty snack manufacture was evaluated. Cookies and fried salty chips with 0%, 10% and 20% ACF were prepared. Flours were analyzed for color, particle size, moisture, proximate composition, available lysine, and soluble, insoluble and total dietary fiber. Cookies and chips were analyzed for the same characteristics (except for particle size); besides there were determined water activity, weight and size of the units, and also, the caloric value was computed. Sensory quality and acceptance of both products were evaluated. It is noticeable the high amount of protein, lipids, ash, crude fiber (63.6; 10.2; 4.3 and 4.2 g/100 g dmb, respectively), available lysine (62.4 mg/g protein) and total dietary fiber (24.2 g/100 g dmb) of ACF. Both, cookies and chips with ACF, showed a significant increase in the amount of protein, lipids, ash, crude fiber and, available lysine (from 15.5 to 19,3 and from 20.3 a 29.6 mg lisina/g protein, respectively), and total dietary fiber (from 1.39 to 2.80 and from 1.60 a 5.60 g/100 g dmb, respectively). All of the cookies trials were well accepted ("I like it very much"); chips with 10% of AFC showed the highest acceptance ("I like it"). It can be concluded that the use of ACF in cookies and chips manufacture increases the contribution of available lysine; their protein and dietary fiber content, improving the soluble/insoluble fiber ratio, without affect neither their physical nor their sensory acceptance.

  7. Flame-resistant kapok fiber manufactured using gamma ray

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Hyeong, Min Ho; An, Byung Chull; Lee, Eun Mi; Lee, Seung Sik; Kim, Jin-Hong; Kim, Jae-Sung; Kim, Tae-Hoon; Cho, Jae-Young

    2009-01-01

    Owing to homogeneous hollow tube shape and hydrophobicity of kapok fiber, the usages of this fiber are various such as fiberfill in pillows, quilts, non-woven fabric for oil spill cleanup and plastic green house. Even though kapok fiber is able to apply various industrial usages, it has a serious disadvantage which is the extreme sensitivity to spark or flame. Therefore, we try to make flame-resistant kapok fiber using gamma ray. The radiation caused loss of hydrophobic compounds in kapok fiber and no morphological change, especially fine hollow tube shape, was observed. The lignin contents were negligible changed after gamma irradiation. However, the building units of lignin polymer such as coniferyl alcohol, and sinapyl alcohol were significantly changed that is, functional group as a methoxyl group from lignin polymer was cleaved by gamma irradiation. Based on the results of removal of hydrophobic compounds and cleavage of methoxyl group from lignin polymer, kapok fiber can be converted into a flame-resistant fiber by gamma ray treatment.

  8. Molecular analysis of manufactured gas plant soils for naphthalene mineralization

    International Nuclear Information System (INIS)

    Sanseverino, J.; Werner, C.; Fleming, J.; Applegate, B.M.; King, J.M.H.; Sayler, G.S.; Blackburn, J.

    1991-01-01

    New molecular tools are being developed and tested to ascertain the biodegradability of hazardous wastes by soil bacterial population. The potential for manufactured gas plant (MGP) soil bacterial populations to degrade naphthalene, as a component mixture of polynuclear aromatic hydrocarbons, was evaluated by the detection of a naphthalene biodegradative genotype by DNA probe hybridization with DNA extracts and colonies of cultured bacteria of the MGP soils. The activity of the naphthalene-degrading populations was evaluated by mineralization assays, 14 CO 2 production from 14 C-naphthalene. Direct messenger RNA (mRNA) extraction from MGP soil was evaluated as an instantaneous measure of naphthalene catabolic gene expression in MGP soil. The bioavailability of naphthalene for bacterial degradation within the MGP soils was assessed by measuring the bioluminescent response of a naphthalene-lux catabolic reporter strain Pseudomonas fluorescens HK44 (pUTK21). DNA extracted from 5 MGP soils and 1 creosote-contaminated soil and hybridized with a nahA gene probe indicated that the naphthalene degradative genes were present in all samples in the range of 0.06 to 0.95 ng/100 μl DNA extract which was calculated to represent 3.58 x 10 8 to 1.05 x 10 10 nahA positive cells/g soil. Phenanthrene, anthracene, and benzo(a)pyrene were mineralized also by some of the soils. NAH7 homologous messenger RNA transcripts were detectable in one MGP soil and in the creosote-contaminated soil

  9. Enhanced Electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber-Based Cathode

    Directory of Open Access Journals (Sweden)

    Thi Xuan Huong Le

    2018-02-01

    Full Text Available A new cathodic material for electro-Fenton (EF process was prepared based on a macroscopic fiber (CNTF made of mm-long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area (~260 m2/g with high electrical conductivity and electrochemical stability. One kind of azo dye, acid orange 7 (AO7, was used as model bio-refractory pollutant to be treated at CNTF@CF cathode in acidic aqueous medium (pH 3.0. The experimental results pointed out that AO7 and its organic intermediate compounds were totally mineralized by hydroxyl radical generated from Fenton reaction. In fact, 96.7% of the initial total organic carbon (TOC was eliminated in 8 h of electrolysis by applying a current of −25 mA and ferrous ions as catalyst at concentration of 0.2 mM. At the same electrolysis time, only 23.7% of TOC removal found on CF support which proved the high mineralization efficiency of new material thanks to CNTF deposition. The CNTF@CF cathode maintained stable its activity during five experimental cycles of EF setup. The results indicated that CNTF@CF material could be a potential choice for wastewater treatment containing bio-refractory by electrochemical advanced oxidation processes.

  10. Enhanced electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber Based Cathode

    Science.gov (United States)

    Huong Le, Thi Xuan; Alemán, Belén; Vilatela, Juan J.; Bechelany, Mikhael; Cretin, Marc

    2018-02-01

    A new cathodic material for electro-Fenton (EF) process was prepared based on a macroscopic fiber (CNTF) made of mm long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF) substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area ( 260 m2/g) with high electrical conductivity and electrochemical stability . One kind of azo dye, acid orange 7 (AO7), was used as model bio-refractory pollutant to be treated at CNTF@CF cathode in acidic aqueous medium (pH 3.0). The experimental results pointed out that AO7 and its organic intermediate compounds were totally mineralized by hydroxyl radical generated from Fenton reaction. In fact, 96.7 % of the initial TOC was eliminated in 8h of electrolysis by applying a current of -25 mA and ferrous ions as catalyst at concentration of 0.2 mM. At the same electrolysis time, only 23.7 % of TOC removal found on CF support which proved the high mineralization efficiency of new material thanks to CNTs deposition. The CNTF@CF cathode maintained stable its activity during five experimental cycles of EF set-up. The results indicated that CNTF@CF material could be a potential choice for wastewater treatment containing bio-refractory by electrochemical advanced oxidation processes (EAOPs).

  11. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong; Zhang, Tao; Wang, Qunhui; Tian, Yanli; Shi, Zhining; Smale, Nicholas; Xu, Banghua

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  12. Additive manufacturing of short and mixed fibre-reinforced polymer

    Science.gov (United States)

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  13. Dietary fibers from mushroom sclerotia. 4. In vivo mineral absorption using ovariectomized rat model.

    Science.gov (United States)

    Wong, Ka-Hing; Katsumata, Shin-Ichi; Masuyama, Ritsuko; Uehara, Mariko; Suzuki, Kazuharu; Cheung, Peter C K

    2006-03-08

    The effect of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporus rhinocerus, and Wolfiporia cocos, on calcium and magnesium absorption was evaluated in ovariectomized (OVX) rats fed with sclerotial DF based and low Ca (0.3%) diets for 14 days. The animals in the W. cocos DF diet group possessed significantly (p cocos DF group were also significantly (p cocos DF could improve the overall Ca and Mg absorptions of the OVX rats fed a low Ca diet. The potential use of sclerotial DFs as a functional food ingredient for enhancing mineral absorption is also discussed.

  14. ENVIRONMENTAL ASPECTS OF USE, DEVELOPMENT AND DISPOSAL OF MINERAL WOOL IN THE CONTEXT OF ENVIRONMENTAL RESOURCES POLLUTION BY WASTE RETARDATION

    Directory of Open Access Journals (Sweden)

    Dorota Nowak

    2014-10-01

    Full Text Available In this study presents the environmental aspects of the use, management and disposal of mineral wool. Fiber structure makes that wool products have many unique properties enabling them to be versatile. With all the advantages of mineral wool is one very significant drawback - does not decompose. From the point of view of slowing (retardation transformation of environmental resources, the introduction of mineral wool to crops under glass, in a very much reduced use of peatlands, which for reasons of natural resources are extremely important. On the other hand, problems of rational use of mineral wool already postconsumer caused among others formation of "wild dumps" and thus transforming the landscape, and, due to their characteristics (respirable fibers, the risk to health. Manufacture of asbestiform can cause ecological consequences within almost all elements of the environment. Therefore, the overall assessment of the impact in this case, mineral wool on the environment would need to be so. "Life cycle assessment" - called the method of LCA (Life Cycle Assessmentwhich is commonly called the "cradle to grave" - that is, from extraction of raw materials, through processing, exploitation, to the storage of waste. Therefore, the responsibility for the redevelopment of the post-production of mineral wool should lie with the producer of wool. These issues are the subject of discussion in this study.

  15. Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties.

    Science.gov (United States)

    Xie, Jingwei; Zhong, Shaoping; Ma, Bing; Shuler, Franklin D; Lim, Chwee Teck

    2013-03-01

    Electrospun polymeric fibers have been investigated as scaffolding materials for bone tissue engineering. However, their mechanical properties, and in particular stiffness and ultimate tensile strength, cannot match those of natural bones. The objective of the study was to develop novel composite nanofiber scaffolds by attaching minerals to polymeric fibers using an adhesive material - the mussel-inspired protein polydopamine - as a "superglue". Herein, we report for the first time the use of dopamine to regulate mineralization of electrospun poly(ε-caprolactone) (PCL) fibers to enhance their mechanical properties. We examined the mineralization of the PCL fibers by adjusting the concentration of HCO(3)(-) and dopamine in the mineralized solution, the reaction time and the surface composition of the fibers. We also examined mineralization on the surface of polydopamine-coated PCL fibers. We demonstrated the control of morphology, grain size and thickness of minerals deposited on the surface of electrospun fibers. The obtained mineral coatings render electrospun fibers with much higher stiffness, ultimate tensile strength and toughness, which could be closer to the mechanical properties of natural bone. Such great enhancement of mechanical properties for electrospun fibers through mussel protein-mediated mineralization has not been seen previously. This study could also be extended to the fabrication of other composite materials to better bridge the interfaces between organic and inorganic phases. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.

    Science.gov (United States)

    De Coster, Diane; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Callewaert, Manly; Wuytens, Pieter; Simpson, Stephen H; Hanna, Simon; De Malsche, Wim; Thienpont, Hugo

    2015-11-30

    We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.

  17. UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE

    Directory of Open Access Journals (Sweden)

    Subyakto Subyakto

    2013-06-01

    Full Text Available Sisal (Agave sisalana as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP and polylactic acid (PLA to bond together with the reinforcement agent (e.g. sisal fibers. In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites. Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite, the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA. With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE of MSFC

  18. Monitoring techniques for the manufacture of tapered optical fibers.

    Science.gov (United States)

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  19. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  20. Nanocellulose in spun continuous fibers: A review and future outlook

    Science.gov (United States)

    Craig Clemons

    2016-01-01

    Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling...

  1. Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into "sticky" superhydrophobic paper.

    Science.gov (United States)

    Yu, Xiaoyan; Bian, Peiwen; Xue, Yang; Qian, Xueren; Yu, Haipeng; Chen, Wenshuai; Hu, Xiaohai; Wang, Peng; Wu, Dong; Duan, Qinghui; Li, Limei; Shen, Jing; Ni, Yonghao

    2017-10-15

    The unique features of cellulosic paper including flexibility, biodegradability, and low cost enables it as a versatile, sustainable biomaterial for promising applications. In the paper industry, microsized mineral particles are widely used in the production of printing/writing paper grades, while rosin derived from trees is the earliest internal sizing agent for paper hydrophobication. On the basis of existing commercial practices associated with the use of mineral particles and rosin in paper production, we present a process concept of converting cellulosic fibers (paper-grade pulp) into "sticky" superhydrophobic paper involving the use of microsized mineral particles and rosin (a tree-derived natural product, mainly a mixture of resin acids, especially abietic acid with chemical formula of C 19 H 29 COOH). Internal filling of cellulosic networks with mineral particles was basically used to hold out the mineral particles added at the surface, and the delicate integration of wet-end/surface applications of mineral particles with paper surface engineering with rosin/alum led to the development of "sticky" superhydrophobicity, i.e., ultrahigh water-repellency and strong adhesion to water. This proposed concept may provide valuable implications for expanding the use of paper-based products to unconventional applications, e.g., ultrahigh-performance ink jet printing paper for mitigating the "coffee-ring effect" and paper-based microfluidic devices for biomedical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through

  3. Effect of paddy straw plus nonforage fiber sources based complete rations with different levels of neutral detergent fiber on hemato-biochemical and mineral profile of lactating dairy cows

    Directory of Open Access Journals (Sweden)

    Biju Chacko

    2017-07-01

    Full Text Available Aim: This study was conducted to assess the effect of feeding paddy straw plus nonforage fiber sources based complete rations with different levels of neutral detergent fiber (NDF on hemato-biochemical and mineral parameters of lactating dairy cows. Materials and Methods: The study was conducted for 6 months in 18 lactating dairy cows, divided into three groups of six each, by feeding them on paddy straw plus nonforage fiber sources based complete rations containing different levels of NDF, in two phases of 3 months (90 days each, being the early and mid lactation phases, respectively. Three isonitrogenous and isocaloric complete rations, T1, T2 and T3 with 25%, 30% and 35% NDF, respectively, were fed to the experimental animals. Blood samples were collected at the beginning and the end of each of the two phases to estimate the different hematological, plasma protein, and mineral parameters to know the overall health status of the animals and standard methods were followed to analyze the samples. Results: There was no significant difference (p>0.05 in various hematological parameters such as hemoglobin, glucose, and blood urea nitrogen (BUN in blood; plasma protein parameters such as total protein, albumin, globulin and albumin: globulin ratio and mineral parameters such as plasma calcium and phosphorus levels at the beginning and end of Phase I (1st day and 90th day and Phase II (91st day and 180th day as well as between the three dietary treatments, with all the values being in the normal range for lactating dairy cows. Even though nonsignificant (p>0.05, the BUN values of animals fed on ration T1, both at the beginning and end of Phase I, were higher than that of animals fed on rations T2 and T3 because the diet T1 with lowest NDF and the highest soluble carbohydrate content underwent rapid fermentation in the rumen, produced more energy, which was utilized by the rumen microbes to degrade the protein in the feed to ammonia, the excess

  4. Study on evaluation of starch, dietary fiber and mineral composition of cookies developed from 12 sorghum cultivars.

    Science.gov (United States)

    Rao, B Dayakar; Kulkarni, Dhanashri B; C, Kavitha

    2018-01-01

    The study aimed to identify best cultivars suitable for sorghum cookies accordingly nutrient and mineral compositions were evaluated. Protein and fat content of cookies were ranged from 5.89±0.04 to 8.27±0.21% and 21.03±0.01 to 23.08±0.03% respectively. The starch content of cookie ranged between 47.06±0.01 and 42.15±0.03% and dietary fiber was reported highest in CSH14 (9.27±0.01%). The highest Mg (56.24±0.03mg/100g) P (255.54±0.03mg/100g), and K (124.26±0.02mg/100g) content were found in C43 cultivar. CSV18R was reported highest iron content (1.23±0.01mg/100g). The sensory scores for overall acceptability of cookies were highest in CSH23, CSH13R and CSV18R cultivars which are rich in dietary fiber and minerals. Normally the hybrids are high yielders and the grain price/qt is 20% lower than varieties. It is implied the raw material costs of two identified cultivars (CSH23 & CSH13R) would help the industry to reduce overall cost of production and offer a better profit margins over the varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. New Manufacturing Method for Paper Filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus [SUNY College of Environmental Science and Forestry

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  6. Green fiber bottle: Towards a sustainable package

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido; Howard, Thomas J.

    The Green Fiber Bottle is a fully biodegradable bottle made from molded paper pulp.Its development depends on the establishment of the manufacturing technology. Impulse drying, an innovative way of drying, has the potential to improve significantly the manufacturing process of the Green Fiber Bot...... Bottle, towards a sustainable packaging...

  7. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  8. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Science.gov (United States)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  9. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  10. Reducing the nonconforming products by using the Six Sigma method: A case study of a polyes-ter short cut fiber manufacturing in Indonesia

    Directory of Open Access Journals (Sweden)

    Oky Syafwiratama

    2017-03-01

    Full Text Available Polyester short cut fiber is a textile industry which is rarely explored or researched. This research explains the necessary steps of improvement using Six Sigma method to reduce the nonconform-ing products in a polyester short cut fiber manufacturing in Indonesia. An increased noncon-forming products in the shortcut fiber production process created some quality problems from January to May, 2015. Define, measure, analysis, improve, control (DMAIC steps were im-plemented to determine root cause of the problems and to improve production process using sta-tistical approach. The results of Six Sigma improvement has indicated that the process capability was increased from 2.2 to 3.1 sigma, savings $18,394.2 USD per-month.

  11. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  12. Optical fiber communication — An overview

    Indian Academy of Sciences (India)

    Fabrication of single mode fibers is very difficult and so the fiber is .... of waveguide dispersion depends on the fiber design like core radius, since the .... production reducing the water content in the fiber to below 10 parts per billion. 5. ..... Connectors of the same type must be compatible from one manufacturer to another. 3.

  13. A call to expand regulation to all carcinogenic fibrous minerals

    Science.gov (United States)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.

    2013-05-01

    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in

  14. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  15. Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 2. Apparent absorption and retention of minerals.

    Science.gov (United States)

    Faulkner, M J; St-Pierre, N R; Weiss, W P

    2017-07-01

    Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of source of supplemental Cu, Zn, and Mn (sulfates or hydroxy) on apparent absorption of minerals when fed in either a forage- or by-product-based diet. The by-product diets were formulated to have greater concentrations of NDF and lesser concentrations of starch, and specific ingredients were chosen because they were good sources of soluble fiber and β-glucans, which bind trace minerals in nonruminants. We hypothesized that hydroxy trace minerals would interact less with digesta and have greater apparent absorption compared with sulfate minerals, and the difference in apparent absorption would be greater for the by-product diet compared with the forage-based diet. During the 56-d experiment, cows remained on the same fiber treatment but source of supplemental trace mineral was different for each 28-d period; thus, all cows were exposed to both mineral treatments. During each period cows were fed no supplemental Cu, Zn, or Mn for 16 d, followed by 12 d of feeding supplemental minerals from either sulfate or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total Cu, Zn, and Mn dietary concentrations, respectively, were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 for the by-product diets. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Cows consuming the by-product diets had greater Zn (1,863 vs. 1,453 mg/d) and Mn (1,790 vs. 1,588 mg/d) intake compared with cows fed forage diets, but apparent Zn absorption was similar between treatments. Manganese apparent absorption was greater for the by-product diets compared with the forage diets (16 vs. 11%). A fiber by mineral interaction was observed for Cu apparent absorption, as cows fed

  16. Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite

    DEFF Research Database (Denmark)

    Plackett, David; Torgilsson, R.; Løgstrup Andersen, T.

    2002-01-01

    involved pre-compression, contact heating to the process temperature under vacuum and then rapid transfer to the press for consolidation and cooling. Composites were tested to determine response to water or water vapor, porosity, fiber volume fraction and tensile properties. The composites absorbed water......A rapid press consolidation technique was used to produce composites from two types of air-laid wood fiber mat, incorporating either mechanically refined or bleached chemi-thermomechanically refined Norway Spruce [Picea abies (L.) Karst] and a bicomponent polymer fiber. The manufacturing technique...... rapidly and showed changes in thickness with fluctuations in relative humidity. Porosity was higher in composites containing mechanically refined (MDF) fibers than in composites containing bleached chemi-thermomechanically refined (CTMP) fibers. Tensile test results suggessted that fiber wetting...

  17. Prevention of cancer risk of workers of glass fibers manufacture

    Directory of Open Access Journals (Sweden)

    G.F. Mukhammadieva

    2016-09-01

    Full Text Available In the process of producing of continuous glass fiber workers are exposed to complex impact of carcinogenic chemicals released into the air of the working area (including formaldehyde, epichlorohydrin, ethane acids, aerosol of mineral oil. The penetrating effect of harmful substances through the skin is enhanced by the fine glass dust, which has a traumatic and irritating effect. Aggravating factors of the impact of lubricants on the body of the operators is the increased temperature and the excess of heat radiation. A risk factor is also the unfavorable climate of the workplace. Among the professional patients (71 person of 170 examined employees most of persons aged 50–59 years. The average age of the patients at the time of detection of hyperkeratosis was 51,9 ± 0,9 years, skin cancer – 57,3 ± 1,7 years. Professional skin neoplasms were diagnosed mainly in workers who have been working for more than 10 years (average period of 12.6 ± 2.4 years. The period of transformation of limited hyperkeratosis to the skin cancer was on average 5–8 years. It was found that the molecular-genetic factors predisposing to the development of professional skin lesions are polymorphic variants of the gene suppressor of tumor growth TP53 (Ex4 + 119G>C, IVS3 16 bp Del/Ins and IVS6+62A>G. It has been shown that the development of preventive measures aimed at reducing the risk of occupational diseases is relevant and should include the interaction of administration, engineering and technical staff of the enterprise, labor protection service, Rospotrebnadzor specialists, doctors specialized in occupational diseases and the workers themselves. The complex of measures of primary and secondary prevention of health problems is suggested. The necessity of including the continuous glass fiber production to the list of carcinogen production processes, presented in national normative documents.

  18. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  19. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  20. Fiber Supplements: Are They Safe to Take Every Day?

    Science.gov (United States)

    ... function and preventing constipation. It's best to get fiber from food, because supplements don't provide the vitamins, minerals and other nutrients that fiber-rich foods do. But fiber supplements can contribute to the ...

  1. Development Manufacturing Method of Highly Functional Kapok Fiber Absorbent Using Irradiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Nho, Young Chang; Kang, Phil Hyun; Baek, Myung Hwa

    2006-01-01

    The hydrophobic characteristic of kapok fibers was changed to hydrophilic property after NaClO2, treatments which is able to break all phenolic units especially lignin. After NaClO2 treatment, NaIO4, applied to kapok fibers for opening hexagonal polysaccharide structure, this step led to produce carbonyl groups(>C=O) on kapok fibers. In the final step, NaClO2, treatments were performed again to provide carboxyl groups(-COOH) on kapok fibers. In addition, kapok fibers after all chemical treatments were retained hollow structure which was observed by scanning electron microscopy(SEM). Kapok fibers which were obtained after chemical treatments would be a good heavy metal absorbent when these fibers applied less than in 10 mg/L standard solution. Moreover, these fibers were not detached heavy metals even added physical forces and used kapok fibers are able to reuse after detached heavy metals under pH 2-3. The degree of grafting increased as the irradiation dose increased, and are in the range 32% to 250% when the concentration of glycidyl methacrylate monomer was 50 vol. %. Based on this result, various functional groups are possible to be attached on kapok fibers used by radiation grafting technique

  2. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  3. Effect of fiber content on the properties of glass fiber-phenolic matrix composite

    International Nuclear Information System (INIS)

    Zaki, M.Y.; Shahid, M.R.; Subhani, T.; Sharif, M.N.

    2003-01-01

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts /components related to electronic and aerospace industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make parts/components of new designs. In the present research, thermosetting phenolic plastic was reinforced with E-glass fiber in different fiber-to-resin ratios to produce composites of different compositions. Mechanical and electrical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  4. Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, M

    2004-04-12

    The Gamma-Ray Large Area Space Telescope is an orbital observatory being planned as a joint DOE/NASA mission. The primary support of the instrument requires a grid structure which is very stiff, strong, light-weight, and thermally conductive. A carbon fiber composite grid design using a novel manufacture technique is proposed which meets or exceeds an aluminum design in all performance criteria and is economically competitive as well. Finite element analysis, confirmed by testing of a sample grid, is used to examine trade-offs for the materials and layups. Based on these analyses, recommendations are given for a viable design.

  5. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  6. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  7. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  8. Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers

    Science.gov (United States)

    Mulholland, T.; Goris, S.; Boxleitner, J.; Osswald, T. A.; Rudolph, N.

    2018-03-01

    Fused filament fabrication (FFF) is a type of additive manufacturing based on material extrusion that has long been considered a prototyping technology. However, the right application of material, process, and product can be used for manufacturing of end-use products, such as air-cooled heat exchangers made by adding fillers to the base polymer, enhancing the thermal conductivity. Fiber fillers lead to anisotropic thermal conductivity, which is governed by the process-induced fiber orientation. This article presents an experimental study on the microstructure-property relationship for carbon fiber-filled polyamide used in FFF. The fiber orientation is measured by micro-computed tomography, and the thermal conductivity of manufactured samples is measured. Although the thermal conductivity is raised by more than three times in the fiber orientation direction at a load of only 12 vol.%, the enhancement is low in the other directions, and this anisotropy, along with certain manufacturing restrictions, influences the final part performance.

  9. Mineral Oils: Untreated and Mildly Treated

    Science.gov (United States)

    Learn about mineral oils, which can raise the risk of nonmelanoma skin cancer, particularly of the scrotum. Workers in a variety of manufacturing industries are most commonly exposed to mineral oils, as are workers in engine repair, copper mining, and commercial printing.

  10. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  11. ENZYMATIC HYDROLYSIS LIGNIN DERIVED FROM CORN STOVER AS AN INTRINSTIC BINDER FOR BIO-COMPOSITES MANUFACTURE: EFFECT OF FIBER MOISTURE CONTENT AND PRESSING TEMPERATURE ON BOARDS’ PROPERTIES

    Directory of Open Access Journals (Sweden)

    Guanben Du

    2011-02-01

    Full Text Available Binderless fiberboards from enzymatic hydrolysis lignin (EHL and cotton stalk fibers were prepared under various manufacturing conditions, and their physico-mechanical properties were evaluated. Full factorial experimental design was used to assess the effect of fiber moisture content and pressing temperature on boards’ properties. In addition, differential scanning calorimetry (DSC was used to obtain the glass transition temperature (Tg of EHL. We found that both fiber moisture content and pressing temperature had significant effects on binderless fiberboards’ properties. High fiber moisture content and pressing temperature are suggested to contribute to the self-bonding improvement among fibers with lignin-rich surface mainly by thermal softening enzymatic hydrolysis lignin. In this experiment, the optimized pressing temperature applied in binderless fiberboard production should be as high as 190°C in accordance with the EHL Tg value of 189.4°C, and the fiber moisture content should be limited to less than 20% with a higher board density of 950 kg/m3 to avoid the delamination of boards during hot pressing.

  12. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Science.gov (United States)

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  13. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  14. Functional grading of mineral and collagen in the attachment of tendon to bone.

    Science.gov (United States)

    Genin, Guy M; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D; Marquez, Pablo J; Thomopoulos, Stavros

    2009-08-19

    Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

  15. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  16. Permeability characterization of stitched carbon fiber preforms by fiber optic sensors

    Directory of Open Access Journals (Sweden)

    V. Antonucci

    2011-12-01

    Full Text Available The in-plane and through thickness permeability of unidirectional stitched carbon fiber preforms have been determined through vacuum infusion tests. The impregnation of various dry preforms with different stitching characteristics has been monitored by fiber optic sensors that have been stitched together with the dry tow to manufacture the dry preform. The experimental infusion times have been fitted by a numerical procedure based on Finite Element (FE processing simulations. A good agreement between the numerical and experimental infusion times has been found demonstrating the potentiality of the fiber sensor system as suitable tool to evaluate impregnation times and permeability characteristics.

  17. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration

    Science.gov (United States)

    Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.

  18. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  19. Fabrication of Mineralized Collagen from Bovine Waste Materials by Hydrothermal Method as Promised Biomaterials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Macossay, Javier

    2011-01-01

    In the present study, we aimed to produce mineralized-collagen by hydrothermal process. A simple method not depending on additional foreign chemicals has been employed to isolate the mineralized-collagen fibers from bovine waste. The process of extraction involves the use of hydrothermal method...... mineral content in the individual fibers. The X-ray diffraction showed the crystalline feature of the obtained nano-compounds. The thermo gravimetric analysis was used to differentiate between the collagen and mineral parts of obtained product. Overall, the results generously indicated production of well...

  20. Scintillating optical fibers for fine-grained hodoscopes

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber

  1. Optical sensors from electrohydrodynamic jetted polymer fiber resonators

    DEFF Research Database (Denmark)

    Laye, Fabrice; Kraemmer, Sarah; Castillo, Alejandro

    2016-01-01

    Electrohydrodynamic jetting is used to manufacture dye-doped polymer fiber resonators. We present comb-like laser emission from different polymer/dye combinations and report the use of these structures as sensitive detection of ethanol and methanol.......Electrohydrodynamic jetting is used to manufacture dye-doped polymer fiber resonators. We present comb-like laser emission from different polymer/dye combinations and report the use of these structures as sensitive detection of ethanol and methanol....

  2. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  3. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    International Nuclear Information System (INIS)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin

    2010-05-01

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  4. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin [Yongin University, Yongin (Korea, Republic of)

    2010-05-15

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  5. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  6. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  7. Characterization of fiber optic cables under large tensile loads

    International Nuclear Information System (INIS)

    Ogle, J.W.; Looney, L.D.; Peterson, R.T.

    1984-01-01

    Fiber optic cables designed for the Nevada Test Site (NTS) have to withstand an unusually harsh environment. Cables have been manufactured under a 6 year old DOE specification that has been slightly modified as the cable requirements are better understood. In order to better understand the cable properties a unique capability has been established at the NTS. Instrumentation has been developed to characterize the transmission properties of 1 km of fiber optic cable placed under a controlled tensile load up to 1500 lbs. The properties measured are cable tension, cable elongation, induced attenuation, attenuation vs. location, fiber strain, bandwidth, and ambient temperature. Preforming these measurements on cables from the two qualified NTS fiber optic cable manufacturers, Siecor and Andrew Corp., led to a new set of specifications

  8. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, K V R, E-mail: drmurthykvr@yahoo.com [Display Materials Laboratory Applied Physics Department Faculty of Technology and Engineering M.S. University of Baroda, Baroda-390 001 (India)

    2009-07-15

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  9. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    International Nuclear Information System (INIS)

    Murthy, K V R

    2009-01-01

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  10. Mineral resource of the month: potash

    Science.gov (United States)

    Jasinski, Stephen M.

    2011-01-01

    The article offers basic information about the mineral resource potash. According to the author, potash is the generic term for a variety of mined and manufactured salts that contain the mineral potassium in a water-soluble form. The author adds that potash is used in fertilizers, soaps and detergents, glass and ceramics, and alkaline batteries.

  11. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    Science.gov (United States)

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-01

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  12. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taiwan (China); Lai, Wen-Fu T., E-mail: Laitw@tmu.edu.tw [Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan (China)

    2014-12-01

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering.

  13. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  14. Development of lightweight THUNDER with fiber composite layers

    Science.gov (United States)

    Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.

    2000-06-01

    This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.

  15. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  16. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  17. Decontamination of Explosives-Contaminated Range Scrap Using A Transportable Hot Gas Decontamination (HGD) System: Cost & Performance Report

    Science.gov (United States)

    2007-01-01

    nonirritating, and a 9-micron diameter fiber nonrespirable, making handling safe and easy. • Basalt Mat, manufactured by BGF Industries (bgf.com). High...temperature mineral wool ( basalt fiber wool) mat blanket good to 1,500oF. Product is still under development as of 2002 but shows promise. 6.3...hazard to range technicians. • The Cerablanket® (manufactured by Thermal Ceramics) contains refractory ceramic fibers , which can potentially cause

  18. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  19. Lightweight, high-opacity Bible paper by fiber loading

    Science.gov (United States)

    Klaus Doelle; Oliver Heise; John H. Klungness; Said M. AbuBakr

    2000-01-01

    This paper has been prepared in order to discuss Fiber Loading™ for lightweight, high-opacity bible paper. Incorporating fillers within pulp fibers has been subject to research since 1960 (Green et al. 1962, Scallan et al. 1985, Allen et al. 1992). Fiber Loading™ is a method for manufacturing precipitated calcium carbonate (PCC) directly within the pulp processing...

  20. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  1. Magnetically sensitive nanodiamond-doped tellurite glass fibers.

    Science.gov (United States)

    Ruan, Yinlan; Simpson, David A; Jeske, Jan; Ebendorff-Heidepriem, Heike; Lau, Desmond W M; Ji, Hong; Johnson, Brett C; Ohshima, Takeshi; Afshar V, Shahraam; Hollenberg, Lloyd; Greentree, Andrew D; Monro, Tanya M; Gibson, Brant C

    2018-01-19

    Traditional optical fibers are insensitive to magnetic fields, however many applications would benefit from fiber-based magnetometry devices. In this work, we demonstrate a magnetically sensitive optical fiber by doping nanodiamonds containing nitrogen vacancy centers into tellurite glass fibers. The fabrication process provides a robust and isolated sensing platform as the magnetic sensors are fixed in the tellurite glass matrix. Using optically detected magnetic resonance from the doped nanodiamonds, we demonstrate detection of local magnetic fields via side excitation and longitudinal collection. This is a first step towards intrinsically magneto-sensitive fiber devices with future applications in medical magneto-endoscopy and remote mineral exploration sensing.

  2. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    Science.gov (United States)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  3. Proton induced luminescence of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H.; Millan, A.; Calderon, T. [Depto. Geologia y Geoquimica, Universidad Autonoma de Madrid, Ctra. Colmenar, km. 15, 28049, Madrid (Spain); Beneitez, P. [Departamento Quimica Fisica Aplicada, Universidad Autonoma de Madrid Cantoblanco, Madrid (Spain); Ruvalcaba S, J.L. [lFUNAM, Circuito de la lnvestigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2008-07-01

    This paper presents a summary of Ionoluminescence (IL) for several minerals commonly found in jewellery pieces and/or artefacts of historical interest. Samples including silicates and non-silicates (native elements, halide, oxide, carbonate and phosphate groups) have been excited with a 1.8 MeV proton beam, and IL spectra in the range of 200- 900 nm have been collected for each one using a fiber optic coupled spectrometer. Light emissions have been related to Cr{sup 3+}, Mn{sup 2+} and Pr{sup 3+} ions, as well as intrinsic defects in these minerals. Results show the potential of IL for impurity characterization with high detection limits, local symmetry studies, and the study of the origin of minerals. (Author)

  4. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  5. Development of eddy current probe for fiber orientation assessment in carbon fiber composites

    Science.gov (United States)

    Wincheski, Russell A.; Zhao, Selina

    2018-04-01

    Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.

  6. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  7. Association Between Dietary Fiber Intake and Bone Loss in the Framingham Offspring Study.

    Science.gov (United States)

    Dai, Zhaoli; Zhang, Yuqing; Lu, Na; Felson, David T; Kiel, Douglas P; Sahni, Shivani

    2018-02-01

    Dietary fiber may increase calcium absorption, but its role in bone mineralization is unclear. Furthermore, the health effect of dietary fiber may be different between sexes. We examined the association between dietary fiber (total fiber and fiber from cereal, fruits, vegetables, nuts, and legumes) and bone loss at the femoral neck, trochanter, and lumbar spine (L 2 to L 4 ) in older men and women. In the Framingham Offspring Study, at baseline (1996-2001), diet was assessed using the Willett food-frequency questionnaire, and bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Follow-up BMD was measured in 2001-2005 and 2005-2008 among 792 men (mean age 58.1 years; BMI 28.6 kg/m 2 ) and 1065 women (mean age 57.3 years; BMI 27.2 kg/m 2 ). We used sex-specific generalized estimating equations in multivariable regressions to estimate the difference (β) of annualized BMD change in percent (%ΔBMD) at each skeletal site per 5 g/d increase in dietary fiber. We further estimated the adjusted mean for bone loss (annualized %ΔBMD) among participants in each higher quartile (Q2, Q3, or Q4) compared with those in the lowest quartile (Q1) of fiber intake. Higher dietary total fiber (β = 0.06, p = 0.003) and fruit fiber (β = 0.10, p = 0.008) was protective against bone loss at the femoral neck in men but not in women. When examined in quartiles, men in Q2-Q4 of total fiber had significantly less bone loss at the femoral neck versus those in Q1 (all p fiber from vegetables appeared to be protective against spine bone loss in women but not men. There were no associations with cereal fiber or nut and legume fiber and bone loss in men or women. Our findings suggest that higher dietary fiber may modestly reduce bone loss in men at the hip. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  8. The development of nonwoven fabric and agricultural bed soil using kapok fiber for industrial usages

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik

    2010-01-01

    The purpose of this project is the development of nonwoven fabric using natural kapok fiber and synthetic fiber for industrial usages and the development of manufacturing techniques for nursery bed soil using kapok fiber. Research scopes include the development of agricultural bed soil using kapok fiber and nonwoven fabric using kapok fiber. Main results are as follow; the physico-chemical characterization of kapok fiber (water holding capacity, bulk density, water retention curve, viscoelastic measurement, oil adsorption capacity, analysis of essential elements, measurement of anion and cation); the physico-chemical characterization of kapok bed soil; the evidence experiment of kapok bed soil; the optimum content of kapok fiber and synthetic fiber for nonwoven fabric; establishment of the optimum radiation dose for manufacturing kapok nonwoven fabric

  9. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  10. A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production

    Directory of Open Access Journals (Sweden)

    Srinivas Nunna

    2018-05-01

    Full Text Available Process parameters, especially in the thermal stabilization of polyacrylonitrile (PAN fibers, play a critical role in controlling the cost and properties of the resultant carbon fibers. This study aimed to efficiently handle the energy expense areas during carbon fiber manufacturing without reducing the quality of carbon fibers. We introduced a new parameter (recirculation fan frequency in the stabilization stage and studied its influence on the evolution of the structure and properties of fibers. Initially, the progress of the cyclization reaction in the fiber cross-sections with respect to fan frequencies (35, 45, and 60 Hz during stabilization was analyzed using the Australian Synchrotron-high resolution infrared imaging technique. A parabolic trend in the evolution of cyclic structures was observed in the fiber cross-sections during the initial stages of stabilization; however, it was transformed to a uniform trend at the end of stabilization for all fan frequencies. Simultaneously, the microstructure and property variations at each stage of manufacturing were assessed. We identified nominal structural variations with respect to fan frequencies in the intermediate stages of thermal stabilization, which were reduced during the carbonization process. No statistically significant variations were observed between the tensile properties of fibers. These observations suggested that, when using a lower fan frequency (35 Hz, it was possible to manufacture carbon fibers with a similar performance to those produced using a higher fan frequency (60 Hz. As a result, this study provided an opportunity to reduce the energy consumption during carbon fiber manufacturing.

  11. Safety concerns in composite manufacturing and machining

    Science.gov (United States)

    Asmatulu, Eylem; Alonayni, Abdullah; Alamir, Mohammed

    2018-03-01

    Because of the superior properties, composites have been used in many industrial applications, including aerospace, wind turbines, ships, cars, fishing rods, storage tanks, swimming pool panels, and baseball bats. Each application may require different combinations of reinforcements and matrices, which make the manufacturing safety even more challenging while working on these substances. In this study, safety issues in composite manufacturing and machining were investigated in detail, and latest developments were provided for workers. The materials most frequently used in composite manufacturing, such as matrix (polyester, vinylester, phenolic, epoxies, methyl ethyl ketone peroxide, benzoil peroxide, hardeners, and solvents), and reinforcement materials (carbon, glass and Kevlar fibers, honeycomb and foams) can be highly toxic to human body. These materials can also be very toxic to the environment when dumped out uncontrollably, creating major future health and environmental concerns. Throughout the manufacturing process, workers inhale vapors of the liquid matrix, hardeners and solvents / thinners, as well as reinforcement materials (chopped fibers and particles) in airborne. Milling, cutting and machining of the composites can further increase the toxic inhalations of airborne composite particles, resulting in major rashes, irritation, skin disorders, coughing, severe eye and lung injury and other serious illnesses. The major portions of these hazardous materials can be controlled using appropriate personal protective equipment for the chemicals and materials used in composite manufacturing and machining. This study provides best possible safety practices utilized in composite manufacturing facilities for workers, engineers and other participants.

  12. [Fusion implants of carbon fiber reinforced plastic].

    Science.gov (United States)

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  13. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    Science.gov (United States)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  14. Northwest Manufacturing Initiative

    Science.gov (United States)

    2014-07-31

    biodegradable wipes, and bags. The gStyle clothing line consists of various types of stylish clothes for babies. All gDiapers are plastic free...offers recycling services for industrial plastics and non-serviceable containers. Industrial plastics include pails, buckets, pallets, plastic film, and...manufacturer, now recycle used soda bottles, unusable second quality fabrics and worn out garments into polyester fibers to produce many of their clothes

  15. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  16. Additive manufacturing with polypropylene microfibers.

    Science.gov (United States)

    Haigh, Jodie N; Dargaville, Tim R; Dalton, Paul D

    2017-08-01

    The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2μm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged. Copyright © 2017. Published by Elsevier B.V.

  17. An exploration in mineral supply chain mapping using tantalum as an example

    Science.gov (United States)

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  18. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  19. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  20. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    Science.gov (United States)

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  1. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  2. Australian mineral industry annual review for 1986

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This volume of the Australian Mineral Industry Annual Review records the development and performance of the industry during the calendar year 1986. It reports production, consumption, treatment, trade, prices, new developments, exploration, and resources for mineral commodities including fuels, and summarises equivalent developments abroad. Part 1, 'General Review', after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole. Part 2, 'Commodity Review', covers individual mineral commodities and commodity groups including brown coal, black coal and peat. Part 3, 'Mining Census', tabulates statistics extracted from the Mining Census, together with some mineral processing statistics from the Manufacturing Census. Part 4, tabulates quantity and value data on mineral output provided by the State departments of mines and their equivalents. The commodity review of black coal has been abstracted separately.

  3. Design of control system for optical fiber drawing machine driven by double motor

    Science.gov (United States)

    Yu, Yue Chen; Bo, Yu Ming; Wang, Jun

    2018-01-01

    Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.

  4. Fiber Optics Technician. Curriculum Research Project. Final Report.

    Science.gov (United States)

    Whittington, Herschel K.

    A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After…

  5. Properties of SBS and sisal fiber composites: ecological material for shoe manufacturing

    Directory of Open Access Journals (Sweden)

    José Carlos Krause de Verney

    2008-12-01

    Full Text Available The worldwide trend toward using cheap, atoxic and durable materials from renewable resources contributes to sustainable development. Thus, the investigation of the potential use of vegetal fibers as reinforcing agent in polymeric composites has gained new significance. Sisal fiber has emerged as a reinforcing material for polymers used in automobile, footwear and civil industries. In this work, properties such as hardness, tensile strength and tear strength of polymer composites composed by block copolymer styrene-butadiene-styrene (SBS and 5, 10 and 20% by weight of sisal fiber were evaluated. The influence of conventional polymer processing techniques such as single-screw and double-screw extrusion, as well as the addition of coupling agent on the composite mechanical performance was investigated. Also, the morphology and thermal stability of the composites were analyzed. The addition of 2 wt. (% maleic anhydride as coupling agent between sisal fiber and SBS has improved the composite mechanical performance and the processing in a double-screw extruder has favored the sisal fiber distribution in the SBS matrix.

  6. Integrated Design and Analysis Tools for Reduced Weight, Affordable Fiber Steered Composites

    National Research Council Canada - National Science Library

    Hale, Richard

    2004-01-01

    This report describes geometric design tools which encompass the overall process flow for fiber placed and fiber steered structures, to allow parallel considerations for manufacturability and mechanical performance...

  7. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  8. Comparison of Composites Properties Manufactured by Vacuum Process and Autoclave Process

    Directory of Open Access Journals (Sweden)

    MA Rufei

    2017-01-01

    Full Text Available Two kinds of prepregs ZT7G/LT-03A(unidirectional carbon fiber prepreg and ZT7G3198P/LT-03A(plain carbon fabric prepreg were used to manufacture three Bateches of composites by vacuum process and autoclave process respectively. The physical properties of the prepregs and mechanical properties of composite were tested. The performance, fiber volume content and porosity of composites manufactured by vacuum cure and autoclave process show that the physical property retention rates of vacuum cured composites are all over 75%, some even more than 100%. Interlaminar shear strength keeps the lowest retention rate and warp tensile strength keeps the highest retention in unidirectional carbon fiber composites. For fabric composite material, compression strength keeps the lowest and warp tensile strength keeps the highest retention. Vacuum cured composites perform lower fiber volume content and higher porosity, which are the main reasons of the lower performance.

  9. The use of lasers in manufacturing

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of a conference on the use of lasers in manufacturing, topics covered include: An introduction to industrial lasers; Production laser hardening for aerospace; The role of fiber optics in laser material processing; and Light-material interactions in laser material processing

  10. Bio-reinforced composite development for additive manufacturing: Nanocellulose-PLA

    Energy Technology Data Exchange (ETDEWEB)

    Tekinalp, Halil L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lu, Yuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ozcan, Soydan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Additive manufacturing (AM) is transitioning from being only a prototyping method towards becoming a manufacturing technique for the quick production of parts with complex geometries. For the complete realization of this transition, the mechanical properties of the printed parts have to meet the requirements of actual load-bearing structural components. Integration of a reinforcing second phase into a polymer is a viable approach for the improvement of resins mechanical performance. Addition of carbon fibers into acrylonitrile-butadiene-styrene (ABS) has already been shown to improve its mechanical properties compared to the neat ABS resin (both additively manufactured), and led to the manufacture of world s first 3D-printed car. However, both ABS resin and carbon fibers are petroleum-based products, and there is a continuous search for alternative, bio-sourced, renewable materials as a feedstock for manufacturing. Towards this direction, we have investigated the potential of cellulose nanofibril-reinforced polylactic acid (PLA) resin systems as an alternative. CNF-PLA composite systems with up to 40 wt% CNF loadings were prepared via compression molding technique and tested. Significant improvements in both tensile strength (80%) and elastic modulus (128%) were observed. Filaments prepared from the same compositions were also successfully 3D-printed into tensile testing specimens with up to 30% CNF concentrations, and showed similar improvements in mechanical performance. Although CNFs were not individually dispersed in PLA matrix, they were observed to be well blended with the polymer based on SEM micrographs. In summary, preparation and 3D-printing of a 100% bio-based feedstock material with the mechanical properties comparable to the carbon fiber-ABS system was successfully demonstrated that it can open up new window of opportunities in the additive manufacturing industry. Acknowledgement Research sponsored by the U.S. Department of Energy, Office of Energy

  11. Wettability of nano-epoxies to UHMWPE fibers.

    Science.gov (United States)

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  12. Development of self-sensing BFRP bars with distributed optic fiber sensors

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  13. Advanced stabilization of PAN fibers for fabrication of carbon fibers by e-beam irradiation

    International Nuclear Information System (INIS)

    Jeun, Joon Pyo; Kim, Du Young; Shin, Hye Kyoung; Kang, Phil Hyun; Park, Jung Ki

    2012-01-01

    In recent years, the carbon fiber industry has been growing rapidly to meet the demand from efferent industries such as aerospace, military, turbine blades, light weight cylinders and pressure vessels. Generally, carbon fibers are manufactured by a controlled pyrolysis of stabilized precursor fiber such as polyacrylonitrile (PAN). In the stabilization step, the linear PAN molecules are first converted to cyclic structure. However, cyclization is a very complicated process and there are still differences of opinion on the reaction mechanisms. Photo-induced crosslinking and stabilization of PAN via ion beam, X-ray, gamma ray and UV irradiation has been reported in the literature. However, the process required a long stabilization time. In this work, a new and highly effective method of pretreatment PAN precursor fiber was described. The effect of the e-beam on the stabilization process of the fibers was investigated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD) measurement

  14. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    Science.gov (United States)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  15. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  16. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  17. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  18. Australian mineral industry annual review for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Australian mineral industry annual review records the activities and development of the Australian mineral industry and reports production, consumption, treatment, trade, prices, new developments, exploration and resources for mineral commodities including fuels, and summarises equivalent developments abroad. The present volume reviews activities and developments in 1982. Part 1 (General Review) - after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole, under the headings: the industry in the national economy; important recent developments; production; overseas trade; prices; exploration expenditure; investment; income tax; royalties; structural data; wages and salaries; industrial disputes; and government assistance, legislation and controls. Part 2 (Commodity Review) - covers industrial mineral commodities, from abrasives to zirconium. Part 3 (Mining Census) - tabulates statistics extracted from the mining census, together with some mineral processing statistics from the manufacturing census. Part 4 (Miscellaneous) - tabulates quantum and value data on mineral output provided by State departments of mines and their equivalents.

  19. Business as usual? Results of Global Continuous Miner and Bolter Miner Census 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Arne K. [RWTH Aachen (DE). Excavation and Mining Equipment Group (BGMR); E.ON Kraftwerke GmbH, Hannover (Germany); Nienhaus, Karl; Dangela, Manuel [RWTH Aachen (DE). Excavation and Mining Equipment Group (BGMR)

    2009-08-27

    The Global Continuous Miner and Bolter Miner Census 2008 conducted by the Excavation and Mining Equipment Group (BGMR), RWTH Aachen, identified globally the 1,400 CM production units and about 200 Bolter Miners are mainly employed in coal mining operations. The study identified a number of relevant trends of interest to both mining companies as well as original equipment manufacturers (OEM). E.g. new markets like China, India or Russia are not developing as quickly as expected, the large CM and BM nations like US, South Africa and Australia will remain saturated and the annual replacement rate of new machines will stabilize at some 160 units. Other key findings highlight the growing importance of after sales services and a stronger focus on automation, as well as, aspects of Health, Safety and Environment (HSE). (orig.)

  20. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  1. The Economics of Big Area Addtiive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Laboratory (ORNL); Lloyd, Peter D [ORNL; Lindahl, John [Oak Ridge National Laboratory (ORNL); Lind, Randall F [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  2. Prediction of the Fiber Orientation State and the Resulting Structural and Thermal Properties of Fiber Reinforced Additive Manufactured Composites Fabricated Using the Big Area Additive Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Timothy Russell

    2018-04-01

    Full Text Available Recent advances in Fused Filament Fabrication (FFF include large material deposition rates and the addition of chopped carbon fibers to the filament feedstock. During processing, the flow field within the polymer melt orients the fiber suspension, which is important to quantify as the underlying fiber orientation influences the mechanical and thermal properties. This paper investigates the correlation between processing conditions and the resulting locally varying thermal-structural properties that dictate both the final part performance and part dimensionality. The flow domain includes both the confined and unconfined flow indicative of the extruder nozzle within the FFF deposition process. The resulting orientation is obtained through two different isotropic rotary diffusion models, the model by Folgar and Tucker and that of Wang et al., and a comparison is made to demonstrate the sensitivity of the deposited bead’s spatially varying orientation as well as the final processed part’s thermal-structural performance. The results indicate the sensitivity of the final part behavior is quite sensitive to the choice of the slowness parameter in the Wang et al. model. Results also show the need, albeit less than that of the choice of fiber interaction model, to include the extrudate swell and deposition within the flow domain.

  3. Review of refractory ceramic fiber (RCF) toxicity, epidemiology and occupational exposure.

    Science.gov (United States)

    Maxim, L Daniel; Utell, Mark J

    2018-02-01

    This literature review on refractory ceramic fibers (RCF) summarizes relevant information on manufacturing, processing, applications, occupational exposure, toxicology and epidemiology studies. Rodent toxicology studies conducted in the 1980s showed that RCF caused fibrosis, lung cancer and mesothelioma. Interpretation of these studies was difficult for various reasons (e.g. overload in chronic inhalation bioassays), but spurred the development of a comprehensive product stewardship program under EPA and later OSHA oversight. Epidemiology studies (both morbidity and mortality) were undertaken to learn more about possible health effects resulting from occupational exposure. No chronic animal bioassay studies on RCF have been conducted since the 1980s. The results of the ongoing epidemiology studies confirm that occupational exposure to RCF is associated with the development of pleural plaques and minor decrements in lung function, but no interstitial fibrosis or incremental lung cancer. Evidence supporting a finding that urinary tumors are associated with RCF exposure remains, but is weaker. One reported, but unconfirmed, mesothelioma was found in an individual with prior occupational asbestos exposure. An elevated SMR for leukemia was found, but was absent in the highly exposed group and has not been observed in studies of other mineral fibers. The industry will continue the product stewardship program including the mortality study.

  4. Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Mone, Christopher; Chung, Donald; Elgqvist, Emma; Das, Sujit; Mann, Margaret; Gossett, Scott

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber. This booklet summarizes key findings of CEMAC work to date, describes CEMAC's research methodology, and describes work to come.

  5. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  6. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    Science.gov (United States)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  7. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    Science.gov (United States)

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  8. Method of manufacturing neutron protecting materials

    Energy Technology Data Exchange (ETDEWEB)

    Kakibana, Hidetake; Okamoto, Masazane; Fujii, Yasuhiko; Koguchi, Noboru; Takesute, Morihito; Miyamatsu, Tokuhisa

    1985-06-03

    Purpose: To manufacture neutron protecting materials which are highly flexible and can be shaped with ease at a good workability. Method: In this invention, natural lithium, natural boron such as Li-6 or B-10 or enriched isotope thereof with a great neutron absorption cross section is fixed to fibers. As a specific example, lumps of copolymer fibers are fabricated into weave sheets in a carding machine and applied with needle punching to prepare felt-like products. They are conditioned to OH or H type, which are respectively immersed in saturated aqueous boric acid or 1M-aqueous solution of lithium hydroxide and then dewatered and dried. As a result, boric acid type anion exchange fibers and lithium type cation exchange fibers can be obtained from the former and the latter respectively. In this way, blankets or cloths which are light in weight, flexible and have high neutron absorbing performance can be shaped. They are also in good fitting contact to a human body. (Kamimura, M.).

  9. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  10. Life-Cycle environmental impact assessment of mineral industries

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  11. Australian mineral industry annual review for 1984

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This volume of the Australian Mineral Industry Annual Review records development and performance of the Australian mineral industry during the calendar year 1984. It reports production, consumption, treatment, trade, prices, new developments, exploration, and resources for mineral commodities including fuels, and summarises equivalent developments abroad. Part 1. 'general review' after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole, under the headings: the industry in the national economy, prices, exploration expenditure, investment, income tax, royalties, structural data, wages and salaries, industrial disputes, and government assistance, legislation, and controls. Part 2. 'commodity review' covers individual mineral commodity groups, from abrasives to zirconium. Part 3, 'mining census', tabulates statistics extracted from the mining census, together with some mineral processing statistics from the manufacturing census. Part 4 tabulates quantity and value data on mineral output provided by state departments of mines and their equivalents. Listed in appendices are: principal mineral producers; ore buyers and mineral dealers; government mining services; analytical laboratories; state mines departments and equivalents; industry, professional and development organisations and associations, etc; summary of mineral royalties payable in the states and territories; and summary of income tax provisions and federal government levies.

  12. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Jon [Fiberlean Technologies; Ireland, Sean [Fiberlean Technologies; Skuse, David [Imerys; Edwards, Martha [Imerys; Mclain, Leslie [Imerys; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Ozcan, Soydan [ORNL

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  13. Production environment in mineral water plants; Mineral water kojo no seisan kankyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimatsu, A. [Morinaga Engineering Company, Tokyo (Japan)

    1996-01-05

    This paper summarizes mineral waters as commercial products, and the manufacturing facilities thereof. The most widely used pattern of packaging mineral waters is to use either PET bottle or back-in box. The manufacturing process consists generally of: rough filtration of natural water, storage, activated carbon filtration, filtration, sterilization, ultrafine filtration, warm water bottling, capping, cooling, cartoning, storage, and shipment. The rough filtration removes sands. The activated carbon filtration removes water soluble organics. The sterilization is carried out under conditions of retaining the water at 75{degree}C for 15 seconds or retaining at 120 to 140{degree}C for 2 seconds. The ultrafine filtration uses a ceramic filter with a thickness of 0.2{mu}m. Sterilizing harmful microorganisms uses heating operation and filters to remove bacteria. An example may be cited that uses a bio-clean room for the purpose of controlling the harmful microorganisms. Subject microorganisms include a variety of viruses, rickettsia, bacteria, and fungi. The super-high performance (HEPA) filter used in the sterilization is demanded of collecting dusts with sizes of 0.3{mu}m or larger at a collection efficiency of 99.97% or higher. 3 refs., 4 figs., 1 tab.

  14. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  15. Application of silicone based elastomers for manufacturing of Green Fiber Bottle

    DEFF Research Database (Denmark)

    Saxena, Prateek; Bissacco, Giuliano

    2017-01-01

    -stageprocess, where the wood fibers are first thermoformed in the desired shape followed by drying of theformed geometry [2]. To ensure the robustness of the bottle and to avoid shrinkage of cellulose fibers,the wet-formed bottle is pressurized using a silicone core. The core is inserted inside the drying tooland......). To simulate the inflation action of the core, Yeoh’s model is used for modelling of W. Thestrength of the GFB is correlated with the pressure the bottle can hold and the cut off burst pressurefrom experiments is also reported in this work....

  16. Pretreatment of hemp fibers for utilization in strong biocomposite materials

    DEFF Research Database (Denmark)

    Liu, Ming

    Hemp is the common name for Cannabis sativa cultivated for industrial use. Compared to synthetic fibers (e.g. glass fiber), hemp fibers have many advantages such as low cost, low density (1.5 g/cm3) and high specific strength and stiffness. As a result of increasing environmental awareness......, interest in hemp fiber reinforced composites is increasing because of a high potential of manufacturing hemp fiber reinforced polymer composites with acceptable mechanical properties at low cost. In order to expedite the application of natural fibers in polymer composites, hemp fibers need to be treated...... before being incorporated in matrix polymers to optimize the properties of fibers and fiber reinforced composites. The overall objective of this study was therefore to focus on understanding the correlation between chemical composition and morphology of hemp fibers and mechanical properties of hemp...

  17. All-fiber, long-active-length Fabry-Perot strain sensor.

    Science.gov (United States)

    Pevec, Simon; Donlagic, Denis

    2011-08-01

    This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

  18. Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

    OpenAIRE

    Kyoungjin Kim

    2011-01-01

    Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while ...

  19. Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium

    Science.gov (United States)

    Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.

    2017-03-01

    A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.

  20. Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility.

    Science.gov (United States)

    Faulkner, M J; Weiss, W P

    2017-07-01

    Excess rumen-soluble Cu and Zn can alter rumen microbial populations and reduce fiber digestibility. Because of differences in particle size and chemical composition, ruminal and total-tract digestibility of fiber from forage- and by-product-based diets can differ. We hypothesized that, because of differences in mineral solubility, diets with hydroxy rather than sulfate trace minerals would have greater fiber digestibility, but the effect may depend on source of fiber. Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of Cu, Zn, and Mn source (sulfates or hydroxy; Micronutrients USA LLC, Indianapolis, IN) and neutral detergent fiber (NDF) source (forage diet = 26% NDF vs. by-product = 36%) on total-tract nutrient digestibility. During the entire experiment (56 d) cows remained on the same fiber treatment, but source of supplemental trace mineral was different for each 28-d period so that all cows were exposed to both mineral treatments. During each of the two 28-d periods, cows were fed no supplemental Cu, Zn, or Mn for 16 d followed by 12 d of feeding supplemental Cu, Zn, and Mn from either sulfates or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total dietary concentrations of Cu, Zn, and Mn were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 mg/kg for the by-product diets, respectively. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Milk fatty acid profiles were altered by fiber source, mineral source, and their interaction. Cows fed the by-product diets had lower dry matter (65.9 vs. 70.2%), organic matter (67.4 vs. 71.7%), and crude protein digestibility (58.8 vs. 62.1%) but greater starch (97.5 vs. 96.3%) and NDF digestibility (50.5 vs. 44.4%) compared with cows fed the

  1. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  2. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  3. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  4. Manufacture and impact analysis of bmx helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber

    Science.gov (United States)

    Mahadi

    2018-02-01

    Helmets are protective head gears wear by bicycle riders for protection against injury in case of the accident. Helmet standards require helmets to be tested with a simple drop test onto an anvil. The purpose of research is to know toughness of bicycle helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber. This research contains report result manufacture and impacts analysis of bicycle helmet made from polymeric foam composite materials strengthened by oil palm empty fruit bunch fiber (EFB). The geometric helmet structure consists of shell and liner; both layers have sandwich structure. The shell uses matrix unsaturated Polyester BQTN-157EX material, chopped strand mat 300 glass fiber reinforce and methyl ethyl ketone peroxide (MEKPO) catalyst with the weight composition of 100 gr, 15 gr, and 5 gr. The liner uses matrix unsaturated Polyester BQTN-157 EX material, EFB fiber reinforces, Polyurethane blowing agent, and MEKPO catalyst with the composition of 275 gr (50%), 27.5 gr (5%), 247 gr (45%), and 27.5 gr (5%). Layers of the helmet made by using hand lay-up method and gravity casting method. Mechanical properties of polymeric foam were the tensile strength (ơt) 1.17 Mpa, compressive strength (ơc) 0.51 MPa, bending strength (ơb) 3.94 MPa, elasticity modulus (E) 37.97 Mpa, density (ρ) 193 (kg/m3). M4A model helmet is the most ergonomic with the thickness 10 mm and the amount of air channel 11. Free fall impact test was done in 9 samples with the thickness of 10 mm with the height of 1.5 m. The result of the impact test was impacted force (Fi) 241.55 N, Impulse (I) 6.28 Ns, impact Strength (ơi) 2.02 Mpa and impact Energy (Ei) 283.77 Joule. The properties of bicycle helmet model BMX-M4A type was 264 mm length, 184 mm width, 154 mm height, 10 mm thick, 580 mm head circle, 331 g mass and 11 wind channels.

  5. Handbook of fiber optic data communication a practical guide to optical networking

    CERN Document Server

    DeCusatis, Casimer

    2008-01-01

    The third edition of this Handbook provides a comprehensive, easy to use guide to the field of optical fiber data communications. Written by experts in the industry from major companies such as IBM, Cisco and Nortel, the Handbook is a key reference for optical fiber technology, networking, protocols, applications, manufacturing, and future directions. It includes chapters on all the major industry standards, written by the same experts who developed them.This edition contains new material on transceiver form factors (QSFP, SFP +, XFP, X2), manufacturing standards, including JEDEC and R

  6. Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers

    Science.gov (United States)

    Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas

    2017-07-01

    In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.

  7. Manufacture of EAST VS In-Vessel Coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Du, Shijun; Jin, Huan; Yu, Min; Han, Qiyang; Wan, Jiansheng; Liu, Bin; Qiao, Jingchun; Liu, Xiaochuan; Li, Chang; Cai, Denggang; Tong, Yunhua

    2013-01-01

    Highlights: • ITER like Stainless Steel Mineral Insulation Conductor (SSMIC) used for EAST Tokamak VS In-Vessel Coil manufacture first time. • Research on SSMIC fabrication was introduced in detail. • Two sets totally four single-turn VS coils were manufactured and installed in place symmetrically above and below the mid-plane in the vacuum vessel of EAST. • The manufacture and inspection of the EAST VS coil especially the joint for the SSMIC connection was described in detail. • The insulation resistances of all the VS coils have no significant reduction after endurance test. -- Abstract: In the ongoing latest update round of EAST (Experimental Advanced Superconducting Tokamak), two sets of two single-turn Vertical Stabilization (VS) coils were manufactured and installed symmetrically above and below the mid-plane in the vacuum vessel of EAST. The Stainless Steel Mineral Insulated Conductor (SSMIC) developed for ITER In-Vessel Coils (IVCs) in Institute of Plasma Physics, Chinese Academy of Science (ASIPP) was used for the EAST VS coils manufacture. Each turn poloidal field VS coil includes three internal joints in the vacuum vessel. The middle joint connects two pieces of conductor which together form an R2.3 m arc segment inside the vacuum vessel. The other two joints connect the arc segment with the two feeders near the port along the toroidal direction to bear lower electromagnetic loads during operation. Main processes and tests include material performances checking, conductor fabrication, joint connection and testing, coil forming, insulation performances measurement were described herein

  8. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor

    2016-01-01

    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  9. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  11. Additive Manufacturing of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  12. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  13. Damage Evaluation and Analysis of Composite Pressure Vessels Using Fiber Bragg Gratings to Determine Structural Health

    National Research Council Canada - National Science Library

    Kunzler, Marley; Udd, Eric; Kreger, Stephen; Johnson, Mont; Henrie, Vaughn

    2005-01-01

    .... Using fiber Bragg gratings embedded into the weave structure of carbon fiber epoxy composites allow the capability to monitor these composites during manufacture, cure, general aging, and damage...

  14. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [ORNL; Chesser, Phillip C. [ORNL; Lind, Randall F. [ORNL; Sallas, Matthew R. [ORNL; Love, Lonnie J. [ORNL

    2018-01-01

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. and the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.

  15. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method.

    Science.gov (United States)

    Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo

    2017-12-01

    In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Effects of Fiber Inclusion on Pet Food Sensory Characteristics and Palatability.

    Science.gov (United States)

    Koppel, Kadri; Monti, Mariana; Gibson, Michael; Alavi, Sajid; Donfrancesco, Brizio Di; Carciofi, Aulus Cavalieri

    2015-02-16

    The objectives of this study were to determine (a) the influence of fiber on the sensory characteristics of dry dog foods; (b) differences of coated and uncoated kibbles for aroma and flavor characteristics; (c) palatability of these dry dog foods; and (d) potential associations between palatability and sensory attributes. A total of eight fiber treatments were manufactured: a control (no fiber addition), guava fiber (3%, 6%, and 12%), sugar cane fiber (9%; large and small particle size), and wheat bran fiber (32%; large and small particle size). The results indicated significant effects of fibers on both flavor and texture properties of the samples. Bitter taste and iron and stale aftertaste were examples of flavor attributes that differed with treatment, with highest intensity observed for 12% guava fiber and small particle size sugar cane fiber treatments. Fracturability and initial crispness attributes were lowest for the sugar cane fiber treatments. Flavor of all treatments changed after coating with a palatant, increasing in toasted, brothy, and grainy attributes. The coating also had a masking effect on aroma attributes such as stale, flavor attributes such as iron and bitter taste, and appearance attributes such as porosity. Palatability testing results indicated that the control treatment was preferred over the sugar cane or the wheat bran treatment. The treatment with large sugarcane fiber particles was preferred over the treatment with small particles, while both of the wheat bran treatments were eaten at a similar level. Descriptive sensory analysis data, especially textural attributes, were useful in pinpointing the underlying characteristics and were considered to be reasons that may influence palatability of dog foods manufactured with inclusion of different fibers.

  17. 50.4% slope efficiency thulium-doped large-mode-area fiber laser fabricated by powder technology.

    Science.gov (United States)

    Darwich, Dia; Dauliat, Romain; Jamier, Raphaël; Benoit, Aurélien; Auguste, Jean-Louis; Grimm, Stephan; Kobelke, Jens; Schwuchow, Anka; Schuster, Kay; Roy, Philippe

    2016-01-15

    We report on a triple clad large-mode-area Tm-doped fiber laser with 18 μm core diameter manufactured for the first time by an alternative manufacturing process named REPUSIL. This reactive powder sinter material enables similar properties compared to conventional CVD-made fiber lasers, while offering the potential of producing larger and more uniform material. The fiber characterization in a laser configuration provides a slope efficiency of 47.7% at 20°C, and 50.4% at 0°C with 8 W output power, with a laser peak emission at 1970 nm. Finally, a beam quality near the diffraction-limit (M(x,y)2<1.1) is proved.

  18. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  19. NOVEL USE OF WASTE KERATIN AND COTTON LINTER FIBERS FOR PROTOTYPE TISSUE PAPERS AND THEIR EVALUATION

    Directory of Open Access Journals (Sweden)

    Bo Shi

    2010-05-01

    Full Text Available Corporate environmental sustainability calls for sustainable product manufacturing with less creation of waste material or increased reuse of waste materials. One example is the use of keratin fiber from the poultry industry and cotton linter from the textile industry for paper and tissue manufacturing. In this paper, the feasibility of using these waste fibers to make paper was demonstrated in handsheets. The properties of these handsheets were compared to the properties of handsheets made with standard bleached eucalyptus tropical hardwood fibers. A blend of cotton linter and keratin fibers at 80/20 and 60/40 ratios showed a 59% and 73% improvement in sheet bulk, respectively, compared to eucalyptus handsheets. Similarly, air permeability of the cotton / keratin fiber handsheets improved 414% and 336%, respectively, versus the eucalyptus. However, the tensile index of the cotton and keratin fiber blends was lower than the eucalyptus sheets. There was no remarkable difference in water absorbency up to 20% keratin fiber. Above 20% of keratin fibers the water absorbency started to decrease, which is likely attributable to the hydrophobic nature of the protein-based keratin fiber.

  20. Emerging Materials Technologies That Matter to Manufacturers

    Science.gov (United States)

    Misra, Ajay K.

    2015-01-01

    A brief overview of emerging materials technologies. Exploring the weight reduction benefit of replacing Carbon Fiber with Carbon Nanotube (CNT) in Polymer Composites. Review of the benign purification method developed for CNT sheets. The future of manufacturing will include the integration of computational material design and big data analytics, along with Nanomaterials as building blocks.

  1. Experimental study of optical fibers influence on composite

    Science.gov (United States)

    Liu, Rong-Mei; Liang, Da-Kai

    2010-03-01

    Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.

  2. Characterization and manufacture of braided composites for large commercial aircraft structures

    Science.gov (United States)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  3. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  4. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    Science.gov (United States)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  5. Development of a Fiber Laser Welding Equipment for the LVDT Manufacturing

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, C. Y.; Park, S. J.; Shin, Y. T.; Cho, M. S.; Choo, K. N.; Kim, B. G.; Kang, Y. H.

    2010-12-01

    The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. A LVDT(Linear Variable Differential Transformer) can be designed to measure the pressure level and elongation during the irradiation test by using various metals and MI cables. LVDT's parts were composed of MI cables and Inconel 600 materials. Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-welding using Fiber laser is one of the key technologies to be developed to fabricate precise products of fuel irradiation test. We also have to secure micro-welding technology to perform various instrumentations for fuel irradiation test. Micro-welding technology was adopted to seal between seal tubes and MI cables with thickness of 0.15 mm. The soundness of welding area has to be confirmed to prevent fission gas of the fuel from leaking out of the fuel rods during the fuel irradiation test. In this report, fundamental data for welding technology using Fiber laser was proposed to seal Inconel 600 sheaths of LVDT instrumented capsules for the irradiation test. Moreover, It is expected that the use of fuel irradiation tests will be revitalized by the self-development of LVDT's parts using the Fiber laser welding technology

  6. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    Science.gov (United States)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to

  7. Micro-Raman spectroscopy a powerful technique to identify crocidolite and erionite fibers in tissue sections

    Science.gov (United States)

    Rinaudo, C.; Croce, A.; Allegrina, M.; Baris, I. Y.; Dogan, A.; Powers, A.; Rivera, Z.; Bertino, P.; Yang, H.; Gaudino, G.; Carbone, M.

    2013-05-01

    Exposure to mineral fibers such asbestos and erionite is widely associated with the development of lung cancer and pleural malignant mesothelioma (MM). Pedigree and mineralogical studies indicated that genetics may influence mineral fiber carcinogenesis. Although dimensions strongly impact on the fiber carcinogenic potential, also the chemical composition and the fiber is relevant. By using micro-Raman spectroscopy we show here persistence and identification of different mineral phases, directly on histopathological specimens of mice and humans. Fibers of crocidolite asbestos and erionite of different geographic areas (Oregon, US and Cappadocia, Turkey) were injected in mice intra peritoneum. MM developed in 10/15 asbestos-treated mice after 5 months, and in 8-10/15 erionite-treated mice after 14 months. The persistence of the injected fibers was investigated in pancreas, liver, spleen and in the peritoneal tissue. The chemical identification of the different phases occurred in the peritoneal cavity or at the organ borders, while only rarely fibers were localized in the parenchyma. Raman patterns allow easily to recognize crocidolite and erionite fibers. Microscopic analysis revealed that crocidolite fibers were frequently coated by ferruginous material ("asbestos bodies"), whereas erionite fibers were always free from coatings. We also analyzed by micro-Raman spectroscopy lung tissues, both from MM patients of the Cappadocia, where a MM epidemic developed because of environmental exposure to erionite, and from Italian MM patients with occupational exposure to asbestos. Our findings demonstrate that micro-Raman spectroscopy is technique able to identify mineral phases directly on histopathology specimens, as routine tissue sections prepared for diagnostic purpose. REFERENCES A.U. Dogan, M. Dogan. Environ. Geochem. Health 2008, 30(4), 355. M. Carbone, S. Emri, A.U. Dogan, I. Steele, M. Tuncer, HI. Pass, et al. Nat. Rev. Cancer. 2007, 7 (2),147. M. Carbone, Y

  8. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); Roschger, Paul [4th Medical Department, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1140 Vienna (Austria); Schell, Hanna; Duda, Georg N, E-mail: fratzl@mpikg.mpg.d [Julius Wolff Institut and Center for Musculoskeletal Surgery, Charite- University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  9. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter; Roschger, Paul; Schell, Hanna; Duda, Georg N

    2010-01-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  10. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    International Nuclear Information System (INIS)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-01-01

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors

  11. Microfluidic Fabrication Solutions for Tailor-Designed Fiber Suspensions

    Directory of Open Access Journals (Sweden)

    Helene Berthet

    2016-11-01

    Full Text Available Fibers are widely used in different industrial processes, for example in paper manufacturing or lost circulation problems in the oil industry. Recently, interest towards the use of fibers at the microscale has grown, driven by research in bio-medical applications or drug delivery systems. Microfluidic systems are not only directly relevant for lab-on-chip applications, but have also proven to be good model systems to tackle fundamental questions about the flow of fiber suspensions. It has therefore become necessary to provide fiber-like particles with an excellent control of their properties. We present here two complementary in situ methods to fabricate controlled micro-fibers allowing for an embedded fabrication and flow-on-a-chip platform. The first one, based on a photo-lithography principle, can be used to make isolated fibers and dilute fiber suspensions at specific locations of interest inside a microchannel. The self-assembly property of super-paramagnetic colloids is the principle of the second fabrication method, which enables the fabrication of concentrated suspensions of more flexible fibers. We propose a flow gallery with several examples of fiber flow illustrating the two methods’ capabilities and a range of recent laminar flow results.

  12. 21 CFR 177.2800 - Textiles and textile fibers.

    Science.gov (United States)

    2010-04-01

    ... lauryl sulfate Sodium 2-mercaptobenzothiazole Do. Sodium pentachlorophenate Do. Styrene-butadiene... hydroquinone Dimethylpolysiloxane Ethylenediaminetetraacetic acid, sodium salt 4-Ethyl-4-hexadecyl morpholinium ethyl sulfate For use only as a lubricant in the manufacture of polyethylene terephthalate fibers...

  13. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curaua fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Patricia M. [Servico Nacional de Aprendizagem Industrial (CETEPO/SENAI/RS), Sao Leopoldo, RS (Brazil). Centro Tecnologico de Polimeros; Tedesco, Adriana [Braskem S. A., III Polo Petroquimico, Triunfo, RS (Brazil); Lenz, Denise M., E-mail: denise.lenz@gmail.com [Universidade Luterana do Brasil (ULBRA), Canoas, RS (Brazil). Programa de Pos-graduacao em Engenharia de Materiais e Processos Sustentaveis

    2014-03-15

    Composites of styrene-butadiene-styrene triblock copolymer (SBS) matrix with curauá fiber and/or a nanoparticulated mineral (montmorillonite clay - MMT) used as reinforcing agents were prepared by melt-mixing. The influence of clay addition on properties like tensile and tear strength, rebound resilience, flex fatigue life, abrasion loss, hardness and water absorption of composites with 5, 10 and 20 wt% of curauá fiber was evaluated in presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene triblock copolymer (MA-g-SEBS) coupling agent. Furthermore, the effect of mineral plasticizer loading on tensile strength of selected composites was investigated. The hybrid SBS composite that showed the best overall mechanical performance was composed by 2 wt% of MMT and 5 wt% of curauá fiber. Increasing fiber content up to 20 wt% resulted in a general decrease in all mechanical properties as well as incorporation of 5 wt% MMT caused a decrease in the tensile strength in all fiber contents. The hybrid composites showed clay agglomerates (tactoids) poorly dispersed that could explain the poor mechanical performance of composites at higher concentrations of curauá fiber and MMT nanoparticles. The addition of plasticizer further decreased the tensile strength while the addition of MMT nanoparticles decreased water absorption for all SBS composites. (author)

  14. Detection of mineral impurities in diatomite ores

    NARCIS (Netherlands)

    Guatame Garcia, L.A.; Buxton, M.W.N.; Fiore, Saverio

    2017-01-01

    Diatomaceous Earth (DE) is commonly used in the industry for the manufacturing of filters, where diatomite is preferred due to its low chemical reactivity and high porosity. Diatomite deposits with major amounts of mineral impurities, such as carbonates, present a problem in the production DE. In

  15. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2008-12-01

    Full Text Available Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method was proved considering to the sensitivity improvement.

  16. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  17. Efficient technical solution for recycling textile materials by manufacturing nonwoven geotextiles

    Science.gov (United States)

    Leon, A. L.; Potop, G. L.; Hristian, L.; Manea, L. R.

    2016-08-01

    This paper aims to support the concept "circular economy" that was developed recently. It presents an efficient method for creating a closed loop in the Romanian textile industry by recycling textile materials, such as polyacrylonitrile knitted old products (collected from population) and small polyester woven patches from pre-consumer waste (garments manufacturing companies). Because of their properties, nonwoven geotextiles have many advantages in railways reinforcement, slopes stabilization, erosion control, drainage, filtration, paving roads, crops coverings, etc. The nonwoven geotextiles were obtained from three fibrous blends based on recovered fibers (PES and PAN) and fibers at first usage (PP) in different ratios. All experimental variants were processed on the same manufacturing line with the same technological parameters. There were tested the main physical and mechanical parameters and it was applied single factor ANOVA method for thickness, bulk density, air permeability and static puncture strength. The conclusion is that adding PP fibers in the blends represents a very important factor for geotextiles characteristics but it possible to decrease the ratio from economical reasons and still maintain a high quality level of nonwovens.

  18. Design and manufacture of a lightweight piezo-composite curved actuator

    Science.gov (United States)

    Yoon, K. Joon; Shin, Seokjun; Park, Hoon C.; Goo, Nam Seo

    2002-02-01

    In this paper we are concerned with the design, manufacture and performance test of a lightweight piezo-composite curved actuator (called LIPCA) using a top carbon fiber composite layer with near-zero coefficient of thermal expansion (CTE), a middle PZT ceramic wafer, and a bottom glass/epoxy layer with a high CTE. The main point of the design for LIPCA is to replace the heavy metal layers of THUNDERTM by lightweight fiber reinforced plastic layers without losing the capabilities for generating high force and large displacement. It is possible to save up to about 40% of the weight if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use an epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a carbon prepreg were simply stacked and cured at an elevated temperature (177 °C) after following an autoclave bagging process. We found that the manufactured composite laminate device had a sufficient curvature after being detached from a flat mould. An analysis method using the classical lamination theory is presented to predict the curvature of LIPCA after curing at an elevated temperature. The predicted curvatures are in quite good agreement with the experimental values. In order to investigate the merits of LIPCA, performance tests of both LIPCA and THUNDERTM have been conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERTM.

  19. Bragg Grating Based Sensors in Microstructured Polymer Optical Fibers: Accelerometers and Microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio

    With the growing interest towards fiber Bragg grating sensors and the growing ability in manufacturing polymer optical fibers, the development of polymer fiber Bragg sensors has catched the attention of industries with the goal of developing high performance sensors. This thesis presents...... and in microstructured fibers made of PMMA and TOPAS is reported. The gratings have been written at both 1550 nm, to take advantage of components made for telecommunications, and 850 nm, to exploit the lower loss of polymers and the fast acquisition electronics at this wavelength. A technique for writing multiplexed...

  20. Fabricating continuous electroconductive polyacrylonitrile fibers with thermosensitive property via wet-spinning

    Science.gov (United States)

    Liu, Wanwan; Jin, Yang; Wang, Yangyi; Ge, Mingqiao; Gao, Qiang

    2017-12-01

    In this work, conductive polyacrylonitrile (PAN) composite fiber with thermosensitive property was successfully prepared via wet-spinning. Thermochromic pigment (TCP) microsphere capsules were applied to manufacture color-changing fibers. Meanwhile, light-colored conductive whiskers (ATO@TiO2) were employed to endow polyacrylonitrile fibers with conductivity without prejudicing their thermosensitive property. Interestingly, unlike other conductive fibers in dark color, this kind of conductive composite fiber can be dyed by thermosensitive pigment. The obtained composite fiber containing 20 vol% ATO@TiO2 whiskers shows a resistivity of 105 Ω · cm and could generate heat by Joule heating when being applied under a certain voltage. The composite fiber shows a red color at room temperature, while the color of the composite fiber fades gradually and finally becomes white as temperature rise. This simple and cost-effective approach is expected to inspire more research into the applications of multifunctional conductive fibers.

  1. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  2. Studies on the preparation of value-added products for industrial minerals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report consists of 2 subjects. 1) Studies on the preparation of value-added products for limestone: This study has investigated to raise to high grade by economical processes with low grade of domestic limestone. We investigated the status of application utilize and related industries with the domestic limestone, and then being consideration with condition selected the adequate sample from Andong, Jungsun and Kumsan area. Magnetic materials were involved in impurities of sample, so magnetic separation method was applied in elimination of the ferro- and para-magnetic materials, such as chlorite, muscovite, quartz, dolomite, magnetite, feldspar and so on. Investigation of flotation was undertaken to eliminate impurities from limestone crude ore and the tests were performed to get a optimum condition adding oleic acid as a promoter, sodium silicate and sodium carbonate as a conditioning agents and MIBC as a frother, while to float the sulfide minerals added amyl xanthate as a promoter, and sulfuric acid as a pH regulator. Selective crushing and classification methods were performed to eliminate impurities depends on the mineral properties and should be the selective crushing methods are very useful at the manufacturing factory of heavy calcium carbonate with the dry milling system. 2) A study on development of value added technology of pyrophyllite and dickite: Pyrophyllite and dickite have being utilized as refractories, ceramics, cement, fiber glass, paper, rubber, paints etc. However, there are not any domestic companies to produce fillers of pyrophyllite and dickite for plastic and rubber. Moreover, several kinds of fillers are imported every year with expensive price for plastic and rubber filler. This study has purpose to develop manufacturing technologies to produce fillers for plastic and rubber of pyrophyllite and dickite. The chemical and mineralogical properties of samples, the optimum grinding condition and device for producing plastic fillers and

  3. 7 CFR 1755.200 - RUS standard for splicing copper and fiber optic cables.

    Science.gov (United States)

    2010-01-01

    ... instructions concerning pulling tension and bending radius shall be observed. Unless the cable manufacturer's... will have to be replaced; (ii) The cable manufacturer's recommendations concerning pulling tension shall be observed. The maximum pulling tension for most fiber optic cable is 2669 newtons (600 pound...

  4. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  5. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2015-01-01

    A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  6. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    Science.gov (United States)

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  7. Prepreg effects on honeycomb composite manufacturing

    Science.gov (United States)

    Martin, Cary Joseph

    Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.

  8. POINT-BY-POINT INSCRIPTION OF FIBER BRAGG GRATINGS INTO BIREFRINGENT OPTICAL FIBER THROUGH PROTECTIVE ACRYLATE COATING BY TI:SA FEMTOSECOND LASER

    Directory of Open Access Journals (Sweden)

    S. V. Arkhipov,

    2016-05-01

    Full Text Available The paper deals withpoint-by-point inscriptionof fiber Bragg gratings by the 800 nm Ti:Sa femtosecond laser pulses into a unique birefringent fiber with elliptical stress cladding of home manufacture. The proposed inscriptionmethod has advantages over the conventional phase mask method. The possibility to create complex grating structures and relatively high transparency of acrylate coating to the Ti:Sa femtosecond laser radiation of 800 nm gives the possibility for inscriptionof phase shifting gratings, chirped grating and superstructures without stripping the fiber. Also, this method makes it possible to inscribethese diffractive structures with and without co-doping of GeO2 in the fiber core. Achieved reflectance was 10%. The microscopic image of the diffractive structure in the fiber core is presented. The grating of 1.07 µm is realized by pulling the fiber with constant speed while the laser pulses are applied with a repetition frequency of 1 kHz. The results are usable in the sphere of creation of different fiber optic sensitive elements based on Bragg gratings.

  9. Proximate composition and mineral profile of eight different ...

    African Journals Online (AJOL)

    ... eight different sun dried date varieties; (1) Daki, (2) Aseel, (3) Coconut, (4) Khuzravi, (5) Halavi, (6) Zahidi, (7) Deglet Noor and (8) Barkavi were examined to determine their proximate composition and mineral profile. All the date varieties were found to be rich in proteins, fiber, carbohydrates and net gross energy (352.329 ...

  10. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  11. Carbon Footprint Estimation in Fiber Optics Industry: A Case Study of OFS Fitel, LLC

    Directory of Open Access Journals (Sweden)

    Suresh Inakollu

    2017-05-01

    Full Text Available Detailed carbon footprinting assignments have been on the rise in more and more major manufacturing industries. The main strength of carbon footprinting is to make product manufacturers aware of carbon emissions and understand its meaning due to perceived global warming effects. Carbon foot-printing through life-cycle assessment in conjunction with greenhouse gas (GHG accounting is essential for identifying opportunities for environmental efficiencies. Case studies of goods that require more complex production elements have also been increasing, like optical fiber manufacturing. From making ultra-pure glass rods to elongating hot fibers, the whole process involves using a high volume of chemicals and extensive energy. Hence, standard numbers addressing carbon footprinting specifically for fiber optics is helpful for the quantification of greenhouse gas intensity, mitigation of global warming, and adaptation against future climate change scenarios. This paper calculates and helps standardize the emission factor for the production of optical fiber from the scope of gate-to-gate: 4.81 tonnes CO2eq per million meters of produced fiber (which is 72.92 kg CO2eq per kg of produced fiber in order to allow other industries to use this information in their own carbon footprint calculations. Since governmental regulatory agencies have largely failed to confront the risks associated with climate change borne by industries, it is essential for all industries to disclose their emissions in a standardized and comparable form in order to develop standard guidelines for all. This paper provides a practical life-cycle approach, concludes with requirements for further research and evaluation.

  12. [INVITED] Tilted fiber grating mechanical and biochemical sensors

    Science.gov (United States)

    Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-04-01

    The tilted fiber Bragg grating (TFBG) is a new kind of fiber-optic sensor that possesses all the advantages of well-established Bragg grating technology in addition to being able to excite cladding modes resonantly. This device opens up a multitude of opportunities for single-point sensing in hard-to-reach spaces with very controllable cross-sensitivities, absolute and relative measurements of various parameters, and an extreme sensitivity to materials external to the fiber without requiring the fiber to be etched or tapered. Over the past five years, our research group has been developing multimodal fiber-optic sensors based on TFBG in various shapes and forms, always keeping the device itself simple to fabricate and compatible with low-cost manufacturing. This paper presents a brief review of the principle, fabrication, characterization, and implementation of TFBGs, followed by our progress in TFBG sensors for mechanical and biochemical applications, including one-dimensional TFBG vibroscopes, accelerometers and micro-displacement sensors; two-dimensional TFBG vector vibroscopes and vector rotation sensors; reflective TFBG refractometers with in-fiber and fiber-to-fiber configurations; polarimetric and plasmonic TFBG biochemical sensors for in-situ detection of cell, protein and glucose.

  13. Radiation resistivity of quartz core fiber, 3

    International Nuclear Information System (INIS)

    Gozen, Toshikazu; Suzuki, Toshiya; Hayashi, Tokuji; Tanaka, Hiroyuki; Okamoto, Shinichi.

    1985-01-01

    Radiation resistance characteristics were evaluated for a multi-mode quartz core fiber in low temperature region together with photobleaching effect depending on the incident light power and dependency on the wavelength of measuring rays. This report describes the results of the abovementioned items and the next step study of trial manufacturing of a pure-quartz single-mode fiber for the employment of longer wavelength rays and greater capacity in light transmission communication system. Quartz core fiber specimens were irradiated by 60 Co γ-ray source at -55 deg C to 80 deg C in a constant temperature bath and light transmission loss was determined under irradiation conditions. Low temperature characteristics were superior in an MRT (modified rod-in tube) pure quartz fiber prepared by the plasma method as compared to VAD quartz and Ge-GI fibers. The MRT fiber showed better quality than the Ge-GI fiber also in the photobleaching effect examination. As for the wavelength dependency, light transmission loss of the MRT fiber was less than that of the Ge-GI fiber. The MRT fiber also showed a superior quality in the wide range of irradiation temperatures. Based on the above-mentioned understandings, a pure-quartz single-mode fiber of both BF 3 -doped and F-doped cladding types were developed for longer wavelengths uses. The fibers could attain low light transmission loss of less than 1.0 dB/km at 1.30 μm of wavelength. At the standpoint of radiation resistivity, the BF 3 -doped fiber was found superior. (Takagi, S.)

  14. Ballistic properties of bidirectional fiber/resin composites

    OpenAIRE

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaulation of the ballistic strenth of four different composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ntlon, HPPE and aramide fibers...... Key words. aramid, ballistic, V50

  15. Methods and optical fibers that decrease pulse degradation resulting from random chromatic dispersion

    Science.gov (United States)

    Chertkov, Michael; Gabitov, Ildar

    2004-03-02

    The present invention provides methods and optical fibers for periodically pinning an actual (random) accumulated chromatic dispersion of an optical fiber to a predicted accumulated dispersion of the fiber through relatively simple modifications of fiber-optic manufacturing methods or retrofitting of existing fibers. If the pinning occurs with sufficient frequency (at a distance less than or are equal to a correlation scale), pulse degradation resulting from random chromatic dispersion is minimized. Alternatively, pinning may occur quasi-periodically, i.e., the pinning distance is distributed between approximately zero and approximately two to three times the correlation scale.

  16. Evaluation of Minerals Content of Drinking Water in Malaysia

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  17. Evaluation of Minerals Content of Drinking Water in Malaysia

    Directory of Open Access Journals (Sweden)

    Azrina Azlan

    2012-01-01

    Full Text Available The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  18. Evaluation of minerals content of drinking water in Malaysia.

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  19. Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins

    Science.gov (United States)

    Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-05-01

    Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.

  20. OPERATING STABILITY OF MINERAL WOOL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Perfilov Vladimir Aleksandrovich

    2016-03-01

    Full Text Available Creating an effective insulation envelope of the building is possible only using high-quality materials, preserving their characteristics both in the early stages of operation, and for the whole billing period. It is an important opportunity to assess the thermal insulation properties and predict its changes over time directly in the conditions of the construction site. The products based on mineral fibers (rock and glass wool, basalt fiber are the most widely used type of insulating materials in the domestic construction. Therefore, the operational stability valuation methods must be primarily created for this group of products. The methodology for assessing the thermal insulation properties includes two main components: testing equipment and methodology for assessing the operational stability. The authors tested the methodology of the accelerated testing and prediction of durability for mineral wool products of laminated, corrugated and volume-oriented structures. The test results give good convergence with the methods recommended by the building regulations. Application of thermal insulation materials are an effective way to form the thermal envelope of the building, reducing energy costs and increasing the durability of building structures. The material properties are determined by their structure, which is formed during the technological impacts.

  1. Polymeric hollow fiber heat exchanger as an automotive radiator

    International Nuclear Information System (INIS)

    Krásný, Ivo; Astrouski, Ilya; Raudenský, Miroslav

    2016-01-01

    Highlights: • Polymeric hollow fiber heat exchanger as an automotive radiator is proposed. • The mechanism of heat transfer (HT) relies on diameter of polymeric hollow fiber. • Grimson equation is sufficient for approximate prediction of the heat transfers. - Abstract: Nowadays, different automotive parts (tubing, covers, manifolds, etc.) are made of plastics because of their superior characteristics, low weight, chemical resistance, reasonable price and several other aspects. Manufacturing technologies are already well-established and the application of plastics is proven. Following this trend, the production of compact and light all-plastic radiators seems reasonable. Two plastic heat exchangers were manufactured based on polypropylene tubes of diameter 0.6 and 0.8 mm (so-called fibers) and tested. The heat transfer performance and pressure drops were studied with hot (60 °C) ethyleneglycol-water brine flowing inside the fibers and air (20 °C) outside because these conditions are conventional for car radiator operation. It was observed that heat transfer rates (up to 10.2 kW), overall heat transfer coefficients (up to 335 W/m"2 K), and pressure drops are competitive to conventional aluminium finned-tube radiators. Moreover, influence of fiber diameter was studied. It was observed that air-side convective coefficients rise with a decrease of fiber diameter. Air-side pressure drops of plastic prototypes were slightly higher than of aluminium radiator but it is expected that additional optimization will eliminate this drawback. Experimentally obtained air-side heat transfer coefficients were compared with the theoretical prediction using the Grimson equation and the Churchill and Bernstein approach. It was found that the Grimson equation is sufficient for approximate prediction of the outer HTCs and can be used for engineering calculations. Further work will concentrate on optimizing and developing a polymeric hollow fiber heat exchanger with reduced size

  2. Failure Behavior of Unidirectional Composites under Compression Loading: Effect of Fiber Waviness

    Directory of Open Access Journals (Sweden)

    Swaroop Narayanan Nair

    2017-08-01

    Full Text Available The key objective of this work is to highlight the effect of manufacturing-induced fiber waviness defects on the compressive failure of glass fiber-reinforced unidirectional specimens. For this purpose, in-plane, through-thickness waviness defects (with different waviness severities are induced during the manufacturing of the laminate. Numerical and experimental results show that the compressive strength of the composites decreases as the severity of the waviness defects increases. A reduction of up to 75% is noted with a wave severity of 0.075. Optical and scanning electron microscopy observations of the failed specimens reveal that kink-bands are created in the wavy regions and lead to failure.

  3. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark [Quantum Fuel Systems Technologies Worldwide, Inc., Irvine, CA (United States); Lam, Patrick [Boeing Research and Technology (BR& T), Seattle, WA (United States)

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  4. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora).

    Science.gov (United States)

    Wealthall, Rosamund J; Brooker, Lesley R; Macey, David J; Griffin, Brendan J

    2005-08-01

    The major lateral teeth of the chiton Acanthopleura echinata are composite structures composed of three distinct mineral zones: a posterior layer of magnetite; a thin band of lepidocrocite just anterior to this; and apatite throughout the core and anterior regions of the cusp. Biomineralization in these teeth is a matrix-mediated process, in which the minerals are deposited around fibers, with the different biominerals described as occupying architecturally discrete compartments. In this study, a range of scanning electron microscopes was utilized to undertake a detailed in situ investigation of the fine structure of the major lateral teeth. The arrangement of the organic and biomineral components of the tooth is similar throughout the three zones, having no discrete borders between them, and with crystallites of each mineral phase extending into the adjacent mineral zone. Along the posterior surface of the tooth, the organic fibers are arranged in a series of fine parallel lines, but just within the periphery their appearance takes on a "fish scale"-like pattern, reflective of the cross section of a series of units that are overlaid, and offset from each other, in adjacent rows. The units are approximately 2 microm wide and 0.6 microm thick and comprise biomineral plates separated by organic fibers. Two types of subunits make up each "fish scale": one is elongate and curved and forms a trough, in which the other, rod-like unit, is nestled. Adjacent rod and trough units are aligned into large sheets that define the fracture plane of the tooth. The alignment of the plates of rod-trough units is complex and exhibits extreme spatial variation within the tooth cusp. Close to the posterior surface the plates are essentially horizontal and lie in a lateromedial plane, while anteriorly they are almost vertical and lie in the posteroanterior plane. An understanding of the fine structure of the mineralized teeth of chitons, and of the relationship between the organic and

  5. Consumer perception of risk associated with filters contaminated with glass fibers.

    Science.gov (United States)

    Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L

    2000-09-01

    The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.

  6. Characterization of a Material Based on Short Natural Fique Fibers

    OpenAIRE

    Navacerrada Saturio, Maria Angeles; Diaz Sanchidrian, Cesar; Fernández, Patricia

    2014-01-01

    Fique is a biodegradable natural fiber derived from the Colombian Agavaceae family, originating in tropical America and traditionally used for the manufacture of packaging and cordages. Today, however, new uses are being developed. To meet the need for new good-quality, sustainable, low-cost construction materials for social housing, construction materials have been produced that combine different kinds of natural fibers, including fique, to improve their strength and physical properties. To ...

  7. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular –shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55° for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  8. Ply-based Optimization of Laminated Composite Shell Structures under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2012-01-01

    This work concerns a new ply-based parameterization for performing simultaneous material selection and topology optimization of fiber reinforced laminated composite structures while ensuring that a series of different manufacturing constraints are fulfilled. The material selection can either...

  9. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    Science.gov (United States)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  10. Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Michael Balazy

    2007-09-01

    Full Text Available Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cellular response and defense following exposure to these microscopic fibers have not been characterized. We continue to study these mechanisms to be able to propose preventive strategies in large populations. The objective of the present study was to determine comparatively biological responses of mesothelial Met-5A and monocyte-macrophage J774 cells following exposure to two types of fluoro-edenite fibers having low and high iron content (labeled 19 and 27, respectively obtained from Biancavilla (Sicily, Italy. The reference fiber was a non-iron fibrous tremolite from Val di Susa (Piemonte, Italy. The cells were treated with 5, 50, and 100 μg of fibrous matter per 1 ml for 72 hr. We identified several key mechanisms by which cells responded and counteracted the injury induced by these fibers. The fibers caused induction of the heat shock protein 70 (Hsp70, stimulated formation of reactive oxygen species (detected by using DCFH-DA as a fluorescent probe and NO• (measured as nitrite. Exposure of cells to the fibers induced lactate dehydrogenase activity and decreased viability. The fluoro-endenite type 27 was the most potent fiber tested, which indicated that iron and possibly manganese contribute significantly to this fiber toxicity. The J774 cells were more sensitive to fluoro-edenite than Met-5A cells suggesting that the primary site of the fiberinduced inflammatory response could be the macrophage rather than the pulmonary epithelium. Fluoro-edenite produces more biological alterations with respect to non-iron tremolite. Hsp70 and free radicals could be important factors in the context of mineral fiber-induced acute lung injury

  11. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  12. 21 CFR 172.878 - White mineral oil.

    Science.gov (United States)

    2010-04-01

    ... yeast contamination during fermentation In an amount not to exceed good manufacturing practice. 4. As a... 21 Food and Drugs 3 2010-04-01 2009-04-01 true White mineral oil. 172.878 Section 172.878 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  13. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis

    Science.gov (United States)

    Colard, Thomas; Falgayrac, Guillaume; Bertrand, Benoit; Naji, Stephan; Devos, Olivier; Balsack, Clara; Delannoy, Yann; Penel, Guillaume

    2016-01-01

    Acellular extrinsic fiber cementum is a mineralized tissue that covers the cervical half of the tooth root surface. It contains mainly extrinsic or Sharpey’s fibers that run perpendicular to the root surface to anchor the tooth via the periodontal ligament. Acellular cementum is continuously and slowly produced throughout life and exhibits an alternating bright and dark pattern under light microscopy. However, although a better understanding of the structural background of acellular cementum is relevant to many fields, such as cementochronology, periodontology and tissue engineering, acellular cementum remains rarely studied and poorly understood. In this work, we studied the acellular cementum at the incremental line scale of five human mandibular canines using polarized Raman spectroscopy. We provided Raman imaging analysis and polarized acquisitions as a function of the angular orientation of the sample. The results showed that mineral crystals were always parallel to collagen fibrils, and at a larger scale, we proposed an organizational model in which we found radial collagen fibers, “orthogonal” to the cementum surface, and “non-orthogonal” fibers, which consist of branching and bending radial fibers. Concerning the alternating pattern, we observed that the dark lines corresponded to smaller, more mineralized and probably more organized bands, which is consistent with the zoological assumption that incremental lines are produced during a winter rest period of acellular cementum growth. PMID:27936010

  14. Laser polishing of additive manufactured Ti alloys

    Science.gov (United States)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  15. Characterization and treatment of sisal fiber residues for cement-based composite application

    OpenAIRE

    Lima,Paulo R. L.; Santos,Rogério J.; Ferreira,Saulo R.; Toledo Filho,Romildo D.

    2014-01-01

    Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the rein...

  16. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  17. Study on strength characteristics of concrete using M-Sand and coconut fibers

    Science.gov (United States)

    Neeraja, D.; Wani, Amir Iqbal; Kamili, Zainulabideen; Agarwal, Krishnakant

    2017-11-01

    In the current world, concrete has become a very important part of the construction industry and the materials which are used in making concrete have evolved due to better quality of cement and better grade of coarse aggregates. The sand is an important part of concrete. It is mainly procured from natural sources. Thus the grade of sand is not under our control. The methods of removing sand from river beds are causing various environmental issues and river sand is depleting at a faster rate than it is replaced by natural methods. Hence, various replacements for the river sand are being done, one of which is manufactured-sand. It is obtained from various granite quarries. Manufactured-sand or M-sand is slowly replacing the fine aggregate in the concrete as the sand is well graded and gives higher strength of concrete. There are various fibers used for reinforcing concrete which consist mainly of artificial or steel fibers. Some of these fibers are quite costly and sometimes difficult to obtain. So there are many natural fibers which can be used in place of these fibers, one of which is coconut fiber, extracted from the shell of a coconut. Coconut fibers are used in various industries like rope making, coir mattresses etc. Since these fibers are one of the strongest fibers among naturally occuring fibers, they can be used in the concrete mix to increase the resistance in concrete. They are also light weight and easily available and thus can be used in reinforcement of concrete. The studies up till now have tested the use of coconut fibers in normal concrete involving river sand but in this study a particular ratio of M-sand and river sand is used to get the maximum possible strength. Hence, in this project an attempt was made to use M-sand and coconut fiber in concrete. Based on the test results, it can be concluded that combination of M-sand and coconut fibers gave favorable results in strength criteria.

  18. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  19. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  20. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  1. Tooling for Production of the Green Fiber Bottle

    DEFF Research Database (Denmark)

    Saxena, Prateek; Bissacco, Giuliano; Bedka, Filip J.

    2018-01-01

    Ever since the invention of plastics, packaging has become extremely cheap and efficient. In recent times, the demand for more ecological packaging is increasing leading back to the roots of using naturally available resources, which are biodegradable. The manufacturing process of the Green Fiber...

  2. Additive Manufacturing and Characterization of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.

  3. Minerals and trace elements in domesticated Namibian Ganoderma ...

    African Journals Online (AJOL)

    The minerals and trace elements in domesticated Namibian Ganoderma mushroom species were determined. The results show that fiber content was found highest with 45 g/100 g of dry weight, followed by calcium with 23 g/100 g, carbohydrate with 23 g/100 g, protein with 18.2 g/100 g, iron with 6.41 g/100 g, copper with ...

  4. Additive Manufacturing of Composites and Complex Materials

    Science.gov (United States)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  5. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  6. Analytical content and variability of vitamins and minerals in adult multivitamin/mineral products: national estimates for the Dietary Supplement Ingredient Database (DSID)

    Science.gov (United States)

    Multivitamin/mineral products (MVMs) are the most commonly reported dietary supplements used by adults in the United States. During manufacturing, some MVM ingredients are added in amounts exceeding the label claims in order to compensate for losses during the shelf life. Establishing the health be...

  7. A Critical Look at Prebiotics Within the Dietary Fiber Concept.

    Science.gov (United States)

    Verspreet, Joran; Damen, Bram; Broekaert, Willem F; Verbeke, Kristin; Delcour, Jan A; Courtin, Christophe M

    2016-01-01

    This article reviews the current knowledge of the health effects of dietary fiber and prebiotics and establishes the position of prebiotics within the broader context of dietary fiber. Although the positive health effects of specific fibers on defecation, reduction of postprandial glycemic response, and maintenance of normal blood cholesterol levels are generally accepted, other presumed health benefits of dietary fibers are still debated. There is evidence that specific dietary fibers improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, reduce the risk of developing colorectal cancer, increase mineral absorption, and have a positive impact on the immune system, but these effects are neither generally acknowledged nor completely understood. Many of the latter effects are thought to be particularly elicited by prebiotics. Although the prebiotic concept evolved significantly during the past two decades, the line between prebiotics and nonprebiotic dietary fiber remains vague. Nevertheless, scientific evidence demonstrating the health-promoting potential of prebiotics continues to accumulate and suggests that prebiotic fibers have their rightful place in a healthy diet.

  8. Wood quality changes caused by mineral fertilization

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Sette Jr

    2014-06-01

    Full Text Available The diverse and important use of wood from fast growth eucalyptus plantations requires the analysis of the effect of mineral fertilizers on wood quality. The objective of this study was to evaluate the anatomical characteristics and wood density from Eucalyptus grandis trees (3 m x 2 m spacing fertilized with potassium and sodium (at planting, 6 th and 12th month. Fifteen (15 6 years old eucalyptus trees were selected (5 trees/treatment, cut and wood samples at DBH (1,3 m were taken for anatomical characteristics (fiber and vessels and wood density analysis. Results showed that eucalyptus trees treated with mineral fertilizers did not show significant alteration in average wood density, with radial profile model common to all three treatments, characterized by a values increase in the region next to the pith, toward to bark. Mineral fertilization influenced wood anatomical characteristics: treatment with sodium was characterized by thinner walls and lumen larger diameter; in treatment with potassium, larger vessels were detected.

  9. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    Science.gov (United States)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  10. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drory, N. [McDonald Observatory, The University of Texas at Austin, 1 University Station, Austin, TX 78712 (United States); MacDonald, N.; Byler, N. [Department of Astronomy, University of Washington, Box 351580 Seattle, WA 98195 (United States); Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Bundy, K. [Kavli Institute for the Physics and Mathematics of The Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa, Japan 277-8583 (Japan); Gunn, J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Law, D. R.; Cherinka, B. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St, Toronto, ON M5S 3H4 (Canada); Stoll, R. [C Technologies, Inc., 757 Route 202/206, Bridgewater, NJ 08807 (United States); Yan, R. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, 40506-0055 (United States); Weijmans, A. M. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cope, F.; Holder, D.; Huehnerhoff, J. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Harding, P., E-mail: drory@astro.as.utexas.edu [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of

  11. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    International Nuclear Information System (INIS)

    Drory, N.; MacDonald, N.; Byler, N.; Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K.; Bundy, K.; Gunn, J.; Law, D. R.; Cherinka, B.; Stoll, R.; Yan, R.; Weijmans, A. M.; Cope, F.; Holder, D.; Huehnerhoff, J.; Harding, P.

    2015-01-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10 4 local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput

  12. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  13. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  14. Evaluation of environmental degradation effects in morphology of ultra-high molecular weight polyethylene (UHMWPE) fibers

    International Nuclear Information System (INIS)

    Vivas, Viviane; Zylberberg, Marcel P.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Weber, Ricardo P.; Suarez, Joao C. Miguez

    2015-01-01

    This study aims to evaluate changes in the morphology of ultra-high molecular weight polyethylene fiber (UHMWPE), before and after exposure to environmental agents. Fibers produced by two different manufacturers were analyzed. To characterize the morphology, we used the technique of small angle x-ray scattering (SAXS). The results demonstrate that the original morphology of the fibers was UHMWPE affected by the defects caused by exposure to environmental agents. (author)

  15. Bragg grating photo-inscription in doped microstructured polymer optical fiber by 400 nm femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hu, X.; Woyessa, Getinet; Kinet, D.

    2016-01-01

    In this paper, we report the manufacturing of high-quality endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fibers. Bragg gratings are photo-inscribed in such fibers by means of 400 nm femtosecond laser pulses through a 1060-nm-period uniform phase mask...

  16. Femtosecond laser additive manufacturing of YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Bai, Shuang [PolarOnyx, Inc., San Jose, CA (United States)

    2017-04-15

    Laser additive manufacturing (LAM) of Yttria-Stabilized Zirconia (YSZ) is investigated using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. High-density (>99%) YSZ part with refined grain and increased hardness was obtained. Microstructure features of fabricated specimens were studied with SEM, EDX, the measured micro hardness is achieved as high as 18.84 GPa. (orig.)

  17. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  18. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  19. In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine.

    Science.gov (United States)

    Brünler, Ronny; Aibibu, Dilbar; Wöltje, Michael; Anthofer, Anna-Maria; Cherif, Chokri

    2017-07-01

    Additive manufacturing technologies are a promising technology towards patient-specific implants for applications in regenerative medicine. The Net-Shape-Nonwoven technology is used to manufacture structures from short fibers with interconnected pores and large functional surfaces that are predestined for cell adhesion and growth. The present study reports on a modeling approach with a particular focus on the specific structural properties. The overall porosities and mean pore-sizes of the digital models are simulated according to liquid-displacement porosity in a tool implemented in the modeling software. This allows adjusting the process parameters fiber length and fiber diameter to generate biomimetic structures with pore-sizes adapted to the requirements of the tissue that is to be replaced. Modeling the structural and porosity properties of scaffolds and implants leads to an efficient use of the processed biomaterials as the trial-and-error method is avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  1. Fabrication and characterization of special microstructured fibers

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Litzkendorf, D.; Spittel, R.; Kirchhof, J.; Bartelt, H.

    2011-05-01

    Microstructured optical fibers (MOFs) as a novel type of light guiding media typically combine structural elements with very different chemical and optical behavior, e.g. silica - air, silica - high refractive index glasses. The applicative potential is very manifold: devices for telecommunication, nonlinear optics, sensing devices, fiber based gas lasers, etc. We report about preparation and characterization of selected total internal reflection (TIR) guiding MOFs: Air Clad Fiber, Suspended Core Fiber and heavy metal oxide (HMO) glass core MOFs. We fabricated Air Clad Fibers with extreme air fraction. The bridge width of about 0.13 μm corresponds to a numerical aperture (NA) of about 0.6. Suspended core fibers for evanescent sensing were prepared by pressurized drawing of arrangements of three and four capillaries. By inflating the cavities the NA was increased up to 0.68. Material combined MOFs were prepared for nonlinear application (e.g. supercontinuum generation) with lanthanum aluminum silicate glass core. Thermochemical and optical behaviors of high nonlinear core glass candidates were investigated for alumina concentration up to 20 mol% and lanthanum oxide concentration up to 24 mol% in silica matrix. The manufactured HMO glass core MOF with a La2O3 concentration of 10 mol% shows a similar background loss level like the unstructured HMO glass fiber about 1 dB/m.

  2. Treatment and characterization of fiber licuri for synthesis of polymeric composites

    International Nuclear Information System (INIS)

    Oliveira, J.C.; Miranda, C.S.; Carvalho, R.F.; Jose, N.M.; Boaventura, J.S.

    2010-01-01

    Natural fibers are materials of increasing use of polymeric composites, due to several advantageous properties compared to synthetic fibers: low cost, density, toxicity and excellent biodegradability. Licuri fiber is widely used in the manufacture of handicrafts, with a wide range of possible applications. Before this, characterize the properties of the fiber is of great interest economic, technological and social. This study characterized the fibers in nature, which were washed with water, treated with 5% H 2 SO 4 or 5% NaOH. Techniques were used FTIR, DSC, TGA and XRD, as well as analysis of surface reactivity of the acid and base. All treatments altered the surface of licuri, exposing reactive sites. It was observed that sodium hydroxide licuri changed significantly, as expected. These results are very significant for the recovery of a natural fiber (licuri), abundant in poor regions of the country. (author)

  3. Exposure to dust mixtures containing free crystalline silica and mineral fibers

    International Nuclear Information System (INIS)

    Wozniak, H.; Wiecek, E.; Bielichowska-Cybula, G.

    1996-01-01

    Exposure to dust mixture containing at the same time respirable mineral fibres and free crystalline silica may occur in Poland in mines and in the Lower Silesia plants processing mineral raw materials as well as in all plants which use asbestos products and MMMF. Workposts where thermal insulation is exchange with possible phase transformations during operations under conditions of high temperature, expose particularly complex problems. In the work environment of this kind, dust concentration of free crystalline silica becomes important but not sufficient criterion for evaluating working conditions and it may be misleading. A range of studies indispensable for the proper evaluation of exposure to dust, covering together with measurement of dust and SiO 2 concentrations, determination of the mineral composition of dust, was developed. It was also found that the acceptable level of risk for neoplastic disease, namely 10(-3) can be attained in the work environment only if the concentration ranges from 0.05 to 0.1 f/cm 3 , that is equal to 20% of MAC value which is now binding in Poland. Cancer risk (lung cancer and mesothelioma jointly) during a 20-year exposure to concentrations equal to present MAC values should be estimated as about 10(-2) what indicates that risk is too high and it is necessary to diminish MAC values for asbestos dust. (author). 17 refs, 3 tabs

  4. Gamma ray irradiation characteristics of SM fibers

    International Nuclear Information System (INIS)

    Ito, Ryuichi; Okano, Hiroaki; Hashiba, Keichi; Nakai, Hisanori

    1987-01-01

    1.3 μm range single mode (SM) optical fibers have been used for wide application of mainly long distance communication. At present, in order to realize the larger capacity and longer distance between relay points, the development of 1.5 μm range SM fibers of low dispersion and small loss has been actively promoted. As for the radiation withstanding property of SM fibers, report is scarce. The authors reported on the gamma ray irradiation characteristics of 1.3 μm range SM fibers, but since 1.5 μm range SM fibers are designed with the different structure from that of 1.3 μm fibers, it is necessary to evaluate from new viewpoint. In this report, mainly on the structure having triangular distribution, the effect that the manufacturing condition and the structural defects of glass exert on the gamma ray irradiation characteristics is described. The specimens were mainly dispersion shift type fibers (DSF), and for comparison, single window, double window and 1.3 μm SM fibers were examined. Co-60 gamma ray was irradiated, and the optical loss and electron spin resonance were measured. By low temperature and low speed drawing, the good result in the optical loss was obtained. The presence of oxygen at the time of sintering materials had no effect. The dependence of the ESR on the drawing condition was not very remarkable. (Kako, I.)

  5. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    Science.gov (United States)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  6. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  7. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  8. Mineral raw materials used in the archaeological artifacts in Guayacas - Dayman - Paysandu

    International Nuclear Information System (INIS)

    Capdepont, I.; Del Puerto, L.; Castineira, C.; Pineiro, G.

    2012-01-01

    The purpose of this work is about the election, exploitation and modes of supply mineral raw resources used in the manufacturing of lithic and ceramic archaeological artifacts in Guayacas - Dayman - Paysandu

  9. A pilot-scale nonwoven roll goods manufacturing process reduces microbial burden to pharmacopeia acceptance levels for nonsterile hygiene applications

    Science.gov (United States)

    A total of seven source fiber types were selected for use in the manufacturing of nonwoven roll goods: polyester; polypropylene; rayon; greige cotton from two sources; mechanically cleaned greige cotton; and scoured and bleached cotton. The microbial burden of each source fiber was measured as a pr...

  10. Improvement of optical damage in specialty fiber at 266 nm wavelength

    Science.gov (United States)

    Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.

    2014-02-01

    Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.

  11. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  12. Utilization of Ripe Coconut Fiber in Stone Matrix Asphalt Mixes

    Directory of Open Access Journals (Sweden)

    Mahabir Panda

    2013-12-01

    Full Text Available Stone Matrix Asphalt (SMA is a gap graded mix; characterized by higher proportion of coarse aggregate, lower proportion of middle size aggregate and higher proportion of mineral filler. In the present laboratory study, commonly available one conventional VG 30 bitumen and another modified binder, namely CRMB 60 have been used along with a non-conventional natural fiber, namely coconut fiber which is abundantly available in India to provide improved engineering properties and at the same time preventing the usual draining of binder in SMA. The role of a particular binder and fiber with respect to their concentrations in the mix is studied for various engineering properties. Marshall procedure has been followed to determine the optimum binder and optimum fiber contents and also to study the relative advantages of fiber addition in the SMA mixtures. Thereafter, the engineering properties under both static as well as repeated load conditions and moisture susceptibility characteristics have been studied. It is observed that only a marginal 0.3% coconut fiber addition brings significant improvement in the engineering properties of SMA mixes.

  13. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.

    Science.gov (United States)

    Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J

    2017-11-07

    The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.

  14. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...... between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based...

  15. Incorporation of waste and fiber kaolin caroa panels in Medium Density Fiberboard - MDF

    International Nuclear Information System (INIS)

    Bezerra, A.F.C.; Santana, L.N.L.; Neves, G.A.; Carvalho, L.H. de; Lopes, F.F.M.

    2012-01-01

    Medium-density panels are composites molded under high temperature and pressure which have physical and mechanical properties similar to those of solid wood. Their composition includes eucalyptus grandis fibers and pinus elliotii fibers, but other fibers can be used such as caroa fibers. The goal of this work was to manufacture panels which kaolin waste and caroa fibers and compare their physical, chemical and mechanical of these panels with a others. Both residue and the fibers were characterized by: differential thermal analysis, thermal gravimetric analysis and Xray diffraction. Through the process of pressing the test specimens were fabricated, test samples were evaluated by three point bending, internal bond, water absorption and swelling in thickness. The samples have low levels of thickness swelling, flexural strength and higher tensile and absorption content relative to commercial MDF. (author)

  16. CARBON FIBER COMPOSITES IN HIGH VOLUME

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Charles David [ORNL; Das, Sujit [ORNL; Jeon, Dr. Saeil [Volvo Trucks North America

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  17. Life cycle assessment of regional brick manufacture

    Directory of Open Access Journals (Sweden)

    López-Aguilar, H. A.

    2016-06-01

    Full Text Available This document presents a Life Cycle Assessment (LCA study to quantify the environmental cradle-to-gate impact of the manufacture of brick for the construction industry, produced with material of igneous source. Its mineral composition and thermal isolation properties were characterized for use in real estate construction. The LCA results for brick manufacture using this material identified the greatest environmental impact to be associated with material extraction and its proportional cement content. Additionally, this document presents an evaluation of the environmental impact of the manufacturing process by comparing traditional fired clay brick and brick of the material under study. In conclusion, the studied material shows thermal insulation qualities and suitability for the manufacture of bricks with low incorporated energy.Este trabajo presenta un estudio de Análisis de Ciclo de Vida (ACV para cuantificar los impactos ambientales de la cuna a la puerta de la manufactura de ladrillos para la industria de la construcción, fabricados de un material de origen ígneo. Se caracterizó su composición mineralógica y propiedades de aislamiento térmico para ser usado en la construcción de inmuebles. Los resultados ACV de la fabricación de ladrillos de este material, identificaron la mayor contribución a los impactos ambientales asociados a la extracción del material y la cantidad proporcional de cemento. Adicionalmente, se presenta una evaluación comparativa del impacto ambiental entre la manufactura de un ladrillo tradicional de arcilla cocido y de un ladrillo del material en estudio. En conclusión el material estudiado muestra cualidades de aislamiento térmico y es adecuado para la fabricación de ladrillos con baja energía incorporada.

  18. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  19. 3D Representative Volume Element Reconstruction of Fiber Composites via Orientation Tensor and Substructure Features

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Chen, Wei; Xu, Hongyi; Jin, Xuejun

    2016-01-01

    To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way of integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.

  20. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  1. Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters

    Science.gov (United States)

    Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.

  2. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    International Nuclear Information System (INIS)

    Fu, C.H.; Liu, J.F.; Guo, Andrew

    2015-01-01

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  3. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.H., E-mail: cfu5@crimson.ua.edu [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, J.F. [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Guo, Andrew [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); College of Arts and Science, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-10-30

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  4. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    Science.gov (United States)

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Unidirectional fibers and polyurethane elastomer matrix based composites synthesis and properties. Ph.D. Thesis

    Science.gov (United States)

    Chakar, A.

    1984-01-01

    A study of the properties and manufacturing techniques for long-fiber reinforced elastomeric composites for flexible and damping structural materials is presented. Attention is given to the usage of polyurethane in the matrix to obtain plastic elastomeric matrices and vitreous transition temperatures which vary from -80 C to 10 C, as well as assure good fiber adhesion. Various polyurethane formulations synthesized from diisocyanate prepolymers are examined in terms of mechanical and thermal properties. The principal reinforcing fiber selected is a unidirectional glass cloth.

  6. Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites

    Science.gov (United States)

    Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa

    2018-04-01

    Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.

  7. From space qualified fiber optic gyroscope to generic fiber optic solutions available for space application

    Science.gov (United States)

    Buret, Thomas; Ramecourt, David; Napolitano, Fabien

    2017-11-01

    The aim of this article is to present how the qualification of the Fiber Optic Gyroscope technology from IXSEA has been achieved through the qualification of a large range of optical devices and related manufacturing processes. These qualified optical devices and processes, that are now fully mastered by IXSEA through vertical integration of the technology, can be used for other space optical sensors. The example of the SWARM project will be discussed.

  8. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.; Johnson, J. R.; Williams, P. J.; Koros, W. J.

    2012-01-01

    research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system

  9. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  10. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties.

    Science.gov (United States)

    Huan, Siqi; Liu, Guoxiang; Cheng, Wanli; Han, Guangping; Bai, Long

    2018-03-12

    Uniform poly(lactic acid)/cellulose nanocrystal (PLA/CNC) fibrous mats composed of either random or aligned fibers reinforced with up to 20 wt % CNCs were successfully produced by two different electrospinning processes. Various concentrations of CNCs could be stably dispersed in PLA solution prior to fiber manufacture. The microstructure of produced fibrous mats, regardless of random or aligned orientation, was transformed from smooth to nanoporous surface by changing CNC loading levels. Aligning process through secondary stretching during high-speed collection can also affect the porous structure of fibers. With the same CNC loading, fibrous mats produced with aligned fibers had higher degree of crystallinity than that of fibers with random structure. The thermal properties and mechanical performances of PLA/CNC fibrous mats can be enhanced, showing better enhancement effect of aligned fibrous structure. This results from a synergistic effect of the increased crystallinity of fibers, the efficient stress transfer from PLA to CNCs, and the ordered arrangement of electrospun fibers in the mats. This research paves a way for developing an electrospinning system that can manufacture high-performance CNC-enhanced PLA fibrous nanocomposites.

  11. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  12. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    Science.gov (United States)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  13. Eucalyptus grandis AND Eucalyptus dunnii USE FOR WOOD-CEMENT PANELS MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2008-03-01

    Full Text Available This research evaluated the potential use of Eucalyptus grandis and Eucalyptus dunnii wood for wood-cement panelsmanufacturing. The boards were manufactured at the density of 1,20 g/cm³, using portland cement as mineral bonding and woodfurnish without treatment, treated in cold water and hot water. The wood furnish of Pinus taeda was used as control. The resultsindicated that it is not necessary to treat E. grandis and E. dunni wood for wood-cement board manufacturing. In relation to woodspecies, the board manufactured with E. dunnii showed lower values of mechanical properties. However, boards manufactured of E.grandis wood showed satisfactory results in comparison to boards of P. taeda and the referenced values of BISON process and otherproducts cited in the pertnent literature, indicating the high potential for wood-cement board manufacture of this tree species.

  14. Development of multi-channel optical-fiber feed through for ITER

    International Nuclear Information System (INIS)

    Sugie, Tatsuo; Kasai, Satoshi; Toriya, Tomoaki

    1998-08-01

    A multi-channel fiber feed through has been developed for visible and IR transmission lines through secondary vacuum boundary (cryostat boundary) of ITER. In the first phase, a scale down test-module which has ten fiber feed through in the vacuum flange was manufactured and tested. The vacuum seal was realized by soldering gold plated fibers to a vacuum flange with high temperature solder. The capacity to resist inner pressure rise of 5 atm, the acceleration resistant of 15g and the temperature resistant from 20degC-200degC were achieved by the test module. The connecting loss and the uniformity of transmission losses among each channels of the feed through were not well. Concerning the connecting loss, the best value was 2.2 dB and the worst one was 13.5 dB. In the second phase, the full performance test-module which has 57 fiber feed through was manufactured and tested. The feed through was improved in order to achieve a good transmission and the uniformity among each channels by using a optical fiber implanted in a center of a quartz rod very accurately. The capacity to resist inner pressure rise of 5 atm, the acceleration resistant of 15g and the temperature resistant from 40degC-200degC (Temperature ramp rate: >20degC/hr) were achieved by the full performance test-module. The connecting losses of the feed through were less than 3 dB, and the uniformity of transmission losses among each channels of the feed through was larger than 60%. The requirements for an optical-fiber feed through were almost satisfied with the full performance test-module. Further developments will be necessary for the remote handling method. (author)

  15. Development of Improved Design and 3D Printing Manufacture of Cross-Flow Fan Rotor

    Science.gov (United States)

    2016-06-01

    printer was used to print components of a carbon-fiber composite cross-flow fan rotor . These pieces were assembled and the thrust, power, and thrust...variables. A MarkForged Mark One 3D printer was used to print components of a carbon-fiber composite cross-flow fan rotor . These pieces were assembled... composite parts to be 3D printed. This technology showed promise in rapidly manufacturing complicated blade and rotor geometries. The objective of

  16. Optical fiber sensors for IoT and smart devices

    CERN Document Server

    Domingues, Maria de Fátima F

    2017-01-01

    This brief provides a review of the evolution of optical fiber sensing solutions and related applications. Unique production methods are presented and discussed, highlighting their evolution and analyzing their complexity. Under this scope, this brief presents the existing silica optical fiber sensors and polymer optical fiber sensors solutions, comparing its field of action (sensitivity, accuracy), complexity of manufacture and economic cost. Special attention is given to low-cost production methods. This brief evaluates the different existing techniques, assessing the accuracy and suitability of these sensors for possible Internet of Things (IoT) integration in different considered scenarios. Critical analytical techniques, also covered in this brief, are expected to play a key role in the world of IoT and the smart city of tomorrow.

  17. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  18. Interface study of fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Pacios, A.

    1997-12-01

    Full Text Available In a composite material that uses fibers as reinforcement, the breakage of the matrix is produced jointly with the separation of the fiber from the matrix. The mechanical behavior of the interface describes how fibers can work stabilizing the cracking process. The interface is the medium that puts the fiber on load, being the mechanical behavior of the interface and the strength of the fiber two important parameters to consider to characterize the general behavior of the composite. The present work studies the effect of several parameters on the behavior of the interface. Those parameters are the type of fiber, its geometry and dimension and the modified matrix and loading rate. An experimental technique was designed to allow testing the same set-up for pull-out tests in a quasistatic machine and Charpy pendulum. Modifications of the matrix by adding a mineral admixture improve the behavior of the interface as much as a 100%. It has been observed that combining the two actions, an improved matrix with crimped fibers, the type of failure can be modified. In this new type of failure, the fiber breaks consequently toughness decreases. Other parameters, as the loading rate and inclination of the fiber also affect the behavior of the interface.

    En un material compuesto que utiliza fibras como refuerzo, la rotura de la matriz se produce conjuntamente con la separación de la fibra de la matriz, por lo que el comportamiento mecánico de la interfase describe hasta que punto las fibras pueden trabajar como estabilizadores en el proceso defisuración. La interfase es el medio que pone en carga a la fibra y, por ello, la resistencia mecánica de la interfase y de la fibra son dos parámetros importantes a considerar para caracterizar el comportamiento general del composite. Este trabajo investiga el efecto de la variación del tipo de fibra, geometría y dimensión de las mismas y las modificaciones de la matriz y la velocidad de desplazamiento

  19. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment-severity equation.

    Science.gov (United States)

    Le, Duy Michael; Sørensen, Hanne R; Knudsen, Niels Ole; Schjoerring, Jan K; Meyer, Anne S

    2014-01-01

    Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass.

  20. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  1. Effects of Fiber Finish on the Performance of Asphalt Binders and Mastics

    Directory of Open Access Journals (Sweden)

    Bradley J. Putman

    2011-01-01

    Full Text Available The objective of this study was to determine the effects of finishes applied to polyester fibers on the properties of asphalt binders and mastics. Asphalt binders were mixed with finishes that were extracted from the fibers, and mastics were also made with binder and fibers (with and without finish to isolate the effects of the finish. The results indicated that crude source plays a significant role in how the fiber finish affects the binders and mastics. Additionally different finishes had different effects on binder properties. The major finding of this study is that different polyester fibers, even from the same manufacturer, may not necessarily perform the same in an asphalt mixture. It is important to use fibers that are compatible with the particular asphalt binder that is being used because of the significance of the binder source on the interaction between the finish and the binder.

  2. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  3. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio

    Science.gov (United States)

    Jaroszewicz, Leszek R.; Stasiewicz, Karol A.; Marć, Paweł; Szymański, Michał

    2010-09-01

    In the paper a new broadband photonic crystal fiber coupler is presented. The proper application of the biconical taper technology has been used for manufacturing the coupler without air holes collapse in LMA10 fiber (NKT Photonics Crystal). This coupler, operates in the weakly coupling condition, protects coupling operation in range from 900 nm to 1700 nm. The coupling ratio between output arms is depending on wavelength and can be tuning by selection the proper input state of polarization. It gives opportunity to use the broadband crystal fiber coupler in many applications in which it is necessary to tune a coupling between output arms during the measurement.

  4. Comparison of instruments for dual-energy X-ray bone mineral densitometry

    International Nuclear Information System (INIS)

    Vainio, P.; Koski, E.; Ahonen, E.; Leinonen, K.; Sievaenen, H.

    1992-01-01

    While bone mineral densitometry has become a common laboratory test, it is important to pay attention to the compatability of the results from different instruments. In this study results from three commercially available bone densitometers are compared using both patient and phantom studies. Overall correlation between instruments was good but there were systematic discrepancies in the results. The three instruments provided bone mineral density (BMD) values that differed by as much as 13.5% due to differences as large as 6% in bone mineral content and as large as 7% in bone area. Thus, the BMD values obtained from different manufacturers' instruments are not directly comparable. (author)

  5. Geomembranes with incorporated optical fiber sensors for geotechnical and environmental applications

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    This research covers the development of optical-fiber sensors and the methods to incorporate the sensors within geomembranes during manufacture. Such systems are being developed to monitor the effects of strain on geomembranes including the location of tears. Other possible measurements utilize moisture and fluid-level sensors. Since the use of geomembranes in geotechnical and environmental applications is widespread and monitoring systems are generally lacking, the potential for this technology is significant. For example, a geomembrane-and-sensor system addresses the need to monitor landfill stabilization in general and specifically the behavior of geomembranes used in liner and cover designs. We have demonstrated that glass and plastic fibers can be attached to a geomembrane (1) during extrusion and lamination and (2) by hot shoe welding, glued tape runners, and welded runners. Using these methods, we have manufactured 30 m lengths of geomembrane with continuous optical Fiber across the length. Our preliminary focus has been on strain sensors to monitor landfill subsidence. We have utilized existing and newly developed strain sensors, e.g., microbend, Bragg grating, and adsorption band sensors. These sensors have been installed as arrays into several test membranes at a manufacturing scale (e.g., 3 to 4 m wide). The prototype monitoring systems were installed in laboratory test frames, and the sensors measured the strains across the membranes as they were loaded. We plan to scale these experiments up to the size of landfill cover system using a test cell under construction

  6. Stress corrosion in silica optical fibers: Review of fatigue testing procedures

    Science.gov (United States)

    Severin, Irina; Borda, Claudia; Dumitrache-Rujinski, Alexandru; Caramihai, Mihai; Abdi, Rochdi El

    2018-02-01

    The expected lifetime of optical fibers used either in telecommunication technologies or smart applications are closely related to the chemical reaction on the silica network. Due to the manufacturing processes or the handling procedures, the flaws spread on the fiber surface are inherently present. The aging mechanism is assumed to enlarge or to extend these flaws. Based on systematic experiments one may notice that water may induce a certain curing effect. Silica optical fibers have been aged in water; series of samples have been subjected to overlapped stretching or bending. Other series have been subjected to overlapped aging effect of microwaves and hot water. Finally, samples were submitted to dynamic tensile testing. The Weibull's diagram analysis shows mono or bimodal dispersions of flaws on the fiber surface, but the polymer coating appears vital for fiber lifetime. While humidity usually affects the fiber strength, the series of testing has revealed that in controlled conditions of chemical environment and controlled applied stress, fiber strength may be increased. A similar effect may be obtained by external factors such as microwaves or previous elongation, too.

  7. Photonic crystal fibers: fundamental properties and applications within sensors

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Riishede, Jesper; Broeng, Jes

    2003-01-01

    a large variety of novel optical properties and improvements compared to standard optical fibers. The stack-and-pull procedure used to manufacture PCFs is a highly flexible method offering a large degree of freedom in the fabrication of PCFs with specific characteristics. A few of the remarkable optical...

  8. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites

    International Nuclear Information System (INIS)

    Shanmugam, D.; Thiruchitrambalam, M.

    2013-01-01

    Highlights: • New type of hybrid composite with Palmyra Palm Leaf Stalk Fibers (PPLSF) and jute. • Composites fabricated with continuous, unidirectional fibers. • Alkali treatment and hybridizing jute imparted good static and dynamic properties. • Properties are comparable with well know natural/glass fiber composites. • New hybrid composite can be an alternative in place of synthetic fiber composites. - Abstract: Alkali treated continuous Palmyra Palm Leaf Stalk Fiber (PPLSF) and jute fibers were used as reinforcement in unsaturated polyester matrix and their static and dynamic mechanical properties were evaluated. Continuous PPLSF and jute fibers were aligned unidirectionally in bi-layer arrangement and the hybrid composites were fabricated by compression molding process. Positive hybrid effect was observed for the composites due to hybridization. Increasing jute fiber loading showed a considerable increase in tensile and flexural properties of the hybrid composites as compared to treated PPLSF composites. Scanning Electron microscopy (SEM) of the fractured surfaces showed the nature of fiber/matrix interface. The impact strength of the hybrid composites were observed to be less compared to pure PPLSF composites. Addition of jute fibers to PPLSF and alkali treatment of the fibers has enhanced the storage and loss modulus of the hybrid composites. A positive shift of Tan δ peaks to higher temperature and reduction in the peak height of the composites was also observed. The composites with higher jute loading showed maximum damping behavior. Overall the hybridization was found to be efficient showing increased static and dynamic mechanical properties. A comparative study of properties of this hybrid composite with other hybrids made out of using natural/glass fibers is elaborated. Hybridization of alkali treated jute and PPLSF has resulted in enhanced properties which are comparable with other natural/glass fiber composites thus increasing the scope of

  9. Optimal design of variable-stiffness fiber-reinforced composites using cellular automata

    NARCIS (Netherlands)

    Setoodeh, S.

    2005-01-01

    Growing number of applications of composites materials in aerospace and naval structures along with advancements in manufacturing technologies demand continuous innovations in design of composite structures. In the traditional design of composite laminates, fiber orientation angles are constant for

  10. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    Science.gov (United States)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  11. Development mineral insulated cables for nuclear instrumentation of reactors

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Hess Junior, A.; Brito Maciel, R. de

    1990-01-01

    In-core and out-of-core neutron detectors for reactor and safety control systems are usually connected by means of mineral insulated cables. The electrical signal, either a pulse or a current, is transmitted along the cable at high temperature, pressure and radiation and should not be influenced by electromagnetic interfereces from the environment. In this paper it is presented the result of the analysis of the mechanical and electrical properties of several types of mineral insulated cables and also the design, manufacture, sealing, cable ends and their applications to nuclear detectors of various types. (author) [pt

  12. Prioritization of manufacturing sectors in Serbia for energy management improvement – AHP method

    International Nuclear Information System (INIS)

    Jovanović, Bojana; Filipović, Jovan; Bakić, Vukman

    2015-01-01

    Highlights: • We used AHP method to prioritize manufacturing sectors in Serbia. • Priorities for energy management improvement according to five criteria. • Rank 1 – “Manufacture of food products”. • Rank 2 – “Manufacture of motor vehicles, trailers and semi-trailers”. • Rank 3 – “Manufacture of other non-metallic mineral products”. - Abstract: Manufacturing, which is destined to play the most significant role in the reindustrialization of Serbia is also one of the largest energy consumers and environmental polluters. In accordance with this, a large number of energy and environment management initiatives have been implemented over the years. In developed countries, these initiatives are at an advanced level, but not in Serbia. A group of manufacturers in Serbia has recognized the significance of the environmental initiatives implementation, but the interest in energy management improvement has remained low. Although these initiatives can be used to achieve cost reduction in industry, not all the manufacturing sectors equally value the importance of energy management improvement. Among all the manufacturing sectors, it is necessary to prioritize those with the potentials for energy management improvement, which can be done using different methods. In this paper, the AHP (Analytic Hierarchy Process) method was used to prioritize manufacturing sectors in Serbia in the area of energy management improvement. Using a created AHP questionnaires criteria weights were selected. These questionnaires were completed by the experts from the Serbian Chamber of Commerce and Industry, providing us with the opportunity to evaluate the Serbian manufacturing sectors based on the real life data. The results of the AHP method, which was used as the prioritization instrument, and their analysis are presented in the paper. As a part of a wider study, aimed at the improvement of the energy management in Serbia, the three manufacturing sectors with the highest

  13. Mineral oil barrier sequential polymer treatment for recycled paper products in food packaging

    Science.gov (United States)

    Paul, Uttam C.; Fragouli, Despina; Bayer, Ilker S.; Mele, Elisa; Conchione, Chiara; Cingolani, Roberto; Moret, Sabrina; Athanassiou, Athanassia

    2017-01-01

    Recycled cellulosic paperboards may include mineral oils after the recycle process, which together with their poor water resistance limit their use as food packaging materials. In this work, we demonstrate that a proper functionalization of the recycled paper with two successive polymer treatments, imposes a mineral oil migration barrier and simultaneously renders it waterproof and grease resistant, making it an ideal material for food contact. The first poly (methyl methacrylate) treatment penetrates the paper network and creates a protective layer around every fiber, permitting thus the transformation of the paperboard to a hydrophobic material throughout its thickness, reducing at the same time the mineral oil migration. Subsequently, the second layer with a cyclic olefin copolymer fills the open pores of the surface, and reduces the mineral oil hydrocarbons migration at levels below those proposed by the BMEL. Online liquid chromatography-gas chromatography coupled with flame ionization detection quantitatively demonstrate that this dual functional treatment prevents the migration of both saturated (mineral oil saturated hydrocarbons) and aromatic hydrocarbon (mineral oil aromatic hydrocarbons) mineral oils from the recycled paperboard to a dry food simulant.

  14. Characterization of Chromatic Dispersion and Refractive Index of Polymer Optical Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-12-01

    Full Text Available The chromatic dispersion and the refractive index of poly(methyl methacrylate polymer optical fibers (POFs have been characterized in this work by using a tunable femtosecond laser and a Streak Camera. The characterization technique is based on the measurement of the time delays of light pulses propagating along POFs at different wavelengths. Polymer fibers of three different lengths made by two manufacturers have been employed for that purpose, and discrepancies lower than 3% have been obtained in all cases.

  15. Large-scale additive manufacturing with bioinspired cellulosic materials.

    Science.gov (United States)

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  16. [Fibers as carriers of microbial particles].

    Science.gov (United States)

    Górny, Rafał L; Ławniczek-Wałczyk, Anna; Stobnicka, Agata; Gołofit-Szymczak, Małgorzata; Cyprowski, Marcin

    2015-01-01

    The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp), synthetic (polyamide, polyester, polyacrylonitrile, polypropylene) and semi-synthetic (viscose) fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair), sheaf packing and septated surface (e.g., flax, hemp) or present as twisted ribbons with corrugated surface (cotton) were able to carry up to 9×10(5) cfu/g aerobic bacteria, 3.4×10(4) cfu/g anaerobic bacteria and 6.3×10(4) cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Fibers as carriers of microbial particles

    Directory of Open Access Journals (Sweden)

    Rafał L. Górny

    2015-08-01

    Full Text Available Background: The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. Material and Methods: The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp, synthetic (polyamide, polyester, polyacrylonitrile, polypropylene and semi-synthetic (viscose fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Results: Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair, sheaf packing and septated surface (e.g., flax, hemp or present as twisted ribbons with corrugated surface (cotton were able to carry up to 9×105 cfu/g aerobic bacteria, 3.4×104 cfu/g anaerobic bacteria and 6.3×104 cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. Conclusions: As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. Med Pr 2015;66(4:511–523

  18. Carbon fiber on polyimide ultra-microelectrodes

    Science.gov (United States)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  19. Production of mineral ash-wool

    International Nuclear Information System (INIS)

    Micevic, Z.; Djekic, S.

    1996-01-01

    The project entitled 'Production of Mineral Ash-Wool' presents a new technology of possible use of the fly ash, generated as a waste product from the fossil fueled power plants, as a basic raw material for manufacturing of different products from a new mineral ash-wool. The wide area of mineral ash-wool application (civil engineering, industry, power generation, etc.) and the advantages of this new technology (important raw material obtained free of charge, substitution of expensive silicate stone, use of electric energy for melting instead for coke, vicinity of factory location close to the fossil fueled power plant, lower product price, reduction of environmental pollution, etc.) have resulted in the performance of the bench scale tests. Positive results have been obtained, as a good initial base for the realization of this project. The named study as an detailed analysis has been carried out for the assessment of: supply and sales market, analysis of possible and selection of an optimal location of the factory in the frame of fossil fueled power plant 'Kosovo', selection of the production capacity and alternative preliminary technical designs of the factory for the mineral ash-wool production. For the studied alternatives, specifications and capital investments evaluations for equipment and works (mechanical, civil engineering and electromechanical part) have been made as well as assessments of production costs. Based on the performed economical and financial analyses, as well as the sensitivity analyses one could be concluded that the investments in the factory for the mineral ash-wool production is highly economically acceptable. (author). 1 fig., 1 tab., 3 refs

  20. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    International Nuclear Information System (INIS)

    Starbuck, J.M.

    2001-01-01

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified

  1. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  2. Panels Manufactured from Vegetable Fibers: An Alternative Approach for Controlling Noises in Indoor Environments

    Directory of Open Access Journals (Sweden)

    Leopoldo Pacheco Bastos

    2012-01-01

    Full Text Available Noise control devices such as panels and barriers, when of high efficiency, generally are of difficult acquisition due to high costs turning in many cases their use impracticable, mainly for limited budget small-sized companies. There is a huge requirement for new acoustic materials that have satisfactory performance, not only under acoustic aspect but also other relevant ones and are of low cost. Vegetable fibers are an alternative solution when used as panels since they promise satisfactory acoustic absorption, according to previous researches, exist in abundance, and derive from renewable sources. This paper, therefore, reports on the development of panels made from vegetable fibers (coconut, palm, sisal, and açaí, assesses their applicability by various experimental (flammability, odor, fungal growth, and ageing tests, and characterize them acoustically in terms of their sound absorption coefficients on a scale model reverberant chamber. Acoustic results point out that the aforementioned fiber panels play pretty well the role of a noise control device since they have compatible, and in some cases, higher performance when compared to commercially available conventional materials.

  3. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite

    International Nuclear Information System (INIS)

    Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-01-01

    Calcium carbonate (CaCO 3 ) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO 3 ) 2 ·4H 2 O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO 3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO 3 layer by spin or dip coating Ca(NO 3 ) 2 /PVP precursor solution on the CaCO 3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO 3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. - Highlights: • Calcium carbonate fibers were prepared by electrospinning. • The electrospun fibers crystallized to calcite upon calcination at 500 °C. • Spin and dip coating methods were used to improve the adhesion of the CaCO 3 fibers. • The CaCO 3 fibers were converted to hydroxyapatite by treatment in phosphate solution. • The hydroxyapatite fibers consisted of plate-like nanocrystals

  4. Intermittent sizing on carbon fiber for composite application

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paulauskas, Felix L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ozcan, Soydan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grappe, Hippolyte A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Intermittent sizing is a technique designed to improve the bonding of carbon fiber to a resin when manufacturing composite parts. The purpose of this technique is to improve Sheet Molding Composites (SMC) made of non-continuous carbon fibers while using regular material. At the end of the project, tests showed that improved mechanical properties have been achieved using this technique compared to conventional process. Mechanical properties have been improved by 110% for the peak tensile stress and by 60% for the modulus at the laboratory scale. In this project, Continental Structural Plastics and ORNL have worked to demonstrate the scalability and viability of commercialization of this technique.

  5. Ship Effect Measurements With Fiber Optic Neutron Detector

    International Nuclear Information System (INIS)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-01-01

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  6. Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator

    Science.gov (United States)

    Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.

    2018-03-01

    At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.

  7. Bio composites from polypropylene/ clay/eva polymers and kenaf natural fiber

    International Nuclear Information System (INIS)

    Siti Hasnah Kamarudin; Khalina Abdan; Bernard Maringgal; Wan Mohd Zin Wan Yunus

    2009-01-01

    Full text: There is an increasing need to investigate more environmental friendly, sustainable materials to replace existing materials as industry attempts to lessen dependence on petroleum based fuels and products. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. In this experiment, mixing process of polymer/nano clay composites from polypropylene, organo clay and ethylene vinyl acetate were prepared using a Brabender twin screw compounder. The composites sheets were then laminated with kenaf fibers and subjected to hot and cold press machine to form a bio composite. The mechanical properties such as flexural and impact strength are compare favourably between polymers reinforced kenaf fiber and polymers without kenaf fiber. In addition, various analysis techniques were used to characterize the dispersion and the properties of nano composites, using scanning electron micrograph (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). These results suggest that kenaf fibers are a viable alternative to inorganic mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical. (author)

  8. Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation?

    Directory of Open Access Journals (Sweden)

    Seidu Adams

    2018-05-01

    Full Text Available Studies on dietary fiber and nutrient bioavailability have gained an increasing interest in both human and animal nutrition. Questions are increasingly being asked regarding the faith of nutrient components such as proteins, minerals, vitamins, and lipids after feed formulation. The aim of this review is to evaluate the evidence with the perspective of fiber usage in feed formulation. The consumption of dietary fiber may affect the absorption of nutrients in different ways. The physicochemical factors of dietary fiber, such as fermentation, bulking ability, binding ability, viscosity and gel formation, water-holding capacity and solubility affect nutrient absorption. The dietary fiber intake influences the different methods in which nutrients are absorbed. The increase in the total fiber content of the diet may delay the glycemic response. Soluble fiber decreased blood glucose content whereas purified insoluble fiber has a little or no effect on the blood glucose levels after a meal. Dietary fiber and prebiotics influence the host animal well-being by regulating blood glucose or insulin levels, stool bulking effects, increasing the acidity of the gut, constructive synthesis of short chain fatty acids (SCFAs, decreasing intestinal transit time, stimulating the growth of intestinal microbes, and increasing blood parameters. Previous studies suggest that fiber affects the bioavailability of nutrients, and maintains the host wellness.

  9. Review on developments in fiber optical sensors and applications

    Science.gov (United States)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    The last couple of decades had witnessed a rise in the research of optoelectronic and fiber optical communication fields, which resulted in applications focused initially in military and aerospace equipments, and later in health monitoring for medicine, heritage culture and various engineering fields. The monitoring of existing or /and new engineering, biomedical structures has become a regular feature throughout the world. Monitoring is fast emerging as a pioneering field with high precision and quality equipments. This field is very vast, consisting of both traditional as well as smart materials based methods. The fiber optics belong to the finest class of smart materials, there are many types and classifications based on the necessity, manufacturer and the end user. In this paper, a complete over view of fiber sensing systems and their usefulness is briefly presented.

  10. Determination of tensile forces to enhance the supply stability of reinforced fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Woo; Lee, Jae Wook; Jang, Jin Seok; Jeong, Myeong Sik; Oh, Joo Young; Kang, Hoon; Kang, Ji Heon [Daegyeong Regional Division, Korea Institute of Industrial Technology, Daegu (Korea, Republic of); Kim, Hyung Ryul [Agency for Defense Development, Changwon (Korea, Republic of); Yoo, Wan Suk [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    The manufacturing process of long fiber thermoplastic is initiated by supplying reinforced fiber wound in a spool dispenser. If problems such as tangling or kinking occur in the apparatus used for supplying the reinforced fiber in the long-fiber thermoplastic direct process, the productivity of the long-fiber thermoplastic decreases. Therefore, it is important to enhance the supply stability of reinforced fiber. In general, the increase in supply stability can be achieved by maintaining a steady balloon shape that is controlled by the unwinding velocity or tensile force of the reinforced fiber. In this research, the range of suitable tensile force was determined under the assumption that the unwinding velocity remained constant. The reinforced fiber was assumed to be inextensible, homogeneous, and isotropic and to have uniform density. The transient-state unwinding equation of motion to analyze the unwinding motion of reinforced fiber can be derived by using Hamilton’s principle for an open system in which mass can change within a control volume. In the process of solving the transient-state unwinding equation of motion, the exact two-point boundary conditions are adopted for each time step.

  11. Performance and safety of holmium: YAG laser optical fibers.

    Science.gov (United States)

    Knudsen, Bodo E; Glickman, Randolph D; Stallman, Kenneth J; Maswadi, Saher; Chew, Ben H; Beiko, Darren T; Denstedt, John D; Teichman, Joel M H

    2005-11-01

    Lower-pole ureteronephroscopy requires transmission of holmium:YAG energy along a deflected fiber. Current ureteroscopes are capable of high degrees of deflection, which may stress laser fibers beyond safe limits during lower-pole use. We hypothesized that optical fiber and safety measures differ among manufacturers. Small (200-273-microm) and medium-diameter (300-400-microm) Ho:YAG fibers were tested in a straight and 180 degrees bent configuration. Energy transmission was measured by an energy detector. Fiber durability was assessed by firing the laser in sequentially tighter bending diameters. The fibers were bent to 180 degrees with a diameter of 6 cm and run at 200- to 4000-mJ pulse energy to determine the minimum energy required to fracture the fiber. The bending diameter was decreased by 1-cm increments and testing repeated until a bending diameter of 1 cm was reached. The maximum deflection of the ACMI DUR-8E ureteroscope with each fiber in the working channel was recorded. The flow rate through the working channel of the DUR-8E was measured for each fiber. The mean energy transmission differed among fibers (P < 0.001). The Lumenis SL 200 and the InnovaQuartz 400 were the best small and medium-diameter fibers, respectively, in resisting thermal breakdown (P < 0.01). The Dornier Lightguide Super 200 fractured repeatedly at a bend diameter of 2 cm and with the lowest energy (200 mJ). The other small fibers fractured only at a bend diameter of 1 cm. The Sharplan 200 and InnovaQuartz Sureflex 273T were the most flexible fibers, the Lumenis SL 365 the least. The flow rate was inversely proportional to four times the power of the diameter of the fiber. Optical performance and safety differ among fibers. Fibers transmit various amounts of energy to their cladding when bent. During lower-pole nephroscopy with the fiber deflected, there is a risk of fiber fracture from thermal breakdown and laser-energy transmission to the endoscope. Some available laser fibers

  12. IMPACT STUDY OF ANISOTROPIC OPTICAL FIBERS WINDING WITH DIFFERENT TENSION VALUE ON THE H-PARAMETER INVARIANCE DEGREE

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-09-01

    Full Text Available Subject of Research. We have investigated the effect of anisotropic optical fibers winding with an elliptical sheath subjecting to stress on the H-parameter invariance degree. This type of optical fiber is used in the manufacture of fiber loop in fiber-optic gyroscopes. Method of Research. The method of research is based on the application of Michelson polarization scanning interferometer as a measuring device. Superluminescent diode with a central wavelength of 1575 nm and a half-width of the spectrum equal to 45 nm is used as a radiation source. The studies were carried out with anisotropic optical fiber with 50 m long elliptical sheath subjecting to stress. The fiber was wound with one layer turn to turn on the coil with a diameter of 18 cm, which is used in the design of fiber-optic gyroscope. The tension force of the optical fiber was controlled during winding on a special machine. Main Results. It was found that at the increase of tension force from 0.05 N to 0.8 H the value of H-parameter increases from 7×10-6 1/m up to 178×10-6 1/m, respectively; i.e. the coupling coefficient of orthogonal modes in the test fiber is being increased. Thus, it is necessary to consider the longitudinal tension force of fiber in the design and manufacture of the fiber-optic sensors of high accuracy class: the less the fiber winding power, the higher invariance degree of distributed H-parameter. The longitudinal tension force of anisotropic optical fiber with elliptical sheath subjecting to stress equal to 0.2 N is recommended in the process of designing fiber-optic gyroscopes. Practical Relevance. The proposed method of Michelson scanning interferometer is usable in the production process for quality determination of the optical fiber winding: no local defects, value controlling of fiber H-parameter.

  13. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2012-01-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  14. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2013-02-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  15. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  16. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  17. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  18. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  19. Bamboo fiberboards and attapulgite : does it lead to an improvement of humidity control in buildings?

    Science.gov (United States)

    Nguyen, D. M.; Grillet, A. C.; Goldin, T.; Hanh Diep, T. M.; Woloszyn, M.

    2018-04-01

    In order to save energy used to heat or cool buildings and to improve the inhabitants comfort, control of humidity inside buildings must be improved. This can be done by using buffering materials able to absorb and release moisture when necessary. Natural fibers and mineral absorbent are good candidates to manufacture such materials. The aim of this research is to mix bamboo fibers with attapulgite to evaluate the influence of this mineral absorbent on the hygric behavior of the fiberboards. The hygric properties are slightly improved by the attapulgite and thus bamboo fiberboards can be used as building insulation materials able to participate to the indoor moisture control.

  20. CFD Analysis of the Oscillating Flow within a Stirling Engine with an Additively Manufactured Foil Type Regenerator

    Science.gov (United States)

    Qiu, Songgang; Solomon, Laura

    2017-11-01

    The simplistic design, fuel independence, and robustness of Stirling convertors makes them the ideal choice for use in solar power and combined heat and power (CHP) applications. A lack of moving parts and the use of novel flexure bearings allows free-piston type Stirling engines to run in excess of ten years without degradation or maintenance. The key component to their overall efficiency is the regenerator. While a foil type regenerator outperforms a sintered random fiber regenerator, limitation in manufacturing and keeping uniform spacing between the foils has limited their overall use. However, with the advent of additive manufacturing, a robust foil type regenerator can be cheaply manufactured without traditional limitations. Currently, a CFD analysis of the oscillating internal flow within the novel design was conducted to evaluate the flow loses within the system. Particularly the pressure drop across the regenerator in comparison to a traditionally used random fiber regenerator. Additionally, the heat transfer and flow over the tubular heater hear was evaluated. The results of the investigation will be used to optimize the operation of the next generation of additively manufactured Stirling convertors. This research was supported by ARPA-E and West Virginia University.

  1. Fabricated nano-fiber diameter as liquid concentration sensors

    Science.gov (United States)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  2. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  3. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, Jani, E-mail: jani.holopainen@helsinki.fi; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO{sub 3}) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}·4H{sub 2}O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO{sub 3} fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO{sub 3} layer by spin or dip coating Ca(NO{sub 3}){sub 2}/PVP precursor solution on the CaCO{sub 3} fibers followed by annealing of the gel formed inside the fiber layer. The CaCO{sub 3} fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. - Highlights: • Calcium carbonate fibers were prepared by electrospinning. • The electrospun fibers crystallized to calcite upon calcination at 500 °C. • Spin and dip coating methods were used to improve the adhesion of the CaCO{sub 3} fibers. • The CaCO{sub 3} fibers were converted to hydroxyapatite by treatment in phosphate solution. • The hydroxyapatite fibers consisted of plate-like nanocrystals.

  4. Characterization of Amazon fibers of the peach palm, balsa, and babassu by XDR, TGA and NMR

    International Nuclear Information System (INIS)

    Martins, Maria A.; Marconcini, Jose M.; Morelli, Carolina L.; Marinelli, Alessandra L.; Bretas, Rosario E.S.

    2011-01-01

    The aim of this work was to present the results by testing X-ray diffraction (XRD), thermogravimetric analysis (TG), nuclear magnetic resonance (NMR) and determining the moisture content of the peach palm, balsa and babassu fibers for assessing the feasibility of composite materials. The fibers of peach palm, balsa and babassu showed characteristic chemical structure of lignocellulosic material, and good thermal stability up to 220 deg C. The fiber with the highest crystallinity index (Ic) is the peach palm (72%) and the less crystalline is the babassu (37%), while the balsa fibers have Ic equal to 64%. The results have shown that these fibers can be used in the manufacture of composite materials. (author)

  5. Negotiating climate change agreements - the view from the mineral wool sector

    International Nuclear Information System (INIS)

    Loudon, Robert

    2001-01-01

    Trade associations representing energy-intensive industrial sectors in the UK have negotiated agreements with the Department of the Environment, Transport and the Regions (DETR) to enable their members to receive an 80% rebate on the climate change levy (CCL) providing they meet agreed energy saving targets. Insulation manufacturing is represented by Eurisol and the Mineral Wool Energy Savings Company (MINESCO). Rock wool and glass wool manufacture uses energy for blending, melting, fiberising, curing, cooling, cutting and packaging. However the mineral wool sector has already made significant improvements in energy efficiency over the last 20 years. Confidentiality issues led to Eurisol appointing consultants to advise on how individual plants could achieve further energy savings. Cadogan Consultants developed a strategy that incorporated both qualitative and quantitative issues and allowed the energy saving potential at each site to be identified. MINESCO agreed energy saving targets with the DETR in December 2000, but much work remains to be done

  6. Effect of reinforced fiber on morphology of Si phases in Al2O3/AI-Si alloy composite

    Directory of Open Access Journals (Sweden)

    Zheng LIU

    2005-05-01

    Full Text Available Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcement on the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alumina fiber can serve as propitious sites for the heterogeneous nucleation of the silicon phase, and the primary silicon in the composite can nucleate on the surface of the fiber. The fiber in the composite can trigger twin during the coupled growth of the aluminum-silicon eutectic and lead to modification of the eutectic silicon near the fiber.

  7. Carbon stripper foils held in place with carbon fibers

    International Nuclear Information System (INIS)

    Jolivet, Connie S.; Miller, Shawn A.; Stoner, John O.; Ladd, Peter

    2008-01-01

    The Spallation Neutron Source (SNS) currently under construction at Oak Ridge National Laboratory, Oak Ridge, Tennessee, is planned to initially utilize carbon stripper foils having areal densities approximately 260 μg/cm 2 . The projected design requires that each foil be supported by only one fixed edge. For stability of the foil, additional support is to be provided by carbon fibers. The feasibility of manufacturing and shipping such mounted carbon foils produced by arc evaporation was studied using two prototypes. Production of the foils is described. Fibers were chosen for satisfactory mechanical strength consistent with minimal interference with the SNS beam. Mounting of the fibers, and packaging of the assemblies for shipping are described. Ten completed assemblies were shipped to SNS for further testing. Preliminary evaluation of the survivability of the foils in the SNS foil changer is described

  8. Aspects and mechanisms of austenitic stainless steel corrosion in case of sodium leaks under mineral wool insulation

    International Nuclear Information System (INIS)

    Bertrand, C.; Ardellier, A.

    1996-01-01

    Sodium pipe rupture tests representative of Fast Reactors Accidents have been carried out on austenitic stainless steel surfaces. These tests improve our knowledge of small sodium leakage propagation in mineral wool insulation. They explain the new and unexpected aspects of the crevice corrosion phenomenon which has been observed on austenitic stainless steel pipe surfaces. Experimental results show that corrosion is limited to a peripheral annular zone, which extends out in concentric waves. The diameter of this corrosion zone is practically constant. Tests show that sodium does not expand directly on the pipe surface. Sodium sprays through mineral wool insulation, where chemical reaction between silica fibers, occluded oxygen and water vapor occur at the same time. Simultaneously, there is a diffusion phenomenon of liquid Na droplets on the mineral wool fibers. The study allows to prove the electrochemical nature of the corrosion. The excess liquid Na, spraying as droplets induces an anodic dissolution mechanism by differential aeration. This phenomenon explains the random microscopic and macroscopic aspects of material removal. (authors). 1 ref., 16 figs

  9. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    Science.gov (United States)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  10. Time for a forum on terms used for textile fibers

    Directory of Open Access Journals (Sweden)

    Zawistoski, P. S.

    2012-11-01

    Full Text Available The advances in manufactured fibers and textiles have garnered interest and excitement of textile artists and consumers alike for a myriad of reasons, including health, environmental, and fashion. The chemical and molecular nature of these advances, however leads to confusion and misunderstanding of the new fibers in the materials. This is exacerbated by the current climate of distrust for chemical words and desire for "green" products and the unregulated (misinformation and marketing on the web. Textile artists, consumers, and the clothing and household textile industry need clear names and labels to identify the materials they are using.

  11. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  12. Machine Learning and Infrared Thermography for Fiber Orientation Assessment on Randomly-Oriented Strands Parts.

    Science.gov (United States)

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Malheiros, Fernando; Ignacio, Luis Henrique; Sfarra, Stefano; Ibarra-Castanedo, Clemente; Guimaraes, Gilmar; Maldague, Xavier

    2018-01-19

    The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed.

  13. Experiment-Based Sensitivity Analysis of Scaled Carbon-Fiber-Reinforced Elastomeric Isolators in Bonded Applications

    Directory of Open Access Journals (Sweden)

    Farshad Hedayati Dezfuli

    2016-01-01

    Full Text Available Fiber-reinforced elastomeric isolators (FREIs are a new type of elastomeric base isolation systems. Producing FREIs in the form of long laminated pads and cutting them to the required size significantly reduces the time and cost of the manufacturing process. Due to the lack of adequate information on the performance of FREIs in bonded applications, the goal of this study is to assess the performance sensitivity of 1/4-scale carbon-FREIs based on the experimental tests. The scaled carbon-FREIs are manufactured using a fast cold-vulcanization process. The effect of several factors including the vertical pressure, the lateral cyclic rate, the number of rubber layers, and the thickness of carbon fiber-reinforced layers are explored on the cyclic behavior of rubber bearings. Results show that the effect of vertical pressure on the lateral response of base isolators is negligible. However, decreasing the cyclic loading rate increases the lateral flexibility and the damping capacity. Additionally, carbon fiber-reinforced layers can be considered as a minor source of energy dissipation.

  14. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  15. Quantitative determination of bone mineral content (QCT) - intercomparison of computer tomographs of the same construction

    International Nuclear Information System (INIS)

    Andresen, R.; Banzer, D.; Felsenberg, D.; Wolf, K.J.

    1994-01-01

    An intercomparison of 4 CT scanners of the same manufacturer was performed. The bone mineral content of 11 lumbar vertebral columns removed directly post mortem was determined in a specially constructed lucite-water phantom. Even devices of the same construction were shown to yield a variation in the quantitative evaluation markedly exceeding the annual physiological mineral loss. As long as scanner adjustment by physical calibration phantoms has not yet been established, a course assessment and therapy control of bone mineral content should always be carried out on the same QCT scanner. (orig.) [de

  16. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  17. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure

    DEFF Research Database (Denmark)

    Lárusson, Lárus H.; Fischer, Gregor; Jönsson, Jeppe

    2013-01-01

    This paper reports on a study on prefabricated composite and modular floor deck panels composed of relatively thin fiber reinforced concrete slabs connected to steel substructures. The study focuses on the design, manufacturing, structural improvements and behavior of the floor systems during...

  18. Improving the Value Chain of Biofuel Manufacturing Operations by Enhancing Coproduct Transportation and Logistics

    Science.gov (United States)

    Biofuels, including corn-based ethanol, can partially meet the increasing demand for transportation fuels. The production of ethanol in the U.S. has dramatically increased; so too has the quantity of manufacturing coproducts. These nonfermentable residues (i.e., proteins, fibers, oils) are sold as...

  19. Shear Strengthening of Concrete Structures with the use of mineral based composites

    DEFF Research Database (Denmark)

    Blanksvärd, Thomas; Täljsten, Björn; Carolin, Anders

    2009-01-01

    concrete (RC) beams strengthened in shear with the use of cementitious bonding agents and carbon fiber grids, denoted mineral based composites (MBC). In this study it is shown that the MBC system has a strengthening effect corresponding to that of strengthening systems using epoxy bonding agents and carbon...... for rehabilitation. In addition, more traffic and heavier loads lead to the need for upgrading. Existing externally bonded strengthening systems using FRP (fiber reinforced polymers) and epoxy as bonding agents have been proven to be a good approach to repair and strengthen concrete structures. However, the use...... fiber sheets. Different designs and material properties of the MBC system have been tested. An extensive monitoring set-up has been carried out using traditional strain gauges and photometric strain measurements to obtain strains in steel reinforcement, in FRP and strain fields on the strengthened...

  20. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  1. Detection of mineral impurities in diatomite ores

    OpenAIRE

    Guatame Garcia, L.A.; Buxton, M.W.N.; Fiore, Saverio

    2017-01-01

    Diatomaceous Earth (DE) is commonly used in the industry for the manufacturing of filters, where diatomite is preferred due to its low chemical reactivity and high porosity. Diatomite deposits with major amounts of mineral impurities, such as carbonates, present a problem in the production DE. In this study, samples from a diatomite deposit with known presence of carbonate were analysed. With the aim of estimating the carbonate content, the samples were analysed with infrared (IR) spectroscop...

  2. Additive Manufacturing of Parts and Tooling in Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [ORNL; Hassen, Ahmed A. [ORNL; Chesser, Phillip C. [ORNL; Parsons, Jeremy [Mantaro Networks, Inc.

    2018-04-01

    ORNL worked with Transcend Robotics, LLC to explore additive manufacturing of the two-piece compression body for their ARTI mobile robot platform. Extrusion compression molding was identified as an effective means of manufacturing these parts. ORNL consulted on modifications to the housing design to accommodate the selected manufacturing process. Parts were printed using ORNL's FDM machines for testing and evaluation of the design as a precursor to molding the parts. The assembly and evaluation of the parts proved favorable and minor design changes to improve assembly and performance were identified.The goal is to develop a light weight and rugged two-part robotic enclosure for an unmanned ground vehicle UGV) that will be used in search and rescue applications. The FDM parts fabricated by ORNL allowed Transcend Robotics to assemble a prototype robot and verify that the new parts will meet the performance requirements. ORNL fabricated enclosure parts out of ABS and Nylon 12 materials such that the design could be tested prior to fabricating tooling for compression molding of Nylon 6 with carbon fiber fill. The robot was performance tested and compared with the previous manufacturing techniques and found to have superior performance.

  3. A model for continuous improvement at a South African minerals benefication plant

    Directory of Open Access Journals (Sweden)

    Ras, Eugene Ras

    2015-05-01

    Full Text Available South Africa has a variety of mineral resources, and several minerals beneficiation plants are currently in operation. These plants must be operated effectively to ensure that the end-users of its products remain internationally competitive. To achieve this objective, plants need a sustainable continuous improvement programme. Several frameworks for continuous improvement are used, with variable success rates, in beneficiation plants around the world. However, none of these models specifically addresses continuous improvement from a minerals-processing point of view. The objective of this research study was to determine which factors are important for a continuous improvement model at a minerals beneficiation plant, and to propose a new model using lean manufacturing, six sigma, and the theory of constraints. A survey indicated that managers in the industry prefer a model that combines various continuous improvement models.

  4. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  5. Recent Progress in Producing Lignin-Based Carbon Fibers for Functional Applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Burwell, Deanna [GrafTech International Holdings Inc.; Dai, Xuliang [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Akato, Kokouvi [Oak Ridge National Laboratory

    2015-10-29

    Lignin, a biopolymer, has been investigated as a renewable and low-cost carbon fiber precursor since the 1960s. Although successful lab-scale production of lignin-based carbon fibers has been reported, there are currently not any commercial producers. This paper will highlight some of the known challenges with converting lignin-based precursors into carbon fiber, and the reported methods for purifying and modifying lignin to improve it as a precursor. Several of the challenges with lignin are related to its diversity in chemical structure and purity, depending on its biomass source (e.g. hardwood, softwood, grasses) and extraction method (e.g. organosolv, kraft). In order to make progress in this field, GrafTech and Oak Ridge National Laboratory are collaborating to develop lignin-based carbon fiber technology and to demonstrate it in functional applications, as part of a cooperative agreement with the DOE Advanced Manufacturing Office. The progress made to date with producing lignin-based carbon fiber for functional applications, as well as developing and qualifying a supply chain and value proposition, are also highlighted.

  6. Glass pipette-carbon fiber microelectrodes for evoked potential recordings

    Directory of Open Access Journals (Sweden)

    Moraes M.F.D.

    1997-01-01

    Full Text Available Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials

  7. Machine Learning and Infrared Thermography for Fiber Orientation Assessment on Randomly-Oriented Strands Parts

    Science.gov (United States)

    Maldague, Xavier

    2018-01-01

    The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed. PMID:29351240

  8. [Effectiveness of increased contents of dietary fiber in early stages of non-insulin-dependent diabetes mellitus].

    Science.gov (United States)

    Krashenitsa, G M; Botvineva, L A; Mogila, A V

    1994-01-01

    Patients with early NIDDM were put on routine diet N 9 (food fiber 25 g/day) and test diet (food fiber 55 g/day). The diet of both groups (group 1 and 2, respectively) was supplemented with oral mineral water Essentuki 17. High-fiber diets proved to be effective for the above patients as they induced positive trends in NIDDM clinical symptoms, body weight, lowering of basal insulin, an increase in insulin immediate pool. There was also a reduction of insulinemia and hyperglycemia later in the course of glucose tolerance test. The above shifts were more pronounced in 2 patients.

  9. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  10. Fiber-optic couplers as displacement sensors

    Science.gov (United States)

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  11. Variation of proximate composition and minerals within different parts of capparis decidua (forssk.) edgew. As a function of harvesting seasons

    International Nuclear Information System (INIS)

    Gull, T.; Sultana, B.; Mahmood, Z.; Anwar, F.; Nouman, W.; Shahid, S. A.; Iqbal, M. Z.

    2015-01-01

    Capparis decidua (C. decidua) is an important medicinal plant from the family Capparaceae. The present study explores the proximate (moisture, protein, crude fiber, dry matter) composition and minerals profile of various parts including stem bark, fruit shoot, root and flower of C. decidua harvested from Cholistan desert, Punjab, Pakistan in two seasons i.e. April and September. C. decidua fruits contained relatively higher amounts of proximate constituents followed by the flowers especially in case of protein while stem bark and roots mainly contained fiber. In comparison with other parts, the content of minerals was higher while traces of heavy metals i.e. Ni, Co and Cd were recorded in C. decidua fruits and flowers. Overall, harvesting seasons exhibited a significant (p<0.05) effect on the distribution of most of the constituents within different parts of Capparis decidua. The samples collected in September were found to be richer in protein and minerals and vice versa. The results of this study support that C. decidua fruits and flowers can be explored as a viable source of minerals and vegetable protein both for human beings and livestock to supplement nutrition. (author)

  12. A methodology for developing anisotropic AAA phantoms via additive manufacturing.

    Science.gov (United States)

    Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A

    2017-05-24

    An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Beach sand mineral industries in India and challenges of value addition

    International Nuclear Information System (INIS)

    Patra, R.N.

    2016-01-01

    Beach sand minerals (BSM) are a suite of seven minerals that often occur together in various proportions in the beach sands of coastal India. They are also called heavy minerals as they have densities in the range 3.2 gms/cc to 5.2 gms/cc, which are higher than the sand. Ilmenite, leucoxene and rutile are oxide minerals of titanium metal. Zircon is silicate of zirconium where as silimanite is silicate of aluminum. The titanium, zirconium and thorium bearing minerals are atomic minerals under the atomic energy act 1962 and need no objection from the Department of Atomic Energy (DAE) for their mining. Further authorization is necessary from DAE to handle and process monazite as it contains thorium, as it is a prescribed substance under the notification issued under the atomic energy act. Radioactive nature of monazite also mandates obtaining permission from Atomic Energy Regulatory Board (AERB) with a view to ensure regulatory compliance with radiological safety. Monazite is processed to produce rare earths, trisodium phosphate (TSP) and thorium compounds.Thorium values are stockpiled in engineered trenches for use in nuclear power program of the country where as rare earths are used for manufacture of high power permanent magnets, energy efficient optical phosphors, metal alloys for battery to store electricity and hydrogen, as additives to glass for imparting special optical properties and myriads of applications in defence and strategic sectors. Rare earths of late have assumed importance as high power rare earths based permanent magnets are used in manufacture of wind mills, MRI machines, magnetic levitated bearings etc, having minimal impact on green house gas generation and use in renewable energy sector. The presentation brings out the limitation of value added product industries in India, the efforts taken by Indian Rare Earths Ltd. (IREL) in developing value added products in the face of technology denial regime and hostile market dynamics. The road map for

  14. Carbon Fiber Composite Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr., Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mainka, Hendrik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Volkswagen (VW) is internationally recognized for quantity and quality of world-wide vehicle production and the Oak Ridge National Laboratory (ORNL) is internationally recognized in materials research and development. With automotive production ramping up in the recently constructed VW Group of America facility in Chattanooga, Tennessee, ORNL and VW initiated discussions in 2012 concerning opportunities for collaboration around ORNL’s carbon fiber and composites programs. ORNL is conducting an internationally recognized program to develop and implement lower cost carbon fibers and composites for automotive and other “energy missions” for the US Department of Energy. Significant effort is ongoing in selecting, developing, and evaluating alternative precursors, developing and demonstrating advanced conversion techniques, and developing and tailoring surface treatment, sizings, and formatting fiber for specific composite matrices and end-use applications. ORNL already had North America’s most comprehensive suite of tools for carbon fiber research and development and established a semiproduction demonstration line referred to as the Carbon Fiber Technology Facility (CFTF) to facilitate implementation of low cost carbon fiber (LCCF) approaches in early 2013. ORNL and VW agreed to collaborate in a formal Cooperative Research and Development Agreement (NFE-12-03992) specifically focused on evaluating applicability of low cost carbon fiber products for potential vehicle components. The goal of the work outlined in this report was to develop and qualify uses for carbon fiber-reinforced structures in connection with civilian ground transportation. Significant progress was achieved in evaluating and understanding lignin-based precursor materials; however, availability of carbon fiber converted from lignin precursor combined with logistical issues associated with the Visa limitations for the VW participant resulted in significantly shortening of the collaboration

  15. A Crosswalk of Mineral Commodity End Uses and North American Industry Classification System (NAICS) codes

    Science.gov (United States)

    Barry, James J.; Matos, Grecia R.; Menzie, W. David

    2015-09-14

    This crosswalk is based on the premise that there is a connection between the way mineral commodities are used and how this use is reflected in the economy. Raw mineral commodities are the basic materials from which goods, finished products, or intermediate materials are manufactured or made. Mineral commodities are vital to the development of the U.S. economy and they impact nearly every industrial segment of the economy, representing 12.2 percent of the U.S. gross domestic product (GDP) in 2010 (U.S. Bureau of Economic Analysis, 2014). In an effort to better understand the distribution of mineral commodities in the economy, the U.S. Geological Survey (USGS) attempts to link the end uses of mineral commodities to the corresponding North American Industry Classification System (NAICS) codes.

  16. Leading research and study report for fiscal 1998. Report on leading research and study on intelligent fiber; 1998 nendo sendo chosa kenkyu hokokusho. Inteligent fiber sendo chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches were conducted with a view to organizing projects for developing intelligent fibers, equipped with environmental friendliness and amenity without being deprived of their original properties as structural and clothing materials, the ultimate goal of the effort being the creation of harbingers of next-generation fibers which would contribute to the advance of industries related to environments, medicine and welfare, and information. What were learned from fiscal 1998 researches are mentioned below. The strength that the general-purpose fibers currently in use exhibit is so small as to be but several percent of what is theoretically predicted for them. Demand will increase a great deal if the actual strength is doubled, for which new technologies have to be developed including those involving super-fiber texture control. For providing the fiber with such functions as environment-friendliness, amenity, etc., it is necessary to develop phasal structure control technologies with regard to fiber morphology, surface texture, etc. For success in practical application in the future of such super-fiber materials, each specimen needs to be manufactured in the order of kilogram by way of trial. Moreover, fiber evaluation techniques have to be developed in the three domains of software, hardware, and interface. (NEDO)

  17. Preliminary Design and Experimental Investigation of a Novel Pneumatic Conveying Method to Disperse Natural Fibers in Thermoset Polymers

    Science.gov (United States)

    Fahimian, Mahi; Kortschot, Mark; Sain, Mohini

    2016-01-01

    Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source. PMID:28773670

  18. Preliminary Design and Experimental Investigation of a Novel Pneumatic Conveying Method to Disperse Natural Fibers in Thermoset Polymers

    Directory of Open Access Journals (Sweden)

    Mahi Fahimian

    2016-07-01

    Full Text Available Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source.

  19. NASA's National Center for Advanced Manufacturing

    Science.gov (United States)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  20. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  1. Asbestos fiber release from the brake pads of overhead industrial cranes.

    Science.gov (United States)

    Spencer, J W; Plisko, M J; Balzer, J L

    1999-06-01

    The purpose of this evaluation was to determine the actual contribution of airborne asbestos fibers to the work environment from the operation of overhead cranes and hoists that use asbestos composition brake pads. The evaluation was conducted in a working manufacturing facility. Other potential sources of asbestos were accounted for by visual inspection and background air monitoring. An overhead crane assembly comprised of a trolley and two hoists was employed for this study. The crane was operated for two consecutive eight-hour shifts representative of a heavy-duty cycle. Forty-four personal and area air samples were collected during the assessment. Asbestos fibers were analyzed for by phase contrast (NIOSH 7400), and transmission electron (NIOSH 7402) microscopy methods. Eight-hour time-weighted average (TWA) asbestos fiber concentrations ranged from cranes.

  2. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  3. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    Science.gov (United States)

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  4. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  5. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    Science.gov (United States)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  6. Experimental and Numerical Investigations on the Mechanical Characteristics of Carbon Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Salem Bashmal

    2017-09-01

    Full Text Available Carbon fiber-based materials possess excellent mechanical properties and show linear piezoresistive behavior, which make them good candidate materials for strain measurements. They have the potential to be used as sensors for various applications such as damage detection, stress analysis and monitoring of manufacturing processes and quality. In this paper, carbon fiber sensors are prepared to perform reliable strain measurements. Both experimental and computational studies were carried out on commercially available carbon fibers in order to understand the response of the carbon fiber sensors due to changes in the axial strain. Effects of parameters such as diameter, length, and epoxy-hardener ratio are discussed. The developed numerical model was calibrated using laboratory-based experimental data. The results of the current study show that sensors with shorter lengths have relatively better sensitivity. This is due to the fact short fibers have low initial resistance, which will increase the change of resistance over initial resistance. Carbon fibers with low number of filaments exhibit linear behavior while nonlinear behavior due to transverse resistance is significant in fibers with large number of filaments. This study will allow researchers to predict the behavior of the carbon fiber sensor in real life and it will serve as a basis for designing carbon fiber sensors to be used in different applications.

  7. Automated packaging platform for low-cost high-performance optical components manufacturing

    Science.gov (United States)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  8. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  9. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  10. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    Science.gov (United States)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-03-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  11. Effects of Dietary Fiber and Its Components on Metabolic Health

    Directory of Open Access Journals (Sweden)

    Mark D. Haub

    2010-12-01

    Full Text Available Dietary fiber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. As a result, research regarding their potential health benefits has received considerable attention in the last several decades. Epidemiological and clinical studies demonstrate that intake of dietary fiber and whole grain is inversely related to obesity, type two diabetes, cancer and cardiovascular disease (CVD. Defining dietary fiber is a divergent process and is dependent on both nutrition and analytical concepts. The most common and accepted definition is based on nutritional physiology. Generally speaking, dietary fiber is the edible parts of plants, or similar carbohydrates, that are resistant to digestion and absorption in the small intestine. Dietary fiber can be separated into many different fractions. Recent research has begun to isolate these components and determine if increasing their levels in a diet is beneficial to human health. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. The study of these components may give us a better understanding of how and why dietary fiber may decrease the risk for certain diseases. The mechanisms behind the reported effects of dietary fiber on metabolic health are not well established. It is speculated to be a result of changes in intestinal viscosity, nutrient absorption, rate of passage, production of short chain fatty acids and production of gut hormones. Given the inconsistencies reported between studies this review will examine the most up to date data concerning dietary fiber and its effects on metabolic health.

  12. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  13. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites

    International Nuclear Information System (INIS)

    Zhang Yihe; Yu Chunxiao; Chu, Paul K.; Lv Fengzhu; Zhang Changan; Ji Junhui; Zhang Rui; Wang Heli

    2012-01-01

    Highlights: ► Novel basalt fiber-reinforced biodegradable poly(butylene succinate) composites have been successfully fabricated with various fiber loadings. ► The tensile and flexural properties of the PBS matrix resin are improved significantly by increasing the fiber loading in the composites. ► The impact strength of the BF/PBS composite decreases with the addition fibers primarily and increases with increasing fiber loading due to energy dissipation when the fibers are pulled out. ► Heat deflection temperature tests clearly show that the HDT of the basalt fiber reinforced PBS composites is significantly higher than the HDT of the PBS resin. - Abstract: Basalt fiber (BF) reinforced poly(butylene succinate) (PBS) composites have been fabricated with different fiber contents by a injection molding method and their tensile, flexural and impact properties, as well as thermal stability have been investigated. The tensile and flexural properties of the PBS matrix resin are improved markedly by increasing the fiber contents in the composites. The values are relatively higher than the natural fiber/PP systems reported earlier by other research groups. The heat deflection temperature (HDT) and Vicat softening temperature (VST) of the composites are significantly higher than those of the neat PBS resin. Scanning electron microscopy (SEM) conducted on the fracture surfaces of the composites reveals superior interfacial linkage between the basalt fibers and PBS matrix. The results suggest that the BF/PBS composites may be a potential candidate of PP or PP composites to manufacturing some daily commodities to solve the “white pollution” in environmental management.

  14. Amino Acid and Mineral Supplementation in Fermentation Process of Concentrate Protein of Jatropha Seed Cake (Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Titin Widiyastuti

    2016-09-01

    Full Text Available The purpose of this study is to assess the optimization of fermentation process by adding a minerals and amino acids so that the potential of protein  of Concentrate Protein-Jatropha seed cake (CP-JSC can be optimally used as a substitute for soybean meal. The method used was completely randomized design. The treatment consisted of F1: Fermentation CP-BBJ + methionine-lysine (0.25%: 0.25%, F2: Fermentation CP-JSC + methionine-lysine (0.5%: 0.5%, F3: F1 + 0.45% Dicalsium Phosphate, F4: F2 + 0.45% Dicalsium Phosphate. Each treatment was repeated four times, When treatment significantly continued by Least Significant Difference (LSD, variables observed are the levels of antinutrients (phorbolester, antitrypsin, the levels of nutrients (fat, protein, crude fiber, Ca, P and gross energy and amino acid. Results of analysis of variance showed that the addition of amino acids and minerals Ca, P in the fermentation process was highly significant effect on the levels of crude fiber and phosphorus (P 0.05. While the levels obtained phorbolester range of 0.055% - 0.08%. It was concluded that the optimization of fermentation can be done without adding the amino acid supplementation of minerals calcium and phosphorus. Supplementation significantly affect a significant increase or decrease in some nutrients (crude fiber, gross energy, phosphor and capable of suppressing a decrease in amino acids. Supplementation of amino acids Lysine and Methionin 0.05% is the best treatment.

  15. Dietary Supplements and Health Aids - A Critical Evaluation Part 2 - Macronutrients and Fiber.

    Science.gov (United States)

    Dubick, Michael A.

    1983-01-01

    Part 1 of this evaluation of dietary supplements and health aids (SE 533 788) focused on various therapeutic claims made for vitamins and minerals. This part examines health-promoting claims made for selected macronutrients and fiber. Macronutrients examined include selected proteins, amino acids, enzymes, carbohydrates, and lipids. (JN)

  16. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  17. Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers.

    Directory of Open Access Journals (Sweden)

    Xuri Yan

    Full Text Available In this work, we report on the development of slit-surface electrospinning--a process that co-localizes two solutions along a slit surface to spontaneously emit multiple core-sheath cone-jets at rates of up to 1 L/h. To the best of our knowledge, this is the first time that production of electrospun core-sheath fibers has been scaled to this magnitude. Fibers produced in this study were defect-free (i.e. non-beaded and core-sheath geometry was visually confirmed under scanning electron microscopy. The versatility of our system was demonstrated by fabrication of (1 fibers encapsulating a drug, (2 bicomponent fibers, (3 hollow fibers, and (4 fibers from a polymer that is not normally electrospinnable. Additionally, we demonstrate control of the process by modulating parameters such as flow rate, solution viscosity, and fixture design. The technological achievements demonstrated in this work significantly advance core-sheath electrospinning towards commercial and manufacturing viability.

  18. Method for the production of solid hydroxides contained in mineral oils, mineral oil-like materials or mineral oil-containing materials and uses of products thus obtained. Verfahren zur Herstellung von Mineraloele, mineraloelaehnliche Stoffe oder mineraloelhaltige Stoffe enthaltenden festen Hydroxiden sowie die Verwendung danach erhaltener Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Boelsing, F

    1975-07-29

    A method has been developed which permits mineral oils, mineral oil-like substances or mineral oil-containing substances (eg waste oil) to be separated in powder form, even when these substance are present in a continuous phase with water (for example, oil slurries). A compound (eg. line) which forms a hydroxide with water is added, the formed hydroxide then acts as carrier substance. Prerequisite for obtaining the end-product in powdered form is that the homogeneous mixing of the oil-containing substance and hydroxide-forming substance takes place at a faster rate than the necessary auxilliary reaction, namely hydroxide formation, and further that water in present in at least stoichiometric quantities. The powdered end-product finds numerous applications eg. road construction, soil conditioning and compacting, recultivation measures in cement manufacture, and others.

  19. Resorbable fiber-forming polymers for biotextile applications

    CERN Document Server

    Gajjar, Chirag R

    2014-01-01

    This book summarizes the properties and applications of conventional and commercially available fiber-forming, bioresorbable polymers, as well as those currently under study, for use as biotextiles. Factors affecting the performance of these biomaterials are presented, and precautionary measures to reduce premature, hydrolytic degradation during manufacturing and processing are discussed. Because of the structural requirements of medical devices and the technological advancements in synthetic fibers and textile technology, the new field of "Biotextiles" has evolved to exploit the potential of various woven, knitted, braided and non-woven textile structures for biomedical applications. Textile substrates provide certain unique mechanical properties to the medical device and because of an inherently high level of porosity, they can encourage cell growth and promote migration and proliferation. Bioresorbable devices that assist in the repair and regeneration of damaged tissues have in recent years replaced many ...

  20. Process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. Verfahren zur Herstellung eines Filterstoffes zur Reinigung von industriellen oder Brennkraftmaschinen-Abgasen und ein hiernach hergestellter Filterstoff

    Energy Technology Data Exchange (ETDEWEB)

    Bumbalek, A.

    1986-01-02

    This is a process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. The filter material is manufactured from the mineralized combustion product of peel of tropical fruits burnt at a temperature of 820/sup 0/C to 840/sup 0/C in an oxidising atmosphere excluding the production of carbon, particularly using banana skins and orange peels, which product is granulated with carrier materials or compressed.

  1. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  2. Cure monitoring of epoxy resin by using fiber bragg grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk [KEPCO, Naju (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

  3. Investigations on the Manufacturing and Mechanical Properties of Spun Yarns Made from Staple CF for Thermoset Composites

    Directory of Open Access Journals (Sweden)

    Hasan Mir Mohammad Badrul

    2017-12-01

    Full Text Available This article reports the results of investigations carried out to produce yarns consisting of staple carbon fiber (CF obtained from process waste for the manufacturing of composites suitable especially for thermoset applications. For this purpose, a comparative analysis is done on processability between 100% staple CF and 60 weight% staple CF mixed with 40 weight% PVA fibers in carding, drawing and spinning process. The hybrid yarns are produced by varying twist level. The PVA fibers of the hybrid yarn are then dissolved using hot water treatment. The mechanical properties of yarns consisting of 100% staple CF and hybrid yarns consisting of staple CF and PVA before and after hot water treatment are investigated. Furthermore, test specimen is also prepared by impregnating 100% staple CF yarn and the hybrid yarns (after the dissolving of PVA with epoxy resin. The results of the tensile test of the yarns in consolidated state reveals that the hybrid yarn produced with 80 T/m after hot water treatment exhibits approximately 75% of the tensile strength of virgin filament tow, and it is expected that the hybrid yarns can be applied for the manufacturing of thermoset based composites for load bearing structures.

  4. IEEE 802.3 Fiber Optic Inter-Repeater Link

    Science.gov (United States)

    Tarrant, Peter J.

    1987-01-01

    This paper describes the implementation of a fiber optic inter-repeater link (FOIRL), used for connecting two remote copper segments of an IEEE 802.3 local area network. The rationale for the design, the signalling used and the collision detection mechanism is discussed. The evolution of the draft international standard for the FOIRL and the concurrence amongst various manufacturers is also presented. Finally some examples of typical applications, highlighting the ease of installation, are given.

  5. A study on the preparation of value-added products from the nonmetallic minerals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report consists of 2 subjects. 1) A study on manufacturing technology of materials for fine chemical industry use (muscovite, sericite): For the technical development on utilization of unused mineral resources, the study was carried out on the highly purification and mineral processing of domestic sericite and muscovite. This study was also carried out to make the functional materials for the use of fine chemical industry. Scope and content of study is the high purification and the surface treatment of fine particles of sericite and muscovite. 2) Studies on manufacturing technology of materials for fine chemical and electronic industry use: Fine natural crystalline graphite which is used as a source material of a high electrically conductive film and an addition of advanced high functional solid lubricant. For use high electrically conductive film and advanced high functional solid lubricant, add new and advanced high functional properties to fine graphite powder through surface modification with gas and organic materials. (author). 71 refs., 45 tabs., 84 figs.

  6. Laser fiber cleaving techniques: effects on tip morphology and power output.

    Science.gov (United States)

    Vassantachart, Janna M; Lightfoot, Michelle; Yeo, Alexander; Maldonado, Jonathan; Li, Roger; Alsyouf, Muhannad; Martin, Jacob; Lee, Michael; Olgin, Gaudencio; Baldwin, D Duane

    2015-01-01

    Proper cleaving of reusable laser fibers is needed to maintain optimal functionality. This study quantifies the effect of different cleaving tools on power output of the holmium laser fiber and demonstrates morphologic changes using microscopy. The uncleaved tips of new 272 μm reusable laser fibers were used to obtain baseline power transmission values at 3 W (0.6 J, 5 Hz). Power output for each of four cleaving techniques-11-blade scalpel, scribe pen cleaving tool, diamond cleaving wheel, and suture scissors-was measured in a single-blinded fashion. Dispersion of light from the fibers was compared with manufacturer specifications and rated as "ideal," "acceptable," or "unacceptable" by blinded reviewers. The fiber tips were also imaged using confocal and scanning electron microscopy. Independent samples Kruskal-Wallis test and chi square were used for statistical analysis (αtrend that was highly significant (Ptrend as the power output results (P<0.001). Microscopy showed that the scribe pen produced small defects along the fiber cladding but maintained a smooth, flat core surface. The other cleaving techniques produced defects on both the core and cladding. Cleaving techniques produce a significant effect on the initial power transmitted by reusable laser fibers. The scribe pen cleaving tool produced the most consistent and highest average power output.

  7. Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications.

    Science.gov (United States)

    Manhas, Sandeep; Vizet, Jérémy; Deby, Stanislas; Vanel, Jean-Charles; Boito, Paola; Verdier, Mireille; De Martino, Antonello; Pagnoux, Dominique

    2015-02-09

    A novel technique to measure the full 4 × 4 Mueller matrix of a sample through an optical fiber is proposed, opening the way for endoscopic applications of Mueller polarimetry for biomedical diagnosis. The technique is based on two subsequent Mueller matrices measurements: one for characterizing the fiber only, and another for the assembly of fiber and sample. From this differential measurement, we proved theoretically that the polarimetric properties of the sample can be deduced. The proof of principle was experimentally validated by measuring various polarimetric parameters of known optical components. Images of manufactured and biological samples acquired by using this approach are also presented.

  8. Influence of ash on the fiber composition of dried dairy manures

    International Nuclear Information System (INIS)

    Reeves, J.B.; Van Kessel, J.A.S.

    2002-01-01

    The ash content of dried dairy manures is a significant source of error in the determination of their fiber composition. - The objective of this work was to examine the role of ash in the compositional analysis of dried dairy manures. Ninety-nine dairy manures obtained from Connecticut, Maryland, New York, Pennsylvania and Virginia were dried at 60 deg. C, and ground to 20 mesh. Samples were analyzed for neutral and acid detergent fiber, acid detergent lignin, total carbon, total nitrogen, and ash. In addition, cellulose and hemicellulose were computed by difference. Results indicated that high ash contents (8-52% of dry matter) can dramatically and unpredictably alter various measures of fiber composition and are a significant source of error in the determination of manure composition and how it relates to mineralization or other compositional influenced factors. Also, while the ash content of the dried intact manure can easily be determined, it is difficult to estimate the ash contribution to the individual fiber determinations, especially if sequential assays are performed

  9. Formulation and characterization of date palm fibers mortar by addition of silica fume

    Science.gov (United States)

    Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.

    2018-05-01

    This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.

  10. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  11. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2018-03-01

    Full Text Available In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resin

  12. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions

    Science.gov (United States)

    Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.

    2017-04-01

    In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.

  13. [In vivo evaluation of carbon fiber posts].

    Science.gov (United States)

    Lai, V; Lugliè, P F; Chessa, G

    2002-05-01

    The use of carbon fiber posts allows morpho-functional restoration of endodontically treated teeth with an assembly of materials of a modulus of elasticity similar to that of dentin. The study clinically evaluated the percentage of survival of dental elements treated and reconstructed with endocanal carbon fiber posts. At the Dentistry Clinic of the University of Sassari 60 dental elements were selected from 46 subjects. The teeth, which had been treated endodontically with success for at least six months, were classified by parameters taken from the international literature and reconstructed using Tech 2000 carbon fiber posts and adhesive resinous systems recommended by the post manufacturer. The success rate was 98.4%. Almost half (49%) of the samples were single-rooted elements, 37.4% of the posts were 1.2 mm in diameter; in 78.3% the opposing contact was with a natural tooth; 100% of the elements had a type A dental structure. Third generation posts are a valid alternative to metallic posts and improve the prognosis of the treated element. The carbon fiber posts fixed with the composite, forming a single unit with the dental element, thus improving mid-term RESULTS. The technique is easy to use under clinical conditions and can be performed in a single session. So far, the method has provided promising clinical results, as this study demonstrated.

  14. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  15. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  16. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  17. Mineral Resource of the Month: Talc

    Science.gov (United States)

    Virta, Robert L.; Van Gosen, Bradley S.

    2014-01-01

    When people think of talc, they often think of talcum and baby powder. However, these uses of talc are minor compared to its use in industrial manufacturing. The leading use of talc in the United States is in the production of ceramics, where it is a source of magnesium oxide, serves as a flux to reduce firing temperatures, and improves thermal shock characteristics of the final product. Worldwide, the major use of talc is as a paper constituent, where it fills the interstices between cellulose paper fibers, reduces paper transparency, improves ink receptivity, and absorbs undesirable tree sap residues that can generate blemishes in the paper.

  18. Process for the manufacture of whey products

    Energy Technology Data Exchange (ETDEWEB)

    Blanie, P

    1980-01-01

    Whey is subjected to ultrafiltration to retain about 10% of the T5, whilst the permeate is demineralized to 7% or less ash in the final product and dried to 3% moisture. The product, containing (in DM) 75% or more lactose, 6% or less protein and 8% or less minerals, is hydrolysed, e.g. with beta-galactosidase. It may be used for replacing sucrose, in the manufacture of a range of foods. Applications include chewing gum, fondants, nougats, chocolate, bakery and confectionery products as well as cream and yoghurt.

  19. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Dai, Xuliang [GrafTech International Holdings Inc.; Hausner, Andrew [GrafTech International Holdings Inc.

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  20. Arc-Induced Long Period Gratings from Standard to Polarization-Maintaining and Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Flavio Esposito

    2018-03-01

    Full Text Available In this work, we report about our recent results concerning the fabrication of Long Period Grating (LPG sensors in several optical fibers, through the Electric Arc Discharge (EAD technique. In particular, the following silica fibers with both different dopants and geometrical structures are considered: standard Ge-doped, photosensitive B/Ge codoped, P-doped, pure-silica core with F-doped cladding, Panda type Polarization-maintaining, and Hollow core Photonic crystal fiber. An adaptive platform was developed and the appropriate “recipe” was identified for each fiber, in terms of both arc discharge parameters and setup arrangement, for manufacturing LPGs with strong and narrow attenuation bands, low insertion losses, and short length. As the fabricated devices have appealing features from the application point of view, the sensitivity characteristics towards changes in different external perturbations (i.e., surrounding refractive index, temperature, and strain are investigated and compared, highlighting the effects of different fiber composition and structure.

  1. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  2. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  3. Development of a Highly Stressed Bladed Rotor Made of a CFRP Using the Tailored Fiber Placement Technology

    Science.gov (United States)

    Uhlig, K.; Spickenheuer, A.; Bittrich, L.; Heinrich, G.

    2013-05-01

    Increasing the rotational frequency of bladed rotors used in turbomachinery leads to their increased efficiency and performance. Especially for turbomolecular pumps, this would allow either higher compression rates or smaller pump dimensions. The maximal rotational frequency is focused on the structural strength of the construction and the material used. Due to their high density, specific strength, and stiffness in the fiber direction, carbon-fiberreinforced plastics (CFRPs) seem to be ideal for such an application. The highly orthotropic material behavior of CFRPs demands new approaches in terms of their manufacturing and dimensioning. As a new approach, a rotor with 17 blades in a blade-integrated disk construction (BLISK) made of a CFRP, allowing a 35% higher burst speed than a bladed rotor made of a high-strength aluminum alloy, was developed. An appropriate fiber layout has to reflect the rotational symmetry, which demands either a radial or tangential fiber orientation. Therefore, the Tailored Fiber Placement (TFP) technology was used, which allows a high flexibility for the fiber layout. For consolidation, resin infiltration was performed using a modified vacuum-assisted process, and the final geometry was generated employing a milling machine. A radius-dependent layer setup of tangential and radial fibers was chosen to maximize the burst speed by using an adapted finite-element analysis. Additionally, a numerical modal analysis and a numerical failure analysis were performed. Finally, the theoretical results were verified on manufactured rotors by an experimental modal analysis and burst tests, where experimental data showed a good coincidence with numerical results.

  4. Fiber Laser Component Testing for Space Qualification Protocol Development

    Science.gov (United States)

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  5. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    Science.gov (United States)

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  6. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair

    International Nuclear Information System (INIS)

    Chen Xi; Li Yan; Gu Ning

    2010-01-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  7. High-temperature properties of mineral wool

    DEFF Research Database (Denmark)

    Augustesen, Maria; Ståhl, Kenny

    Thermal stability and thereby fire safety is an essential property of fibrous insulating materials for buildings. At the same time the viscosity is an important manufacturing property that may impair the thermal stability. This project aims at investigating the thermal stability of some mineral...... behaviour. Figure 1. Isothermal X-ray powder diffraction patterns collected at beamline 711, MAXLAB, Lund, using a Huber G670 Guinier camera. The sample was contained in a 0.5 mm quartz capillary, data were accumulated for 5 min per pattern at T = 1100 K and lambda = 1.2724 Å. Preliminary results show...

  8. κ-Carrageenan Enhances the Biomineralization and Osteogenic Differentiation of Electrospun Polyhydroxybutyrate and Polyhydroxybutyrate Valerate Fibers.

    Science.gov (United States)

    Goonoo, Nowsheen; Khanbabaee, Behnam; Steuber, Marc; Bhaw-Luximon, Archana; Jonas, Ulrich; Pietsch, Ullrich; Jhurry, Dhanjay; Schönherr, Holger

    2017-05-08

    Novel electrospun materials for bone tissue engineering were obtained by blending biodegradable polyhydroxybutyrate (PHB) or polyhydroxybutyrate valerate (PHBV) with the anionic sulfated polysaccharide κ-carrageenan (κ-CG) in varying ratios. In both systems, the two components phase separated as shown by FTIR, DSC and TGA. According to the contact angle data, κ-CG was localized preferentially at the fiber surface in PHBV/κ-CG blends in contrast to PHB/κ-CG, where the biopolymer was mostly found within the fiber. In contrast to the neat polyester fibers, the blends led to the formation of much smaller apatite crystals (800 nm vs 7 μm). According to the MTT assay, NIH3T3 cells grew in higher density on the blend mats in comparison to neat polyester mats. The osteogenic differentiation potential of the fibers was determined by SaOS-2 cell culture for 2 weeks. Alizarin red-S staining suggested an improved mineralization on the blend fibers. Thus, PHBV/κ-CG fibers resulted in more pronounced bioactive and osteogenic properties, including fast apatite-forming ability and deposition of nanosized apatite crystals.

  9. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Science.gov (United States)

    Hidalgo-Salazar, Miguel A.; Correa, Juan P.

    2018-03-01

    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.

  10. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin [Calera Corporation, Moss Landing, CA (United States); Gilliam, Ryan [Calera Corporation, Moss Landing, CA (United States); Seeker, Randy [Calera Corporation, Moss Landing, CA (United States)

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  11. Immunomodulatory effects in workers exposed to naturally occurring asbestos fibers.

    Science.gov (United States)

    Ledda, Caterina; Costa, Chiara; Matera, Serena; Puglisi, Beatrice; Costanzo, Valentina; Bracci, Massimo; Fenga, Concettina; Rapisarda, Venerando; Loreto, Carla

    2017-05-01

    Natural asbestiform fibers are defined 'naturally occurring asbestos' (NOA) and refer to the mineral as a natural component of soils or rocks. The release of NOA fibers into the air from rocks or soils by routine human activities or natural weathering processes represents a risk for human beings. Fluoro-edenite (FE) is a NOA fiber detected in the benmoreitic lava in the area of Biancavilla, South-west slope of Mt. Etna. The aim of the present study was to investigate FE immunotoxicity pathways in a group of 38 occupationally exposed construction workers, in order to find any biological markers of its effect. Subjects underwent respiratory function tests and HRCT total chest scanning. Serum IL-1β, IL-6, IL-8 and TNF-α were measured. The presence of PPs was significantly greater in subjects exposed than in the control (25 vs. 2). In subjects exposed to FE, IL-1β and TNF-α values were significantly higher than the controls. The previously observed increase of IL-1β and IL-18 showed a probable involvement of the proteic complex defined inflammosome by FE fibers.

  12. Lead, Mercury, and Arsenic in US- and Indian-Manufactured Ayurvedic Medicines Sold via the Internet

    Science.gov (United States)

    Lead, mercury, and arsenic have been detected in a subsantial portion of Indian-manufactured traditional Ayurvedic medicines. Metals may be present due to the parctice of rasa shastra (combining herbs with metals, minerals and gems). Whether toxic metals are present in both US-...

  13. [Survey of carbon fiber reinforced plastic orthoses and occupational and medical problems based on a questionnaire administered to companies involved in the manufacture of prosthetics and orthotics].

    Science.gov (United States)

    Kaneshiro, Yuko; Furuta, Nami; Makino, Kenichiro; Wada, Futoshi; Hachisuka, Kenji

    2011-09-01

    We surveyed carbon fiber reinforced plastic orthoses (carbon orthoses) and their associated occupational and medical problems based on a questionnaire sent to 310 companies which were members of the Japan Orthotics and Prosthetics Association. Of all the companies, 232 responded: 77 of the 232 companies dealt with ready-made carbon orthoses, 52 dealt with fabricated custom-made orthoses, and 155 did not dealt with carbon orthoses. Although the total number of custom-made carbon ortheses in Japan was 829/ 5 years, there was a difference by region, and one company fabricated only 12 (per 5 years) custom-made carbon orthoses on average. The advantages of the carbon orthosis were the fact that it was "light weight", "well-fitted", had a "good appearance", and "excellent durability", while the disadvantages were that it was "expensive", "high cost of production", of "black color", and required a "longer time for completion", and "higher fabrication techniques". From the standpoint of industrial medicine, "scattering of fine fragments of carbon fibers", "itching on the skin" and "health hazards" were indicated in companies that manufacture the orthosis. In order to make the carbon orthosis more popular, it is necessary to develop a new carbon material that is easier to fabricate at a lower cost, to improve the fabrication technique, and to resolve the occupational and medical problems.

  14. Bragg grating photo-inscription in doped microstructured polymer optical fiber by 400 nm femtosecond laser pulses.

    OpenAIRE

    Hu, X.; Woyessa, Getinet; Kinet, D.; Janting, Jakob; Nielsen, Kristian; Bang, Ole; Mégret, P.; Caucheteur, C.

    2016-01-01

    In this paper, we report the manufacturing of high-quality endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fibers. Bragg gratings are photo-inscribed in such fibers by means of 400 nm femtosecond laser pulses through a 1060-nm-period uniform phase mask. Preliminary results show a rapid growing process of the reflection band. To preserve a good spectral shape, the photo-inscription process was limited to ~20 seconds, yielding an FBG reflectivity close to 40 %.

  15. Beneath the Minerals, a Layer of Round Lipid Particles Was Identified to Mediate Collagen Calcification in Compact Bone Formation

    OpenAIRE

    Xu, Shaohua; Yu, Jianqing J.

    2006-01-01

    Astronauts lose 1–2% of their bone minerals per month during space flights. A systematic search for a countermeasure relies on a good understanding of the mechanism of bone formation at the molecular level. How collagen fibers, the dominant matrix protein in bones, are mineralized remains mysterious. Atomic force microscopy was carried out, in combination with immunostaining and Western blotting, on bovine tibia to identify unrecognized building blocks involved in bone formation and for an el...

  16. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  17. Towards zero waste production in the minerals and metals sector

    Science.gov (United States)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  18. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  19. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  20. New and non-traditional mineral raw materials deposits, perspectives of use

    International Nuclear Information System (INIS)

    Beyseev, O.; Beyseev, A.; Baichigasov, I.; Sergev, E.; Shakirova, G.

    1996-01-01

    Deposits of new and non-traditional kinds of mineral raw material are revealed, explored and prepared to industrial recovery in Kazakstan, that can be used in frames of conversion process to create new materials with unique properties, to prepare base for new technologies elaboration, and to achieve appreciable economic benefit. These deposits are located mostly in geographic and economic conditions of advanced infrastructure and mining works network, favorable for recovery.On the tests results the following is of heaviest interest: RHODUCITE, NEMALITE-CONTAINING CHRYSOTILE-ASBESTOS, NICKEL-CONTAINING SILICATE-ASBOLAN ORES, MEDICINAL MINERALS, SHUNGITES, FULLERENES, RAW QUARTZ MINERALS - the group of deposits containing 5 min tons of high quality quartz good for manufacture of cut-glass and fibre-optical articles, is explored in details. There are also deposits of other kinds of non-traditional strategic mineral raw material in the Republic of Kazakstan - natural fillers, that can be used in the national economy of the country and bring considerable economic benefit: chrysotile-asbestos, amphibole-asbestos, talk, vollastonite, tremolite, actinolite, vermiculite, zeolite, etc

  1. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli; Moreno Chaparro, Nicolas; Nunes, Suzana Pereira

    2015-01-01

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  2. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  3. Uranium miner lung cancer study. Progress report, July 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Saccomanno, G.

    1976-01-01

    This study on the rate of lung cancer development in uranium miners was initiated in 1957 by the U. S. Public Health and many facets of this project are reaching final objectives. Many new studies have developed in the course of this study and will continue. The projects supported by The Energy Research and Development Administration are of utmost importance and consist of: collection of material from uranium miners known to have cancer of the lung into a tumor registry; manual on pulmonary cytology; regression study of sputum cytological findings in uranium miners who showed marked atypical squamous cell metaplasia and have quit smoking cigarettes, mining, or both; continuation of sputum collection and collection of lungs from deceased miners, and the development of instruments such as uv fiber-optic bronchoscopes for localization of carcinoma in situ of the lung. Approximately 75,000 sputum samples were examined over the last 19 years in cases that showed normal cytology at the inception of study and subsequently developed carcinoma of the lung and resulted in an accumulation of material that is worthy of study

  4. Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    Science.gov (United States)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo

    2015-01-01

    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered

  5. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  6. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    Science.gov (United States)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  7. Composition of volatile aromatic compounds and minerals of tarhana enriched with cherry laurel (Laurocerasus officinalis).

    Science.gov (United States)

    Temiz, Hasan; Tarakçı, Zekai

    2017-03-01

    Different concentrations of cherry laurel pulp (0, 5, 10, 15 and 20%) were used to produce tarhana samples. Volatile aromatic compounds and minor mineral content were investigated. Volatile aromatic compounds were analyzed by using GC-MS with SPME fiber and minor mineral values were evaluated with inductively coupled plasma optical emission spectrometer. The statistical analysis showed that addition of pulp affected volatile aromatic compounds and minor mineral content significantly. Thirty five volatile aromatic compounds were found in tarhana samples. The octanoic acid from acids, benzaldehyde (CAS) phenylmethanal from aldehydes, 6-methyl-5-hepten-2-one from ketones, octadecane (CAS) n -octadecane form terpenes, ethyl caprylate from esters and benzenemethanol (CAS) benzyl alcohol from alcohols had the highest percentage of volatile aromatic compounds. Tarhana samples were rich source of Mn, Cu and Fe content.

  8. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    Science.gov (United States)

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  9. Towards co-packaging of photonics and microelectronics in existing manufacturing facilities

    Science.gov (United States)

    Janta-Polczynski, Alexander; Cyr, Elaine; Bougie, Jerome; Drouin, Alain; Langlois, Richard; Childers, Darrell; Takenobu, Shotaro; Taira, Yoichi; Lichoulas, Ted W.; Kamlapurkar, Swetha; Engelmann, Sebastian; Fortier, Paul; Boyer, Nicolas; Barwicz, Tymon

    2018-02-01

    The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.

  10. Evaluation of compatibility and thermal properties of PP composites incorporated with Moringa oleifera fibers

    International Nuclear Information System (INIS)

    Sa, Daniel M.; Novack, Katia M.; Botaro, Vagner R.

    2011-01-01

    The 70s, marked by the oil crisis led to knowledge about environmental problems due to indiscriminate use of nonrenewable resources. The automobile manufacturers have sought to obtain new materials for building more efficient cars, which favored the development of high-performance polymers. One alternative was the use of agents of natural reinforcements in composites manufacturing. In this work, composites were prepared using polypropylene as matrix and as a reinforcing agent of natural seed pods of Moringa oleifera in different proportions, treated with sodium hydroxide solution 10%. These composites were characterized by TGA, DSC, XRD, MEV and water absorption. It was found that increasing the amount of fiber in the polymer matrix did not change significantly the morphology and amount of water absorption of the samples. It was also observed that the addition of larger amounts of fibers decreases the degradation temperature of the samples and their melting temperatures shifts to lower temperatures, indicative of compatibility matrix / reinforcement agents. (author)

  11. Engineering the development of optical fiber sensors for adverse environments

    International Nuclear Information System (INIS)

    Hastings, M.C.

    1994-01-01

    During the last decade, many optical fiber sensors have been developed for particular applications in harsh environments with limited success. Off-the-shelf optical fiber sensors and measurement systems are not available, partly because they have not been engineered to meet tough environmental requirements necessary for applications outside the laboratory. Moreover, no generalized computer-aided tools exist to help advance their development, design, and use. Computer-aided design tools currently being developed are described in this paper. Structural finite element analyses have been coupled with optoelastic analyses of both all-fiber interferometers and serial microbend sensors for distributed measurement of various physical quantities. The combined analyses have been parameterized and implemented on personal computers and work stations for use as design/development tools that can be used to determine the performance of different sensor configurations in various environments. Potentially, these computer-aided tools could be used for failure diagnosis and redesign of existing optical fiber sensors. Performances predicted by the computer simulations are verified with experimental data and numerical analyses from the literature. The long-term goal is to develop user-friendly software packages for both sensor manufacturers and end users

  12. Globally sourced mineral commodities used in U.S. Navy SEAL gear—An illustration of U.S. net import reliance

    Science.gov (United States)

    Brainard, Jamie; Nassar, Nedal T.; Gambogi, Joseph; Baker, Michael S.; Jarvis, Michael T.

    2018-01-25

    A U.S. Navy SEAL (an acronym for sea, air, land) carries gear containing at least 23 nonfuel mineral commodities for which the United States is greater than 50 percent net import reliant. The graphics display the leading world producers of selected nonfuel mineral commodities used to manufacture U.S. Navy SEAL gear. SEALs are members of the U.S. Navy's special operations forces.

  13. Evaluation of residual strength in the basalt fiber reinforced composites under impact damage

    Science.gov (United States)

    Kim, Yun-Hae; Lee, Jin-Woo; Moon, Kyung-Man; Yoon, Sung-Won; Baek, Tae-Sil; Hwang, Kwang-Il

    2015-03-01

    Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.

  14. Towards the carbon fibers in the building industry

    Directory of Open Access Journals (Sweden)

    Miravete, A.

    2001-12-01

    Full Text Available There are two mainstreams in the building industry in the area of carbon fibers: rehabilitation and use as building material. The using of carbon fiber as a building material is taking place slower than as rehab system due to the very low cost of traditional building materials, the limitations of composite structure manufacturing processes and the conservative building regulations concerning materials in all the industrialized countries. However, these three issues are being solved in a very efficient way, as we will see along the coming paragraphs of this paper. This paper is split in two parts, first the carbon fiber as a material system, its typologies, manufacturing processes and industrial presentations will be described. Second, rehab and building applications will be analyzed.

    En el área de fibra de carbono en la construcción hay actualmente dos líneas de trabajo: reparaciones e implantación en obra: La implantación en la obra civil está avanzando más despacio que la utilización en reparaciones debido al bajo coste de los materiales tradicionales, a la limitación de procesos de fabricación de estructuras de materiales compuestos y al conservadurismo de las normativas de edificación y obra civil en todos los países industrializados. Sin embargo, los tres asuntos mencionados están siendo abordados con eficiencia, como se explicará más adelante. En el presente artículo, se va a describir, el primer lugar, la fibra de carbono, sus tipos, procesos de fabricación y presentaciones industriales. En segundo lugar se tratarán las aplicaciones en la construcción, haciendo énfasis en las reparaciones y en la implantación en obra civil.

  15. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  16. Yb-doped phosphate double-cladding optical fiber for high-power laser applications

    Science.gov (United States)

    Mura, E.; Scarpignato, G. C.; Lousteau, J.; Boetti, N. G.; Abrate, S.; Milanese, D.

    2013-02-01

    A Yb-doped phosphate glass double cladding optical fiber was prepared using a custom designed glass composition (P2O5 - Al2O3 - Li2O - B2O3 - BaO - PbO - La2O3) for high-power amplifier and laser applications. The preform drawing method was followed, with the preform being fabricated using the rotational casting technique. This technique, previously developed for tellurite, fluoride or chalcogenide glass preforms is reported for the first time using rare earth doped phosphate glasses. The main challenge was to design an adequate numerical aperture between first and second cladding while maintaining similar thermo-mechanical properties in view of the fiber drawing process. The preform used for the fiber drawing was produced by rod-in-tube technique at a rotation speed of 3000 rpm. The rotational casting technique allowed the manufacturing of an optical fiber featuring high quality interfaces between core and internal cladding and between the internal and external cladding, respectively. Loss attenuation was measured using the cut-back method and lasing was demonstrated at 1022 nm by core pumping with a fiber pigtailed laser diode at the wavelength of 976 nm.

  17. Pembuatan Adhesive Bridge dengan Fiber Reinforced Composite untuk Perawatan Kehilangan dan Kegoyahan Gigi Anterior Rahang Bawah

    Directory of Open Access Journals (Sweden)

    Demmy Wijaya

    2014-06-01

    can be used in the manufacture of adhesive bridge and can also be utilized for a tooth stabilization for luxation case. The existence of supporting healthy teeth is also very helpful the success of this treatment. Objective: The aim of this case report was to provide information about management of missing teeth and luxation of lower anterior teeth using the FRC. Case: Thirty-three years old male patient came for a denture to the Prosthodontics Clinic of the Prof. Soedomo Hospital. The patient lost tooth 31, the teeth 32 and 41 had a luxation degree 2 with gingival recession. The condition is due to post-manufacture of artificial teeth in dental technician. The Patient did not want to extract the teeth. Managing cases: Impression of teeth for diagnostic models, mock-ups of the pontic tooth 31 on diagnostic models, manufacturing of index scoring lingual and 1/3 incisal using putty, preparation of the abutment (32, 33, 41, 42, 43, the installation of fiber with index putty, forming the labial pontic with composite continued with finishing and polishing. Conclusion: Fiber reinforced composite can be used for the management of patients who experienced a loss and shakiness lower anterior teeth.

  18. Watt-level dysprosium fiber laser at 315 μm with 73% slope efficiency

    Science.gov (United States)

    Woodward, R. I.; Majewski, M. R.; Bharathan, G.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2018-04-01

    Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 {\\mu}m and 3.3-3.8 {\\mu}m regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 {\\mu}m. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved: the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.

  19. Effect of dietary fiber on properties and acceptance of meat products: a review.

    Science.gov (United States)

    Talukder, Suman

    2015-01-01

    Meat is an important source of all essential nutritional components of our daily diet as it content most of the essential amino acids, fatty acids, vitamins, and minerals which are lack in plant based food, but it is devoid of dietary fiber, which is very essential component for normal physiological/biochemical process. During meat products processing, its functional values can be improved by supplementation of dietary fiber rich vegetative substances like cereal and pulse flour, vegetable and fruits pulp, etc. by this process, a significant proportion of required daily allowance of dietary fiber can be fulfilled for the frequent meat consumers. The consumption of meat products fortified with of dietary fiber can lead to the prevention of diseases like coronary heart disease, diabetes, irritable bowel disease, obesity, etc. On the other hand, the dietary fiber can effectively be incorporated in the processed meat products as binders, extender, and filler, they can significantly replace the unhealthy fat components from the products; increase acceptability by improving nutritional components, pH, water-holding capacity, emulsion stability, shear press value, sensory characters, etc. of finished products. Addition of dietary fiber in the meat products can increase the cooking yield therefore the economic gain as well.

  20. NASA Automated Fiber Placement Capabilities: Similar Systems, Complementary Purposes

    Science.gov (United States)

    Wu, K. Chauncey; Jackson, Justin R.; Pelham, Larry I.; Stewart, Brian K.

    2015-01-01

    New automated fiber placement systems at the NASA Langley Research Center and NASA Marshall Space Flight Center provide state-of-art composites capabilities to these organizations. These systems support basic and applied research at Langley, complementing large-scale manufacturing and technology development at Marshall. These systems each consist of a multi-degree of freedom mobility platform including a commercial robot, a commercial tool changer mechanism, a bespoke automated fiber placement end effector, a linear track, and a rotational tool support structure. In addition, new end effectors with advanced capabilities may be either bought or developed with partners in industry and academia to extend the functionality of these systems. These systems will be used to build large and small composite parts in support of the ongoing NASA Composites for Exploration Upper Stage Project later this year.