WorldWideScience

Sample records for mineral dust transport

  1. Mineral dust transport toward Hurricane Helene (2006)

    Science.gov (United States)

    Schwendike, Juliane; Jones, Sarah C.; Vogel, Bernhard; Vogel, Heike

    2016-05-01

    This study investigates the transport of mineral dust from its source regions in West Africa toward the developing tropical cyclone Helene (2006) and diagnoses the resulting properties of the air influencing the tropical cyclonegenesis. The model system COSMO-ART (Consortium for Small-Scale Modelling-Aerosols and Reactive Trace gases) in which the emission and transport of mineral dust as well as the radiation feedback are taken into account, was used. The emission of mineral dust between 9 and 14 September 2006 occurred in association with the relatively strong monsoon flow and northeasterly trade winds, with gust fronts of convective systems over land, and with the Atlantic inflow. Additionally, increased surface wind speed was linked to orographical effects at the Algerian Mountains, Atlas Mountains, and the Hoggar. The dust, as part of the Saharan air layer, is transported at low levels by the monsoon flow, the Harmattan, the northeasterly trade winds, and the monsoon trough, and is transported upward in the convergence zone between Harmattan and monsoon flow, in the baroclinic zone along the West African coastline, and by convection. At around 700 hPa the dust is transported by the African easterly jet. Dry and dust-free air is found to the north-northwest of the developing tropical depression due to descent in an anticyclone. Based on the model data, it was possible to distinguish between dry (from the anticyclone), dry and dusty (from the Harmattan and northeasterly trade winds), and dusty and moist air (from the monsoon flow and in the tropical depression due to convection).

  2. Transport of Mineral Dust and Its Impact on Climate

    Directory of Open Access Journals (Sweden)

    Kerstin Schepanski

    2018-04-01

    Full Text Available Mineral dust plays a pivotal role in the Earth’s system. Dust modulates the global energy budget directly via its interactions with radiation and indirectly via its influence on cloud and precipitation formation processes. Dust is a micro-nutrient and fertilizer for ecosystems due to its mineralogical composition and thus impacts on the global carbon cycle. Hence, dust aerosol is an essential part of weather and climate. Dust suspended in the air is determined by the atmospheric dust cycle: Dust sources and emission processes define the amount of dust entrained into the atmosphere. Atmospheric mixing and circulation carry plumes of dust to remote places. Ultimately, dust particles are removed from the atmosphere by deposition processes such as gravitational settling and rain wash out. During its residence time, dust interacts with and thus modulates the atmosphere resulting into changes such as in surface temperature, wind, clouds, and precipitation rates. There are still uncertainties regarding individual dust interactions and their relevance. Dust modulates key processes that are inevitably influencing the Earth energy budget. Dust transport allows for these interactions and at the same time, the intermittency of dust transport introduces additional fluctuations into a complex and challenging system.

  3. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2016-02-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of transport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l. than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling

  4. The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007-2014

    Science.gov (United States)

    Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz

    2017-11-01

    Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48

  5. Role of the convergence zone over West Africa in controlling Saharan mineral dust load and transport in the boreal summer

    Directory of Open Access Journals (Sweden)

    Owen M. Doherty

    2014-07-01

    Full Text Available During summer, large amounts of mineral dust are emitted and transported from North Africa over the tropical North Atlantic towards the Caribbean with the exact quantity varying greatly from year to year. Much effort has been made to explain the variability of summer season mineral dust load, for example, by relating dust variability to teleconnection indices such as ENSO and the NAO. However, only weak relationships between such climate indices and the abundance of mineral dust have been found. In this work, we demonstrate the role of the near-surface convergence zone over West Africa in controlling dust load and transport of mineral dust. We apply the ‘Center of Action’ approach to obtain indices that quantify the movement and strength of the convergence zone using NCEP/NCAR Reanalysis data. The latitudinal position of the convergence zone is significantly correlated with the quantity of mineral dust at Barbados over the period 1965–2003 (r=−0.47. A southward displacement of the convergence zone is associated with both increased near-surface flow and decreased precipitation over the dust source regions of the southern Saharan desert, Sahel and Lake Chad. This in turn reduces soil moisture and vegetation, furthering the potential for dust emission. In contrast, the intensity of the convergence zone is not correlated with dust concentration at Barbados. We conclude that the coupling of changes in near-surface winds with changes in precipitation in source regions driven by a southward movement of the convergence zone most directly influence dust load at Barbados and over the tropical North Atlantic during summer.

  6. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    Science.gov (United States)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  7. Chinese mineral dust and anthropogenic aerosol inter-continental transport: a Greenland perspective

    Science.gov (United States)

    Bory, A.; Abouchami, W.; Galer, S.; Svensson, A.; Biscaye, P.

    2012-04-01

    Impurities contained in snow and ice layers in Greenland provide a record of the history of atmospheric dustiness and pollution in the Northern Hemisphere. The source of the particles deposited onto the ice cap may be investigated using specific intrinsic tracers. Provenance discrimination may then provide valuable constraints for the validation of atmospheric transport models as well as for the monitoring of natural and anthropogenic aerosols emissions at a global scale. Clay mineralogy combined with the strontium and neodymium isotope composition of the insoluble particles extracted from recent snow deposits at NorthGRIP (75.1°N, 042.3°W), for instance, enabled us to demonstrate that the Taklimakan desert of North-western China was the main source of mineral dust reaching central Greenland at present [Bory et al., EPSL, 2002 ; GRL, 2003a]. Here we report the lead isotopic signature of these snow-pit samples, covering the 1989-1995 and 1998-2001 time periods. Unradiogenic lead isotopic composition of our Greenland samples, compared to Asian dust isotopic fingerprints, implies that most of the insoluble lead reaching the ice cap is of anthropogenic origin. Lead isotopes reveal likely contributions from European/Canadian and, to a lesser extent, US sources, as well as a marked overprinted signature typical of Chinese anthropogenic lead sources. The relative contribution of the latter appears to have been increasing steadily over the last decade of the 20th century. Quantitative estimates suggest that, in addition to providing most of the dust, China may have already become the most important supplier of anthropogenic lead deposited in Greenland by the turn of the 20th to the 21st century. The close timing between dust and anthropogenic particles deposition onto the ice cap provides new insights for our understanding of Chinese aerosols transport to Greenland.

  8. Influence of mineral dust transport on the chemical composition and physical properties of the Eastern Mediterranean aerosol

    Science.gov (United States)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Séguret, M. J. M.; Herut, B.; Kallos, G.; Mihalopoulos, N.; Kubilay, N.; Nimmo, M.

    2012-09-01

    Bulk aerosol samples were collected from three different coastal rural sites located around the Eastern Mediterranean, (i) Erdemli (ER), Turkey, (ii) Heraklion (HR), Crete, Greece, and (iii) Tel Shikmona (TS), Israel, during two distinct mineral dust periods (October, 2007 and April, 2008) in order to explore the temporal and geographical variability in the aerosol chemical composition. Samples were analyzed for trace elements (Al, Fe, Mn, Ca, Cr, Zn, Cu, V, Ni, Cd, Pb) and water-soluble ions (Cl-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Mg2+ and Ca2+). The dust events were categorized on the basis of Al concentrations >1000 ng m-3, SKIRON dust forecast model and 3-day back trajectories into three groups namely, Middle East, Mixed and Saharan desert. ER and TS were substantially affected by dust events originating from the Middle East, particularly in October, whilst HR was not influenced by dust transport from the Middle East. Higher AOT values were particularly associated with higher Al concentrations. Contrary to the highest Al concentration: 6300 ng m-3, TS showed relatively lower AI and AOT. Al concentrations at ER were similar for October and April, whilst OMI-AI and AOT values were ˜2 times higher in April. This might be attributed to the weak sensitivity of the TOMS instrument to absorbing aerosols near the ground and optical difference between Middle East and Saharan desert dusts. The lowest enhancement of anthropogenic aerosol species was observed at HR during dust events (nssSO42-/nssCa2+ ˜ 0.13). These species were particularly enhanced when mineral dust arrived at sites after passing through populated and industrialized urban areas.

  9. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Samuel [University of Siena, Graduate School in Polar Sciences, Siena (Italy); University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Mahowald, Natalie M. [Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Delmonte, Barbara; Maggi, Valter [University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Winckler, Gisela [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Columbia University, Department of Earth and Environmental Sciences, New York, NY (United States)

    2012-05-15

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum. (orig.)

  10. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  11. Direct observations of the atmospheric processing of Asian mineral dust

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2007-01-01

    Full Text Available The accumulation of secondary acids and ammonium on individual mineral dust particles during ACE-Asia has been measured with an online single-particle mass spectrometer, the ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles correlate with air masses from different source regions. The uptake of secondary acids depended on the individual dust particle mineralogy; high amounts of nitrate accumulated on calcium-rich dust while high amounts of sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV to S(VI by iron in the aluminosilicate dust is a possible explanation for this enrichment of sulphate, which has important consequences for the fertilization of remote oceans by soluble iron. This study shows the segregation of sulphate from nitrate and chloride in individual aged dust particles for the first time. A transport and aging timeline provides an explanation for the observed segregation. Our data suggests that sulphate became mixed with the dust first. This implies that the transport pathway is more important than the reaction kinetics in determining which species accumulate on mineral dust. Early in the study, dust particles in volcanically influenced air masses were mixed predominately with sulphate. Dust mixed with chloride then dominated over sulphate and nitrate when a major dust front reached the R. V. Ronald Brown. We hypothesize that the rapid increase in chloride on dust was due to mixing with HCl(g released from acidified sea salt particles induced by heterogeneous reaction with volcanic SO2(g, prior to the arrival of the dust front. The amount of ammonium mixed with dust correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent reports that they exist as external mixtures. The size distribution of the mixing state of dust with these secondary species validates previous

  12. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Archuleta

    2005-01-01

    Full Text Available This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.

  13. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  14. The actual prevention of fibrogenic effect of mineral dust

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2000-09-01

    Full Text Available The dustiness occurs in the mining work environment during the process of disintegration of rocks by drilling, explosion and dislocation. The dust contains minerals forming the massif, under Slovak mining conditions, it was usually quartz and some other minerals. They usually accompanied utility minerals. The characteristic mining aerosol is created during disintegration process. It was inhaled by miners and due to the most dangerous fibrogenic mineral – quartz – it caused that employees suffered from the so far incurable industrial disease. From that reason a long-term research of reaction qualities of quartz dust was carried out and the possibility to decrease its fibrogenic properties was researched. The prevention vested in the elimination of these properties on the surface of quartz grain or other silicate before entering, i.e. being inhaled by lungs, using water soluble aluminium hydroxide compound. This water was used for flushing in drilling process and to decrease dustiness by spraying it directly in the mining workplace. The aluminium hydroxide agent reacted with mineral dust directly in aerosol before being inhaled. The principle vested in the reaction of one mole of agent with two moles of surface structures of quartz particle forming a thermostatic layer of a new mineral type, in this case aluminium silicate of kaolinite. The required concentration of aluminium hydroxide compound solution for pure quartz dust was determined by experimental works and calculation with a required reserve or even slight excess of agent. If the fibrogenity of quartz not influenced in this manner was considered as 100%, its cytostatic and consequently fibrogenic effect would be decreased by the influence of this agent minimally by 60%. The method has been tested directly in mines, but due to recession of mining industry, it was not introduced in practice, however, it is currently getting a certain significance in tunnelling of transport tunnels in

  15. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    Science.gov (United States)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  16. Simulation of the mineral dust content over Western Africa from the event to the annual scale with the CHIMERE-DUST model

    Directory of Open Access Journals (Sweden)

    C. Schmechtig

    2011-07-01

    Full Text Available The chemistry and transport model CHIMERE-DUST have been used to simulate the mineral dust cycle over the Sahara in 2006. Surface measurements deployed during the AMMA field campaign allow to test the capability of the model to correctly reproduce the atmospheric dust load and surface concentrations from the daily to the seasonal time-scale. The simulated monthly mean Aerosol Optical Depths (AOD and surface concentrations are significantly correlated with the measured ones. The simulated daily concentrations and hourly AOD are in the same range of magnitude than the observed ones despite relatively high simulated dust emissions. The level of agreement between the simulations and the observations has been quantified at different time scales using statistical parameters classically used to evaluate air quality models. The capability of the model to reproduce the altitude of the dust transport was tested for two contrasted cases of low and high altitude transport. These results highlight the sensitivity of the simulations to the surface winds used as external forcing and the necessity to further constrain the dust mass budget at the regional scale.

  17. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a

  18. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2009-05-01

    Full Text Available Atmospheric mineral dust particles can alter cloud properties and thus climate by acting as cloud condensation nuclei (CCN that form cloud droplets. The CCN activation properties of various calcium mineral dust particles were studied experimentally to investigate the consequences of field observations showing the segregation of sulphate from nitrate and chloride between individual aged Asian dust particles, and the enrichment of oxalic acid in Asian dust. Each mineral's observed apparent hygroscopicity was primarily controlled by its solubility, which determines the degree to which the mineral's intrinsic hygroscopicity can be expressed. The significant increase in hygroscopicity caused by mixing soluble hygroscopic material with insoluble mineral particles is also presented. Insoluble minerals including calcium carbonate, representing fresh unprocessed dust, and calcium sulphate, representing atmospherically processed dust, had similarly small apparent hygroscopicities. Their activation is accurately described by a deliquescence limit following the Kelvin effect and corresponded to an apparent single-hygroscopicity parameter, κ, of ~0.001. Soluble calcium chloride and calcium nitrate, representing atmospherically processed mineral dust particles, were much more hygroscopic, activating similar to ammonium sulphate with κ~0.5. Calcium oxalate monohydrate (κ=0.05 was significantly less CCN-active than oxalic acid (κ=0.3, but not as inactive as its low solubility would predict. These results indicate that the common assumption that all mineral dust particles become more hygroscopic and CCN-active after atmospheric processing should be revisited. Calcium sulphate and calcium oxalate are two realistic proxies for aged mineral dust that remain non-hygroscopic. The dust's apparent hygroscopicity will be controlled by its chemical mixing state, which is determined by its mineralogy and the chemical reaction pathways it experiences

  19. Long-term (2002–2012 investigation of Saharan dust transport events at Mt. Cimone GAW global station, Italy (2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    Rocco Duchi

    2016-02-01

    Full Text Available Abstract Mineral dust transport from North Africa towards the Mediterranean basin and Europe was monitored over an 11-y period (2002–2012 using the continuous observations made at Mt. Cimone WMO/GAW global station (CMN. CMN is in a strategic position for investigating the impact of mineral dust transported from northern Africa on the atmospheric composition of the Mediterranean basin and southern Europe. The identification of “dusty days” is based on coupling the measured in situ coarse aerosol particle number concentration with an analysis of modeled back trajectories tracing the origin of air masses from North Africa. More than 400 episodes of mineral dust transport were identified, accounting for 15.7% of the investigated period. Our analysis points to a clear seasonal cycle, with the highest frequency from spring to autumn, and a dust-induced variation of the coarse particle number concentration larger than 123% on a seasonal basis. In addition, FLEXTRA 10-d back trajectories showed that northwestern and central Africa are the major mineral dust source regions. Significant inter-annual variability of dust outbreak frequency and related mineral dust loading were detected and during spring the NAO index was positively correlated (R2 = 0.32 with dust outbreak frequency. Lastly, the impact of transported mineral dust on the surface O3 mixing ratio was quantified over the 11-y investigation period. Evidence of a non-linear and negative correlation between mineral dust and ozone concentrations was found, resulting in an average spring and summer decrease of the O3 mixing ratio down to 7%.

  20. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  1. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  2. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    Science.gov (United States)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  3. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    Science.gov (United States)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  4. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    Science.gov (United States)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  5. Aethalometer multiple scattering correction Cref for mineral dust aerosols

    Science.gov (United States)

    Di Biagio, Claudia; Formenti, Paola; Cazaunau, Mathieu; Pangui, Edouard; Marchand, Nicolas; Doussin, Jean-François

    2017-08-01

    In this study we provide a first estimate of the Aethalometer multiple scattering correction Cref for mineral dust aerosols. Cref is an empirical constant used to correct the aerosol absorption coefficient measurements for the multiple scattering artefact of the Aethalometer; i.e. the filter fibres on which aerosols are deposited scatter light and this is miscounted as absorption. The Cref at 450 and 660 nm was obtained from the direct comparison of Aethalometer data (Magee Sci. AE31) with (i) the absorption coefficient calculated as the difference between the extinction and scattering coefficients measured by a Cavity Attenuated Phase Shift Extinction analyser (CAPS PMex) and a nephelometer respectively at 450 nm and (ii) the absorption coefficient from a MAAP (Multi-Angle Absorption Photometer) at 660 nm. Measurements were performed on seven dust aerosol samples generated in the laboratory by the mechanical shaking of natural parent soils issued from different source regions worldwide. The single scattering albedo (SSA) at 450 and 660 nm and the size distribution of the aerosols were also measured. Cref for mineral dust varies between 1.81 and 2.56 for a SSA of 0.85-0.96 at 450 nm and between 1.75 and 2.28 for a SSA of 0.98-0.99 at 660 nm. The calculated mean for dust is 2.09 (±0.22) at 450 nm and 1.92 (±0.17) at 660 nm. With this new Cref the dust absorption coefficient by the Aethalometer is about 2 % (450 nm) and 11 % (660 nm) higher than that obtained by using Cref = 2.14 at both 450 and 660 nm, as usually assumed in the literature. This difference induces a change of up to 3 % in the dust SSA at 660 nm. The Cref seems to be independent of the fine and coarse particle size fractions, and so the obtained Cref can be applied to dust both close to sources and following transport. Additional experiments performed with pure kaolinite minerals and polluted ambient aerosols indicate Cref of 2.49 (±0.02) and 2.32 (±0.01) at 450 and 660 nm (SSA = 0.96-0.97) for

  6. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    Science.gov (United States)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants

  7. Impact of air pollution on deposition of mineral dust: Implications for ocean productivity

    Science.gov (United States)

    Fan, S.; Horrowitz, L. W.; Levy, H.; Moxim, W. J.

    2003-12-01

    Atmospheric dust aerosols originating from arid regions are simulated in an atmospheric global chemical transport model. Based on model results and observations of dust oncentration, we hypothesize that Asian dust over the North Pacific is mostly hydrophilic and removed efficiently by both ice and droplet nucleation processes. By contrast, African dust over the tropical Atlantic is mostly hydrophobic and removed by ice, but not droplet, nucleation. We suggest that Asian dust is transformed into hydrophilic aerosols by chemical reactions with air pollutants over East Asia, which produce high levels of readily soluble materials on the surface of dust particles. A model of chemical aging will be presented for the hygroscopic transformation of mineral dust in the atmosphere. The model predicts that evolving air pollution in East Asia could have caused an increase of dust deposition to the coastal oceans off Asia and a decrease by as much as 50 percent in the eastern North Pacific. Insofar as iron from dust deposition fuels diatom blooms in the North Pacific Ocean, this decrease could have potential consequences on ocean biology.

  8. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Science.gov (United States)

    Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S

    2016-01-01

    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM bioavailability to marine and terrestrial ecosystems.

  9. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  10. Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance

    Directory of Open Access Journals (Sweden)

    G. Fratini

    2007-06-01

    Full Text Available Mineral dust emission accounts for a substantial portion of particles present in the troposphere. It is emitted mostly from desert areas, mainly through intense storm episodes. The aim of this work was to quantify size-segregated fluxes of mineral dust particles emitted during storm events occurring in desert areas of northern China (Alashan desert, Inner Mongolia, known to act as one of the strongest sources of mineral dust particles in the Asian continent. Long-range transport of mineral dust emitted in this area is responsible for the high particle concentrations reached in densely populated areas, including the city of Beijing. Based on a theoretical analysis, an eddy covariance system was built to get size-segregated fluxes of mineral dust particles with optical diameters ranging between 0.26 and 7.00 µm. The system was optimised to measure fluxes under intense storm event conditions. It was tested in two sites located in the Chinese portion of the Gobi desert. During the field campaign, an intense wind erosion event, classified as a "weak dust storm", was recorded in one of them. Data obtained during this event indicate that particle number fluxes were dominated by the finer fraction, whereas in terms of mass, coarser particle accounted for the largest portion. It was found that during the storm event, ratios of size-segregated particle mass fluxes remained substantially constant and a simple parameterization of particle emission from total mass fluxes was possible. A strong correlation was also found between particle mass fluxes and the friction velocity. This relationship is extremely useful to investigate mechanisms of particle formation by wind erosion.

  11. Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust

    Directory of Open Access Journals (Sweden)

    P. Hoppe

    2012-06-01

    Full Text Available Mineral dust is a major fraction of global atmospheric aerosol, and the oxidation of SO2 on mineral dust has implications for cloud formation, climate and the sulfur cycle. Stable sulfur isotopes can be used to understand the different oxidation processes occurring on mineral dust. This study presents measurements of the 34S/32S fractionation factor α34 for oxidation of SO2 on mineral dust surfaces and in the aqueous phase in mineral dust leachate. Sahara dust, which accounts for ~60% of global dust emissions and loading, was used for the experiments. The fractionation factor for aqueous oxidation in dust leachate is αleachate = 0.9917±0.0046, which is in agreement with previous measurements of aqueous SO2 oxidation by iron solutions. This fractionation factor is representative of a radical chain reaction oxidation pathway initiated by transition metal ions. Oxidation on the dust surface at subsaturated relative humidity (RH had an overall fractionation factor of αhet = 1.0096±0.0036 and was found to be almost an order of magnitude faster when the dust was simultaneously exposed to ozone, light and RH of ~40%. However, the presence of ozone, light and humidity did not influence isotope fractionation during oxidation on dust surfaces at subsaturated relative humidity. All the investigated reactions showed mass-dependent fractionation of 33S relative to 34S. A positive matrix factorization model was used to investigate surface oxidation on the different components of dust. Ilmenite, rutile and iron oxide were found to be the most reactive components, accounting for 85% of sulfate production with a fractionation factor of α34 = 1.012±0.010. This overlaps within the analytical uncertainty with the fractionation of other major atmospheric oxidation pathways such as the oxidation of SO2 by H2O2 and O3 in the aqueous phase and OH in the gas phase. Clay minerals accounted for roughly 12% of the sulfate production, and oxidation on clay minerals

  12. Aethalometer multiple scattering correction Cref for mineral dust aerosols

    Directory of Open Access Journals (Sweden)

    C. Di Biagio

    2017-08-01

    Full Text Available In this study we provide a first estimate of the Aethalometer multiple scattering correction Cref for mineral dust aerosols. Cref is an empirical constant used to correct the aerosol absorption coefficient measurements for the multiple scattering artefact of the Aethalometer; i.e. the filter fibres on which aerosols are deposited scatter light and this is miscounted as absorption. The Cref at 450 and 660 nm was obtained from the direct comparison of Aethalometer data (Magee Sci. AE31 with (i the absorption coefficient calculated as the difference between the extinction and scattering coefficients measured by a Cavity Attenuated Phase Shift Extinction analyser (CAPS PMex and a nephelometer respectively at 450 nm and (ii the absorption coefficient from a MAAP (Multi-Angle Absorption Photometer at 660 nm. Measurements were performed on seven dust aerosol samples generated in the laboratory by the mechanical shaking of natural parent soils issued from different source regions worldwide. The single scattering albedo (SSA at 450 and 660 nm and the size distribution of the aerosols were also measured. Cref for mineral dust varies between 1.81 and 2.56 for a SSA of 0.85–0.96 at 450 nm and between 1.75 and 2.28 for a SSA of 0.98–0.99 at 660 nm. The calculated mean for dust is 2.09 (±0.22 at 450 nm and 1.92 (±0.17 at 660 nm. With this new Cref the dust absorption coefficient by the Aethalometer is about 2 % (450 nm and 11 % (660 nm higher than that obtained by using Cref  =  2.14 at both 450 and 660 nm, as usually assumed in the literature. This difference induces a change of up to 3 % in the dust SSA at 660 nm. The Cref seems to be independent of the fine and coarse particle size fractions, and so the obtained Cref can be applied to dust both close to sources and following transport. Additional experiments performed with pure kaolinite minerals and polluted ambient aerosols indicate Cref of 2.49 (±0.02 and 2

  13. Aerosol-ozone correlations during dust transport episodes

    Directory of Open Access Journals (Sweden)

    P. Bonasoni

    2004-01-01

    Full Text Available Its location in the Mediterranean region and its physical characteristics render Mt. Cimone (44°11′ N, 10°42′ E, the highest peak of the Italian northern Apennines (2165 m asl, particularly suitable to study the transport of air masses from the north African desert area to Europe. During these northward transports 12 dust events were registered in measurements of the aerosol concentration at the station during the period June–December 2000, allowing the study of the impact of mineral dust transports on free tropospheric ozone concentrations, which were also measured at Mt. Cimone. Three-dimensional backward trajectories were used to determine the air mass origin, while TOMS Aerosol Index data for the Mt. Cimone area were used to confirm the presence of absorbing aerosol over the measurement site. A trajectory statistical analysis allowed identifying the main source areas of ozone and aerosols. The analysis of these back trajectories showed that central Europe and north and central Italy are the major pollution source areas for ozone and fine aerosol, whereas the north African desert regions were the most important source areas for coarse aerosol and low ozone concentrations. During dust events, the Mt. Cimone mean volume concentration for coarse particles was 6.18 µm3/cm3 compared to 0.63 µm3/cm3 in dust-free conditions, while the ozone concentrations were 4% to 21% lower than the monthly mean background values. Our observations show that surface ozone concentrations were lower than the background values in air masses coming from north Africa, and when these air masses were also rich in coarse particles, the lowest ozone values were registered. Moreover, preliminary results on the possible impact of the dust events on PM10 and ozone values measured in Italian urban and rural areas showed that during the greater number of the considered dust events, significant PM10 increases and ozone decreases have occurred in the Po valley.

  14. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  15. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  16. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  17. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Science.gov (United States)

    Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S

    2016-01-01

    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65% in ferric silicates. Structural iron in clay

  18. Dust from mineral extraction: regulation of emissions in England

    Science.gov (United States)

    Marker, Brian

    2013-04-01

    The United Kingdom, which includes England, has fairly high levels of rainfall but sporadic droughts occur especially in the east. Mineral working gives rise to dust. Concerns about dust soiling are major source of public objections to new minerals extraction operations. Dust emissions from mineral workings are a significant cause of public concern in the United Kingdom and are recognised as sources of health concerns and nuisance. Emissions are controlled through a number of complementary sets of regulations that are generally well observed by the industry and well enforced by the relevant public authorities. comprehensive system of regulation, based on European and national law, to deal with all aspects of these operations including pollution control, planning, occupational health and safety and statutory nuisances. Most minerals applications are subject to EIA which forms that basis for planning and environmental conditions and monitoring of operations. There are limit values on PM10 and PM2.5 in air, and for potentially harmful elements (PHEs) in soils and water, derived from European regulations but, as yet, no limit values for PHEs (other than radioactive materials) in air. Stakeholder engagement is encouraged so that members of the public can express concerns during minerals operations and operators can quickly deal with these. While some effects inevitably remain, the levels of dust emissions are kept low through good site design and management, proper use of machinery which is equipped to minimise emissions, and good training of the workforce. Operational sites are required to have dust monitoring equipment located outside the site boundary so that any emerging problems can be detected and addressed quickly.

  19. The global distribution of mineral dust

    International Nuclear Information System (INIS)

    Tegen, I; Schepanski, K

    2009-01-01

    Dust aerosol particles produced by wind erosion in arid and semi arid regions affect climate and air quality, but the magnitude of these effects is largely unquantified. The major dust source regions include the Sahara, the Arabian and Asian deserts; global annual dust emissions are currently estimated to range between 1000 and 3000 Mt/yr. Dust aerosol can be transported over long distances of thousands of kilometers, e.g. from source regions in the Saharan desert over the North Atlantic, or from the Asian deserts towards the Pacific Ocean. The atmospheric dust load varies considerably on different timescales. While dust aerosol distribution and dust effects are important on global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales.

  20. The role of airborne mineral dusts in human disease

    Science.gov (United States)

    Morman, Suzette A.; Plumlee, Geoffrey S.

    2013-01-01

    Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.

  1. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  2. Estimation of respirable dust exposure among coal miners in South Africa.

    Science.gov (United States)

    Naidoo, Rajen; Seixas, Noah; Robins, Thomas

    2006-06-01

    The use of retrospective occupational hygiene data for epidemiologic studies is useful in determining exposure-outcome relationships, but the potential for exposure misclassification is high. Although dust sampling in the South African coal industry has been a legal requirement for several decades, these historical data are not readily adequate for estimating past exposures. This study describes the respirable coal mine dust levels in three South African coal mines over time. Each of the participating mining operations had well-documented dust sampling information that was used to describe historical trends in dust exposure. Investigator-collected personal dust samples were taken using standardized techniques from the face, backbye (underground jobs not at the coal face), and surface from 50 miners at each mine, repeated over three sampling cycles. Job histories and exposure information was obtained from a sample of 684 current miners and 188 ex-miners. Linear models were developed to estimate the exposure levels associated with work in each mine, exposure zone, and over time using a combination of operator-collected historical data and investigator-collected samples. The estimated levels were then combined with work history information to calculate cumulative exposure metrics for the miner cohort. The mean historical and investigator-collected respirable dust levels were within international norms and South African standards. Silica content of the dust samples was also below the 5% regulatory action level. Mean respirable dust concentrations at the face, based on investigator-collected samples, were 0.9 mg/m(3), 1.3 mg/m(3), and 1.9 mg/m(3) at Mines 1, 2, and 3, respectively. The operator-collected samples showed considerable variability across exposure zones, mines, and time, with the annual means at the face ranging from 0.4 mg/m(3) to 2.9 mg/m(3). Statistically significant findings were found between operator- and investigator-collected dust samples. Model

  3. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  4. Hygroscopicity of mineral dust particles: Roles of chemical mixing state and hygroscopic conversion timescale

    Science.gov (United States)

    Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.

    2009-05-01

    Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results

  5. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    Science.gov (United States)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  6. Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: comparison of measurements and model results

    Science.gov (United States)

    Chen, Siyu; Huang, Jianping; Kang, Litai; Wang, Hao; Ma, Xiaojun; He, Yongli; Yuan, Tiangang; Yang, Ben; Huang, Zhongwei; Zhang, Guolong

    2017-02-01

    The Weather Research and Forecasting Model with chemistry (WRF-Chem model) was used to investigate a typical dust storm event that occurred from 18 to 23 March 2010 and swept across almost all of China, Japan, and Korea. The spatial and temporal variations in dust aerosols and the meteorological conditions over East Asia were well reproduced by the WRF-Chem model. The simulation results were used to further investigate the details of processes related to dust emission, long-range transport, and radiative effects of dust aerosols over the Taklimakan Desert (TD) and Gobi Desert (GD). The results indicated that weather conditions, topography, and surface types in dust source regions may influence dust emission, uplift height, and transport at the regional scale. The GD was located in the warm zone in advance of the cold front in this case. Rapidly warming surface temperatures and cold air advection at high levels caused strong instability in the atmosphere, which strengthened the downward momentum transported from the middle and low troposphere and caused strong surface winds. Moreover, the GD is located in a relatively flat, high-altitude region influenced by the confluence of the northern and southern westerly jets. Therefore, the GD dust particles were easily lofted to 4 km and were the primary contributor to the dust concentration over East Asia. In the dust budget analysis, the dust emission flux over the TD was 27.2 ± 4.1 µg m-2 s-1, which was similar to that over the GD (29 ± 3.6 µg m-2 s-1). However, the transport contribution of the TD dust (up to 0.8 ton d-1) to the dust sink was much smaller than that of the GD dust (up to 3.7 ton d-1) because of the complex terrain and the prevailing wind in the TD. Notably, a small amount of the TD dust (PM2.5 dust concentration of approximately 8.7 µg m-3) was lofted to above 5 km and transported over greater distances under the influence of the westerly jets. Moreover, the direct radiative forcing induced by dust

  7. Scattering Phase Functions of Constituents of Mineral Dust Aerosols ...

    African Journals Online (AJOL)

    ... Montmorillonte, Hematite, Calcite and Quartz. The behaviour of these constituents as observed by their phase functions provide information on the optical properties and radiative effects of the mineral dust types and is therefore useful on regional and global scales in assessing radiative impacts of dust outbreak events.

  8. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-07-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  9. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    , because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably

  10. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005

    Science.gov (United States)

    Todd, Martin C.; Washington, Richard; Martins, José Vanderlei; Dubovik, Oleg; Lizcano, Gil; M'bainayel, Samuel; Engelstaedter, Sebastian

    2007-03-01

    Mineral dust in the atmosphere is an important component of the climate system but is poorly quantified. The Bodélé Depression of northern Chad stands out as the world's greatest source region of mineral dust into the atmosphere. Frequent dust plumes are a distinguishing feature of the region's climate. There is a need for more detailed information on processes of dust emission/transport and dust optical properties to inform model simulations of this source. During the Bodélé Dust Experiment (BoDEx) in 2005, instrumentation was deployed to measure dust properties and boundary layer meteorology. Observations indicate that dust emission events are triggered when near-surface wind speeds exceed 10 ms-1, associated with synoptic-scale variability in the large-scale atmospheric circulation. Dust emission pulses in phase with the diurnal cycle of near-surface winds. Analysis of dust samples shows that the dust consists predominantly of fragments of diatomite sediment. The particle size distribution of this diatomite dust estimated from sun photometer data, using a modified Aeronet retrieval algorithm, indicates a dominant coarse mode (radius centered on 1-2 μm) similar to other Saharan dust observations. Single-scattering albedo values are high, broadly in line with other Saharan dust even though the diatomite composition of dust from the Bodélé is likely to be unusual. The radiative impact of high dust loadings results in a reduction in surface daytime maximum temperature of around 7°C in the Bodélé region. Using optical and physical properties of dust obtained in the field, we estimate the total dust flux emitted from the Bodélé to be 1.18 ± 0.45 Tg per day during a substantial dust event. We speculate that the Bodélé Depression (˜10,800 km2) may be responsible for between 6-18% of global dust emissions, although the uncertainty in both the Bodélé and global estimates remains high.

  11. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    Science.gov (United States)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  12. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Directory of Open Access Journals (Sweden)

    A. Wiacek

    2010-09-01

    Full Text Available This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (T≲−40 °C along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (T≳−40 °C theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice

  13. Characterization of human exposure to mineral sands dust in a brazilian village

    International Nuclear Information System (INIS)

    Cunha, K. Dias da; Santos, M.S.; Medeiros, G.; Dalia, K.C.; Lima, C.; Leite, Barros C. V.

    2008-01-01

    The aim of this study was to characterize human exposure to mineral dust particles using PIXE (Particle Induced X rays Emission) and 252 Cf-PDMS (Plasma Desorption Mass Spectrometry) techniques. The dust particles were generated during the separation process of mineral sands to obtain rutile, ilmenite, zircon and monazite concentrates. The aerosol samples were collected at the village and during the process to concentrate ilmenite. A cascade impactor with six stages was used to collect mineral dust particles with aerodynamic diameter in the range of 0.64 to 19.4 μm. The particles impacted on each stage of the cascade impactor were analyzed by PIXE (Particle Induced X ray Emission) and the elemental mass concentration and the MMAD (Mass Median Aerodynamic Diameter) were determined. Employing the 252 Cf-PDMS technique the chemical compound present in aerosols particles and in urine samples were identified. The mass spectra ( 252 Cf-PDMS technique) of dust samples showed the presence of the thorium silicate, thorite and zircon in the fine fraction of aerosol. The 252 Cf-PDMS technique was, also, used to characterize urine sample from a inhabitant of the village. The results show that Buena village inhabitants inhale mineral sands dust particles. Based on the results from the lichen samples it could be concluded that at least during the last 15 years the inhabitants of the village have been exposed to monazite particles. Results suggest that the there is natural source of aerosol particles containing 226 Ra and 210 Pb (probably the swamp) besides the mineral sands dust. (author)

  14. Comparison of Key Absorption and Optical Properties Between Pure and Transported Anthropogenic Dust over East and Central Asia

    Science.gov (United States)

    Bi, Jianrong; Huang, Jianping; Holben, Brent N.; Zhang, Guolong

    2016-01-01

    Asian dust particulate is one of the primary aerosol constituents in the Earth-atmosphere system that exerts profound influences on environmental quality, human health, the marine biogeochemical cycle, and Earth's climate. To date, the absorptive capacity of dust aerosol generated from the Asian desert region is still an open question. In this article, we compile columnar key absorption and optical properties of mineral dust over East and Central Asian areas by utilizing the multiyear quality-assured datasets observed at 13 sites of the Aerosol Robotic Network (AERONET). We identify two types of Asian dust according to threshold criteria from previously published literature. (1) The particles with high aerosol optical depth at 440 nm (AOD(440) > or = 0.4) and a low Angstrom wavelength exponent at 440-870 nm (alpha or = 0.4 and 0.2 < alpha < 0.6 are designated as Transported Anthropogenic Dust (TDU), which is mainly dominated by dust aerosol and might mix with other anthropogenic aerosol types. Our results reveal that the primary components of high AOD days are predominantly dust over East and Central Asian regions, even if their variations rely on different sources, distance from the source, emission mechanisms, and meteorological characteristics. The overall mean and standard deviation of single-scattering albedo, asymmetry factor, real part and imaginary part of complex refractive index at 550 nm for Asian PDU are 0.935 +/- 0.014, 0.742 +/- 0.008, 1.526 +/- 0.029, and 0.00226 +/- 0.00056, respectively, while corresponding values are 0.921 +/- 0.021, 0.723 +/- 0.009, 1.521 +/- 0.025, and 0.00364 +/- 0.0014 for Asian TDU. Aerosol shortwave direct radiative effects at the top of the atmosphere (TOA), at the surface (SFC), and in the atmospheric layer (ATM) for Asian PDU (alpha < 0.2) and TDU (0.2 < alpha < 0.6) computed in this study, are a factor of 2 smaller than the results of Optical Properties of Aerosols and Clouds (OPAC) mineral-accumulated (mineral-acc.) and

  15. Building an industry-wide occupational exposure database for respirable mineral dust - experiences from the IMA dust monitoring programme

    International Nuclear Information System (INIS)

    Houba, Remko; Jongen, Richard; Vlaanderen, Jelle; Kromhout, Hans

    2009-01-01

    Building an industry-wide database with exposure measurements of respirable mineral dust is a challenging operation. The Industrial Minerals Association (IMA-Europe) took the initiative to create an exposure database filled with data from a prospective and ongoing dust monitoring programme that was launched in 2000. More than 20 industrial mineral companies have been collecting exposure data following a common protocol since then. Recently in 2007 ArboUnie and IRAS evaluated the quality of the collected exposure data for data collected up to winter 2005/2006. The data evaluated was collected in 11 sampling campaigns by 24 companies at 84 different worksites and considered about 8,500 respirable dust measurements and 7,500 respirable crystalline silica. In the quality assurance exercise four criteria were used to evaluate the existing measurement data: personal exposure measurements, unique worker identity, sampling duration not longer than one shift and availability of a limit of detection. Review of existing exposure data in the IMA dust monitoring programme database showed that 58% of collected respirable dust measurements and 62% of collected respirable quartz could be regarded as 'good quality data' meeting the four criteria mentioned above. Only one third of the measurement data included repeated measurements (within a sampling campaign) that would allow advanced statistical analysis incorporating estimates of within- and between-worker variability in exposure to respirable mineral dust. This data came from 7 companies comprising measurements from 23 sites. Problematic data was collected in some specific countries and to a large extent this was due to local practices and legislation (e.g. allowing 40-h time weighted averages). It was concluded that the potential of this unique industry-wide exposure database is very high, but that considerable improvements can be made. At the end of 2006 relatively small but essential changes were made in the dust monitoring

  16. Characteristics of mineral dust impacting the Persian Gulf

    Science.gov (United States)

    Ahmady-Birgani, Hesam; McQueen, Kenneth G.; Mirnejad, Hassan

    2018-02-01

    It is generally assumed that severe dust events in western Iran could be responsible for elevated levels of toxic and radioactive elements in the region. Over a period of 5 months, from January 2012 to May 2012, dust particles in the size range PM10 (i.e. chemical compositions of dust and aerosol samples collected during the non-dusty periods and during two severe dust events. Results of ICP-MS analysis of components indicate that during dust events the concentrations of major elements such as Ca, Mg, Al and K increase relative to ambient conditions when Fe and trace elements such as Cu, Cr, Ni, Pb and Zn are in higher proportions. Toxic trace elements that are generally ascribed to human activities, including industrial and urban pollution, are thus proportionately more abundant in the dust under calm conditions than during dust events, when their concentration is diluted by more abundant mineral particles of quartz, calcite and clay. The variability of chemical species during two dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results relate to two different source areas, namely northern Iraq and northwestern Syria.

  17. Exposure to dust mixtures containing free crystalline silica and mineral fibers

    International Nuclear Information System (INIS)

    Wozniak, H.; Wiecek, E.; Bielichowska-Cybula, G.

    1996-01-01

    Exposure to dust mixture containing at the same time respirable mineral fibres and free crystalline silica may occur in Poland in mines and in the Lower Silesia plants processing mineral raw materials as well as in all plants which use asbestos products and MMMF. Workposts where thermal insulation is exchange with possible phase transformations during operations under conditions of high temperature, expose particularly complex problems. In the work environment of this kind, dust concentration of free crystalline silica becomes important but not sufficient criterion for evaluating working conditions and it may be misleading. A range of studies indispensable for the proper evaluation of exposure to dust, covering together with measurement of dust and SiO 2 concentrations, determination of the mineral composition of dust, was developed. It was also found that the acceptable level of risk for neoplastic disease, namely 10(-3) can be attained in the work environment only if the concentration ranges from 0.05 to 0.1 f/cm 3 , that is equal to 20% of MAC value which is now binding in Poland. Cancer risk (lung cancer and mesothelioma jointly) during a 20-year exposure to concentrations equal to present MAC values should be estimated as about 10(-2) what indicates that risk is too high and it is necessary to diminish MAC values for asbestos dust. (author). 17 refs, 3 tabs

  18. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  19. Miners' lung: a history of dust disease in British coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Arthur McIvor; Ronald Johnston

    2007-02-15

    The authors explore the experience of coal miners' lung diseases and the attempts at voluntary and legal control of dusty conditions in British mining from the late nineteenth century to the present. In this way, the book addresses the important issues of occupational health and safety within the mining industry. The authors examine the prevalent diseases, notably pneumoconiosis, emphysema and bronchitis, and evaluate the roles of key players such as the doctors, management and employers, the state and the trade unions. Contents are: General editor's preface; Introduction. Part 1 Interpretations and Context: Methodology and historiography; Work and the body in coalmining. Part 2 Advancing Medical Knowledge on Dust Disease: Coal workers' pneumoconiosis: discovery and denial; Social medicine and pioneering epidemiology; The last gasp: bronchitis and emphysema. Part 3 The Industrial Politics of Miners' Lung: 'Enlightened management'? The NCB, the state and dust; The trade unions and dust. Part 4 Miners' Testimonies: Dust and Disability Narratives: Workplace culture: risk and masculinity; Breathless men: living and dying with dust disease. Conclusion. 3 figs., 10 tabs., 1 app.

  20. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    Science.gov (United States)

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  1. Screening and surveillance of workers exposed to mineral dusts

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.R.

    1997-12-31

    This publication resulted from a World Health Organisation initiated project to investigate the harmonisation of definitions, approaches and methodologies for the screening and surveillance of workers exposed to mineral dust. The first part of the book provides definitions of screening and surveillance and describes the main elements of such programmes. The second part discusses the practical aspect of the screening and surveillance of working populations exposed to crystalline silica, coal mine dust and asbestos. Although no single set of guidelines is applicable to the development and implementation of a programme for the screening and surveillance of workers exposed to mineral dust, the recommendations, together with certain caveats, should provide a useful starting point. Annexes provide examples of existing programmes in various countries and environments and discuss the use and interpretation of questionnaires, lung spirometry and chest radiography. Overall the book should be of interest to occupational health professionals.

  2. Identifying sources of aeolian mineral dust: Present and past

    Science.gov (United States)

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  3. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    , this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution

  4. 75 FR 64411 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-10-19

    ... industries, such as mining, by reducing workplace deaths and improving the health of coal miners. This..., enhanced enforcement, collaborative outreach, and education and training. The initiative will reduce, and... reducing the respirable coal mine dust levels, miners continue to develop black lung. Based on recent data...

  5. Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and Hydrogen Peroxide.

    Science.gov (United States)

    Huang, Liubin; Zhao, Yue; Li, Huan; Chen, Zhongming

    2015-09-15

    Heterogeneous reaction of SO2 on mineral dust seems to be an important sink for SO2. However, kinetic data about this reaction on authentic mineral dust are scarce and are mainly limited to low relative humidity (RH) conditions. In addition, little is known about the role of hydrogen peroxide (H2O2) in this reaction. Here, we investigated the uptake kinetics of SO2 on three authentic mineral dusts (i.e., Asian mineral dust (AMD), Tengger desert dust (TDD), and Arizona test dust (ATD)) in the absence and presence of H2O2 at different RHs using a filter-based flow reactor, and applied a parameter (effectiveness factor) to the estimation of the effective surface area of particles for the calculation of the corrected uptake coefficient (γc). We found that with increasing RH, the γc decreases on AMD particles, but increases on ATD and TDD particles. This discrepancy is probably due to the different mineralogy compositions and aging extents of these dust samples. Furthermore, the presence of H2O2 can promote the uptake of SO2 on mineral dust at different RHs. The probable explanations are that H2O2 rapidly reacts with SO2 on mineral dust in the presence of adsorbed water, and OH radicals, which can be produced from the heterogeneous decomposition of H2O2 on the mineral dust, immediately react with adsorbed SO2 as well. Our results suggest that the removal of SO2 via the heterogeneous reaction on mineral dust is an important sink for SO2 and has the potential to alter the physicochemical properties (e.g., ice nucleation ability) of mineral dust particles in the atmosphere.

  6. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    Science.gov (United States)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.

  7. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  8. Saharan dust levels in Greece and received inhalation doses

    Directory of Open Access Journals (Sweden)

    C. Mitsakou

    2008-12-01

    Full Text Available The desert of Sahara is one of the major sources of mineral dust on Earth, producing around 2×108 tons/yr. Under certain weather conditions, dust particles from Saharan desert get transported over the Mediterranean Sea and most of Europe. The limiting values set by the directive EC/30/1999 of European Union can easily be exceeded by the transport of desert dust particles in the south European Region and especially in urban areas, where there is also significant contribution from anthropogenic sources. In this study, the effects of dust transport on air quality in several Greek urban areas are quantified. PM10 concentration values from stationary monitoring stations are compared to dust concentrations for the 4-year period 2003–2006. The dust concentration values in the Greek areas were estimated by the SKIRON modelling system coupled with embedded algorithms describing the dust cycle. The mean annual dust contribution to daily-averaged PM10 concentration values was found to be around or even greater than 10% in the urban areas throughout the years examined. Natural dust transport may contribute by more than 20% to the annual number of exceedances – PM10 values greater than EU limits – depending on the specific monitoring location. In a second stage of the study, the inhaled lung dose received by the residents in various Greek locations is calculated. The particle deposition efficiency of mineral dust at the different parts of the human respiratory tract is determined by applying a lung dosimetry numerical model, which incorporates inhalation dynamics and aerosol physical processes. The inhalation dose from mineral dust particles was greater in the upper respiratory system (extrathoracic region and less significant in the lungs, especially in the sensitive alveolar region. However, in cases of dust episodes, the amounts of mineral dust deposited along the human lung are comparable to those

  9. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  10. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  11. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2011-11-01

    Full Text Available In the North Pacific, transport and deposition of mineral dust from Asia appear to be one of major sources of iron which can regulate growth of phytoplankton in the ocean. In this process, it is essential to identify chemical species of iron contained in Asian dust, because bioavailability of iron in the ocean is strongly influenced by the solubility of iron, which in turn is dependent on iron species in the dust. Here, we report that clay minerals (illite and chlorite in the dusts near the source collected at Aksu (western China can be transformed into ferrihydrite by atmospheric chemical processes during their long-range transport to eastern China (Qingdao and Japan (Tsukuba based on the speciation by X-ray absorption fine structure (XAFS and other methods such as X-ray diffraction and chemical extraction. As a result, Fe molar ratio in Aksu (illite : chlorite : ferrihydrite = 70 : 25 : 5 was changed to that in Tsukuba (illite : chlorite : ferrihydrite = 65 : 10 : 25. Moreover, leaching experiments were conducted to study the change of iron solubility. It was found that the iron solubility for the dust in Tsukuba (soluble iron fraction: 11.8 % and 1.10 % for synthetic rain water and seawater, respectively was larger than that in Aksu (4.1 % and 0.28 %, respectively, showing that iron in the dust after the transport becomes more soluble possibly due to the formation of ferrihydrite in the atmosphere. Our findings suggested that secondary formation of ferrihydrite during the transport should be considered as one of important processes in evaluating the supply of soluble iron to seawater.

  12. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    Science.gov (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  13. Respirable coal dust exposure and respiratory symptoms in South-African coal miners: A comparison of current and ex-miners

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, R.N.; Robins, T.G.; Seixas, N.; Lalloo, U.G.; Becklake, M. [University of KwaZuluNatal, Congella (South Africa). Nelson R Mandela School of Medicine

    2006-06-15

    Dose-response associations between respirable dust exposure and respiratory symptoms and between symptoms and spirometry outcomes among currently employed and formerly employed South-African coal miners were investigated. Work histories, interviews, and spirometry and cumulative exposure were assessed among 684 current and 212 ex-miners. Results: Lower prevalences of symptoms were found among employed compared with ex-miners. Associations with increasing exposure for symptoms of phlegm and past history of tuberculosis were observed, whereas other symptom prevalences were higher in the higher exposure categories. Symptomatic ex-miners exhibited lower lung-function compared to the nonsymptomatic. Compared with published data, symptoms rates were low in current miners but high in ex-miners. Although explanations could include the low prevalence of smoking and/or reporting/selection bias, a 'Survivor' and/or a 'hire' effect is more likely, resulting in an underestimation of the dust-related effect.

  14. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  15. Trace Metals and Mineral Composition of Harmattan Dust Haze in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-01-29

    Jan 29, 2018 ... ABSTRACT: Trace metals and mineralogical composition of harmattan dust haze was carried out on samples collected at Ilorin (80 32'N, ... Sahara desert which transports the dust by wind. Junge (1979) reported that on the .... Schwela et al 2002, it was observed that road transport emission sources ...

  16. PREVAILING DUST-TRANSPORT DIRECTIONS ON COMET 67P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Tobias; Noack, Matthias [Konrad-Zuse-Zentrum für Informationstechnik, Takustrasse 7, D-14195 Berlin (Germany)

    2015-11-10

    Dust transport and deposition behind larger boulders on the comet 67P/Churyumov–Gerasimenko (67P/C–G) have been observed by the Rosetta mission. We present a mechanism for dust-transport vectors based on a homogeneous surface activity model incorporating in detail the topography of 67P/C–G. The combination of gravitation, gas drag, and Coriolis force leads to specific dust transfer pathways, which for higher dust velocities fuel the near-nucleus coma. By distributing dust sources homogeneously across the whole cometary surface, we derive a global dust-transport map of 67P/C–G. The transport vectors are in agreement with the reported wind-tail directions in the Philae descent area.

  17. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  18. INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    R. TÓTH

    2016-03-01

    Full Text Available The Sahara Desert is the largest dust source on Earth. Its dust is frequently emitted into the Mediterranean atmosphere and transported by the winds sometimes as far north as Central Europe. The accumulated particles contribute to soil forming processes, while the atmospheric mineral dust has an impact on the radiation budget, cloud forming processes, the pH of precipitation and biogeochemical cycles of marine ecosystems. The PM (particulate matter in ambient air does not contain only primary particles but secondary particles formed in the atmosphere from precursor gases as well. Especially these latter ones have significant negative impacts to human health. There are in average four-five Saharan dust episodes annually in Hungary, sometimes in form of colour precipitation (brown rainfall, red snow. There are several possibilities for providing evidence for the Saharan origin of the dust observed in our country: back-trajectories using NOAA HYSPLIT model, TOMS satellite maps of NASA, maps of aerosol index of Ozone Monitoring Instrument, observations of spectral aerosol optical depth of Aerosol Robotic Network, satellite maps of EUMETSAT, elemental analysis of dust samples. In this study we try to reveal the suitability of the upper-air wind fields in detection of Saharan dust episodes in Central Europe. We deployed the global upper-air data base of the last 41 years that is available by courtesy of College of Engineering and Applied Sciences at University of Wyoming. We apply this method also for tracking air pollution of vegetation fires.

  19. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    Science.gov (United States)

    Caponi, Lorenzo; Formenti, Paola; Massabó, Dario; Di Biagio, Claudia; Cazaunau, Mathieu; Pangui, Edouard; Chevaillier, Servanne; Landrot, Gautier; Andreae, Meinrat O.; Kandler, Konrad; Piketh, Stuart; Saeed, Thuraya; Seibert, Dave; Williams, Earle; Balkanski, Yves; Prati, Paolo; Doussin, Jean-François

    2017-06-01

    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37-135 × 10-3 m2 g-1 at 375 nm) than for the PM2. 5 (range 95-711 × 10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as λ-AAE, where the Ångström absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (˜ 1) but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong linear correlation between the dust light-absorption properties and elemental

  20. Medical Geology in the Middle East: Potential Health Risks from Mineralized Dust Exposure

    Science.gov (United States)

    Lyles, M. B.; Fredrickson, H. L.; Bednar, A. J.; Fannin, H. B.; Griffin, D. W.; Sobecki, T. M.

    2012-04-01

    In the Middle East, dust and sand storms are a persistent problem delivering significant amounts of mineralized particulates via inhalation into the mouth, nasal pharynx, and lungs. The health risks of this dust inhalation are presently being studied but accurate characterization as to the potential health effects is still lacking. Experiments were designed to study the chemical composition, mineral content, and microbial flora of Kuwaiti and Iraqi dust particles for the potential to cause adverse human health effects both acute and chronic. Multiple site samples were collected and chemical and physical characterization including particle size distribution and inorganic analysis was conducted, followed by analysis and identification of biologic flora to include bacteria, fungi and viruses. Additionally, PM10 exposure data was collected hourly over a 12 day period (>10,000 ug/m3). Data indicates that the mineralized dust is composed of calcium carbonate and magnesium sulfate coating over a precipitated matrix of metallic silicate nanocrystals of various forms containing a variety of trace and heavy metals constituting ~3 % of the particles by weight. This includes ~ 1% by weight bioaccessible aluminum and reactive iron with the remaining 1% a mixture of bioaccessible trace and heavy metals. Microbial analysis reveals a significant biodiversity of bacteria of which ~25 % are known pathogens. Of the microbes identified, several have hemolytic properties and most have significant antibiotic resistance. Viral analysis indicates a tremendous amount of virons with a large percent of RNA viruses. The level of total suspended particle mass at PM10 constitutes an excessive exposure micro-particulates including PM 2.5 (~1,0000 ug/m3). Reported data on cell culture and animal studies have indicated a high level of toxicity to these dust particles. Taken together, these data suggest that at the level of dust exposure commonly found in the Middle East (i.e., Iraq, Kuwait, and

  1. Intercontinental Transport and Climatic Impact of Saharan and Sahelian Dust

    Directory of Open Access Journals (Sweden)

    N'Datchoh Evelyne Touré

    2012-01-01

    Full Text Available The Sahara and Sahel regions of Africa are important sources of dust particles into the atmosphere. Dust particles from these regions are transported over the Atlantic Ocean to the Eastern American Coasts. This transportation shows temporal and spatial variability and often reaches its peak during the boreal summer (June-July-August. The regional climate model (RegCM 4.0, containing a module of dust emission, transport, and deposition processes, is used in this study. Saharan and Sahelian dusts emissions, transports, and climatic impact on precipitations during the spring (March-April-May and summer (June-July-August were studied using this model. The results showed that the simulation were coherent with observations made by the MISR satellite and the AERONET ground stations, within the domain of Africa (Banizoumba, Cinzana, and M’Bour and Ragged-point (Barbados Islands. The transport of dust particles was predominantly from North-East to South-West over the studied period (2005–2010. The seasonality of dust plumes’ trajectories was influenced by the altitudes reached by dusts in the troposphere. The impact of dusts on climate consisted of a cooling effect both during the boreal summer and spring over West Africa (except Southern-Guinea and Northern-Liberia, Central Africa, South-America, and Caribbean where increased precipitations were observed.

  2. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    Science.gov (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  3. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    Science.gov (United States)

    Kumar, A.; Abouchami, W.; Galer, S.J.G.; Garrison, V.H.; Williams, E.; Andreae, M.O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers – Sr, Nd and Pb – to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  4. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    Science.gov (United States)

    Kumar, A.; Abouchami, W.; Galer, S. J. G.; Garrison, V. H.; Williams, E.; Andreae, M. O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers - Sr, Nd and Pb - to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  5. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  6. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2016-01-01

    Full Text Available Atmospheric deposition of anthropogenic soluble iron (Fe to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate. Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1–2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols. The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05–0.07 Tg Fe yr−1 in the preindustrial era to 0.11–0.12 Tg Fe yr−1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC regions

  7. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    Science.gov (United States)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in

  8. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  9. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  10. Particulate matter from re-suspended mineral dust and emergency cause-specific respiratory hospitalizations in Hong Kong

    Science.gov (United States)

    Pun, Vivian C.; Tian, Linwei; Ho, Kin-fai

    2017-09-01

    While contribution from non-exhaust particulate matter (PM) emissions towards traffic-related emissions is increasing, few epidemiologic evidence of their health impact is available. We examined the association of short-term exposure to PM10 apportioned to re-suspended mineral dust with emergency hospitalizations for three major respiratory causes in Hong Kong between 2001 and 2008. Time-series regression model was constructed to examine association of PM10 from re-suspended mineral dust with emergency hospitalizations for upper respiratory infection (URI), chronic obstructive pulmonary disease (COPD) and asthma at exposure lag 0-5 days, adjusting for time trends, seasonality, temperature and relative humidity. An interquartile range (6.8 μg/m3) increment in re-suspended mineral dust on previous day was associated with 0.66% (95% CI: 0.12, 0.98) increase in total respiratory hospitalizations, and 1.01% (95% CI: 0.14, 1.88) increase in URI hospitalizations. A significant 0.66%-0.80% increases in risk of COPD hospitalizations were found after exposure to re-suspended mineral dust at lag 3 or later. Exposure to mineral dust at lag 4 was linked to 1.71% increase (95% CI: 0.14, 2.22) in asthma hospitalizations. Associations from single-pollutant models remained significant in multi-pollutant models, which additionally adjusted for PM10 contributing from vehicle exhaust, regional combustion, residual oil, fresh sea salt, aged sea salt, secondary nitrate and secondary sulfate, or gaseous pollutants (i.e., nitrogen dioxide, sulfur dioxide, or ozone), respectively. Our findings provide insight into the biological mechanism by which non-exhaust pollution may be associated with risk of adverse respiratory outcomes, and also stress the needs for strategies to reduce emission and re-suspension of mineral dust. More research is warranted to assess the health effects of different non-exhaust PM emissions under various roadway conditions and vehicle fleets.

  11. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  12. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    Directory of Open Access Journals (Sweden)

    L. Caponi

    2017-06-01

    Full Text Available This paper presents new laboratory measurements of the mass absorption efficiency (MAE between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm. The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37–135  ×  10−3 m2 g−1 at 375 nm than for the PM2. 5 (range 95–711  ×  10−3 m2 g−1 at 375 nm and decrease with increasing wavelength as λ−AAE, where the Ångström absorption exponent (AAE averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (∼ 1 but in the same range as light-absorbing organic (brown carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong

  13. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  14. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  15. Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions

    Directory of Open Access Journals (Sweden)

    J. P. Engelbrecht

    2016-08-01

    Full Text Available This paper promotes an understanding of the mineralogical, chemical, and physical interrelationships of re-suspended mineral dusts collected as grab samples from global dust sources. Surface soils were collected from arid regions, including the southwestern USA, Mali, Chad, Morocco, Canary Islands, Cabo Verde, Djibouti, Afghanistan, Iraq, Kuwait, Qatar, UAE, Serbia, China, Namibia, Botswana, Australia, and Chile. The  <  38 µm sieved fraction of each sample was re-suspended in a chamber, from which the airborne mineral dust could be extracted, sampled, and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size analyzer, and a three-wavelength (405, 532, 781 nm photoacoustic instrument with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sampling media included Teflon® membrane and quartz fiber filters for chemical analysis and Nuclepore® filters for individual particle analysis by scanning electron microscopy (SEM. The  <  38 µm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the  >  75,  <  125 µm soil fractions were mineralogically assessed by optical microscopy. Presented here are results of the optical measurements, showing the interdependency of single-scattering albedos (SSA at three different wavelengths and mineralogical content of the entrained dust samples. To explain the elevated concentrations of iron (Fe and Fe ∕ Al ratios in the soil re-suspensions, we propose that dust particles are to a large extent composed of nano-sized particles of micas, clays, metal oxides, and ions of potassium (K+, calcium (Ca2+, and sodium (Na+ evenly dispersed as a colloid or adsorbed in amorphous

  16. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  17. Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, E.D.; Wheeler, M.W.; Smith, R.J.; Vallyathan, V.; Green, F.H.Y. [NIOSH, Cincinnati, OH (United States)

    2009-08-15

    Previous studies have shown associations between dust exposure or lung burden and emphysema in coal miners, although the separate contributions of various predictors have not been clearly demonstrated. The objective was to quantitatively evaluate the relationship between cumulative exposure to respirable coal mine dust, cigarette smoking, and other factors on emphysema severity. The study group included 722 autopsied coal miners and nonminers in the United States. Data on work history, smoking, race, and age at death were obtained from medical records and questionnaire completed by next-of-kin. Emphysema was classified and graded using a standardized schema. Job-specific mean concentrations of respirable coal mine dust were matched with work histories to estimate cumulative exposure. Relationships between various metrics of dust exposure (including cumulative exposure and lung dust burden) and emphysema severity were investigated in weighted least squares regression models. Emphysema severity was significantly elevated in coal miners compared with nonminers among ever- and never-smokers (P < 0.0001). Cumulative exposure to respirable coal mine dust or coal dust retained in the lungs were significant predictors of emphysema severity (P < 0.0001) after accounting for cigarette smoking, age at death, and race. The contributions of coal mine dust exposure and cigarette smoking were similar in predicting emphysema severity averaged over this cohort. Coal dust exposure, cigarette smoking, age, and race are significant and additive predictors of emphysema severity in this study.

  18. Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States

    Science.gov (United States)

    Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.

    2017-12-01

    Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.

  19. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  20. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-03-23

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  1. Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2010-08-01

    Full Text Available Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon.

    Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08 in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest.

    This case study follows the dust events of 11–16 and 18–27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s−1, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.

  2. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  3. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  4. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    Directory of Open Access Journals (Sweden)

    Basit Khan

    2015-11-01

    Full Text Available Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth's meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I, which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane's tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size

  5. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust.

    Science.gov (United States)

    Zhou, Li; Wang, Weigang; Gai, Yanbo; Ge, Maofa

    2014-12-01

    The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust (Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen cell and smog chamber system. The temperature dependence of the uptake coefficients was studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake coefficients decreased with the increasing of temperature for these two mineral dust samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased with the temperature increasing, and these temperature dependence functions were obtained for the first time. In the smog chamber experiments at room temperature, the steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur dioxide initial concentration from 1.72 × 10¹² to 6.15 × 10¹² mol/cm³. Humid air had effect on the steady state uptake coefficients of SO₂onto Inner Mongolia desert dust. Consequences about the understanding of the uptake processes onto mineral dust samples and the environmental implication were also discussed. Copyright © 2014. Published by Elsevier B.V.

  6. Short-cut transport path for Asian dust directly to the Arctic: a case study

    International Nuclear Information System (INIS)

    Huang, Zhongwei; Huang, Jianping; Wang, Shanshan; Zhou, Tian; Jin, Hongchun; Hayasaka, Tadahiro

    2015-01-01

    Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001–2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood. (letter)

  7. Assessments for the impact of mineral dust on the meningitis incidence in West Africa

    Science.gov (United States)

    Martiny, Nadège; Chiapello, Isabelle

    2013-05-01

    Recently, mineral dust has been suspected to be one of the important environmental risk factor for meningitis epidemics in West Africa. The current study is one of the first which relies on long-term robust aerosol measurements in the Sahel region to investigate the possible impact of mineral dust on meningitis cases (incidence). Sunphotometer measurements, which allow to derive aerosol and humidity parameters, i.e., aerosol optical thickness, Angström coefficient, and precipitable water, are combined with quantitative epidemiological data in Niger and Mali over the 2004-2009 AMMA (African Monsoon Multidisciplinary Analysis) program period. We analyse how the extremely high aerosol loads in this region may influence both the calendar (onset, peaks, end) and the intensity of meningitis. We highlight three distinct periods: (i) from November to December, beginning of the dry season, humidity is weak, there is no dust and no meningitis cases; (ii) from January to April, humidity is still weak, but high dust loads occur in the atmosphere and this is the meningitis season; (iii) from May to October, humidity is high and there is no meningitis anymore, in presence of dust or not, which flow anyway in higher altitudes. More specifically, the onset of the meningitis season is tightly related to mineral dust flowing close to the surface at the very beginning of the year. During the dry, and the most dusty season period, from February to April, each meningitis peak is preceded by a dust peak, with a 0-2 week lead-time. The importance (duration, intensity) of these meningitis peaks seems to be related to that of dust, suggesting that a cumulative effect in dust events may be important for the meningitis incidence. This is not the case for humidity, confirming the special contribution of dust at this period of the year. The end of the meningitis season, in May, coincides with a change in humidity conditions related to the West African Monsoon. These results, which are

  8. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    Science.gov (United States)

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  9. Variability of mineral dust deposition in the western Mediterranean basin and south-east of France

    Directory of Open Access Journals (Sweden)

    J. Vincent

    2016-07-01

    than 80 % of the major dust deposition events are recorded at only one station, suggesting that the dust provenance, transport and deposition processes (i.e. wet vs. dry of dust are different and specific for the different deposition sites in the Mediterranean studied area. The results tend to indicate that wet deposition is the main form of deposition for mineral dust in the western Mediterranean basin, but the contribution of dry deposition (in the sense that no precipitation was detected at the surface is far from being negligible, and contributes 10 to 46 % to the major dust deposition events, depending on the sampling site.

  10. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  11. Origin of Harmattan dust settled in Northern Ghana – Long transported or local dust?

    DEFF Research Database (Denmark)

    Lyngsie, Gry; Awadzi, Theodore W; Breuning-Madsen, Henrik

    2011-01-01

    is that the majority of dust deposited in northern Ghana may not be from the original Harmattan source in the Bodélé Depression. The aim of this study is therefore to investigate the origin of deposited dust in Tamale, Ghana. This is examined by comparing wind data, grain size distribution, mineralogical......The Harmattan is a dry, dust-laden continental wind which has its origin in the Bodélé Depression in the Chad basin. In Ghana the Harmattan can be experienced from November to March, when the Harmattan replaces the dominant south westerly maritime Monsoon wind. The hypothesis of this study...... and geochemical data from dust samples deposited during the Harmattan and Monsoon seasons, and topsoil. This study shows that despite a clear difference between the wind directions in the Harmattan and Monsoon seasons in Tamale, northern Ghana, no distinct differences are observed between the mineral or elemental...

  12. Reply to Comment by Xu et al. on "Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust" by Seo et al.

    Science.gov (United States)

    Seo, Inah; Lee, Yong Il; Yoo, Chan Min; Kim, Hyung Jeek; Hyeong, Kiseong

    2016-12-01

    Against Xu et al. (2016), who argued that East Asian Desert (EAD) dust that traveled on East Asian Winter Monsoon winds dominates over Central Asian Desert (CAD) dust in the Philippine Sea with presentation of additional data, we reconfirm Seo et al.'s (2014) conclusion that CAD dust carried on the Prevailing Westerlies and Trade Winds dominates over EAD dust in overall dust budget of the central Philippine Sea. The relative contribution of dust from EADs and CADs using clay mineral composition should be evaluated with elimination of mineralogical contribution from the volcanic end-member which is enriched in kaolinite and overestimate the contribution of EAD dust.

  13. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  14. Mineral dusts and radon in uranium mines

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1991-01-01

    The Environmental Protection Agency (EPA) continues to assert that radon is a major cause of lung cancer in this country. EPA is fostering a radon program that could entail huge financial and emotional costs while yielding negligible benefits to public health. Justification for the program was the occurrence of lung cancer in men exposed to huge amounts of radon, mineral dusts, and other lung irritants in uranium mines on the Colorado Plateau. Lung cancer has been reported in about 356 cigarette smokers and in about 25 nonsmokers. During the era of high radon levels, monitoring was sporadic. Conditions in only a small fraction of the mines were measured, and that on a few separate occasions. Later, cumulative exposure to radon was calculated on the basis of measurements involving only a tiny fraction of the miners. Some were exposed to more than 15,000 pCi/liter of radon and its products. The level in the average home is about 1.5 pCi/liter. In making extrapolations from mine to home, the assumption is made that residents are in their dwellings most of the time and that miners spend only 170 hours a month in the mine. Two major questionable assumptions are involved in extrapolations from high doses of radon in the mines to low doses in homes. One is that no threshold is involved; that is, that humans have no remediation mechanism for α particle damages. There is evidence to the contrary. The most unrealistic assumption is that heavy exposure to silica has no effect on inducing lung cancer. Many studies have shown that silica dust causes lung cancer in animals. Exposure of human culture cells to silica has resulted in formation of neoplastic tissue. EPA has no solid evidence that exposures to 4 pCi/liter of radon causes lung cancer in either smokers or nonsmokers. Indeed, there is abundant evidence to the contrary in the fact that in states with high levels of radon, inhabitants have less lung cancer than those in states with low levels

  15. Can Transport of Saharan Dust Explain Extensive Clay Deposits in the Amazon Basin? A Test Using Radiogenic Isotopes

    Science.gov (United States)

    Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.

    2012-12-01

    The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on

  16. Vertical transport of desert particulates by dust devils and clear thermals

    International Nuclear Information System (INIS)

    Sinclair, P.C.

    1974-01-01

    While the vertical and horizontal transport of natural surface material by dust devils is not in itself a critical environmental problem, the transport and downwind fallout of toxic or hazardous materials from dust devil activity may be a contributing factor in the development of future ecological-biological problems. Direct quantitative measurements of the dust particle size distribution near and within the visible dust devil vortex and analyses of the upper level clear thermal plume have been made to provide estimates of the vertical and horizontal transport of long half-life radioactive substances such as plutonium. Preliminary measurements and calculations of dust concentrations within dust devils indicate that over 7 x 10 3 tons of desert dust and sand may be transported downwind from an area 285 km 2 during an average dust devil season (May to August). Near the ground these dust concentrations contain particles in the size range from approximately 1 μm to 250 μm diameter. Since the vertical velocity distribution greatly exceeds the particle(s) fall velocities, the detrainment of particles within the vortex is controlled primarily by the spatial distribution of the radial (v/sub r/) and tangential (v/sub theta/) velocity fields. Above the visible dust devil vortex, a clear thermal plume may extend upward to 15,000 to 18,000 ft MSL. A new airborne sampling and air data system has been developed to provide direct measurements of the dust concentration and air motion near and within the upper thermal plume. The air sampler has been designed to operate isokinetically over a considerable portion of the low-speed flight regime of a light aircraft. A strapped down, gyro-reference platform and a boom-vane system is used to determine the vertical air motions as well as the temperature and turbulence structure within the thermal plume. (U.S.)

  17. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality

    Science.gov (United States)

    Prospero, Joseph M.; Collard, François-Xavier; Molinié, Jack; Jeannot, Alexis

    2014-07-01

    Decades of aerosol measurements on Barbados have yielded a detailed picture of African mineral dust transport to the Caribbean Basin that shows a strong seasonal cycle with a maximum in boreal summer and a minimum in winter. Satellite aerosol products suggest that in spring, there is a comparable transport to northeastern South America. Here we characterize the complete annual cycle of dust transport to the western Atlantic by linking the Barbados record to multiyear records of airborne particulate matter less than 10 µm diameter (PM10) measured in air quality programs at Cayenne (French Guiana) and Guadeloupe. Comparisons of PM10 at these sites with concurrent dust measurements at Barbados demonstrate that high PM10 levels are almost entirely due to dust. Cayenne PM10 peaks in spring in a cycle which is consistent with satellite aerosol optical depth and suggests that the Sahel is the dominant source. The persistent transport of dust during much of the year could impact a wide range of environmental processes over a broad region that extends from the southern United States to the Amazon Basin. Finally, the average 24 h PM10 concentrations at Cayenne and Guadeloupe frequently exceed the World Health Organization air quality guideline. Thus soil dust PM10 could be a significant, but generally unrecognized, health factor at western Atlantic sites and also in other relatively remote regions affected by long-range dust from Africa. Because dust emissions and transport are highly sensitive to climate variability, climate change in coming decades could greatly affect a wide range of biogeochemical processes and human health in this region.

  18. The competition between mineral dust and soot ice nuclei in mixed-phase clouds (Invited)

    Science.gov (United States)

    Murray, B. J.; Atkinson, J.; Umo, N.; Browse, J.; Woodhouse, M. T.; Whale, T.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O'Sullivan, D.; Malkin, T. L.

    2013-12-01

    The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. In this talk our recent laboratory and global aerosol modelling work on mineral dust and soot ice nuclei will be presented. We have performed immersion mode experiments to quantify ice nucleation by the individual minerals which make up desert mineral dusts and have shown that the feldspar component, rather than the clay component, is most important for ice nucleation (Atkinson et al. 2013). Experiments with well-characterised soot generated with eugenol, an intermediate in biomass burning, and n-decane show soot has a significant ice nucleation activity in mixed-phase cloud conditions. Our results for soot are in good agreement with previous results for acetylene soot (DeMott, 1990), but extend the efficiency to much higher temperatures. We then use a global aerosol model (GLOMAP) to map the distribution of soot and feldspar particles on a global basis. We show that below about -15oC that dust and soot together can explain most observed ice nuclei in the Earth's atmosphere, while at warmer temperatures other ice nuclei types are needed. We show that in some regions soot is the most important ice nuclei (below -15oC), while in others feldspar dust dominates. Our results suggest that there is a strong anthropogenic contribution to the ice nuclei population, since a large proportion of soot aerosol in the atmosphere results from human activities. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013). Demott, P. J. 1990. An Exploratory-Study of Ice Nucleation by Soot

  19. Long-range Transport of Asian Dust Storms: A Satellite/Surface Perspective on Societal and Scientific Influence

    Science.gov (United States)

    2007-01-01

    Among the many components contributing to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative forcing effect on the weather/climate system. As much as one-third to half of the global dust emissions, estimated about 800 Tg, are introduced annually into Earth's atmosphere from various deserts in China. Asian dust storm outbreaks are believed to have persisted for hundreds and thousands years over the vast territory of north and northwest China, but not until recent decades that many studies reveal the compelling evidence in recognizing the importance of these eolian dust particles for forming Chinese Loess Plateau and for biogeochemical cycling in the North Pacific Ocean to as far as in the Greenland ice-sheets through long-range transport. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites and its evolution monitored by satellite and surface network. In this paper, we will demonstrate the capability of a new satellite algorithm, called Deep Blue, to retrieve aerosol properties, particularly but not limited to, over bright-reflecting surfaces such as urban areas and deserts. Recently, many field campaigns were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. We will provide an overview of the outbreak of Asian dust storms, near source/sink and their evolution along transport pathway, from space and surface observations. The climatic effects and societal impacts of the Asian dusts will be addressed in depth. (to be presented in the International Workshop on Semi-Arid Land Surface-

  20. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  1. Modification of Asian-dust particles transported by different routes - A case study

    Science.gov (United States)

    Zaizen, Yuji; Naoe, Hiroaki; Takahashi, Hiroshi; Okada, Kikuo

    2014-11-01

    Two separate Asian dust events occurred before and after the passage of a cold front over Japan on 21 March 2010. According to back trajectories and a model simulation, the two dusty air-masses originated from the same region in Mongoria or northern China and were transported over different routes to Japan. Samples of aerosol particles from both airmasses were collected at Tsukuba and Mt. Haruna and examined by single-particle analysis using a transmission electron microscope and an energy dispersive X-ray analyzer. The mixing properties of mineral aerosol were quite different in the two airmasses and size ranges. In the prefrontal airmass, which were associated with pollution, most of fine (mixed with sulfate. On the contrary, mineral aerosols in the postfront airmass, which were relatively natural, were mostly externally mixed. In the latter case, the internal mixing was associated with Ca, however in the former case, mixing processes not concerning mineralogy was suggested.

  2. Accounting for particle non-sphericity in modeling of mineral dust radiative properties in the thermal infrared

    International Nuclear Information System (INIS)

    Legrand, M.; Dubovik, O.; Lapyonok, T.; Derimian, Y.

    2014-01-01

    Spectral radiative parameters (extinction optical depth, single scattering albedo, asymmetry factor) of spheroids of mineral dust composed of quartz and clays have been simulated at wavelengths between 7.0 and 10.2 µm using a T-matrix code. In spectral intervals with high values of complex index of refraction and for large particles, the parameters cannot be fully calculated with the code. Practically, the calculations are stopped at a truncation radius over which the particles contribution cannot thus be taken into account. To deal with this issue, we have developed and applied an accurate corrective technique of T-matrix Size Truncation Compensation (TSTC). For a mineral dust described by its AERONET standard aspect ratio (AR) distribution, the full error margin when applying the TSTC is within 0.3% (or ±0.15%), whatever the radiative parameter and the wavelength considered, for quartz (the most difficult case). Large AR values limit also the possibilities of calculation with the code. The TSTC has been able to complete the calculations of the T-matrix code for a modified AERONET AR distribution with a maximum AR of 4.7 instead of 3 for the standard distribution. Comparison between the simulated properties of spheroids and of spheres of same volume confirms, in agreement with the literature, that significant differences are observed in the vicinity of the mineral resonant peaks (λ ca. 8.3–8.7 µm for quartz, ca. 9.3–9.5 µm for clays) and that they are due to absorption by the small particles. This is a favorable circumstance for the TSTC, which is concerned with the contribution of the largest particles. This technique of numerical calculation improves the accuracy of the simulated radiative parameters of mineral dust, which must lead to a progress in view of applications such as remote sensing or determination of energy balance of dust in the thermal infrared (TIR), incompletely investigated so far. - Highlights: • Completion of computation of mineral

  3. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus

    Directory of Open Access Journals (Sweden)

    S. S. Kutuzov

    2014-01-01

    Full Text Available We present and discuss the chronology of dust deposition events documented by the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l. in 2009, 2012 and 2013. Snow and ice samples were analysed for major ions and minor element concentrations including heavy metals. Dust layers are formed on the surface of the glaciers as a result of atmospheric transport of mineral dust and aerosol particles to the Caucasus region. Satellite imagery (SEVIRI, trajectory models, and meteorological data were used for accurate dating of each the dust layers revealed in the ice cores. Then we tried to determine origins of the dust clouds and to investigate their transport pathways with high resolution (50–100 km. It was found that the desert dust is deposited on Caucasus glaciers 3–7 times in a year and it comes mainly from deserts of the Middle East and more rarely from the Northern Sahara desert. For the first time average annual dust flux (264 µg/cm2 per a year and average mass concentration (1.7 mg/kg over the period 2007–2013 were calculated for this region. The deposition of dust resulted in elevated concentrations consists of mostly ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from various sources in the Middle East, including Mesopotamia, or similar dust clouds passing over the Middle East are characterised by high concentrations of nitrates and ammonia that may be related to atmospheric transport of ammonium from agricultural lands that may explain high concentrations of ammonium in the dust originating from this region. Mean values of crustal enrichment factors (EF for the measured minor elements including heavy metals were calculated. We believe that high content of Cu, Zn and Cd can be a result of possible contribution from anthropogenic sources. Studies of the Caucasus ice cores may allow obtaining new independent data on the atmosphere circulation and high-altitude environment of this region.

  4. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    Science.gov (United States)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  5. Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model

    OpenAIRE

    Y. Hara; K. Yumimoto; I. Uno; A. Shimizu; N. Sugimoto; Z. Liu; D. M. Winker

    2009-01-01

    International audience; Three-dimensional structures of Asian dust transport in the planetary boundary layer (PBL) and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and results simulated using a data-assimilated version of a dust transport model (RC4) based on a ground-based NIES lidar network. Assimilated results mitigated overestimation of dust concen...

  6. MATADOR 2002: A pilot field experiment on convective plumes and dust devils

    NARCIS (Netherlands)

    Renno, N.O.; Abreu, V.J.; Koch, J.; Smith, P.H.; Hartogensis, O.K.; Debruin, H.A.R.; Burose, D.; Delory, G.T.; Farrell, W.M.; Watts, C.J.; Garatuza, J.; Parker, M.; Carswell, A.

    2004-01-01

    Recent research suggests that mineral dust plays an important role in terrestrial weather and climate, not only by altering the atmospheric radiation budget, but also by affecting cloud microphysics and optical properties. In addition, dust transport and related Aeolian processes have been

  7. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Science.gov (United States)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  8. Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea

    Science.gov (United States)

    Tsay, Si-Chee; Wang, S. H.; Hsu, N. C.

    2011-01-01

    Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust

  9. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    OpenAIRE

    J. Fan; L. R. Leung; P. J. DeMott; J. M. Comstock; B. Singh; D. Rosenfeld; J. M. Tomlinson; A. White; K. A. Prather; P. Minnis; J. K. Ayers; Q. Min

    2013-01-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical mode...

  10. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    OpenAIRE

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2014-01-01

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and the Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical mod...

  11. An overview of mineral dust modeling over East Asia

    Science.gov (United States)

    Chen, Siyu; Huang, Jianping; Qian, Yun; Zhao, Chun; Kang, Litai; Yang, Ben; Wang, Yong; Liu, Yuzhi; Yuan, Tiangang; Wang, Tianhe; Ma, Xiaojun; Zhang, Guolong

    2017-08-01

    East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.

  12. Increasing Severity of Pneumoconiosis Among Younger Former US Coal Miners Working Exclusively Under Modern Dust-Control Regulations.

    Science.gov (United States)

    Graber, Judith M; Harris, Gerald; Almberg, Kirsten S; Rose, Cecile S; Petsonk, Edward L; Cohen, Robert A

    2017-06-01

    Coal workers' pneumoconiosis (CWP) steadily declined among US miners following dust control regulations in 1970. In 2000, severe forms of this disease reemerged among young miners, and are well described among working-but not former-miners. Black lung benefits program (BLBP) data (2001 to 2013) were used to estimate respiratory disease burden among former miners including: (1) CWP (simple; advanced CWP, and progressive massive fibrosis [CWP/PMF]); and (2) respiratory impairment (FEV1 percent reference: mild, moderate, ≥moderately-severe). Among 24,686 claimants, 8.5% had advanced CWP/PMF; prevalence was highest among younger (less than or equal to 56 years: 10.8%) and older (greater than 70 years: 8.4%) miners and those who began work after versus before 1970 (8.3% vs. 4.0%). BLBP claims provide potentially useful data for monitoring the burden and severity of coal mine dust lung disease, and assessing efficacy of protective regulations.

  13. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez L, Y. [CSIC, Instituto de Estructura de la Materia, Calle Serrano 121, 28006 Madrid (Spain); Correcher, V. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Garcia G, J. [CSIC, Museo Nacional de Ciencias Naturales, Calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Cruz Z, E., E-mail: y.r.l@csic.es [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2011-10-15

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  14. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    International Nuclear Information System (INIS)

    Rodriguez L, Y.; Correcher, V.; Garcia G, J.; Cruz Z, E.

    2011-10-01

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  15. Lunar dust transport and potential interactions with power system components

    International Nuclear Information System (INIS)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers

  16. Lunar dust transport and potential interactions with power system components

    Energy Technology Data Exchange (ETDEWEB)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  17. Health effects from exposure to atmospheric mineral dust near Las Vegas, NV, USA

    Directory of Open Access Journals (Sweden)

    Deborah E. Keil

    Full Text Available Desert areas are usually characterized by a continuous deposition of fine airborne particles. Over time, this process results in the accumulation of silt and clay on desert surfaces. We evaluated health effects associated with regional atmospheric dust, or geogenic dust, deposited on surfaces in the Nellis Dunes Recreation Area (NDRA in Clark County, Nevada, a popular off-road vehicle (ORV recreational site frequented daily by riders, families, and day campers. Because of atmospheric mixing and the mostly regional origin of the accumulated particles, the re-suspended airborne dust is composed of a complex mixture of minerals and metals including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, arsenic, strontium, cesium, lead, uranium, and others. Geogenic dust with a median diameter of 4.1 μm was administered via oropharyngeal aspiration to female B6C3F1 mice at doses of 0.01 to 100 mg dust/kg body weight, four times, a week apart, for 28-days. Immuno- and neurotoxicological outcomes 24 h following the last exposure were evaluated. Antigen-specific IgM responses were dose-responsively suppressed at 0.1, 1.0, 10 and 100 mg/kg/day. Splenic and thymic lymphocytic subpopulations and natural killer cell activity also were significantly reduced. Antibodies against MBP, NF-68, and GFAP were not affected, while brain CD3+ T cells were decreased in number. A lowest observed adverse effect level (LOAEL of 0.1 mg/kg/day and a no observed adverse effect level (NOAEL of 0.01 mg/kg/day were derived based on the antigen-specific IgM responses. Keywords: Geogenic dust, Heavy metals, Minerals, Lung exposure, Immunotoxicity, Neurotoxicity

  18. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Niu, Hongya [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, Hebei 056038 (China); Zhang, Daizhou [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Wu, Zhijun [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Chen, Chen [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Beijing Municipal Environmental Monitoring Center, Beijing 100044 (China); Wu, Yusheng; Shang, Dongjie [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Hu, Min, E-mail: minhu@pku.edu.cn [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China)

    2016-09-15

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm{sup −3}, which was much lower than that in heavily polluted days (6300 cm{sup −3}). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  19. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    International Nuclear Information System (INIS)

    Hu, Wei; Niu, Hongya; Zhang, Daizhou; Wu, Zhijun; Chen, Chen; Wu, Yusheng; Shang, Dongjie; Hu, Min

    2016-01-01

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm"−"3, which was much lower than that in heavily polluted days (6300 cm"−"3). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  20. Impact of cement dust on the mineral and energy concentration of Psidium guayava

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Ambasht, R.S.

    1982-12-01

    The impact of cement dust deposition on mineral and energy concentration of leaves of guava Psidium guayava growing in the vicinity of Churk Dement Factory situated at Churk, District-Mirzapur (India) was studied. Concentrations of calcium (Ca), potassium (K), sodium (Na) and phosphorus (P) were increased while energy content (cal g/sup -1/ dry weight) was reduced (12.3%) more in cement-dust-covered leaves than in dust-free leaves of Psidium guayava. Statistically it was found that the difference in the concentration of Ca, K, and P industry and dust-free leaves was highly correlated and significant with the amount of cement dust deposited (gm/sup -2/ leaf surface) on the leaf surface of P. guayava while the difference in the concentration of Na--although positively correlated--is not significant. Maximum values of concentrations of Ca, K, Na, P and energy were 5.20%, 0.48%, 0.025%, 0.15% and 4936.7 cal g/sup -1/ dry weight in dust-covered leaves and 3.50%, 0.30%, 0.018%, 0.12% and 5301.4 cal g/sup -1/ dry weight in dust-free leaves, respectively.

  1. 30 CFR 90.301 - Respirable dust control plan; approval by District Manager; copy to part 90 miner.

    Science.gov (United States)

    2010-07-01

    ... District Manager; copy to part 90 miner. 90.301 Section 90.301 Mineral Resources MINE SAFETY AND HEALTH... control plan; approval by District Manager; copy to part 90 miner. (a) The District Manager will approve... District Manager shall consider whether: (1) The respirable dust control measures would be likely to...

  2. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    Science.gov (United States)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  3. Dust mobilization and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Sharpe, J.P.

    2007-01-01

    We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization

  4. Dust mobilization and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Sharpe, J.P.

    2008-01-01

    We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization

  5. Gastric cancer in coal miners: an hypothesis of coal mine dust causation

    Energy Technology Data Exchange (ETDEWEB)

    Ong, T M; Whong, W Z; Ames, R G

    1983-10-01

    An hypothesis is proposed to explain the elevated incidence of gastric cancer among coal miners. Inhaled coal mine dust, especially the larger particles, is cleared from the lung and tracheobronchial tree by mucociliary function, swallowed, and introduced into the stomach. Organic and/or inorganic materials in the dust can undergo intra-gastric nitrosation and/or interaction with exogenous chemicals to form carcinogenic compounds which in turn may lead to precancerous lesions, which may subsequently develop into gastric cancer. This sequence of events, however, depends upon occupational exposures as well as life-style features and individual genetic predisposition.

  6. Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data

    Directory of Open Access Journals (Sweden)

    A. Autricque

    2017-08-01

    Full Text Available In this paper, dust transport in tokamak plasmas is studied through both experimental and modeling aspects. Image processing routines allowing dust tracking on CCD camera videos are presented. The DUMPRO (DUst Movie PROcessing code features a dust detection method and a trajectory reconstruction algorithm. In addition, a dust transport code named DUMBO (DUst Migration in a plasma BOundary is briefly described. It has been developed at CEA in order to simulate dust grains transport in tokamaks and to evaluate the contribution of dust to the impurity inventory of the plasma. Like other dust transport codes, DUMBO integrates the Orbital Motion Limited (OML approach for dust/plasma interactions modeling. OML gives direct expressions for plasma ions and electrons currents, forces and heat fluxes on a dust grain. The equation of motion is solved, giving access to the dust trajectory. An attempt of model validation is made through comparison of simulated and measured trajectories on the 2015 KSTAR dust injection experiment, where W dust grains were successfully injected in the plasma using a gun-type injector. The trajectories of the injected particles, estimated using the DUMPRO routines applied on videos from the fast CCD camera in KSTAR, show two distinct general dust behaviors, due to different dust sizes. Simulations were made with DUMBO to match the measurements. Plasma parameters were estimated using different diagnostics during the dust injection experiment plasma discharge. The experimental trajectories show longer lifetimes than the simulated ones. This can be due to the substitution of a boiling/sublimation point to the usual vaporization/sublimation cooling, OML limitations (eventual potential barriers in the vicinity of a dust grain are neglected and/or to the lack of a vapor shielding model in DUMBO.

  7. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission.

    Science.gov (United States)

    Fiedler, S; Schepanski, K; Heinold, B; Knippertz, P; Tegen, I

    2013-06-27

    [1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November-February and along the West Saharan and Mauritanian coast for April-September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394.

  8. Simulation analysis of dust-particle transport in the peripheral plasma in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Masuzaki, Suguru; Kawamura, Gakushi; Yamada, Hiroshi; Tanaka, Yasunori; Uesugi, Yoshihiko; Pigarov, Alexander Yu.; Smirnov, Roman D.

    2014-01-01

    The function of the peripheral plasma in the Large Helical Device (LHD) on transport of dusts is investigated using a dust transport simulation code (DUSTT) in a non-axisymmetric geometry. The simulation shows that the transport of the dusts is dominated by the plasma flow (mainly by ion drag force) formed in the peripheral plasma. The trajectories of dusts are investigated in two probable situations: release of spherical iron dusts from the inboard side of the torus, and drop of spherical carbon dusts from a divertor plate installed near an edge of an upper port. The trajectories in these two situations are calculated in various sized dust cases. From a viewpoint of protection of the main plasma from dust penetration, it proves that there are two functions in the LHD peripheral plasma. One is sweeping of dusts by the effect of the plasma flow in the divertor legs, and another one is evaporation/sublimation of dusts by heat load onto the dusts in the ergodic layer. (author)

  9. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R [Forschungszentrum Karlsruhe, Institute for Meteorology and Climate Research, 76021 Karlsruhe (Germany); Schneider, J; Walter, S [Max Planck Institute for Chemistry, 55128 Mainz (Germany); Ebert, V; Wagner, S [University of Heidelberg, Institute for Physical Chemistry, 69120 Heidelberg (Germany)], E-mail: Ottmar.Moehler@imk.fzk.de

    2008-04-15

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m{sup 3} aerosol vessel and either directly transferred into the 84 m{sup 3} cloud simulation chamber or coated before with the semi-volatile products from the reaction of {alpha}-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 {mu}m acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics.

  10. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    International Nuclear Information System (INIS)

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R; Schneider, J; Walter, S; Ebert, V; Wagner, S

    2008-01-01

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m 3 aerosol vessel and either directly transferred into the 84 m 3 cloud simulation chamber or coated before with the semi-volatile products from the reaction of α-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 μm acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics

  11. Contribution of Asian dust to atmospheric deposition of radioactive cesium (137Cs)

    International Nuclear Information System (INIS)

    Fukuyama, Taijiro; Fujiwara, Hideshi

    2008-01-01

    Both Asian dust (kosa) transported from the East Asian continent and locally suspended dust near monitoring sites contribute to the observed atmospheric deposition of 137 Cs in Japan. To estimate the relative contribution of these dust phenomena to the total 137 Cs deposition, we monitored weekly deposition of mineral particles and 137 Cs in spring. Deposition of 137 Cs from a single Asian dust event was 62.3 mBq m -2 and accounted for 67% of the total 137 Cs deposition during the entire monitoring period. Furthermore, we found high 137 Cs specific activity in the Asian dust deposition sample. Although local dust events contributed to 137 Cs deposition, their contribution was considerably smaller than that of Asian dust. We conclude that the primary source of atmospheric 137 Cs in Japan is dust transported from the East Asian continent

  12. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  13. Following Saharan Dust Outbreak Toward The Amazon Basin

    Science.gov (United States)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  14. Geochemical characterization of critical dust source regions in the American West

    Science.gov (United States)

    Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles

    2017-10-01

    The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased

  15. Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon

    Science.gov (United States)

    Dang, Cheng; Brandt, Richard E.; Warren, Stephen G.

    2015-06-01

    The reduction of snow spectral albedo by black carbon (BC) and mineral dust, both alone and in combination, is computed using radiative transfer modeling. Broadband albedo is shown for mass fractions covering the full range from pure snow to pure BC and pure dust, and for snow grain radii from 5 µm to 2500 µm, to cover the range of possible grain sizes on planetary surfaces. Parameterizations are developed for opaque homogeneous snowpacks for three broad bands used in general circulation models and several narrower bands. They are functions of snow grain radius and the mass fraction of BC and/or dust and are valid up to BC content of 10 ppm, needed for highly polluted snow. A change of solar zenith angle can be mimicked by changing grain radius. A given mass fraction of BC causes greater albedo reduction in coarse-grained snow; BC and grain radius can be combined into a single variable to compute the reduction of albedo relative to pure snow. The albedo reduction by BC is less if the snow contains dust, a common situation on mountain glaciers and in agricultural and grazing lands. Measured absorption spectra of mineral dust are critically reviewed as a basis for specifying dust properties for modeling. The effect of dust on snow albedo at visible wavelengths can be represented by an "equivalent BC" amount, scaled down by a factor of about 200. Dust has little effect on the near-IR albedo because the near-IR albedo of pure dust is similar to that of pure snow.

  16. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  17. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Science.gov (United States)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most

  18. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Directory of Open Access Journals (Sweden)

    S. Augustin-Bauditz

    2016-05-01

    Full Text Available Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs. It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above −20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX with ice active biological material (birch pollen washing water and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS. A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM, Energy Dispersive X-ray analysis (EDX, and a Volatility–Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH

  19. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  20. Evaluation of a regional mineral dust model over Northern Africa, Southern Europe and Middle East with AERONET data

    Science.gov (United States)

    Basart, S.; Pérez, C.; Cuevas, E.; Baldasano, J. M.

    2009-04-01

    the model to reproduce AOD (at 550nm) associated to mineral dust 24, 48 and 72h ahead. A suit of discrete statistics as Mean Normalized Bias Error (MNBE), Mean Normalized Gross Error (MNGE) and Root Mean Square Error (RMSE) has been used in order to evaluate the model behaviour. Categorical statistics or skill scores, as model accuracy, bias, probability of detection, false alarm rate and critical success index have been implemented to test the capability of the model to simulate AOD exceeding thresholds defined by the quartiles of each AERONET site. A previous aerosol characterization of AERONET data has been performed for our study region in order to discriminate desert dust contributions (Basart et al., 2008). The first results of the comparison reveal that the modelled dust field agrees in general reasonably well with sun photometer data. Since dust long-range transport is mainly driven by smaller dust particles, the results of this new 8-bins version (with increased number of dust size bins) is considerably better, since the small particle size range (<10µm effective radius) is well described. The best scores are found in North Africa and Middle East. In the Sahel region, an important sub-estimation is observed in wintertime, when the Atlantic outflow transport is important. This is partially due to the more complex processes associated to dust generation in this region (Warren et al., 2007), not well parameterized in dust models yet. Other causes, such as the correct simulation of regional winds or the threshold friction velocity are under research. Moreover, the interaction of mineral dust and biomass burning aerosols from Savannah fires is at its maximum over the region in this season. In southern Europe, the relative errors are higher than in the rest of our study domain mainly due to the presence of different types of aerosols (such as fine pollution aerosols) which appear well-mixed with desert dust. References: Basart, S., C. Pérez, E. Cuevas and J

  1. Dust resuspension and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Corradini, M.L.; Sharpe, J.P.

    2007-01-01

    Plasma surface interactions in tokamaks are known to create significant quantities of dust, which settles onto surfaces and accumulates in the vacuum vessel. In ITER, a loss of vacuum accident may result in the release of dust which will be radioactive and/or toxic, and provides increased surface area for chemical reactions or dust explosion. A new method of analysis has been developed for modeling dust resuspension and transport in loss of vacuum accidents. The aerosol dynamic equation is solved via the user defined scalar (UDS) capability in the commercial CFD code Fluent. Fluent solves up to 50 generic transport equations for user defined scalars, and allows customization of terms in these equations through user defined functions (UDF). This allows calculation of diffusion coefficients based on local flow properties, inclusion of body forces such as gravity and thermophoresis in the convection term, and user defined source terms. The code accurately reproduces analytical solutions for aerosol deposition in simple laminar flows with diffusion and gravitational settling. Models for dust resuspension are evaluated, and code results are compared to available resuspension data, including data from the Toroidal Dust Mobilization Experiment (TDMX) at the Idaho National Laboratory. Extension to polydisperse aerosols and inclusion of coagulation effects is also discussed. (orig.)

  2. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    Science.gov (United States)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  3. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    Science.gov (United States)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  4. PM10 composition during an intense Saharan dust transport event over Athens (Greece)

    International Nuclear Information System (INIS)

    Remoundaki, E.; Bourliva, A.; Kokkalis, P.; Mamouri, R.E.; Papayannis, A.; Grigoratos, T.; Samara, C.; Tsezos, M.

    2011-01-01

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM 10 monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM 10 concentrations exceeded the EU limit (50 μg/m 3 ) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM 10 reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 μm. - Highlights: → The paper focuses on the contribution of Saharan dust in PM10 levels at an urban site. → High Ca and Fe, calcite, illite and smectites and poor quartz contents are related to source-regions. → The data sets presented are in very good agreement and are also strongly confirmed by literature. → Dust contribution in PM10 can be of comparable importance for both an urban and a remote location.

  5. Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study

    Science.gov (United States)

    Hansell, R. A.; Liou, K. N.; Ou, S. C.; Tsay, S. C.; Ji, Q.; Reid, J. S.

    2008-09-01

    Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE2) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE2 and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE2 cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI's estimated MgCdTe detector nonlinearity was evaluated.

  6. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-02-01

    Full Text Available Mineral dust aerosols (MDs not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation aerosol scattering coefficients (σsp, 550 nm of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5 at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm−1. Correspondingly, the absorption coefficients (σap, 637 nm were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm−1; single-scattering albedos (ω, 637 nm were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450–700 nm of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April, the highest values of σsp2.5 ( ∼  5074 Mm−1, backscattering coefficient (σbsp2.5,  ∼  522 Mm−1, and ω637 ( ∼  0.993 and the lowest values of backscattering fraction (b2.5,  ∼  0.101 at 550 nm and Åsp2.5 ( ∼  −0.046 at 450–700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1–3 µm, exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  7. Laboratory estimate of the regional shortwave refractive index and single scattering albedo of mineral dust from major sources worldwide

    Science.gov (United States)

    Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.

    2017-12-01

    Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.

  8. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  9. Field Measurements and Modeling of Dust Transport and Deposition on a Hawaiian Volcano

    Science.gov (United States)

    Douglas, M.; Stock, J. D.; Cerovski-Darriau, C.; Bishaw, K.; Bedford, D.

    2017-12-01

    The western slopes of Hawaii's Mauna Kea volcano are mantled by fine-grained soils that record volcanic airfall and eolian deposition. Where exposed, strong winds transport this sediment across west Hawaii, affecting tourism and local communities by decreasing air and water quality. Operations on US Army's Ke'amuku Maneuver Area (KMA) have the potential to increase dust flux from these deposits. To understand regional dust transport and composition, the USGS established 18 ground monitoring sites and sampling locations surrounding KMA. For over three years, each station measured vertical and horizontal dust flux while co-located anemometers measured wind speed and direction. We use these datasets to develop a model for dust supply and transport to assess whether KMA is a net dust sink or source. We find that horizontal dust flux rates are most highly correlated with entrainment threshold wind speeds of 8 m/s. Using a dust model that partitions measured horizontal dust flux into inward- and outward-directed components, we predict that KMA is currently a net dust sink. Geochemical analysis of dust samples illustrates that organics and pedogenic carbonate make up to 70% of their mass. Measured vertical dust deposition rates of 0.005 mm/m2/yr are similar to deposition rates of 0.004 mm/m2/yr predicted from the divergence of dust across KMA's boundary. These rates are low compared to pre-historic rates of 0.2-0.3 mm/yr estimated from radiocarbon dating of buried soils. Therefore, KMA's soils record persistent deposition both over past millennia and at present at rates that imply infrequent, large dust storms. Such events led to soil-mantled topography in an otherwise rocky Pleistocene volcanic landscape. A substantial portion of fine-grained soils in other leeward Hawaiian Island landscapes may have formed from similar eolian deposition, and not direct weathering of parent rock.

  10. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    Science.gov (United States)

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from

  11. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    Full Text Available Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulates, followed by aggregation and removal on larger sinking particles. Much of the dissolved iron (<0.4 μm is present as small colloids (>~0.02 μm and, thus, is subject to aggregation and scavenging removal. This implies distinct scavenging regimes for dissolved iron consistent with the observations: 1 a high scavenging regime – where dissolved-iron concentrations exceed the concentrations of strongly binding organic ligands; and 2 a moderate scavenging regime – where dissolved iron is bound to both colloidal and soluble ligands. Within the moderate scavenging regime, biological uptake and particle scavenging decrease surface iron concentrations to low levels (<0.2 nM over a wide range of low to moderate iron input levels. Removal rates are also highly nonlinear in areas with higher iron inputs. Thus, observed surface-iron concentrations exhibit a bi-modal distribution and are a poor proxy for iron input rates. Our results suggest that there is substantial removal of dissolved iron from subsurface waters (where iron concentrations are often well below 0.6 nM, most likely due to aggregation and removal on sinking particles of Fe bound to organic colloids.

    We use the observational database to improve simulation of the iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization, based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron

  12. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol

    Science.gov (United States)

    Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.

    2012-01-01

    Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.

  13. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  14. Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA in CanAM4-PAM

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2012-08-01

    Full Text Available A new size-resolved dust scheme based on the numerical method of piecewise log-normal approximation (PLA was developed and implemented in the fourth generation of the Canadian Atmospheric Global Climate Model with the PLA Aerosol Model (CanAM4-PAM. The total simulated annual global dust emission is 2500 Tg yr−1, and the dust mass load is 19.3 Tg for year 2000. Both are consistent with estimates from other models. Results from simulations are compared with multiple surface measurements near and away from dust source regions, validating the generation, transport and deposition of dust in the model. Most discrepancies between model results and surface measurements are due to unresolved aerosol processes. Biases in long-range transport are also contributing. Radiative properties of dust aerosol are derived from approximated parameters in two size modes using Mie theory. The simulated aerosol optical depth (AOD is compared with satellite and surface remote sensing measurements and shows general agreement in terms of the dust distribution around sources. The model yields a dust AOD of 0.042 and dust aerosol direct radiative forcing (ADRF of −1.24 W m−2 respectively, which show good consistency with model estimates from other studies.

  15. Global transport of thermophilic bacteria in atmospheric dust.

    Science.gov (United States)

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    Science.gov (United States)

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  17. The 7-13 March 2006 major Saharan outbreak: Multiproxy characterization of mineral dust deposited on the West African margin

    NARCIS (Netherlands)

    Skonieczny, C.; Bory, A.; Bout-Roumazeilles, V.; Abouchami, W.; Galer, S.J.G.; Crosta, X.; Stuut, J.B.; Meyer, I.; Chiapello, I.; Podvin, T.; Chatenet, B.; Diallo, A.; Ndiaye, T.

    2011-01-01

    Mineral dust deposits were collected at Mbour, Senegal, throughout the spring of 2006 and especially during the well-documented March 7-13 large Saharan dust outbreak. During this 7-day period, significant changes in mass flux, grain-size, clay mineralogy and Sr and Nd isotopic compositions were

  18. 15 years of monitoring occupational exposure to respirable dust and quartz within the European industrial minerals sector.

    Science.gov (United States)

    Zilaout, Hicham; Vlaanderen, Jelle; Houba, Remko; Kromhout, Hans

    2017-07-01

    In 2000, a prospective Dust Monitoring Program (DMP) was started in which measurements of worker's exposure to respirable dust and quartz are collected in member companies from the European Industrial Minerals Association (IMA-Europe). After 15 years, the resulting IMA-DMP database allows a detailed overview of exposure levels of respirable dust and quartz over time within this industrial sector. Our aim is to describe the IMA-DMP and the current state of the corresponding database which due to continuation of the IMA-DMP is still growing. The future use of the database will also be highlighted including its utility for the industrial minerals producing sector. Exposure data are being obtained following a common protocol including a standardized sampling strategy, standardized sampling and analytical methods and a data management system. Following strict quality control procedures, exposure data are consequently added to a central database. The data comprises personal exposure measurements including auxiliary information on work and other conditions during sampling. Currently, the IMA-DMP database consists of almost 28,000 personal measurements which have been performed from 2000 until 2015 representing 29 half-yearly sampling campaigns. The exposure data have been collected from 160 different worksites owned by 35 industrial mineral companies and comes from 23 European countries and approximately 5000 workers. The IMA-DMP database provides the European minerals sector with reliable data regarding worker personal exposures to respirable dust and quartz. The database can be used as a powerful tool to address outstanding scientific issues on long-term exposure trends and exposure variability, and importantly, as a surveillance tool to evaluate exposure control measures. The database will be valuable for future epidemiological studies on respiratory health effects and will allow for estimation of quantitative exposure response relationships. Copyright © 2017 The

  19. Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing

    Science.gov (United States)

    Di Biagio, Claudia; Formenti, Paola; Balkanski, Yves; Caponi, Lorenzo; Cazaunau, Mathieu; Pangui, Edouard; Journet, Emilie; Nowak, Sophie; Caquineau, Sandrine; Andreae, Meinrat O.; Kandler, Konrad; Saeed, Thuraya; Piketh, Stuart; Seibert, David; Williams, Earle; Doussin, Jean-François

    2017-02-01

    Modeling the interaction of dust with long-wave (LW) radiation is still a challenge because of the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known about the variability of the refractive index as a function of the dust mineralogical composition, which depends on the specific emission source, and its size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially invariant and time-constant value for the dust LW refractive index. In this paper, the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from 19 natural soils from 8 regions: northern Africa, the Sahel, eastern Africa and the Middle East, eastern Asia, North and South America, southern Africa, and Australia. Soil samples were selected from a total of 137 available samples in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (3-15 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the imaginary LW refractive index (k) of dust varies greatly both in magnitude and spectral shape from sample to sample, reflecting the

  20. Laboratory study of PCB transport from primary sources to settled dust

    Science.gov (United States)

    Transport of house dust and Arizona Test Dust on polychlorinated biphenyl (PCB)-containing panels and PCB-free panels was investigated in a 30-m3 stainless steel chamber. The PCB-containing panels were aluminum sheets coated with a PCB-spiked, oil-based primer or two-part polysul...

  1. PM{sub 10} composition during an intense Saharan dust transport event over Athens (Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Remoundaki, E., E-mail: remound@metal.ntua.gr [National Technical University of Athens (NTUA), School of Mining and Metallurgical Engineering, Laboratory of Environmental Science and Engineering, Heroon Polytechniou 9, 15780 Zografou (Greece); Bourliva, A. [Aristotle University of Thessaloniki (AUTH), Department of Geology, 54124 Thessaloniki (Greece); Hellenic Open University, School of Science and Technology, 26335 Patras (Greece); Kokkalis, P.; Mamouri, R.E.; Papayannis, A. [National Technical University of Athens (NTUA), Laser Remote Sensing Laboratory, Heroon Polytechniou 9, 15780 Zografou (Greece); Grigoratos, T.; Samara, C. [Aristotle University of Thessaloniki (AUTH), Department of Chemistry, Environmental Pollution Control Laboratory, 54124 Thessaloniki (Greece); Tsezos, M. [National Technical University of Athens (NTUA), School of Mining and Metallurgical Engineering, Laboratory of Environmental Science and Engineering, Heroon Polytechniou 9, 15780 Zografou (Greece)

    2011-09-15

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM{sub 10} monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM{sub 10} concentrations exceeded the EU limit (50 {mu}g/m{sup 3}) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM{sub 10} reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 {mu}m. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 {mu}m. - Highlights: {yields} The paper focuses on the contribution of Saharan dust in PM10 levels at an urban site. {yields} High Ca and Fe, calcite, illite and smectites and poor quartz contents are related to source-regions. {yields} The data sets presented are in very good agreement and are also strongly confirmed by literature. {yields} Dust contribution in PM10 can be of comparable importance for

  2. The immersion freezing behavior of mixtures of mineral dust and biological substances

    Science.gov (United States)

    Augustin, Stefanie; Schneider, Johannes; Schmidt, Susan; Niedermeier, Dennis; Ebert, Martin; Voigtländer, Jens; Rösch, Michael; Stratmann, Frank; Wex, Heike

    2014-05-01

    Biological particles such as bacteria or pollen are known to be efficient ice nuclei. It is also known that ice nucleating active (INA) macromolecules, i.e. protein complexes in the case of bacteria (e.g. Wolber et al., 1986), and most likely polysaccharides in the case of pollen (Pummer et al., 2012) are responsible for the freezing. Very recently it was suggested that these INA macromolecules maintain their nucleating ability even when they are separated from their original carriers (Hartmann et al., 2013; Augustin et al., 2013). This opens the possibility of accumulation of such INA macromolecules in e.g. soils and the resulting particles could be an internal mixture of mineral dust and INA macromolecules. If such biological IN containing soil particles are then dispersed into the atmosphere due to e.g. wind erosion or agricultural processes they could induce ice nucleation at temperatures higher than -20°C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INA macromolecules. Specifically, we mixed pure mineral dust (illite) with INA biological material (SNOMAX and birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the produced aerosol we used single mass spectrometry as well as electron microscopy. We found that internally mixed particles which containing ice active biological material show the same ice nucleation behavior as the purely biological particles. That shows that INA macromolecules which are located on a mineral dust particle dominate the freezing process. Acknowledgement: Part of this work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. Augustin, S., Hartmann, S., Pummer, B., Grothe, H

  3. Characteristics and transport of organochlorine pesticides in urban environment: air, dust, rain, canopy throughfall, and runoff.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Hu, Dan; Ou, Langbo; Wang, Xuejun

    2010-11-01

    Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.

  4. Potential climate effect of mineral aerosols over West Africa: Part II—contribution of dust and land cover to future climate change

    Science.gov (United States)

    Ji, Zhenming; Wang, Guiling; Yu, Miao; Pal, Jeremy S.

    2018-04-01

    Mineral dust aerosols are an essential component of climate over West Africa, however, little work has been performed to investigate their contributions to potential climate change. A set of regional climate model experiments with and without mineral dust processes and land cover changes is performed to evaluate their climatic effects under the Representative Concentration Pathway 8.5 for two global climate models. Results suggest surface warming to be in the range of 4-8 °C by the end of the century (2081-2100) over West Africa with respect to the present day (1981-2000). The presence of mineral dusts dampens the warming by 0.1-1 °C in all seasons. Accounting for changes in land cover enhances the warming over the north of Sahel and dampens it to the south in spring and summer; however, the magnitudes are smaller than those resulting from dusts. Overall dust loadings are projected to increase, with the greatest increase occurring over the Sahara and Sahel in summer. Accounting for land cover changes tends to reduce dust loadings over the southern Sahel. Future precipitation is projected to decrease by 5-40 % in the western Sahara and Sahel and increase by 10-150 % over the eastern Sahel and Guinea Coast in JJA. A dipole pattern of future precipitation changes is attributed to dust effects, with decrease in the north by 5-20 % and increase by 5-20 % in the south. Future changes in land cover result in a noisy non-significant response with a tendency for slight wetting in MAM, JJA, and SON and drying in DJF.

  5. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmü ller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy L.; Barrie, Leonard; Lelieveld, Jos

    2017-01-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux

  6. Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    P. Gasch

    2017-11-01

    Full Text Available In September 2015 one of the severest and most unusual dust events on record occurred in the Eastern Mediterranean. Surprisingly, operational dust transport models were unable to forecast the event. This study details the reasons for this failure and presents simulations of the event at convection-permitting resolution using the modelling system ICON-ART. The results allow for an in-depth analysis of the influence of the synoptic situation, the complex interaction of multiple driving atmospheric systems and the mineral dust radiative effect on the dust event. A comparison of the results with observations reveals the quality of the simulation results with respect to structure and timing of the dust transport. The forecast of the dust event is improved decisively. The event is triggered by the unusually early occurrence of an active Red Sea trough situation with an easterly axis over Mesopotamia. The connected sustained organized mesoscale convection produces multiple cold-pool outflows responsible for intense dust emissions. Complexity is added by the interaction with an intense heat low, the inland-penetrating Eastern Mediterranean sea breeze and the widespread occurrence of supercritical flow conditions and subsequent hydraulic jumps in the vicinity of the Dead Sea Rift Valley. The newly implemented mineral dust radiation interaction leads to systematically more intense and faster propagating cold-pool outflows.

  7. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    Science.gov (United States)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  8. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans.

    Science.gov (United States)

    Stockdale, Anthony; Krom, Michael D; Mortimer, Robert J G; Benning, Liane G; Carslaw, Kenneth S; Herbert, Ross J; Shi, Zongbo; Myriokefalitakis, Stelios; Kanakidou, Maria; Nenes, Athanasios

    2016-12-20

    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behavior of P compounds in dust and dust precursor soils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H + ions present. For H + 10 -4 mol/g of dust, the amount of P (and calcium) released has a direct proportionality to the amount of H + consumed until all inorganic P minerals are exhausted and the final pH remains acidic. Once dissolved, P will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P (Ap-P), the major mineral phase in dust (79-96%), occurs whether calcium carbonate (calcite) is present or not, although the increase in dissolved P is greater if calcite is absent or if the particles are externally mixed. The system was modeled adequately as a simple mixture of Ap-P and calcite. P dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves more slowly and is subject to reprecipitation at cloud water pH. We show that acidification can increase bioavailable P deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable P in oceanic areas where primary productivity is limited by this nutrient (e.g., Mediterranean).

  9. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  10. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  11. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008

  12. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  13. Modeling the emission, transport and deposition of contaminated dust from a mine tailing site.

    Science.gov (United States)

    Stovern, Michael; Betterton, Eric A; Sáez, A Eduardo; Villar, Omar Ignacio Felix; Rine, Kyle P; Russell, Mackenzie R; King, Matt

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.

  14. Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Directory of Open Access Journals (Sweden)

    C. Lema^itre

    2010-09-01

    Full Text Available The radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP. We focus on two days (13 and 14 June 2006 of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1 was also observed locally in some limited part of the dust plumes. The uncertainty on the

  15. 3D Structure of Saharan Dust Transport Towards Europe as Seen by CALIPSO

    Directory of Open Access Journals (Sweden)

    Marinou Eleni

    2016-01-01

    Full Text Available We present a 3D multi-year monthly mean climatology of Saharan dust advection over Europe using an area-optimized pure dust CALIPSO product. The product has been developed by applying EARLINET-measured dust lidar ratios and depolarization-based dust discrimination methods and it is shown to have a very good agreement in terms of AOD when compared to AERONET over Europe/North Africa and MODIS over Mediterranean. The processing of such purely observational data reveals the certain seasonal patterns of dust transportation towards Europe and the Atlantic Ocean. The physical and optical properties of the dust layer are identified for several areas near the Saharan sources, over the Mediterranean and over continental Europe.

  16. Dust Composition in Climate Models: Current Status and Prospects

    Science.gov (United States)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.

    2015-12-01

    Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.

  17. Control of dust hazards in mines

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V

    1981-09-01

    This paper analyzes health hazards associated with air pollution by respirable coal dust which causes pneumoconioses. The following directions in pneumoconioses prevention are discussed: improved protective systems (e.g. respirators), mining schemes optimized from a health hazards point of view, correct determination of the maximum permissible level of respirable dusts, reducing working time. Safety regulations in the USSR on the critical amount of coal dust in the miner respiratory system are insufficient as the 20 g limit is too high and does not guarantee safety. Using regression analysis influence of the factors which cause pneumoconioses is analyzed. This influence is described by an equation which considers the following factors: number of shifts associated with contact of a miner with coal dusts, dust concentration in mine air, amount of air with coal dust being respirated, miner's age, years as miner, coal rank. It is stated that use of the proposed equation (derived by computer calculations) permits the safe working time to be correctly determined considering all factors which cause pneumoconioses.

  18. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  19. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2013-07-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust or dust/biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust/biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a 40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  20. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP.

    Science.gov (United States)

    Nan, Yang; Wang, Yuxuan

    2018-03-26

    During the springtime, mineral dust from the Taklimakan Desert (TD) is lifted up to high altitudes and transported long distances by the westerlies. The vertical distributions of Taklimakan dust are important for both long-range transport and climate effects. In this study, we use CALIOP Level 3 dust extinction to describe interannual variation of dust extinction in TD aggregated at each 1km interval (1-2km, 2-3km, 3-4km, 4-5km and 5-6km) above mean sea level during springtime from 2007 to 2016. 87% of dust extinction over TD is concentrated at 1-4km taking a major composition of dust aerosol optical depth (AOD) and only 8.1% dust AOD is at 4-6km. Interannual variation of seasonal and monthly dust extinction at 1-4km is almost as same as dust AOD (R>0.99) but different from that at 4-6km (R are around 0.42). Our analysis provides observational evidence from CALIOP that vertical dust extinction over TD has distinctively different variability below and above 4km altitude and this threshold divides dust transport in TD into two systems. Taklimakan dust aerosols are more related to dust transport at high altitudes (4-10km) than low altitudes (0-4km) over downwind regions. High dust extinction below 4km over TD is necessary but not sufficient conditions to ensure dust transport easterly, while high dust extinction levels at 4-6km over TD are both necessary and sufficient conditions; such contrast leads to the de-coupled interannual variability seen by CALIOP. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  2. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  3. A Combined Observational and Modeling Approach to Study Modern Dust Transport from the Patagonia Desert to East Antarctica

    Science.gov (United States)

    Gasso, S.; Stein, A.; Marino, F.; Castellano, E.; Udisti, R.; Ceratto, J.

    2010-01-01

    The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS ,POLDER, OMI,), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (approx.54deg S) and from the shores of the Colihue Huapi lake in Central Patagonia (approx.46deg S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6-7 and 9-10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant de- position over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and approx.800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the

  4. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085

  5. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model.

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo

    2014-09-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

  6. Radiogenic isotope evidence for transatlantic atmospheric dust transport

    Science.gov (United States)

    Kumar, Ashwini; Abouchami, Wafa; Garrison, Virginia H.; Galer, Stephen J. G.; Andreae, Meinrat O.

    2013-04-01

    Early studies by Prospero and colleagues [1] have shown that African dust reaches all across the Atlantic and into the Caribbean. It may contribute to fertilizing the Amazon rainforest [2,3,4], in addition to enhancing the ocean biological productivity via delivery of iron, a key nutrient element[5]. Radiogenic isotope ratios (Sr, Nd, Pb) are robust tracers of dust sources and can thus provide information on provenance and pathways of dust transport. Here we report Sr, Nd and Pb isotope data on atmospheric aerosols, collected in 2008 on quartz filters, from three different locations in Mali (12.6° N, 8.0° W; 555 m a.s.l.), Tobago (11.3° N, 60.5° W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7° N, 64.6° W; 27 m a.s.l.) to investigate the hypothesis of dust transport across the Atlantic. About 2 cm2 of filter were acid-leached in 0.5 N HBr for selective removal of the anthropogenic labile Pb component (leachate) and possibly the fine soluble particle fraction. The remainder of the filter was subsequently dissolved using a mixture of HF and HNO3 acids, and should be representative of the silicate fraction. Isotopic compositions were measured by TIMS on a ThermoFisher Triton at MPIC, with Pb isotope ratios determined using the triple-spike method. Significant Pb isotope differences between leachates and residues were observed. The variability in Pb isotopic composition among leachates may be attributed to variable and distinct anthropogenic local Pb sources from Africa and South America [6], however, residues are imprinted by filter blank contribution suggesting to avoid the quartz fiber filter for isotopic study of aerosols. The Nd and Sr isotope ratios of aerosol leachates show similar signatures at all three locations investigated. The nearly identical Nd and Sr isotopic compositions in the Mali, Tobago and Virgin islands leachates are comparable to those obtained on samples from the Bodélé depression, Northern Chad [7] and suggest a possible common

  7. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.

    2012-01-01

    is expanding our current understanding and outline the areas of advancement needed in the future. Presentation is made of current models for wind driven detachment/entrainment and the transport rates of sand and dust, including the effects of contact induced grain electrification. This ubiquitous phenomenon...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  8. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  9. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  10. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  11. Characterization of the Temporal-Spatial Variability of Trans-Atlantic Dust Transport Based on CALIPSO Lidar Measurements

    Science.gov (United States)

    Yu, Hongbin

    2015-01-01

    The trans-Atlantic dust transport has important implications for human and ecosystem health, the terrestrial and oceanic biogeochemical cycle, weather systems, and climate. A reliable assessment of these influences requires the characterization of dust distributions in three dimensions and over long time periods. We provide an observation-based multiyear estimate of trans-Atlantic dust transport by using a 7-year (2007 - 2013) lidar record from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in both cloud-free and above-cloud conditions. We estimate that on a basis of the 7-year average and integration over 10S - 30N, 182 Tg a-1 dust leaves the coast of North Africa at 15W, of which 132 Tg a-1 and 43 Tg a-1 reaches 35W and 75W, respectively. These flux estimates have an overall known uncertainty of (45 - 70). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8 - 48) Tg a-1 or 29 (8 - 50) kg ha-1 a-1. This imported dust could provide about 0.022 (0.006 - 0.037) Tg P of phosphorus per year, equivalent to 23 (7 - 39) g P ha-1 a-1 to fertilize the Amazon rainforest, which is comparable to the loss of phosphorus to rainfall. Significant seasonal variations are observed in both the magnitude of total dust transport and its meridional and vertical distributions. The observed large interannual variability of annual dust transport is highly anti-correlated with the prior-year Sahel Precipitation Index. Comparisons of CALIPSO measurements with surface-based observations and model simulations will also be discussed.

  12. Influence of tropical storms in the Northern Indian Ocean on dust entrainment and long-range transport.

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.

    to the winter and summer Shamal Winds, tropical cyclones are an important mechanism of dust entrainment and transport of dust in this region. Elevated dust levels were observed in the northern Arabian Sea during most tropical cyclone events. During the study...

  13. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  14. African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls

    Science.gov (United States)

    Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of

  15. Reducing uncertainty in dust monitoring to detect aeolian sediment transport responses to land cover change

    Science.gov (United States)

    Webb, N.; Chappell, A.; Van Zee, J.; Toledo, D.; Duniway, M.; Billings, B.; Tedela, N.

    2017-12-01

    Anthropogenic land use and land cover change (LULCC) influence global rates of wind erosion and dust emission, yet our understanding of the magnitude of the responses remains poor. Field measurements and monitoring provide essential data to resolve aeolian sediment transport patterns and assess the impacts of human land use and management intensity. Data collected in the field are also required for dust model calibration and testing, as models have become the primary tool for assessing LULCC-dust cycle interactions. However, there is considerable uncertainty in estimates of dust emission due to the spatial variability of sediment transport. Field sampling designs are currently rudimentary and considerable opportunities are available to reduce the uncertainty. Establishing the minimum detectable change is critical for measuring spatial and temporal patterns of sediment transport, detecting potential impacts of LULCC and land management, and for quantifying the uncertainty of dust model estimates. Here, we evaluate the effectiveness of common sampling designs (e.g., simple random sampling, systematic sampling) used to measure and monitor aeolian sediment transport rates. Using data from the US National Wind Erosion Research Network across diverse rangeland and cropland cover types, we demonstrate how only large changes in sediment mass flux (of the order 200% to 800%) can be detected when small sample sizes are used, crude sampling designs are implemented, or when the spatial variation is large. We then show how statistical rigour and the straightforward application of a sampling design can reduce the uncertainty and detect change in sediment transport over time and between land use and land cover types.

  16. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2014-01-01

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and the Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model in order to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases (from the CalWater 2011 field campaign) with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02). In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by a few percent due to increased snow formation when dust is present, but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology, including cloud dynamics and the strength of the Sierra Barrier Jet. This study further underscores the importance of the interactions between local pollution, dust, and environmental

  17. Application of aerosol speciation data as an in situ dust proxy for validation of the Dust Regional Atmospheric Model (DREAM)

    Science.gov (United States)

    Shaw, Patrick

    The Dust REgional Atmospheric Model (DREAM) predicts concentrations of mineral dust aerosols in time and space, but validation is challenging with current in situ particulate matter (PM) concentration measurements. Measured levels of ambient PM often contain anthropogenic components as well as windblown mineral dust. In this study, two approaches to model validation were performed with data from preexisting air quality monitoring networks: using hourly concentrations of total PM with aerodynamic diameter less than 2.5 μm (PM 2.5); and using a daily averaged speciation-derived soil component. Validation analyses were performed for point locations within the cities of El Paso (TX), Austin (TX), Phoenix (AZ), Salt Lake City (UT) and Bakersfield (CA) for most of 2006. Hourly modeled PM 2.5 did not validate at all with hourly observations among the sites (combined R hourly values). Aerosol chemical speciation data distinguished between mineral (soil) dust from anthropogenic ambient PM. As expected, statistically significant improvements in correlation among all stations (combined R = 0.16, N = 343 daily values) were found when the soil component alone was used to validate DREAM. The validation biases that result from anthropogenic aerosols were also reduced using the soil component. This is seen in the reduction of the root mean square error between hourly in situ versus hourly modeled (RMSE hourly = 18.6 μg m -3) and 24-h in situ speciation values versus daily averaged observed (RMSE soil = 12.0 μg m -3). However, the lack of a total reduction in RMSE indicates there is still room for improvement in the model. While the soil component is the theoretical proxy of choice for a dust transport model, the current sparse and infrequent sampling is not ideal for routine hourly air quality forecast validation.

  18. On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

    Directory of Open Access Journals (Sweden)

    S. Otto

    2011-05-01

    Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.

  19. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema.

    Science.gov (United States)

    Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T

    2017-07-01

    Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (pcoal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  20. Assessment of respirable dust exposures in an opencast coal mine.

    Science.gov (United States)

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  1. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    Science.gov (United States)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  2. Mineral extraction and transport device

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, K.

    1991-08-21

    A device for the extraction and transport of stratified mineral deposits notably coal, having a transport run with lengths of transport troughing, an extraction run with lengths of extraction troughing, and a power-driven traction chain guided round return devices and carrying extraction bodies together with optional transport units. The transport and extraction troughing have guide members on which the extraction bodies and the transport units are guided with the aid of guide formations. Each extraction body consists of a headpiece having two laterally protruding guide formations, and an endpiece having two laterally protruding guide formations and a centrepiece. The headpiece and the endpiece are swivellably linked to the centrepiece through an axis running substantially at right angles to the traction axis of the traction chain and substantially at right angles to the floor of the lengths of transport troughing in the transport run. The centrepiece has an additional articulation about an axis substantially orthogonal to the swivel axis of the headpiece and the endpiece. Guide members are additionally provided in the vicinity of the return devices whereby the guide formations on each headpiece and endpiece receive continued guidance.

  3. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    Directory of Open Access Journals (Sweden)

    C. Müller-Tautges

    2016-01-01

    Full Text Available Historic records of α-dicarbonyls (glyoxal, methylglyoxal, carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid, and ions (oxalate, formate, calcium were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12 in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs. The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  4. Patterns of North African dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2009-10-01

    Full Text Available One of the most important factors that determine the transported dust effect on the atmosphere is its vertical distribution. In this study the vertical structure of North African dust and stratiform low clouds is analyzed over the Atlantic Ocean for the 2006–2007 boreal winter (December–February and boreal summer of 2006 (June–August. By using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO backscatter measurements over the dust routes, we describe the differences in dust transport between the seasons. We show a bi-modal distribution of the average dust plumes height in both seasons (it is less clear in the winter. The higher plume top height is 5.1±0.4 km, near the African coast line in the summer and 3.7±0.4 km in the winter. The lower plume merges with the marine boundary layer, in both seasons. Our study suggests that a significant part of the dust is transported near and within the marine boundary layer and interacts with low stratiform clouds.

  5. The heterogeneous interaction of trace gases on mineral dust and soot: kinetics and mechanism

    OpenAIRE

    Karagulian, Federico; Rossi, Michel

    2007-01-01

    The present thesis work deals with the investigation of the heterogeneous reactions involving nitrate radical (NO3), dinitrogen pentoxide (N2O5) and ozone (O3) on surrogates of atmospheric mineral dust particles characteristic of the troposphere. An additional investigation of heterogeneous reaction of NO3 on flame soot was carried out. The goal is to characterize the kinetics (the uptake coefficient γ) as well as the reaction products. The obtained results are intended to provide reliable da...

  6. Long-term effects of aluminium dust inhalation.

    Science.gov (United States)

    Peters, Susan; Reid, Alison; Fritschi, Lin; de Klerk, Nicholas; Musk, A W Bill

    2013-12-01

    During the 1950s and 1960s, aluminium dust inhalation was used as a potential prophylaxis against silicosis in underground miners, including in Australia. We investigated the association between aluminium dust inhalation and cardiovascular, cerebrovascular and Alzheimer's diseases in a cohort of Australian male underground gold miners. We additionally looked at pneumoconiosis mortality to estimate the effect of the aluminium therapy. SMRs and 95% CI were calculated to compare mortality of the cohort members with that of the Western Australian male population (1961-2009). Internal comparisons on duration of aluminium dust inhalation were examined using Cox regression. Aluminium dust inhalation was reported for 647 out of 1894 underground gold miners. During 42 780 person-years of follow-up, 1577 deaths were observed. An indication of increased mortality of Alzheimer's disease among miners ever exposed to aluminium dust was found (SMR=1.38), although it was not statistically significant (95% CI 0.69 to 2.75). Rates for cardiovascular and cerebrovascular death were above population levels, but were similar for subjects with or without a history of aluminium dust inhalation. HRs suggested an increasing risk of cardiovascular disease with duration of aluminium dust inhalation (HR=1.02, 95% CI 1.00 to 1.04, per year of exposure). No difference in the association between duration of work underground and pneumoconiosis was observed between the groups with or without aluminium dust exposure. No protective effect against silicosis was observed from aluminium dust inhalation. Conversely, exposure to aluminium dust may possibly increase the risk of cardiovascular disease and dementia of the Alzheimer's type.

  7. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema

    Directory of Open Access Journals (Sweden)

    Tomislav M Jelic

    2017-07-01

    Full Text Available Background: Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. Objective: To identify the precursor of dust-related diffuse fibrosis and emphysema. Methods: Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Results: Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001. Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. Conclusion: The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  8. 30 CFR 56.9315 - Dust control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dust control. 56.9315 Section 56.9315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... control. Dust shall be controlled at muck piles, material transfer points, crushers, and on haulage roads...

  9. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian

    2014-06-02

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  10. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian; Wei, Jiangfeng; Yang, Zong-Liang

    2014-01-01

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  11. The influence of mineral dust particles on the energy output of photovoltaic cells

    Science.gov (United States)

    Roesch, C.; Eltahir, E. A. B.; Al-awwad, Z.; Alqatari, S.; Cziczo, D. J.; Roesch, M.

    2016-12-01

    The city of Al Khafji in Saudi Arabia plans to provide a regular supply of desalinated water from the Persian Gulf while simultaneously cutting back on the usage of fossil fuels. The power for the high energy-consuming reverse osmosis (RO) process will be derived from photovoltaic (PV) cells as a cleaner and resource-conserving means of energy production. Numerous sun hours (yearly 3000) makes the Persian Gulf region's geographical location appropriate for applying PV techniques at this scale. A major concern for PV power generation is mineral dust from desert regions accumulating on surfaces and thereby reducing the energy output. This study aims to show the impact of dust particles on the PV energy reduction by examining dust samples from various Persian Gulf regions. Bulk samples were collected at the surface. The experimental setup involved a sealed container with a solar panel unit (SPU), including an adjustable mounting plate, solar cells (amorphous and monocrystalline), and a pyranometer (SMP3, Kipp & Zonen Inc.). A Tungsten Halogen lamp was used as the light source. Dust particles were aerosolized with a shaker (Multi-Wrist shaker, Lab line). Different techniques were applied to characterize each sample: the particle size distributions were measured using an Optical Particle Sizer (OPS, TSI Inc.), the chemical composition was analyzed using the Particle Analysis by Mass Spectrometry (PALMS) instrument, and Transmission Electron Microscope Energy-Dispersive X-ray spectroscopy (TEM-EDX) was used to define morphology, size and structure. Preliminary results show that the energy output is affected by aerosol morphology (monodisperse, polydisperse), composition and solar cell type.

  12. Transpacific Transport of Dust to North American High-Elevation Sites: Integrated Dataset and Model Outputs

    Science.gov (United States)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.

    2017-12-01

    Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.

  13. Preliminary assessment for dust contamination of ITER In-Vessel Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Ueno, Kenichi; Maruyama, Takahito; Murakami, Shin; Takeda, Nobukazu; Kakudate, Satoshi [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Nakahira, Masataka; Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    Highlights: •To assess the exposure to the maintenance workers, we calculated the effective dose rate. •To reduce the effective dose rate, the IVT was decontaminated and underwent a design change. •The effective dose rate at each maintenance point was also calculated. -- Abstract: After plasma operations of ITER, radioactive dust will have accumulated in the vacuum vessel (VV). The In-Vessel Transporter (IVT) will be introduced into the VV to remove the shield blanket modules for maintenance or replacement and later reinstall them. The IVT itself also needs to undergo regular maintenance in the Hot Cell Facility (HCF). It is assumed that maintenance workers will be exposed to radioactive dust that has adhered to the surfaces of the IVT. In this study, the areas of the IVT that may be contaminated by dust are evaluated to assess the level of exposure to workers during maintenance work in the HCF. Decontamination processes for the IVT, such as a combination of vacuuming and brushing, were investigated and the dose rate after these processes was evaluated. Even though dust was removed from surfaces where decontamination was possible, the dose rate was very high at some assessment points. To decrease the dose rate in accordance with ALARA policy, a decontamination plan and a maintenance plan, which includes the removal of dust, a radiation shield system, and a reduction in working time are proposed.

  14. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    Science.gov (United States)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Guo, Xiao; Xia, Yao; Zhang, Ting; Lu, Hui; Cheng, Yan

    2017-12-01

    Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E) and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E) when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4-5 ng µg-1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the production of nitrate and sulfate on dust

  15. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    Directory of Open Access Journals (Sweden)

    F. Wu

    2017-12-01

    Full Text Available Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4–5 ng µg−1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the

  16. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season

    International Nuclear Information System (INIS)

    Prasad, Anup K.; El-Askary, Hesham; Kafatos, Menas

    2010-01-01

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. - New evidence of desert dust transport from Western Sahara to Nile Delta during black cloud season and its significance for regional aerosols, dust models, and potential impact on the regional climate.

  17. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Anup K., E-mail: aprasad@chapman.ed [School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Center of Excellence in Earth Observing, Chapman University, Orange, CA 92866 (United States); El-Askary, Hesham [School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Center of Excellence in Earth Observing, Chapman University, Orange, CA 92866 (United States); Department of Environmental Sciences, Faculty of Science, Alexandria University, Moharem Bek, Alexandria 21522 (Egypt); National Authority for Remote Sensing and Space Science (NARSS), Cairo (Egypt); Kafatos, Menas [School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Center of Excellence in Earth Observing, Chapman University, Orange, CA 92866 (United States)

    2010-11-15

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. - New evidence of desert dust transport from Western Sahara to Nile Delta during black cloud season and its significance for regional aerosols, dust models, and potential impact on the regional climate.

  18. Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA)

    Science.gov (United States)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.

    2016-06-01

    Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.

  19. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  20. Modeled Downward Transport of a Passive Tracer over Western North America during an Asian Dust Event in April 1998.

    Science.gov (United States)

    Hacker, Joshua P.; McKendry, Ian G.; Stull, Roland B.

    2001-09-01

    An intense Gobi Desert dust storm in April 1998 loaded the midtroposphere with dust that was transported across the Pacific to western North America. The Mesoscale Compressible Community (MC2) model was used to investigate mechanisms causing downward transport of the midtropospheric dust and to explain the high concentrations of particulate matter of less than 10-m diameter measured in the coastal urban areas of Washington and southern British Columbia. The MC2 was initialized with a thin, horizontally homogeneous layer of passive tracer centered at 650 hPa for a simulation from 0000 UTC 26 April to 0000 UTC 30 April 1998. Model results were in qualitative agreement with observed spatial and temporal patterns of particulate matter, indicating that it captured the important meteorological processes responsible for the horizontal and vertical transport over the last few days of the dust event. A second simulation was performed without topography to isolate the effects of topography on downward transport.Results show that the dust was advected well east of the North American coast in southwesterly midtropospheric flow, with negligible dust concentration reaching the surface initially. Vertically propagating mountain waves formed during this stage, and differences between downward and upward velocities in these waves could account for a rapid descent of dust to terrain height, where the dust was entrained into the turbulent planetary boundary layer. A deepening outflow (easterly) layer near the surface transported the tracer westward and created a zonal-shear layer that further controlled the tracer advection. Later, the shear layer lifted, leading to a downward hydraulic acceleration along the western slopes, as waves generated in the easterly flow amplified below the shear layer that was just above mountain-crest height. Examination of 10 yr of National Centers for Environmental Prediction-National Center for Atmospheric Research reanalyses suggests that such events

  1. Backscattering Moessbauer spectroscopy of Martian dust

    International Nuclear Information System (INIS)

    Bertelsen, P.; Madsen, M. B.; Binau, C. S.; Goetz, W.; Gunnlaugsson, H. P.; Hviid, S. F.; Kinch, K. M.; Klingelhoefer, G.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Squyres, S. W.

    2005-01-01

    We report on the determination of the mineralogy of the atmospherically suspended Martian dust particles using backscattering 57 Fe Moessbauer spectroscopy on dust accumulated onto the magnets onboard the Mars Exploration Rovers. The spectra can be interpreted in terms of minerals of igneous origin, and shows only limited, if any, amounts of secondary minerals that may have formed in the presence of liquid water. These findings suggest that the dust has formed in a dry environment over long time in the history of the planet.

  2. Global changes in mineral transporters in tetraploid switchgrasses (Panicum virgatum L.

    Directory of Open Access Journals (Sweden)

    Nathan A. Palmer

    2014-01-01

    Full Text Available Switchgrass (Panicum virgatum L is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.

  3. Mineral magnetism of atmospheric dust over southwest coast of India: Impact of anthropogenic activities and implications to public health

    Science.gov (United States)

    Warrier, Anish Kumar; Shankar, R.; Manjunatha, B. R.; Harshavardhana, B. G.

    2014-03-01

    We have used rock magnetic techniques in this study to assess atmospheric pollution at five stations in and around Mangalore city on the southwestern coast of India. Samples of dust were collected from two suburban areas (Thokkottu and Pumpwell located respectively ~ 10 km and 3 km from the city center), the city center itself (Milagres) and industrial/port areas (Panambur and Mangalore Refinery and Petrochemicals Limited (MRPL)). Low-frequency magnetic susceptibility (χlf), frequency-dependent susceptibility (χfd), susceptibility of anhysteretic remanent magnetization (χARM) and isothermal remanent magnetization (IRM 20 to 1000 mT) were determined on 23 dust samples and inter-parametric ratios calculated. Results show that samples from suburban areas (particularly Thokkottu) are characterized by low χlf (Company Limited (KIOCL) at Panambur and its storage and export through the nearby New Mangalore Port. However, the dust sample from MRPL has magnetically "soft" minerals like magnetite. This magnetic mineral may have originated from petroleum refining processes at MRPL. Particulate pollution from industrial activities and motor vehicle exhaust is a threat to human health and is known to cause cardiovascular and respiratory ailments. Therefore, the pollution levels brought out by this study warrant a comprehensive epidemiological study in the area of study.

  4. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    Science.gov (United States)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  5. Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia

    Science.gov (United States)

    DONG, X.; Fu, J. S.; Huang, K.

    2014-12-01

    Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in

  6. Emphysema and pulmonary impairment in coal miners: Quantitative relationship with dust exposure and cigarette smoking

    Science.gov (United States)

    Kuempel, E. D.; Vallyathan, V.; Green, F. H. Y.

    2009-02-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV1, as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV1 <80% at the cohort mean cumulative coal dust exposure (87 mg/m3 x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79).

  7. Emphysema and pulmonary impairment in coal miners: quantitative relationship with dust exposure and cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    E.D. Kuempel; V. Vallyathan; F.H.Y. Green [National Institute for Occupational Safety and Health, Cincinnati, OH (United States)

    2009-07-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV{sub 1}, as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV1 <80% at the cohort mean cumulative coal dust exposure (87 mg/m{sup 3} x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79). 20 refs., 2 figs., 2 tabs.

  8. Emphysema and pulmonary impairment in coal miners: Quantitative relationship with dust exposure and cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, E D [National Institute for Occupational Safety and Health, Education and Information Division, Risk Evaluation Branch, Cincinnati, Ohio (United States); Vallyathan, V [National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Pathology and Physiology Research Branch, Morgantown, West Virginia (United States); Green, F H Y, E-mail: ekuempel@cdc.go [Department of Pathology, Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada)

    2009-02-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV{sub 1}, as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV{sub 1} <80% at the cohort mean cumulative coal dust exposure (87 mg/m{sup 3} x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79).

  9. An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models

    Directory of Open Access Journals (Sweden)

    A. Shimizu

    2009-11-01

    Full Text Available An intense dust storm occurred during 19–20 May 2007 over the Taklimakan Desert in northwestern China. Over the following days, the space-borne lidar CALIOP tracked an optically thin, highly elevated, horizontally extensive dust veil that was transported intercontinentally over eastern Asia, the Pacific Ocean, North America, and the Atlantic Ocean. A global aerosol transport model (SPRINTARS simulated the dust veil quite well and provided a three-dimensional view of the intercontinental dust transport. The SPRINTARS simulation revealed that the dust veil traveled at 4–10 km altitudes with a thickness of 1–4 km along the isentropic surface between 310 and 340 K. The transport speed was about 1500 km/day. The estimated dust amount exported to the Pacific was 30.8 Gg, of which 65% was deposited in the Pacific and 18% was transported to the North Atlantic. These results imply that dust veils can fertilize open oceans, add to background dust, and affect the radiative budget at high altitudes through scattering and absorption.

    The injection mechanism that lifts dust particles into the free atmosphere is important for understanding the formation of the dust veil and subsequent long-range transport. We used a regional dust transport model (RC4 to analyze the dust emission and injection over the source region. The RC4 analysis revealed that strong northeasterly surface winds associated with low pressures invaded the Taklimakan Desert through the eastern corridor. These winds then formed strong upslope wind along the high, steep mountainsides of the Tibetan Plateau and blew large amounts of dust into the air. The updraft lifted the dust particles farther into the upper troposphere (about 9 km above mean sea level, MSL, where westerlies are generally present. The unusual terrain surrounding the Taklimakan Desert played a key role in the injection of dust to the upper troposphere to form the dust veil.

  10. Minerals Policy Statement 2: controlling and mitigating the environmental effects of minerals extraction in England

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    Minerals Policy Statement 2 (MPS2) sets out the policies and considerations that the UK Government expects Mineral Planning Authorities to follow when preparing development plans and in considering application for minerals development. This supercedes Minerals Policy Guidance 11 (MPG 11). Annex 1: Dust to MPS2 sets out the policy considerations in relation to dust from mineral workings and associated operations, and how they should be dealt with in local development plans and in considering individual applications. Annex 2: Noise to MPS2 addresses policy in relation to noise from mineral workings. These have been abstracted separately for the Coal Abstracts database. 58 refs., 2 apps.

  11. Sr-Nd-Hf isotopic fingerprinting of transatlantic dust derived from North Africa

    Science.gov (United States)

    Zhao, Wancang; Balsam, William; Williams, Earle; Long, Xiaoyong; Ji, Junfeng

    2018-03-01

    Long-range transport of African dust plays an important role in understanding dust-climate relationships including dust source areas, dust pathways and associated atmospheric and/or oceanic processes. Clay-sized Sr-Nd-Hf isotopic compositions can be used as geochemical fingerprints to constrain dust provenance and the pathways of long-range transported mineral dust. We investigated the clay-sized Sr-Nd-Hf isotopic composition of surface samples along four transects bordering the Sahara Desert. The transects are from Mali, Niger/Benin/Togo, Egypt and Morocco. Our results show that the Mali transect on the West African Craton (WAC) produces lower εNd (εNd-mean = -16.38) and εHf (εHf-mean = -9.59) values than the other three transects. The Egyptian transect exhibits the lowest 87Sr/86Sr ratios (87Sr/86Srmean = 0.709842), the highest εHf (εHf-mean = -0.34) and εNd values of the four transects. Comparison of the clay-sized Sr-Nd-Hf isotopic values from our North African samples to transatlantic African dust collected in Barbados demonstrates that the dust's provenance is primarily the western Sahel and Sahara as well as the central Sahel. Summer emission dust is derived mainly from the western Sahel and Sahara regions. The source of transatlantic dust in spring and autumn is more varied than in the summer and includes dust not only from western areas, but also south central areas. Comparison of the Sr-Nd-Hf isotopic fingerprints between the source and sink of transatlantic dust also suggests that a northwestward shift in dust source occurs from the winter, through the spring and into the summer. The isotopic data we develop here provide another tool for discriminating changes in dust archives resulting from paleoenvironmental evolution of source regions.

  12. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  13. Patterns of Saharan dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    OpenAIRE

    Y. Ben-Ami; I. Koren; O. Altaratz

    2009-01-01

    One of the most important factors that determines the transported dust effect is its vertical distribution in the atmosphere. Until the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the vertical distribution was studied mostly by in-situ measurements and models. CALIPSO, as a part of the A-Train constellation has opened an opportunity to study the transported dust vertical structure in a large number of events (sufficient statistics).
    <...

  14. Transport of dust and anthropogenic aerosols across Alexandria, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Askary, H. [Chapman Univ., Orange, CA (United States). Dept. of Physics Computational Science and Engineering; Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing; Alexandria Univ. (Egypt). Dept. of Environmental Sciences; National Authority for Remote Sensing and Space Science (NARSS), Cairo (Egypt); Farouk, R. [Alexandria Univ. (Egypt). Dept. of Environmental Sciences; Ichoku, C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Climate and Radiation Branch; Kafatos, M. [Chapman Univ., Orange, CA (United States). Dept. of Physics Computational Science and Engineering; Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing

    2009-07-01

    The flow of pollutants from Europe and desert dust to Europe from the Sahara desert both affects the air quality of the coastal regions of Egypt. As such, measurements from both ground and satellite observations assume great importance to ascertain the conditions and flow affecting the Nile Delta and the large city of Alexandria. We note that special weather conditions prevailing in the Mediterranean Sea result in a westerly wind flow pattern during spring and from North to South during the summer. Such flow patterns transport dust-loaded and polluted air masses from the Sahara desert and Europe, respectively, through Alexandria, and the Nile Delta in Egypt. We have carried out measurements acquired with a ground- based portable sun photometer (Microtops II) and the satellite-borne TERRA/Moderate Resolution Imaging Spectroradiometer (MODIS) sensor during the periods of October 1999-August 2001 and July 2002-September 2003. These measurements show a seasonal variability in aerosol optical depth (AOD) following these flow patterns. Maximum aerosol loadings accompanied by total precipitable water vapor (W) enhancements are observed during the spring and summer seasons. Pronounced changes have been observed in the Aangstroem exponent ({alpha}) derived from ground-based measurements over Alexandria (31.14 N, 29.59 E) during both dust and pollution periods. We have followed up the observations with a 3-day back-trajectories model to trace the probable sources and pathways of the air masses causing the observed aerosol loadings. We have also used other NASA model outputs to estimate the sea salt, dust, sulfates and black carbon AOD spatial distributions during different seasons. Our results reveal the probable source regions of these aerosol types, showing agreement with the trajectory and Aangstroem exponent analysis results. It is confirmed that Alexandria is subjected to different atmospheric conditions involving dust, pollution, mixed aerosols and clean sky. (orig.)

  15. Isotopic Tracers to Identify Far-traveled Pollutant and Mineral Aerosols in Northern California (Invited)

    Science.gov (United States)

    Depaolo, D. J.; Christensen, J. N.; Ewing, S. A.; Cliff, S. S.; Brown, S. T.; Vancuren, R. A.

    2009-12-01

    Mineral dust and pollutant aerosols can be lofted into the atmosphere and transported 1000s of kilometers, facilitating intercontinental communication of soil components, biological material (bacteria, viruses) and anthropogenic particulates. Far-traveled aerosols also affect air quality, atmospheric radiation balance and cloud formation. Understanding the sources of aerosols, and how they evolve with climate change, land use changes, and emerging industrial activity, is important for assessing air quality and climate processes in California. A particular concern for California is trans-Pacific transport of mineral aerosols from Asian deserts, and the possibility that industrial and other pollutants accompany them. The geographic sources of mineral and pollutant aerosols can in many cases be determined from their isotopic composition, using for example some combination of elements such as Pb, Sr, Nd, Hf, Zn, N, S, C, O, U, B, and Li. With systematic sample collection and analysis, isotopes can provide quantification of the changing proportions of local versus distant sources. Where the far-traveled components can be identified, comparisons can be made to meteorological data to better understand the factors controlling the efficiency of long-range transport. With heavy dust storms, such as those that arise in the Sahel/Sahara or the deserts of Asia, aerosols can be tracked in satellite imagery and other approaches may not be necessary. During more common periods of lesser aerosol loading, and where greater transport distances are involved, ground-based methods such as chemical analysis of a time-series of collected PM2.5 are needed to evaluate sources. Pollutants may or may not accompany mineral dust, and may be added along the transport path. Although chemical analysis is useful, relatively fast and inexpensive, more information, and in some cases more definitive conclusions, can be obtained by adding isotopic measurements. By combining multiple isotopic systems (e

  16. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    Science.gov (United States)

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  17. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  18. High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula

    KAUST Repository

    Kalenderski, Stoitchko Dimitrov

    2016-05-23

    Severe dust outbreaks and high dust loading over Eastern Africa and the Red Sea are frequently detected in the summer season. Observations suggest that small-scale dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand these processes, we present here the first high resolution modeling study of a dust outbreak in June 2012 developed over East Africa, the Red Sea, and the Arabian Peninsula. Using the Weather Research and Forecasting model coupled with Chemistry component (WRF-Chem), we identified several dust generating dynamical processes that range from convective to synoptic scales, including synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea, most of the dust transport occurs above 2 km height, whereas across the central and southern parts of the sea, dust is mostly transported below 2 km height. Dust is the dominant contributor (87%) to the aerosol optical depth, producing a domain average cooling effect of -12.1 W m-2 at the surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. Both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. Model results compare well with available ground-based and satellite observations, but generally underestimate the observed maximum values of aerosol optical depth. The satellite-retrieved mean optical depth at some locations are underestimated by a factor of two. A sensitive experiment suggests that these large local differences may result from poor characterization of dust emissions in some areas of the modeled domain. In this case study we successfully simulate the major fine-scale dust generating dynamical processes, explicitly resolving convection and haboob

  19. Predicting the mineral composition of dust aerosols: Insights from elemental composition measured at the Izaña Observatory

    Science.gov (United States)

    Pérez García-Pando, Carlos; Miller, Ron L.; Perlwitz, Jan P.; Rodríguez, Sergio; Prospero, Joseph M.

    2016-10-01

    Regional variations of dust mineral composition are fundamental to climate impacts but generally neglected in climate models. A challenge for models is that atlases of soil composition are derived from measurements following wet sieving, which destroys the aggregates potentially emitted from the soil. Aggregates are crucial to simulating the observed size distribution of emitted soil particles. We use an extension of brittle fragmentation theory in a global dust model to account for these aggregates. Our method reproduces the size-resolved dust concentration along with the approximately size-invariant fractional abundance of elements like Fe and Al in the decade-long aerosol record from the Izaña Observatory, off the coast of West Africa. By distinguishing between Fe in structural and free forms, we can attribute improved model behavior to aggregation of Fe and Al-rich clay particles. We also demonstrate the importance of size-resolved measurements along with elemental composition analysis to constrain models.

  20. Airborne transport of Saharan dust to the Mediterranean and to the Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Pericleous, K.A.; Plainiotis, S. [Greenwich Univ., London (United Kingdom); Fisher, B.E.A. [Environment Agency, Reading (United Kingdom)

    2006-07-01

    A Lagrangian particle dispersion (LPD) model was used to predict the transport of sand particles and particulate matter (PM{sub 10}) exceedances attributed to Saharan storms in the Atlantic ocean near the United Kingdom, and in the Mediterranean Sea near Crete. Forward and reverse receptor modes were used to confirm the discovery of conflicting emission sources. Outputs were compared with satellite images and receptor data from multiple ground-based sites. Two models were used, notably the hybrid single particle Lagrangian integrated trajectory (HYSPLIT) model, and FLEXPART, an open source model. The emission model used to simulate dust emissions caused in a Sahara dust storm was based on the concept that threshold friction velocity was dependent on surface roughness. Case studies were presented for various Saharan dust episodes in the studied regions. Results of the study showed that the model accurately characterized sand entrainment in the atmosphere due to wind shear. It was concluded that coupled with advanced weather forecasting, the model can be used to predict the onset of desert dust storms well before their effects are felt. 15 refs., 6 figs.

  1. Creation of the Project of a Logistic System for Transportation of Minerals - Case Study

    Directory of Open Access Journals (Sweden)

    Daniela Marasova

    2017-05-01

    Full Text Available One of the possibilities how to maintain the competitiveness of mining and processing undertakings on the minerals market is to increase the efficiency of the minerals recovery and processing process with the focus on the operating costs reduction. Intra-plant transportation plays an important role in this process. Optimization of minerals transportation and implementation of the logistic approach can result in significant saving of operating costs pertaining to the recovered number of valuable mineral. The article presents a logistic approach to the belt conveyor system designing, proposes possible modifications of selected parameters of belt conveyors in a particular processing plant, and monitors their impact on the improvement of operating, but mainly economic parameters of transportation of clay and limestone, while maintaining the required transportation capacity.

  2. A Wealth of Dust Grains in Quasar Winds

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from. The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above. The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer. Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  3. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  4. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    Directory of Open Access Journals (Sweden)

    Eva Gulikova

    2008-06-01

    Full Text Available Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust

  5. Original monitoring of desert dust in African air masses transported over the Mediterranean Sea by quasi-Lagrangian drifting balloons and sounding balloons during the summer 2013 ChArMEx field campaign

    Science.gov (United States)

    Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.

    2017-12-01

    This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the

  6. [Pneumoconiosis in bauxite miners].

    Science.gov (United States)

    Molinini, R; Pesola, M; Digennaro, M A; Carino, M; Nuzzaco, A; Coviello, F

    1985-01-01

    The authors examined a group of 40 miners who were being working at an Apulian bauxite mine, presently inactive. Radiographic findings of pulmonary micronodulation without significant reduction of lung functions were showed in 15 miners. Mineralogical analysis of mine dust samples excluded any presence of more than 1% free silica. As a result of this study hypotheses have been formulated about pathogenesis of this moderated and non-invasive pneumoconiosis, showed in long exposed subjects to low silica content dusts.

  7. Modeling the Transport and Radiative Forcing of Taklimakan Dust over the Tibetan Plateau: A case study in the summer of 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Huang, J.; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Yang, Ben

    2013-01-30

    The Weather Research and Forecasting model with chemistry (WRF-Chem) is used to investigate an intense dust storm event during 26 to 30 July 2006 that originated over the Taklimakan Desert (TD) and transported to the northern slope of Tibetan Plateau (TP). The dust storm is initiated by the approach of a strong cold frontal system over the TD. In summer, the meridional transport of TD dust to the TP is favored by the thermal effect of the TP and the weakening of the East Asian westerly winds. During this dust storm, the transport of TD dust over the TP is further enhanced by the passage of the cold front. As a result, TD dust breaks through the planetary boundary layer and extends to the upper troposphere over the northern TP. TD dust flux arrived at the TP with a value of 6.6 Gg/day in this 5 day event but decays quickly during the southward migration over the TP due to dry deposition. The simulations show that TD dust cools the atmosphere near the surface and heats the atmosphere above with a maximum heating rate of 0.11 K day-1 at ~7 km over the TP. The event-averaged net radiative forcings of TD dust over the TP are -3.97, 1.61, and -5.58 Wm-2 at the top of the atmosphere (TOA), in the atmosphere, and at the surface, respectively. The promising performance of WRF-Chem in simulating dust and its radiative forcing provides confidence for use in further investigation of climatic impact of TD dust over the TP.

  8. Mechanisms and Effects of Summertime Transport of African Dust Through the Tokar Mountain Gap to the Red Sea and Arabian Peninsula

    Science.gov (United States)

    Kalenderski, S.; Stenchikov, G. L.

    2015-12-01

    Very high dust loading over the Red Sea region in summer strongly affects the nutrition balance and thermal and dynamic regimes of the sea. The observations suggest that small-scale local dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand and quantify these processes we present here the first high resolution modeling study of the dust outbreak phenomena in June 2012 over East Africa, the Red Sea, and the Arabian Peninsula using the WRF-Chem model. We identified several dust generating dynamical processes that range from convective to synoptic scales, including: synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea most of the dust transport occurs beyond 2 km above ground level and is strengthened by a pressure gradient formed by low pressure over the eastern Mediterranean and high pressure over the Arabian Peninsula. Across the central and southern parts of the Red Sea dust is mostly transported below 2 km height. During the study period dust is a dominant contributor (87%) to aerosol optical depth (AOD), producing a domain average cooling effect of -12.1 W m-2 at surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. WRF-Chem simulations demonstrate that both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. During the dust outbreak 49.2 Tg of dust deposits within the calculation domain, which is approximately 90% of the total dust emission of 54.5 Tg. Model results compare well with available ground-based and satellite observations but generally underestimate the observed AOD maximum values.

  9. Electrostatic Transport and Manipulation of Lunar Soil and Dust

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki

    2008-01-01

    Transport and manipulation technologies of lunar soil and dust are under development utilizing the electrostatic force. Transport of particles is realized by an electrostatic conveyer consisting of parallel electrodes. Four-phase traveling electrostatic wave was applied to the electrodes to transport particles upon the conveyer and it was demonstrated that particles were efficiently transported under conditions of low frequency, high voltage, and the application of rectangular wave. Not only linear but also curved and closed transport was demonstrated. Numerical investigation was carried out with a three-dimensional hard-sphere model of the Distinct Element Method to clarify the mechanism of the transport and to predict performances in the lunar environment. This technology is expected to be utilized not only for the transport of bulk soil but also for the cleaning of a solar panel and an optical lens. Another technology is an electrostatic manipulation system to manipulate single particle. A manipulator consisted of two parallel pin electrodes. When voltage was applied between the electrodes, electrophoresis force generated in non-uniform electrostatic field was applied to the particle near the tip of the electrode. The particle was captured by the application of the voltage and released from the manipulator by turning off the voltage. It was possible to manipulate not only insulative but also conductive particles. Three-dimensional electrostatic field calculation was conducted to calculate the electrophoresis force and the Coulomb force

  10. Aeolian transport of biota with dust: A wind tunnel experiment

    Science.gov (United States)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  11. Colorado air quality impacted by long-range-transported aerosol: a set of case studies during the 2015 Pacific Northwest fires

    Directory of Open Access Journals (Sweden)

    J. M. Creamean

    2016-09-01

    Full Text Available Biomass burning plumes containing aerosols from forest fires can be transported long distances, which can ultimately impact climate and air quality in regions far from the source. Interestingly, these fires can inject aerosols other than smoke into the atmosphere, which very few studies have evidenced. Here, we demonstrate a set of case studies of long-range transport of mineral dust aerosols in addition to smoke from numerous fires (including predominantly forest fires and a few grass/shrub fires in the Pacific Northwest to Colorado, US. These aerosols were detected in Boulder, Colorado, along the Front Range using beta-ray attenuation and energy-dispersive X-ray fluorescence spectroscopy, and corroborated with satellite-borne lidar observations of smoke and dust. Further, we examined the transport pathways of these aerosols using air mass trajectory analysis and regional- and synoptic-scale meteorological dynamics. Three separate events with poor air quality and increased mass concentrations of metals from biomass burning (S and K and minerals (Al, Si, Ca, Fe, and Ti occurred due to the introduction of smoke and dust from regional- and synoptic-scale winds. Cleaner time periods with good air quality and lesser concentrations of biomass burning and mineral metals between the haze events were due to the advection of smoke and dust away from the region. Dust and smoke present in biomass burning haze can have diverse impacts on visibility, health, cloud formation, and surface radiation. Thus, it is important to understand how aerosol populations can be influenced by long-range-transported aerosols, particularly those emitted from large source contributors such as wildfires.

  12. 1500-year Record of trans-Pacific Dust Flux collected from the Denali Ice Core, Mt. Hunter, Alaska

    Science.gov (United States)

    Saylor, P. L.; Osterberg, E. C.; Koffman, B. G.; Winski, D.; Ferris, D. G.; Kreutz, K. J.; Wake, C. P.; Handley, M.; Campbell, S. W.

    2016-12-01

    Mineral dust aerosols are a critical component of the climate system through their influence on atmospheric radiative forcing, ocean productivity, and surface albedo. Dust aerosols derived from Asian deserts are known to reach as far as Europe through efficient transport in the upper tropospheric westerlies. While centennially-to-millennially resolved Asian dust records exist over the late Holocene from North Pacific marine sediment cores and Asian loess deposits, a high-resolution (sub-annual to decadal) record of trans-Pacific dust flux will significantly improve our understanding of North Pacific dust-climate interactions and provide paleoclimatological context for 20th century dust activity. Here we present an annually resolved 1500-year record of trans-Pacific dust transport based on chemical and physical dust measurements in parallel Alaskan ice cores (208 m to bedrock) collected from the summit plateau of Mt. Hunter in Denali National Park. The cores were sampled at high resolution using a continuous melter system with discrete analyses for major ions (Dionex ion chromatograph), trace elements (Element2 inductively coupled plasma mass spectrometer), and stable water isotope ratios (Picarro laser ringdown spectroscopy), and continuous flow analysis for dust concentration and size distribution (Klotz Abakus). We compare the ice core dust record to instrumental aerosol stations, satellite observations, and dust model data from the instrumental period, and evaluate climatic controls on dust emission and trans-Pacific transport using climate reanalysis data, to inform dust-climate relationships over the past 1500 years. Physical particulate and chemical data demonstrate remarkable fidelity at sub-annual resolution, with both displaying a strong springtime peak consistent with periods of high dust activity over Asian desert source regions. Preliminary results suggest volumetric mode typically ranges from 4.5 - 6.5 um, with a mean value of 5.5 um. Preliminary

  13. Simulation of impurity transport in the peripheral plasma due to the emission of dust in long pulse discharges on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    M. Shoji

    2017-08-01

    Full Text Available Two different plasma termination processes by dust emission were observed in long pulse discharges in the Large Helical Device. One is a plasma termination caused by large amounts of carbon dust released from a lower divertor region. The other is termination caused by stainless steel (iron dust emission from the surface of a helical coil can. The effect of the dust emission on the sustainment of the long pulse discharges are investigated using a three-dimensional edge plasma transport code (EMC3-EIRENE coupled with a dust transport code (DUSTT. The simulation shows that the plasma is more influenced by the iron dust emission from the helical coil can than by the carbon dust emission from the divertor region. The simulation revealed that the plasma flow in divertor legs is quite effective for preventing dust from terminating the long pulse discharges.

  14. The role of lateral boundary conditions in simulations of mineral aerosols by a regional climate model of Southwest Asia

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Marc Pace [Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Eltahir, Elfatih A.B. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2012-01-15

    The importance of specifying realistic lateral boundary conditions in the regional modeling of mineral aerosols has not been examined previously. This study examines the impact of assigning values for mineral aerosol (dust) concentrations at the lateral boundaries of Regional Climate Model version 3 (RegCM3) and its aerosol model over Southwest Asia. Currently, the dust emission module of RegCM3 operates over the interior of the domain, allowing dust to be transported to the boundaries, but neglecting any dust emitted at these points or from outside the domain. To account for possible dust occurring at, or entering from the boundaries, mixing ratios of dust concentrations from a larger domain RegCM3 simulation are specified at the boundaries of a smaller domain over Southwest Asia. The lateral boundary conditions are monthly averaged concentration values ({mu}g of dust per kg of dry air) resolved in the vertical for all four dust bin sizes within RegCM3's aerosol model. RegCM3 simulations with the aerosol/dust model including lateral boundary conditions for dust are performed for a five year period and compared to model simulations without prescribed dust concentrations at the boundaries. Results indicate that specifying boundary conditions has a significant impact on dust loading across the entire domain over Southwest Asia. More specifically, a nearly 30% increase in aerosol optical depth occurs during the summer months from specifying realistic dust boundary conditions, bringing model results closer to observations such as MISR. In addition, smaller dust particles at the boundaries have a more important impact than large particles in affecting the dust loading within the interior of this domain. Moreover, increases in aerosol optical depth and dust concentrations within the interior domain are not entirely caused by inflow from the boundaries; results indicate that an increase in the gradient of concentration at the boundaries causes an increase of

  15. Atmospheric processing of iron carried by mineral dust

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2013-09-01

    Full Text Available Nutrification of the open ocean originates mainly from deposited aerosol in which the bio-avaliable iron is likely to be an important factor. The relatively insoluble iron in dust from arid soils becomes more soluble after atmospheric processing and, through its deposition in the ocean, could contribute to marine primary production. To numerically simulate the atmospheric route of iron from desert sources to sinks in the ocean, we developed a regional atmospheric dust-iron model that included parameterization of the transformation of iron to a soluble form caused by dust mineralogy, cloud processes and solar radiation. When compared with field data on the aerosol iron, which were collected during several Atlantic cruises, the results from the higher-resolution simulation experiments showed that the model was capable of reproducing the major observed patterns.

  16. Emphysema and pulmonary impairment in coal miners: Quantitative relationship with dust exposure and cigarette smoking

    International Nuclear Information System (INIS)

    Kuempel, E D; Vallyathan, V; Green, F H Y

    2009-01-01

    Coal miners have been shown to be at increased risk of developing chronic obstructive pulmonary diseases including emphysema. The objective of this study was to determine whether lifetime cumulative exposure to respirable coal mine dust is a significant predictor of developing emphysema at a clinically-relevant level of severity by the end of life, after controlling for cigarette smoking and other covariates. Clinically-relevant emphysema severity was determined from the association between individuals' lung function during life (forced expiratory volume in one second, FEV 1 , as a percentage of predicted normal values) and emphysema severity at autopsy (as the proportion of lung tissue affected). In a logistic regression model, cumulative exposure to respirable coal mine dust was a statistically significant predictor of developing clinically-relevant emphysema severity, among both ever-smokers and never-smokers. The odds ratio for developing emphysema associated with FEV 1 3 x yr) was 2.30 (1.46-3.64, 95% confidence limits), and at the cohort mean cigarette smoking (among smokers: 42 pack-years) was 1.95 (1.39-2.79).

  17. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    Science.gov (United States)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  18. A Research Program for Fission Product/Dust Transport in HTGR’s

    Energy Technology Data Exchange (ETDEWEB)

    Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States)

    2016-02-01

    High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuel was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.

  19. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Directory of Open Access Journals (Sweden)

    T. Maki

    2018-06-01

    Full Text Available The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols, that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation and upper (spring accumulation parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia, northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which

  20. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Science.gov (United States)

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice

  1. Patterns of North African dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    OpenAIRE

    Y. Ben-Ami; I. Koren; O. Altaratz

    2009-01-01

    One of the most important factors that determine the transported dust effect on the atmosphere is its vertical distribution. In this study the vertical structure of North African dust and stratiform low clouds is analyzed over the Atlantic Ocean for the 2006–2007 boreal winter (December–February) and boreal summer of 2006 (June–August). By using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) backscatter measurements over the dust routes, we describe the differ...

  2. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  3. Activation analysis of deposited dust brought to Israel by dust storms

    International Nuclear Information System (INIS)

    Ganor, E.; Tal, A.; Donagi, A.

    1975-01-01

    The determination of dust particles deposited in Jerusalem during regional dust storms was carried out by polarized microscopy, X-ray analysis and atomic absorption measurements. These analyses showed the presence of particles of quartz, calcite, dolomite, feldspar, halite, kaolinite, montmorillonite, epidote, tourmaline, glauconite, illite and other heavy minerals. The aims of the present study were to apply activation analysis for the determination of element composition in dust samples; to compare the results obtained by activation analysis with those obtained by other methods, i.e. chemical analysis, polarized microscopy and X-ray analysis. The results obtained by the various methods were in good agreement. (B.G.)

  4. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    Science.gov (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  5. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    Science.gov (United States)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  6. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH version 1.0

    Science.gov (United States)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos

    2017-01-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  7. Contact freezing of supercooled cloud droplets on collision with mineral dust particles: effect of particle size

    Science.gov (United States)

    Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas

    2013-04-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974

  8. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    Science.gov (United States)

    Iwata, Ayumi; Matsuki, Atsushi

    2018-02-01

    In order to better characterize ice nucleating (IN) aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles) were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa) during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon) wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to -30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM), micro-Raman spectroscopy, and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., -22.2 to -24.2 °C with K-feldspar) than the homogeneous freezing temperature (-36.5 °C). Meanwhile, most of the IN active atmospheric particles formed ice below -28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above -30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components). Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral dust particles. Also, relatively

  9. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    Science.gov (United States)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  10. Health effects following long-term exposure to thorium dusts: a twenty-year follow-up study in China

    International Nuclear Information System (INIS)

    Chen, X.A.; Cheng, Y.E.; Xiao, H.; Chen, L.; Yang, Y.J.; Dong, Z.H.; Zheng, R.; Feng, G.; Deng, Y.H.; Feng, Z.L.; Han, X.M.

    2004-01-01

    A twenty-year follow-up study was carried out at Baiyun Obo Rare-earth Iron Mine in China, This mine has been mined since 1958. Its ore contains 0.04% of ThO 2 and 10% of SiO 2 . The purpose of this study is to investigate possible health effects in dust-exposed miners following long-term exposure to thorium-containing dusts and thoron progeny. By using the negative high voltage exhaled thoron progeny measurement system to estimate the miner's thorium lung burden. The highest thorium lung burden among 1 158 measurements of 638 miners was 11.11 Bq. The incidence of stage 0 + pneumoconiosis was increased among dust-exposed miners. An epidemiological study showed that the lung cancer mortality of the dust-exposed miners was significantly (p 2 and SiO 2 ) and thoron progeny. This is the first evidence in humans of the carcinogenicity after long-term inhalation of thorium-containing dusts and thoron progeny. The total person-years of observation for the dust-exposed miners and the controls were 62 712 and 34 672 respectively. (author)

  11. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  12. High temperature and dust load in mines

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Bolonova, L N; Donets, I K; Mukhina, K Sh

    1989-02-01

    Presents results of study of combined load on the human system of heat and dust as encountered in deep coal mines in the Donbass. Groups of coal miners were studied to ascertain the state of their lungs, particularly the presence of free silica, dust, collagen, etc. The sickness records for a number of Donbass mining associations for the past 25 years were analyzed. Multiple regression analysis of the data obtained led to curves relating the number of shifts worked to dust levels, pulmonary ventilation (0.01 and 0.04 m/sup 3//min) and maximum admissible dust concentrations (2, 4, 6 and 10 mg/m/sup 3/). In the 25-35 C temperature range a rise of 1 C is accompanied by increases of 9.9% in dust mass, 15.4% in silica content, 10.7% in mineral impurities and 2.3% in pathomorphological changes in the lungs. An adjustment to the maximum admissible concentration correction coefficient of 10% for every 1 C over 26 C is recommended. 1 ref.

  13. Iron oxide minerals in dust of the Red Dawn event in eastern Australia, September 2009

    Science.gov (United States)

    Reynolds, Richard L.; Cattle, Stephen R.; Moskowitz, Bruce M.; Goldstein, Harland L.; Yauk, Kimberly; Flagg, Cody B.; Berquó, Thelma S.; Kokaly, Raymond F.; Morman, Suzette A.; Breit, George N.

    2014-01-01

    Iron oxide minerals typically compose only a few weight percent of bulk atmospheric dust but are important for potential roles in forcing climate, affecting cloud properties, influencing rates of snow and ice melt, and fertilizing marine phytoplankton. Dust samples collected from locations across eastern Australia (Lake Cowal, Orange, Hornsby, and Sydney) following the spectacular “Red Dawn” dust storm on 23 September 2009 enabled study of the dust iron oxide assemblage using a combination of magnetic measurements, Mössbauer spectroscopy, reflectance spectroscopy, and scanning electron microscopy. Red Dawn was the worst dust storm to have hit the city of Sydney in more than 60 years, and it also deposited dust into the Tasman Sea and onto snow cover in New Zealand. Magnetization measurements from 20 to 400 K reveal that hematite, goethite, and trace amounts of magnetite are present in all samples. Magnetite concentrations (as much as 0.29 wt%) were much higher in eastern, urban sites than in western, agricultural sites in central New South Wales (0.01 wt%), strongly suggesting addition of magnetite from local urban sources. Variable temperature Mössbauer spectroscopy (300 and 4.2 K) indicates that goethite and hematite compose approximately 25–45% of the Fe-bearing phases in samples from the inland sites of Orange and Lake Cowal. Hematite was observed at both temperatures but goethite only at 4.2 K, thereby revealing the presence of nanogoethite (less than about 20 nm). Similarly, hematite particulate matter is very small (some of it d < 100 nm) on the basis of magnetic results and Mössbauer spectra. The degree to which ferric oxide in these samples might absorb solar radiation is estimated by comparing reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Average visible reflectance and HIRM are correlated as a group (r2 = 0.24), indicating that Red Dawn ferric oxides have

  14. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    Science.gov (United States)

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  15. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  16. A Research Program for Fission Product/Dust Transport in HTGR's

    International Nuclear Information System (INIS)

    Loyalka, Sudarshan

    2016-01-01

    High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuel was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.

  17. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-01-01

    This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (∼10 9 W/cm 2 ). Particle size ranged from 500 nm to 3 (micro)m. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions

  18. Atmospheric processing outside clouds increases soluble iron in mineral dust.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Benning, Liane G

    2015-02-03

    Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.

  19. Ten-year operational dust forecasting - Recent model development and future plans

    International Nuclear Information System (INIS)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G

    2009-01-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10 8 t yr- 1 . A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  20. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  1. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus

    Directory of Open Access Journals (Sweden)

    A. Nisantzi

    2014-11-01

    Full Text Available Four-year observations (2010–2014 with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E, Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR, measured with lidar, contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (> 4 days after emission. We found significant PDR differences with values from 9 to 18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13 % when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. travel time (spatial distance between Limassol and last fire area, PDR decreased strongly from initial values around 16–18% (1 day travel to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Computation of particle extinction coefficient and mass concentrations, derived from the lidar observations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions on the order of 10% (for PDR =4%, travel times > 4 days and 50% (PDR =15%, 1 day travel time and respective mass-related dust fractions of 25% (PDR =4% to 80% (PDR =15%. Biomass burning should therefore be considered as another source of free tropospheric soil dust.

  2. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machines equipped with powered dust collectors... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust...

  3. Experiments on the photophoretic motion of chondrules and dust aggregates -indications for the transport of matter in protoplanetary disks

    DEFF Research Database (Denmark)

    Wurm, Gerhard; Teiser, Jens; Bischoff, Addi

    2010-01-01

    In a set of 16 drop tower experiments the motion of sub-millimeter to millimeter-sized particles under microgravity was observed. Illumination by a halogen lamp induced acceleration of the particles due to photophoresis. Photophoresis on dust-free chondrules, on chondrules, glass spheres and meta....... The strength of the photophoretic force varies for chondrules, dust covered particles and pure dust from low to strong, respectively. The measurements support the idea that photophoresis in the early Solar System can be efficient to transport solid particles outward....

  4. Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2015-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we...

  5. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  6. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  7. Dust emission and transport over Iraq associated with the summer Shamal winds

    Science.gov (United States)

    Bou Karam Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L.

    2017-02-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source.

  8. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  9. Radiological hazards to uranium miners

    International Nuclear Information System (INIS)

    1990-05-01

    The purpose of the present document is to review and assess the occupational hazards to uranium miners in Canada. Amendments to regulations set the maximum permissible dose to uranium miners at 50 mSv per year. Uranium miners are exposed to radon and thoron progeny, external gamma radiation and long-lived alpha-emitting radionuclides in dust. The best estimate for the lifetime risk of inhaled radon progeny is about 3 x 10 -4 lung cancers per WLM for the average miner, with a range of uncertainty from about 1 -6 x 10 -4 per WLM. This central value is nearly twice as high as that recommended by the ICRP in 1981. The probability of serious biological consequences following exposure to external gamma rays is currently under review but is expected to be in the range of 3 - 6 x 10 -2 Sv -1 . Dosimetric calculations indicate that the stochastic risks per WLM of thoron progeny are about one-third of those for radon progeny. The annual limits on intake of inhaled ore dusts recommended by the ICRP are probably too low by at least a factor of two for the type of ore and dust normally encountered in underground uranium mines in Ontario; this is due in part to the fact that the average diameter of these dusts is five times greater than the value used by the ICRP. Radiological exposures of uranium miners in Canada were reviewed. The biological impact of these exposures were compared with those of conventional accidents on the basis of the years of normal life expectancy that are lost or seriously impaired due to occupational hazards. The objectives in considering all occupational risks are to reduce the total risk from all causes and to use funds spent for health protection as effectively as possible

  10. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  11. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  12. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    Directory of Open Access Journals (Sweden)

    A. Iwata

    2018-02-01

    Full Text Available In order to better characterize ice nucleating (IN aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to −30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM, micro-Raman spectroscopy, and scanning electron microscopy (SEM coupled with energy dispersive X-ray spectroscopy (EDX. Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., −22.2 to −24.2 °C with K-feldspar than the homogeneous freezing temperature (−36.5 °C. Meanwhile, most of the IN active atmospheric particles formed ice below −28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above −30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components. Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral

  13. Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals

    Directory of Open Access Journals (Sweden)

    Tyurin Alexey

    2017-01-01

    Full Text Available Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.

  14. Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals

    Science.gov (United States)

    Tyurin, Alexey

    2017-11-01

    Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month) on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.

  15. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    boundary layer. We find that ENSO exerts a control on North African dust transport during the summer, and CESM suggests that there is strong multi-decadal variability in the strength of the ENSO-dust relationship. Finally, we compare interactive and prescribed aerosol CESM simulations to demonstrate the importance of dust in increasing tropical Atlantic SST variability, and expose deficiencies in CESM's simulation of the Atlantic Meridional Mode.

  16. Debilitating lung disease among surface coal miners with no underground mining tenure.

    Science.gov (United States)

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  17. Contamination of Soil, Water, Plant and Dust by Zinc, Lead and Cadmium in Southwest Isfahan

    Directory of Open Access Journals (Sweden)

    Nastaran Esmaeilpourfard

    2016-02-01

    all trees of the Sepahanshahr urban park and in alfalfa, lead content in olive trees and lead and cadmium concentrations in Holly hock (Althaea officinalis, Spurge (Euphorbiarigida and Rhizome (Acanthe phylum bracteatumare higher than dietaryallowance. Significant correlation between heavy metal concentrations reduction in dust samples and increase of distance from the mine expresses that contaminant heavy metals enter the atmosphere due to mine explosions. In dolomitic sandstone rich in sphalerite mineral, the total amounts of lead and zinc are maximum. The maximum amount of cadmium and too much lead and zinc were observed in a shale fragment, sampled from a location of a fault in the mine. Contents of the three metals were less in black and green shales, compared with the other samples. In dolomitic sandstone rich in gallon mineral, the amounts of the three metals are high and its lead content is maximum with respect to other rocks excluding dolomitic sandstone rich in sphalerite mineral. Significant correlation between ratios of lead isotopes contents of the rocks, soil and dust showed that the soils of the alluvial piedmont plain located at the footslope of the western mountains of the studied area have formed in alluvium parent materials originated from western mountains. The studied heavy metals have been transported together with these alluviums from the mine towards the alluvial piedmont plain. The other origin of these metals is the dust which is produced during the Gushfil mine explosions. This dust is translocated towards the Sepahanshahr and makes the surrounding environment of the mine polluted. Conclusions: Origin of zinc, lead and cadmium in soil, water, plant and dust in the studied area is rocks of Gushfil mine. Transportation of these metals from the mine towards the environment can be explained by two mechanisms: 1 together with runoff water flowing from the western mountains towards the alluvial piedmont plain and 2 in the form of dust which

  18. Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts.

    Science.gov (United States)

    Romanías, Manolis N; Ourrad, Habib; Thévenet, Frédéric; Riffault, Véronique

    2016-03-03

    The heterogeneous interaction of limonene and toluene with Saharan dusts was investigated under dark conditions, pressure of 1 atm, and temperature 293 K. The mineral dust samples were collected from six different regions along the Sahara desert, extending from Tunisia to the western Atlantic coastal areas of Morocco, and experiments were carried out with the smallest sieved fractions, that is, inferior to 100 μm. N2 sorption measurements, granulometric analysis, and X-ray fluorescence and diffraction (XRF and XRD) measurements were conducted to determine the physicochemical properties of the particles. The chemical characterization showed that dust originating from mideastern Sahara has a significantly higher SiO2 content (∼ 82%) than dust collected from the western coastal regions where the SiO2 relative abundance was ∼ 50%. A novel experimental setup combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), selected-ion flow-tube mass spectrometry (SIFT-MS), and long path transmission Fourier transform infrared spectroscopy (FTIR) allowed us to follow both the adsorbed and gas phases. The kinetic adsorption/desorption measurements were performed using purified dry air as bath gas, exposing each dust surface to 10 ppm of the selective volatile organic compound (VOC). The adsorption of limonene was independent of the SiO2 content, given the experimental uncertainties, and the coverage measurements ranged between (10 and 18) × 10(13) molecules cm(-2). Experimental results suggest that other metal oxides that could possibly influence dust acidity may enhance the adsorption of limonene. On the contrary, in the case of toluene, the adsorption capacities of the Saharan samples increased with decreasing SiO2 content; however, the coverage measurements were significantly lower than those of limonene and ranged between (2 and 12) × 10(13) molecules cm(-2). Flushing the surface with purified dry air showed that VOC desorption is not a

  19. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    Directory of Open Access Journals (Sweden)

    C. A. Friese

    2017-08-01

    Full Text Available Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL. In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  20. Efficiency of inert mineral dusts in the control of corn weevil

    Directory of Open Access Journals (Sweden)

    Carlos F. Jairoce

    2016-02-01

    Full Text Available ABSTRACT Corn weevil (Sitophilus zeamais may cause great losses in the crop and in stored corn grains. This insect is controlled with the use of chemical insecticides, which may cause serious damage to human health. One alternative of control is the use of inert dusts. The objective of this study was to evaluate the efficiency of inert dusts in the control of S. zeamais under laboratory conditions. The experiment was conducted in 2014, in a completely randomized design, and the treatments consisted of basalt dust with three different granulometries (A, B and C and diatomaceous earth, each of which at the doses of 2 and 4 kg t-1 and a control (no application. Each treatment had four replicates, and the sample unit consisted of 20 g of corn grains infected with 10 adults of S. zeamais kept in temperature-controlled chamber at 25 °C, 70% RH and photophase of 12 h. The dust efficiency was calculated using the equation of Abbott. The mortality rate was higher with the use of diatomaceous earth, reaching 100% after 5 days of exposure and the percentage of control for basalt dusts, 29 days after treatment, was above 80%.

  1. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Transport

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; Van de Water, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et al., 2003 reported Juniperus spp. pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Direct detection of pollen via satellite is not practical. A practical alternative combines modeling and phenological observations using ground based sampling and satellite data. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Nickovic et al. 2001). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). In the current project MODIS data will provide critical input to the PREAM model providing pollen source location, timing of pollen release, and vegetation type. We are modifying the DREAM model (PREAM - Pollen REgional Atmospheric Model) to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in Remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that the potential association of health effects of pollen can better be tracked for possible linkage with health outcome data which may be associated with asthma, respiratory effects, myocardial infarction, and lost workdays. Juniperus spp. pollen phenology may respond to a wide range of environmental factors such as day length, growing degree-days, precipitation patterns and soil moisture. Species differences are also important. These environmental factors vary over both time and spatial scales. Ground based networks such as the USA National Phenology Network have been established to provide national wide observations of vegetation phenology. However, the density of observers is not adequate to sufficiently document the phenology variability

  2. Atmospheric Dust Modeling from Meso to Global Scales with the Online NMMB/BSC-Dust Model Part 2: Experimental Campaigns in Northern Africa

    Science.gov (United States)

    Haustein, K.; Perez, C.; Baldasano, J. M.; Jorba, O.; Basart, S.; Miller, R. L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M. C.; hide

    2012-01-01

    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Perez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodele Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced

  3. 30 CFR 75.403 - Maintenance of incombustible content of rock dust.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of incombustible content of rock... Materials and Rock Dusting § 75.403 Maintenance of incombustible content of rock dust. [Statutory Provision] Where rock dust is required to be applied, it shall be distributed upon the top, floor, and sides of all...

  4. Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2010-11-01

    Full Text Available The heterogeneous reactions of carbonyl sulfide (OCS on the typical mineral oxides in the mineral dust particles were investigated using a Knudsen cell flow reactor and a diffuse reflectance UV-vis spectroscopy. The reaction pathway for OCS on mineral dust was identified based on the gaseous products and surface species. The hydrolysis of OCS and succeeding oxidation of intermediate products readily took place on α-Al2O3, MgO, and CaO. Reversible and irreversible adsorption of OCS were observed on α-Fe2O3 and ZnO, respectively, whereas no apparent uptake of OCS by SiO2 and TiO2 was observed. The reactivity of OCS on these oxides depends on both the basicity of oxides and the decomposition reactivity of oxides for H2S. Based on the individual uptake coefficients and chemical composition of authentic mineral dust, the uptake coefficient (γBET of mineral dust was estimated to be in the range of 3.84×10−7–2.86×10−8. The global flux of OCS due to heterogeneous reactions and adsorption on mineral dust was estimated at 0.13–0.29 Tg yr−1, which is comparable to the annual flux of OCS for its reaction with ·OH.

  5. A Standard Characterization Methodology for Respirable Coal Mine Dust Using SEM-EDX

    Directory of Open Access Journals (Sweden)

    Rachel Sellaro

    2015-12-01

    Full Text Available A key consideration for responsible development of mineral and energy resources is the well-being of workers. Respirable dust in mining environments represents a serious concern for occupational health. In particular, coal miners can be exposed to a variety of dust characteristics depending on their work activities, and some exposures may pose risk for lung diseases like CWP and silicosis. As underscored by common regulatory frameworks, respirable dust exposures are generally characterized on the basis of total mass concentration, and also the silica mass fraction. However, relatively little emphasis has been placed on other dust characteristics that may be important in terms of identifying health risks. Comprehensive particle-level analysis to estimate chemistry, size, and shape distributions of particles is possible. This paper describes a standard methodology for characterization of respirable coal mine dust using scanning electron microscopy (SEM with energy dispersive X-ray (EDX. Preliminary verification of the method is shown based several dust samples collected from an underground mine in Central Appalachia.

  6. Nano-metric Dust Particles as a Hardly Detectable Component of ...

    Indian Academy of Sciences (India)

    sis of the TNO color index–orbital inclinations. We also .... In our view, during these two processes, their complementarities lead to a certain balance due to the .... dust will form a multi-mineral complex of the hardly detectable dust matter of the.

  7. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: Experimental campaigns in Northern Africa

    Directory of Open Access Journals (Sweden)

    K. Haustein

    2012-03-01

    Full Text Available The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Pérez et al., 2011 develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6–0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1 in 2006 and the Bodélé Dust Experiment (BoDEx in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ and the dust AOD over the Bodélé are

  8. Health effects of mineral dusts, Volume 28: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G.D. Jr. [ed.] [Los Alamos National Lab., NM (United States); Mossman, B.T. [ed.] [Vermont Univ., Burlington, VT (United States). Dept. of Pathology

    1993-12-31

    The processes that lead to the development of disease (or pathogenesis) by minerals very likely occur at or near the mineral-fluid interface. Thus the field of ``mineral-induced pathogenesis`` is a prime candidate for interdisciplinary research, involving mineral scientists, health scientists, petrologists, pathologists, geochemists, biochemists, and surface scientists, to name a few. This review volume and the short course upon which it was based are intended to provide some of the necessary tools for the researcher interested in this area of interdisciplinary research. The chapters present several of the important problems, concepts, and approaches from both the geological and biological ends of the spectrum. These two extremes are partially integrated throughout the book by cross-referencing between chapters. Chapter 1 also presents a general introduction into the ways in which these two areas overlap. The final chapter of this book discusses some of the regulatory aspects of minerals. A glossary is included at the end of this book, because the complexity of scientific terms in the two fields can thwart even the most enthusiastic of individuals. Individual reports have been processed separately for the database.

  9. Development of dust removal system using static electricity for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Ueda, Yasutoshi; Oda, Yasushi; Takahashi, Kenji [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Kurihara, Ryoichi

    1997-11-01

    Tests to collect and transport metallic and non-metallic dust particles have been conducted using static electricity in a vacuum environment to investigate the applicability of a static electricity dust removal system for fusion experimental reactors. The dust particles are charged by electrostatic induction, floated and collected due to the Coulomb force generated by the AC electric field. They are then transported due to the gradient force induced by the electric curtain of the non-uniform travelling-wave electric field. Using a fully insulated electrode with a single-phase AC voltage up to 15 kV, aluminum and carbon dust were successfully collected. The highest collection rates for the aluminum and carbon dust were around 30 and 2 g/min, respectively. The linear-type electrodes, using as high as 22 kV of the three-phase AC voltage, transported aluminum dust up to an angle of 60deg. Applying a guide electrode to the linear-type electrode, the transportation rate was approximately doubled and almost constant at every angle, including a 90deg angle. The system transported aluminum dust up to the rate of 13 g/min. The influence of the 0.15 T magnetic field on the dust collection and transportation efficiencies was found to be negligible. (author)

  10. Development of dust removal system using static electricity for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Ueda, Yasutoshi; Oda, Yasushi; Takahashi, Kenji; Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Kurihara, Ryoichi.

    1997-01-01

    Tests to collect and transport metallic and non-metallic dust particles have been conducted using static electricity in a vacuum environment to investigate the applicability of a static electricity dust removal system for fusion experimental reactors. The dust particles are charged by electrostatic induction, floated and collected due to the Coulomb force generated by the AC electric field. They are then transported due to the gradient force induced by the electric curtain of the non-uniform travelling-wave electric field. Using a fully insulated electrode with a single-phase AC voltage up to 15 kV, aluminum and carbon dust were successfully collected. The highest collection rates for the aluminum and carbon dust were around 30 and 2 g/min, respectively. The linear-type electrodes, using as high as 22 kV of the three-phase AC voltage, transported aluminum dust up to an angle of 60deg. Applying a guide electrode to the linear-type electrode, the transportation rate was approximately doubled and almost constant at every angle, including a 90deg angle. The system transported aluminum dust up to the rate of 13 g/min. The influence of the 0.15 T magnetic field on the dust collection and transportation efficiencies was found to be negligible. (author)

  11. Life in Darwin's dust: intercontinental transport and survival of microbes in the nineteenth century.

    Science.gov (United States)

    Gorbushina, Anna A; Kort, Renate; Schulte, Anette; Lazarus, David; Schnetger, Bernhard; Brumsack, Hans-Jürgen; Broughton, William J; Favet, Jocelyne

    2007-12-01

    Charles Darwin, like others before him, collected aeolian dust over the Atlantic Ocean and sent it to Christian Gottfried Ehrenberg in Berlin. Ehrenberg's collection is now housed in the Museum of Natural History and contains specimens that were gathered at the onset of the Industrial Revolution. Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes. Older samples sent to Ehrenberg from Barbados almost two centuries ago also contained numbers of cultivable bacteria and fungi. Many diverse ascomycetes, and eubacteria were found. Scanning electron microscopy and cultivation suggested that Bacillus megaterium, a common soil bacterium, was attached to historic sand grains, and it was inoculated onto dry sand along with a non-spore-forming control, the Gram-negative soil bacterium Rhizobium sp. NGR234. On sand B. megaterium quickly developed spores, which survived for extended periods and even though the numbers of NGR234 steadily declined, they were still considerable after months of incubation. Thus, microbes that adhere to Saharan dust can live for centuries and easily survive transport across the Atlantic.

  12. GPK helmets protecting from gas and dusts

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, Eh.G.; Kogan, Yu.A.; Mazanenko, V.P.

    1983-08-01

    The GPK protective helmet with an integrated respirator system protecting a miner's respiratory system and eyes from gases and dusts is described. The system uses compressed air from the mine compressed air system. Air is supplied to the respirator by an elastic rubber pipe to 30 m long. The air cools the miner's head under the helmet and passes between a protective shield and the miner's face protecting eyes and the respiratory system. Air supply ranges from 100 to 150 l/min. The air supplied to the respirator is cleaned by a filter. The GPK system weighs 1.2 kg. The system has been tested under laboratory conditions and in two coal mines under operational conditions at longwall faces and during mine drivage. Tests showed that the GPK guarantees efficient cooling and protection from dust. Design of the GPK helmet with a respirator is shown in two schemes. Technical specifications of the system are given.

  13. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies

    Directory of Open Access Journals (Sweden)

    J. Hofer

    2017-12-01

    Full Text Available For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer and an Ångström exponent of −0.08. The observed lidar ratios (and particle linear depolarization ratios in the presented dust cases range from 40.3 to 46.9 sr (and 0.18–0.29 at 355 nm and from 35.7 to 42.9 sr (0.31–0.35 at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio

  14. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2012-03-01

    Full Text Available The differences in North African dust emission regions and transport routes, between the boreal winter and summer, are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 yr of satellite data, in order to better characterize the different dust transport periods. We see a robust annual triplet: a discernible rhythm of "transatlantic dust weather".

    The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes.

    The southern-route period lasts ~4 months. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months and is associated with a steady drift northward of ~0.1 latitude day−1, reaching ~1500 km north of the southern-route. The northern period is characterized by higher frequency of dust events, higher (and variable background and smaller variance in dust loading. It is less episodic than the southern period.

    Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition, between the northern and southern periods, commences with an abrupt reduction in dust loading and rapid shift southward of ~0.2 latitude day−1, and ~1300 km in total.

    Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the

  15. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  16. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate is still rudimentary. The present dissertation investigates dust direct radiative effect on MENA climate during summer with a special emphasis on the sensitivity of climate response to dust shortwave absorption, which is one of the most uncertain components of dust direct radiative effect. Simulations are conducted with and without dust radiative effect, to differentiate the effect of dust on climate. To elucidate the sensitivity of climate response to dust shortwave absorption, simulations with dust assume three different cases of dust shortwave absorption, representing dust as a very efficient, standard and inefficient shortwave absorber. The non-uniformly distributed dust perturb circulations at various scales. Therefore, the present study takes advantage of the high spatial resolution capabilities of an Atmospheric General Circulation Model (AGCM), High Resolution Atmospheric Model (HiRAM), which incorporates global and regional circulations. AMIP-style global high-resolution simulations are conducted at a spatial resolution of 25 km. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Similarly, the temperature under rainbelt cools and that over subtropical deserts warms. Inter-comparison of various dust shortwave absorption cases shows that the response of the MENA tropical rainbelt is extremely sensitive to the

  17. Palaeo-dust records: A window to understanding past environments

    Science.gov (United States)

    Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik

    2018-06-01

    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with

  18. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.; Jin, X.D.; Gu, C.H. [China Medical University, Shenyang (China)

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  19. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Science.gov (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  20. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean

    Science.gov (United States)

    Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.

    2018-04-01

    In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth

  1. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NARCIS (Netherlands)

    Amato, F.; Schaap, M.; Denier van der Gon, H.A.C.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X.

    2013-01-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well

  2. Reflectance spectroscopy of indoor settled dust in Tel Aviv, Israel: comparison between the spring and the summer seasons

    Directory of Open Access Journals (Sweden)

    A. A. Chudnovsky

    2007-07-01

    Full Text Available The influence of mineral and anthropogenic dust components on the VIS-NIR-SWIR spectral reflectance of artificial laboratory dust mixtures was evaluated and used in combination with Partial Least Squares (PLS regression to construct a model that correlates the dust content with its reflectance. Small amounts of dust (0.018–0.33 mg/cm2 were collected using glass traps placed in different indoor environments in Tel Aviv, Israel during the spring and summer of 2005. The constructed model was applied to reflectance spectroscopy measurements derived from the field dust samples to assess their mineral content. Additionally, field samples were examined using Principal Component Analysis (PCA to identify the most representative spectral pattern for each season. Across the visible range of spectra two main spectral shapes were observed, convex and concave, though spectra exhibiting hybrid shapes were also seen. Spectra derived from spring season dust samples were characterized mostly by a convex shape, which indicates a high mineral content. In contrast, the spectra generated from summer samples were characterized generally by a concave shape, which indicates a high organic matter content. In addition to this seasonal variation in spectral patterns, spectral differences were observed associated with the dwelling position in the city. Samples collected in the city center showed higher organic content, whereas samples taken from locations at the city margins, near the sea and next to open areas, exhibited higher mineral content. We conclude that mineral components originating in the outdoor environment influence indoor dust loads, even when considering relatively small amounts of indoor settled dust. The sensitive spectral-based method developed here has potentially many applications for environmental researchers and policy makers concerned with dust pollution.

  3. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    Science.gov (United States)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  4. Solubilization of diabase and phonolite dust by filamentous fungus

    Directory of Open Access Journals (Sweden)

    Juliana Andréia Vrba Brandão

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effect of the fungus Aspergillus niger strain CCT4355 in the release of nutrients contained in two types of rock powder (diabase and phonolite by means of in vitro solubilization trials. The experimental design was completely randomized in a 5 x 4 factorial design with three replications. It was evaluated five treatments (phonolite dust + culture medium; phonolite dust + fungus + culture medium; diabase powder + culture medium; diabase powder + fungus + culture medium and fungus + culture medium and four sampling dates (0, 10, 20 and 30 days. Rock dust (0.4% w/v was added to 125 mL Erlenmeyer flasks containing 50 mL of liquid culture medium adapted to A. niger. The flasks were incubated at 30°C for 30 days, and analysis of pH (in water, titratable acidity, and concentrations of soluble potassium, calcium, magnesium, zinc, iron and manganese were made. The fungus A. niger was able to produce organic acids that solubilized ions. This result indicates its potential to alter minerals contained in rock dust, with the ability to interact in different ways with the nutrients. A significant increase in the amount of K was found in the treatment with phonolite dust in the presence of the fungus. The strain CCT4355 of A. niger can solubilize minerals contained in these rocks dust.

  5. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this ...

  6. Iron mineralogy and bioaccessibility of dust generated from soils as determined by reflectance spectroscopy and magnetic and chemical properties--Nellis Dunes recreational area, Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Reynolds, Richard L.; Morman, Suzette A.; Moskowitz, Bruce; Kokaly, Raymond F.; Goossens, Dirk; Buck, Brenda J.; Flagg, Cody; Till, Jessica; Yauk, Kimberly; Berquó, Thelma S.

    2013-01-01

    Atmospheric mineral dust exerts many important effects on the Earth system, such as atmospheric temperatures, marine productivity, and melting of snow and ice. Mineral dust also can have detrimental effects on human health through respiration of very small particles and the leaching of metals in various organs. These effects can be better understood through characterization of the physical and chemical properties of dust, including certain iron oxide minerals, for their extraordinary radiative properties and possible effects on lung inflammation. Studies of dust from the Nellis Dunes recreation area near Las Vegas, Nevada, focus on characteristics of radiative properties (capacity of dust to absorb solar radiation), iron oxide mineral type and size, chemistry, and bioaccessibility of metals in fluids that simulate human gastric, lung, and phagolysosomal fluids. In samples of dust from the Nellis Dunes recreation area with median grain sizes of 2.4, 3.1, and 4.3 micrometers, the ferric oxide minerals goethite and hematite, at least some of it nanosized, were identified. In one sample, in vitro bioaccessibility experiments revealed high bioaccessibility of arsenic in all three biofluids and higher leachate concentration and bioaccessibility for copper, uranium, and vanadium in the simulated lung fluid than in the phagolysosomal fluid. The combination of methods used here to characterize mineral dust at the Nellis Dunes recreation area can be applied to global dust and broad issues of public health.

  7. Trajectory Calculation as Forecasting Support Tool for Dust Storms

    Directory of Open Access Journals (Sweden)

    Sultan Al-Yahyai

    2014-01-01

    Full Text Available In arid and semiarid regions, dust storms are common during windy seasons. Strong wind can blow loose sand from the dry surface. The rising sand and dust is then transported to other places depending on the wind conditions (speed and direction at different levels of the atmosphere. Considering dust as a moving object in space and time, trajectory calculation then can be used to determine the path it will follow. Trajectory calculation is used as a forecast supporting tool for both operational and research activities. Predefined dust sources can be identified and the trajectories can be precalculated from the Numerical Weather Prediction (NWP forecast. In case of long distance transported dust, the tool should allow the operational forecaster to perform online trajectory calculation. This paper presents a case study for using trajectory calculation based on NWP models as a forecast supporting tool in Oman Meteorological Service during some dust storm events. Case study validation results showed a good agreement between the calculated trajectories and the real transport path of the dust storms and hence trajectory calculation can be used at operational centers for warning purposes.

  8. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  9. Controls on radium transport by adsorption to iron minerals

    Science.gov (United States)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A

  10. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved by...

  11. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Science.gov (United States)

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  12. Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data

    Directory of Open Access Journals (Sweden)

    Y. Balkanski

    2007-01-01

    Full Text Available Modelling studies and satellite retrievals do not agree on the amplitude and/or sign of the direct radiative perturbation from dust. Modelling studies have systematically overpredicted mineral dust absorption compared to estimates based upon satellite retrievals. In this paper we first point out the source of this discrepancy, which originates from the shortwave refractive index of dust used in models. The imaginary part of the refractive index retrieved from AERONET over the range 300 to 700 nm is 3 to 6 times smaller than that used previously to model dust. We attempt to constrain these refractive indices using a mineralogical database and varying the abundances of iron oxides (the main absorber in the visible. We first consider the optically active mineral constituents of dust and compute the refractive indices from internal and external mixtures of minerals with relative amounts encountered in parent soils. We then compute the radiative perturbation due to mineral aerosols for internally and externally mixed minerals for 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume. These constant amounts of hematite allow bracketing the influence of dust aerosol when it is respectively an inefficient, standard and a very efficient absorber. These values represent low, central and high content of iron oxides in dust determined from the mineralogical database. Linke et al. (2006 determined independently that iron-oxides represent 1.0 to 2.5% by volume using x-Ray fluorescence on 4 different samples collected over Morocco and Egypt. Based upon values of the refractive index retrieved from AERONET, we show that the best agreement between 440 and 1020 nm occurs for mineral dust internally mixed with 1.5% volume weighted hematite. This representation of mineral dust allows us to compute, using a general circulation model, a new global estimate of mineral dust perturbation between –0.47 and –0.24 Wm−2 at the top of the atmosphere, and between

  13. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  14. Cross sectional and longitudinal study on selenium, glutathione peroxidase, smoking, and occupational exposure in coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Nadif, R.; Oryszczyn, M.P.; Fradier-Dusch, M.; Hellier, G.; Bertrand, J.P.; Pham, Q.T.; Kauffmann, F. [INSERM, Vandoeuvre-les-Nancy (France). Faculty of Medicine

    2001-04-01

    The aim of the study was to understand the variations of selenium (Se) concentration relative to changes in occupational exposure to coal dust, taking into account age and changes in smoking habits in miners surveyed twice, in 1990 and 1994. It was found that selenium concentration and glutathione peroxidase activities (GSH-Px) activities were significantly lower in active than in retired miners. Moreover, Se concentration was lower in miners exposed to high compared with those exposed to low dust concentrations. In miners exposed to high dust concentrations, Se concentration was significantly lower whereas erythrocyte GSH-Px activity was significantly higher in the subgroup with estimated cumulative exposure {gt} 68 mg/m{sup 3}.y. In all miners, plasma GSH-Px activity was correlated with Se concentration. The 4 year Se changes were negatively related to exposure to high dust concentrations and positively related to change in exposure from high to retirement and to change from smoker to ex-smoker. The variations of Se concentration in relation to changes in occupational exposure to coal dust and in smoking habits, and the close correlation found between plasma Se concentration and GSH-Px activity suggest that both are required in antioxidant defence. These results agree well with the hypothesis that the decrease in Se concentration reflects its use against reactive oxygen species generated by exposure to coal mine dust and by smoking.

  15. Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-12-15

    Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.

  16. Impact of Dust on Air Quality and Radiative Forcing : AN Episodic Study for the Megacity Istanbul Using RegCM4.1

    Science.gov (United States)

    Agacayak, T.; Kindap, T.; Unal, A.; Mallet, M.; Pozzoli, L.; Karaca, M.; Solmon, F.

    2012-04-01

    Istanbul is a megacity (with population over 15 million) that has significant levels of Particulate Matter concentrations. It is suspected that long-range transport of Saharan dust is one of the main contributors. The purpose of this study is to investigate the relationship between high PM concentrations and dust transport using atmospheric modeling, satellite data as well as in-situ observations. Measurements of PM10 concentrations at 10 different stations in Istanbul for the period 2004-2010 were provided by the Turkish Ministry of Environment. Daily mean PM10 concentrations exceeding the European standard of 50 µg/m3 were found to be, on average, 49 days for the Spring period, 45 days for the Winter period, and 41 days for the Fall period. DREAM model output (Nickovic et al. 2001; Perez et al. 2006) suggests that high PM10 concentrations correlate highly with mineral dust transport episodes from Saharan desert (i.e., 23% for winter and 58% for spring). In this study, we have utilized RegCM4.1 model to further investigate the Saharan dust transport in the selected episodes. During the period between March 21st and 24th, 2008, observed daily mean of PM10 concentrations reach up to 140 µg/m3 in Istanbul. Simulations conducted by RegCM4.1 provides AOD (350-640 nm model band) values ranging between 0.04 and 0.98during this episode. Central Anatolia is affected from the dust transport on 21 and 22 March 2008, with a daily mean AOD of 0.9. On 23th March 2008, the dust plume reaches the Marmara Sea and AOD increases about 1.0 over the region according to both DREAM and RegCM4.1 model outputs. On the fourth day of the episode, the dust event stops and AOD decreases to 0.5 over the region. Asymmetry parameters can be seen as 0.62 during the dust episode, while single scattering albedo is about 0.93 during the entire dust episode over Istanbul. The effect of the dust episode on the regional radiative budget over Istanbul was also estimated. Model results indicate a daily

  17. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Science.gov (United States)

    Bohleber, Pascal; Erhardt, Tobias; Spaulding, Nicole; Hoffmann, Helene; Fischer, Hubertus; Mayewski, Paul

    2018-01-01

    Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100-1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  18. A smart dust biosensor powered by kinesin motors.

    Science.gov (United States)

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  19. Magnetic studies of dusts in the urban environment

    International Nuclear Information System (INIS)

    Xie, S.

    2000-12-01

    Dusts are one of the major public health concerns in the urban environment. This study investigates the application of magnetic techniques in the studies of urban dust pollution. Measurements of magnetic properties, element concentrations, and the organic matter content were carried out on Liverpool (UK) street dust and/or Bootle (UK) deposited dust. Mixed dominant ferrimagnetic phases are found in Liverpool street dust although magnetite is probably a major one. The partial susceptibility technique is able to model the contributions of main magnetic components satisfactorily in Liverpool street dust. There are similar spatial distributions for some measurements, such as χLF and Pb, whilst there are different patterns for some measurements, such as χLF and the organic matter content. There are good linear correlations between the organic matter content and some magnetic mineral concentration-related parameters for < 1mm (bulk) samples. Among them, frequency dependent susceptibility (χFD) shows the highest correlation coefficient value. χFD percentage demonstrates a significant correlation with the organic matter content for size fraction and bulk samples. This suggests that re-entrainment of soil is probably a major source of the organic material present in street dust. The ratio χARM /SIRM shows a highly significant correlation with the organic matter content for <150μm fraction samples. The study demonstrates that the simple, rapid, and non-destructive magnetic measurements may be used as proxies for the organic matter content in street dust. Associations between magnetic properties and element concentrations are investigated by using correlation analysis and factor analysis, which may be a potential approach for source identification of magnetic material in the environment. The study suggests that ferrimagnetic minerals are the dominant magnetic component in Bootle dust samples. Both studied sites show similar magnetic properties, but they can be

  20. Airborne lidar measurements to investigate the impact of long-range transported dust on shallow marine trade wind convection

    Science.gov (United States)

    Gross, S.; Gutleben, M.; Wirth, M.; Ewald, F.

    2017-12-01

    Aerosols and clouds are still main contributors to uncertainties in estimates and interpretation of the Earth's changing energy budget. Their interaction with the Earth's radiation budged has a direct component by scattering and absorbing solar and terrestrial radiation, and an indirect component, e.g. as aerosols modify the properties and thus the life-time of clouds or by changing the atmosphere's stability. Up to know now sufficient understanding in aerosol-cloud interaction and climate feedback is achieved. Thus studies with respect to clouds, aerosols, their interaction and influence on the radiation budged are highly demanded. In August 2016 the NARVAL-II (Next-generation airborne remote sensing for validation studies) mission took place. Measurements with a combined active (high spectral resolution and water vapor differential absorption lidar and cloud radar) and passive remote sensing (microwave radiometer, hyper spectral imager, radiation measurements) payload were performed with the German high altitude and long-range research aircraft HALO over the subtropical North-Atlantic Ocean to study shallow marine convection during the wet and dusty season. With this, NARVAL-II is follow-up of the NARVAL-I mission which took place during the dry and dust free season in December 2013. During NARVAL-II the measurement flights were designed the way to sample dust influenced areas as well as dust free areas in the trades. One main objective was to investigate the optical and macro physical properties of the dust layer, differences in cloud occurrence in dusty and non-dusty areas, and to study the influence of aerosols on the cloud properties and formation. This allows comparisons of cloud and aerosol distribution as well as their environment between the dry and the wet season, and of cloud properties and distribution with and without the influence of long-range transported dust across the Atlantic Ocean. In our presentation we will give an overview of the NARVAL

  1. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  2. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    Science.gov (United States)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  3. Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?

    Science.gov (United States)

    Spiegel, Johanna K.; Buchmann, Nina; Mayol-Bracero, Olga L.; Cuadra-Rodriguez, Luis A.; Valle Díaz, Carlos J.; Prather, Kimberly A.; Mertes, Stephan; Eugster, Werner

    2014-09-01

    We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak ( D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration (), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.

  4. Radioactive contamination level of vehicles resulted from transporting fine rare-earth minerals by rail

    International Nuclear Information System (INIS)

    Han Kaichun; Yu Boyong; Gao Shengwei

    1997-01-01

    This paper presents monitoring results of radioactive contamination level of steel open wagon surface resulted from transporting fine rare-earth minerals. Under promising transport conditions (the packaging consists of two layers of plastic bags and two layers of plastic net sacks, each package contains 50 kg of minerals, each vehicle carries 60 t), the surface radioactivity (total α and total β) of 16 vehicles on two lines from Baotou to Wujiachuan (924 km) and from Baotou to Sankeshu (2236 km) was measured before loading, after unloading and washing, using α and β surface contamination detector. The results showed that the radioactive contamination level of the vehicle surface after unloading appeared significantly different. The contamination level of vehicle bases was higher than that of both sides, long distance vehicles was higher than that of short distance vehicles. The radioactive contamination level of vehicles surface after washing was below the standard limits, these vehicles can be used for ordinary goods transport

  5. Cigarette smoking and federal black lung benefits in bituminous coal miners.

    Science.gov (United States)

    Roy, T M; Collins, L C; Snider, H L; Anderson, W H

    1989-02-01

    The records of 1000 consecutive coal miners applying for benefits under the Federal Coal Mine Health and Safety Act were examined to determine the contribution of age, dust accumulation, and cigarette smoking to the profile of the miner who satisfies the current pulmonary criteria for disability. Using the presence of pneumoconiosis on chest radiograph as the indication of significant coal dust accumulation, the miners were separated into Group A--those without pneumoconiosis (n = 316) and Group B--those with pneumoconiosis (n = 684). The federal spirometric criteria for disability identified 55/316 miners in Group A (14.5%) and 99/684 miners in Group B (17.4%) potentially eligible for an award (P = .27). The mean ages of miners in both groups did not differ significantly, nor was there difference in the mean ages of groups that did or did not meet the federal criteria. In both groups, those miners potentially eligible for a financial award smoked more cigarettes than did their counterparts (Group A, 31.0 v 18.5 pack-years, P less than .001; Group B, 31.3 v 23.6 pack-years, P less than .001). There was no difference in the smoking histories of the miners from either group who met the federal criteria. Our data indicate that, in the case of bituminous coal miners, the present federal legislation intended to identify and remunerate those who suffer lung impairment from chronic occupational exposure to coal dust is biased in favor of those who sustain additional damage to their ventilatory capacity by smoking cigarettes.

  6. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

    Science.gov (United States)

    Housley, D G; Bérubé, K A; Jones, T P; Anderson, S; Pooley, F D; Richards, R J

    2002-07-01

    The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.

  7. 30 CFR 90.210 - Respirable dust samples; report to operator.

    Science.gov (United States)

    2010-07-01

    ... MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.210 Respirable dust samples; report to operator. (a) The Secretary shall... for voiding any samples; and, (7) The Social Security Number of the part 90 miner. (b) Upon receipt...

  8. GPK helmet for protection from gas and dust

    Energy Technology Data Exchange (ETDEWEB)

    Ilinskiy, E.G.; Kogan, Yu.A.; Mazanenko, V.P.

    1983-01-01

    An examination is made of the purpose, area of application, operating principle, technical characteristics, and also results of testing a new device for individual protection of miners from gas and dust are examined.

  9. Basic terminology in the field of mine dusts:Q1 noxious to the health of miners

    Energy Technology Data Exchange (ETDEWEB)

    Piskorska-Kalisz, Z; Gruszka, J

    1979-07-01

    Forty five basic terms concerning mine dusts and fighting mine dusts are presented. The terms define various kinds of mine dusts (among others, coal dust), dustiness in underground mines, prediction and measurement of dustiness, composition of mine dusts and grain size distribution of mine dusts and fighting coal dust by spraying water mixed with chemical agents (wetting agents). It is noted that the precise definition of the basic terms in Poland is necessary for clarity. The basic terms have been explained in various publications. The last Encylopaedic Dictionary of Mining was published in Poland in 1955. (In Polish)

  10. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  11. 78 FR 25308 - Proposed Collection; Comment Request; Coal Mine Dust Sampling Devices

    Science.gov (United States)

    2013-04-30

    ...; Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION: 60-Day... mines. CPDMs must be designed and constructed for coal miners to wear and operate without impeding their... related to Coal Mine Dust Sampling Devices. MSHA is particularly interested in comments that: Evaluate...

  12. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  13. Evaluating minerals of environmental concern using spectroscopy

    Science.gov (United States)

    Swayze, G.A.; Clark, R.N.; Higgins, C.T.; Kokaly, R.F.; Livo, K. Eric; Hoefen, T.M.; Ong, C.; Kruse, F.A.

    2006-01-01

    Imaging spectroscopy has been successfully used to aid researchers in characterizing potential environmental impacts posed by acid-rock drainage, ore-processing dust on mangroves, and asbestos in serpentine mineral deposits and urban dust. Many of these applications synergistically combine field spectroscopy with remote sensing data, thus allowing more-precise data calibration, spectral analysis of the data, and verification of mapping. The increased accuracy makes these environmental evaluation tools efficient because they can be used to focus field work on those areas most critical to the research effort. The use of spectroscopy to evaluate minerals of environmental concern pushes current imaging spectrometer technology to its limits; we present laboratory results that indicate the direction for future designs of imaging spectrometers.

  14. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  15. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history

    Science.gov (United States)

    Zare Naghadehi, Masoud; Sereshki, Farhang; Mohammadi, F.

    2014-02-01

    One of the most hazardous diseases that is commonly associated with the coal mining industry is Silicosis which caused by dust inhalation. This disease occurs as a result of prolonged breathing of dust containing silica (quartz). The generation of coal mine dust during underground and surface coal mining is the most significant source of coal dust exposure. Silica dust develops scar tissue inside the lungs which reduces the lungs ability to extract oxygen from the air. All miners working in underground and surface coal mines are at risk of being exposed to mine dust containing silica. In this study, cases with pathologic diagnosis of silicosis during seven years period between 2000 and 2007 were retrieved, from the pathologic file of Department of Pathology, Massih Daneshvary Hospital in Iran. Results of this case study showed the great effects of dust exposure and inhalation from the viewpoint of symptoms especially between the miners.

  16. Impact of Asian Dust on Climate and Air Quality

    Science.gov (United States)

    Chin, Mian; Tan, Qian; Diehl, Thomas; Yu, Hongbin

    2010-01-01

    Dust generated from Asian permanent desert and desertification areas can be efficiently transported around the globe, making significant radiative impact through their absorbing and scattering solar radiation and through their deposition on snow and ice to modify the surface albedo. Asian dust is also a major concern of surface air quality not only in the source and immediate downwind regions but also areas thousands of miles away across the Pacific. We present here a global model, GOCART, analysis of data from satellite remote sensing instrument (MODIS, MISR, CALIPSO, OMI) and other observations on Asian dust sources, transport, and deposition, and use the model to assess the Asian dust impact on global climate and air quality.

  17. Middle East Desert Dust Exposure: Health Risks from Metals and Microbial Pathogens

    Science.gov (United States)

    Lyles, M. B.

    2014-12-01

    In the Middle East, dust and sand storms are a persistent problem and can deliver significant amounts of micro-particulates via inhalation into the mouth, nasal pharynx, & lungs due to the fine size and abundance of these micro-particulates. The chronic and acute health risks of this dust inhalation have not been well studied nor has the dust been effectively characterized as to its chemical composition, mineral content, or microbial flora. Scientific experiments were designed to study the Kuwaiti and Iraqi dust as to its physical, chemical, and biological characteristics and for its potential to cause adverse health effects. First, dust samples from different locations were collected and processed and exposure data collected. Initial chemical and physical characterization of each sample including particle size distribution and inorganic analysis was conducted, followed by characterization of biologic flora of the dust, including bacteria, fungi and viruses. Data indicates that the mineralized dust is composed of calcium carbonate over a matrix of metallic silicate nanocrystals containing a variety of trace and heavy metals constituting ~3 % of the PM10 particles by weight, of which ~1% is bioaccessible aluminum and reactive iron, each. The particles also consist of ~1% bioavailable aluminum and reactive iron each. Microbial analysis reveals a significant biodiversity of bacterial, fungi, and viruses of which ~30% are known pathogens. Of the microbes identified, several have hemolytic properties and most have significant antibiotic resistance. Viral analysis indicates a tremendous amount of virons with a large percent of RNA viruses. The level of total suspended particle mass at PM 10 along with environmental & physiological conditions present constitute an excessive exposure to micro-particulates including PM 2.5 and the potential for adverse health effects. Reported data on cell culture and animal studies have indicated a high level of toxicity to these dust

  18. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    Science.gov (United States)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  19. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  20. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  1. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  2. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  3. Control of dust production in ITER

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Ciattaglia, S.; Elbez-Uzan, J.

    2006-01-01

    dust, as well as production, transport, localisation, detection and cleaning studies, which are in a research phase mainly in Europe and USA. It is also pointed out that dust production itself is a study to be performed in ITER and that validation by R-and-D of simulation codes relevant from the safety point of view needs to be deepened. The strategy and needs for future R-and-D on dust production, transport and characterisation, diagnostics for production control, cleaning systems, and evaluation of dust risk explosion is discussed. (author)

  4. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    Science.gov (United States)

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  5. Long-term variability of dust-storms in Iceland

    Science.gov (United States)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  6. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  7. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  8. Agglomeration of dust in convective clouds initialized by nuclear bursts

    Science.gov (United States)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  9. Coal fly ash as a source of iron in atmospheric dust.

    Science.gov (United States)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  10. Considerations on legislation, transportation and international trade of mineral commodities containing NORM; Consideracoes sobre legislacao, transporte e comercio internacional de commodities minerais contendo NORM

    Energy Technology Data Exchange (ETDEWEB)

    Lauria, Dejanira da Costa; Borges, Flavia Luiza Soares; Villegas, Raul Alberto Sodre

    2016-07-01

    The radiation protection and transport procedures of the main importing countries of the Brazilian minerals, which are related to radioactive minerals are presented. The references and an overview about the safety procedures and guides, norms and regulations about NORM related to radiation limits for the public and personnel are also commented. The exemption values in the International Atomic Energy Agency - IAEA recommendations and the legislation of the main importers of Brazilian mineral goods: China, Europe and Community and United States are introduced.

  11. Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica: implications for atmospheric variations from regional to hemispheric scales

    Directory of Open Access Journals (Sweden)

    S. Albani

    2012-04-01

    Full Text Available Central East Antarctic ice cores preserve stratigraphic records of mineral dust originating from remote sources in the Southern Hemisphere, and represent useful indicators of climatic variations on glacial-interglacial time scales. The peripheries of the East Antarctic Ice Sheet, where ice-free areas with the potential to emit dust exist, have been less explored from this point of view. Here, we present a new profile of dust deposition flux and grain size distributions from an ice core drilled at Talos Dome (TALDICE, Northern Victoria Land, East Antarctica, where there is a significant input of dust from proximal Antarctic ice-free areas. We analyze dust and stable water isotopes variations from the Last Glacial Maximum to the Late Holocene, and compare them to the EPICA Dome C profiles from central East Antarctica. The smaller glacial-interglacial variations at Talos Dome compared to Dome C and a distinctive decreasing trend during the Holocene characterize the TALDICE dust profile. By deciphering the composite dust signal from both remote and local sources, we show the potential of this combined proxy of source activity and atmospheric transport to give information on both regional and larger spatial scales. In particular, we show how a regional signal, which we relate to the deglaciation history of the Ross Sea embayment, can be superimposed to the broader scale glacial-interglacial variability that characterizes other Antarctic sites.

  12. Proxies and measurement techinques for mineral dust in antarctic ice cores

    DEFF Research Database (Denmark)

    Ruth..[], Urs; Bigler, Matthias

    2008-01-01

    analysis), elemental analysis (inductively coupled plasma mass spectroscopy at pH 1 and after full acid digestion), and water-insoluble elemental analysis (proton induced X-ray emission). Antarctic ice core samples covering the last deglaciation from the EPICA Dome C (EDC) and the EPICA Dronning Maud Land......-MS measurements depends on the digestion method and is different for different elements and during different climatic periods. EDC and EDML samples have similar dust composition, which suggests a common dust source or a common mixture of sources for the two sites. The analyzed samples further reveal a change...

  13. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1987-01-01

    Using both large and small experimental animals, this project is investigating levels of uranium-mine air contaminants that produce respiratory system disease in miners. Lung cancer incidence and deaths from degenerative lung disease are significantly elevated among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema. Histopathological data for 100-working-level (WL) exposure rates show a significant increase in lung tumor risk over 1000-WL exposure rates for comparable cumulative radon-daughter exposures. Exposure of rats to radon daughters and other contaminants continues; the exposure of beagle dogs to uranium ore dust alone was terminated. Renal function and hematology data on ore-dust-exposed dogs are reported. 1 figure, 5 tables

  14. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    International Nuclear Information System (INIS)

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  15. Study on the alternative mitigation of cement dust spread by capturing the dust with fogging method

    Science.gov (United States)

    Purwanta, Jaka; Marnoto, Tjukup; Setyono, Prabang; Handono Ramelan, Ari

    2017-12-01

    The existence of a cement plant impact the lives of people around the factory site. For example the air quality, which is polluted by dust. Cement plant has made various efforts to mitigate the generated dust, but there are still alot of dust fly inground either from the cement factory chimneys or transportation. The purpose of this study was to conduct a review of alternative mitigation of the spread of dust around the cement plant. This study uses research methods such as collecting secondary data which includes data of rain density, the average rains duration, wind speed and direction as well as data of dust intensity quality around PT. Semen Gresik (Persero) Tbk.Tuban plant. A soft Wind rose file is used To determine the wind direction propensity models. The impact on the spread of dust into the environment is determined using secondary data monitoring air quality. Results of the study is that the mitigation of dust around the cement plant is influenced by natural factors, such as the tendency of wind direction, rain fall and rainy days, and the rate of dust emission from the chimney. The alternative means proposed is an environmental friendly fogging dust catcher.

  16. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  17. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. WRF-Chem Model Simulations of Arizona Dust Storms

    Science.gov (United States)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  19. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    Science.gov (United States)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  20. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  1. Diagnosis of the Relationship between Dust Storms over the Sahara Desert and Dust Deposit or Coloured Rain in the South Balkans

    Directory of Open Access Journals (Sweden)

    N. G. Prezerakos

    2010-01-01

    Full Text Available The main objects of study in this paper are the synoptic scale atmospheric circulation systems associated with the rather frequent phenomenon of coloured rain and the very rare phenomenon of dust or sand deposits from a Saharan sandstorm triggered by a developing strong depression. Analysis of two such cases revealed that two days before the occurrence of the coloured rain or the dust deposits over Greece a sand storm appeared over the north-western Sahara desert. The flow in the entire troposphere is southerly/south-westerly with an upward vertical motion regime. If the atmospheric conditions over Greece favour rain then this rain contains a part of the dust cloud while the rest is drawn away downstream adopting a light yellow colour. In cases where the atmospheric circulation on the route of the dust cloud trajectories is not intensively anticyclonic dust deposits can occur on the surface long far from the region of the dust origin. Such was the case on 4th April, 1988, when significant synoptic-scale subsidence occurred over Italy and towards Greece. The upper air data, in the form of synoptic maps, illustrate in detail the synoptic-scale atmospheric circulations associated with the emission-transport-deposition and confirm the transportation of dust particles.

  2. From Desert to Dessert: Why Australian Dust Matters.

    Science.gov (United States)

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and dust grain coatings is poorly understood and it also not well known how the coatings are altered during uplift and transport to the ocean. Current models to understand the processes operating during the transport and atmospheric processing of dust include some generalisations and simplifications that are not always warranted and our work has shown the overlooked complexity of the system. Models for aeolian-iron dissolution based on Northern Hemisphere data commonly include the pollutants SOx and NOx. The modern Southern Hemisphere is less polluted and thus resembles past environmental systems. The dissolution of iron from soils of the Saharan, Gobi and Australian deserts in the presence of protons only (i.e. without SOx and NOx) occurs in two phases. The first, faster phase, representing up to 20% of total iron is via a surface-controlled mechanism. The rate determining variable is the exposed surface area of the iron oxides and not the size of the underlying quartz grain. The second, slower, phase of dissolution occurs via the transport-controlled formation of a leached layer. During the simulated aeolian abrasion of Australian soils from dust producing

  3. Study on an intense dust storm over Greece

    Science.gov (United States)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Nastos, P. T.; Kosmopoulos, P. G.

    Springtime constitutes the most favorable period for Sahara dust outbreaks and transport over Eastern Mediterranean. This study investigates the aerosol properties during April 2005 using remote-sensing and ground-based measurements. Three dust events with high aerosol optical depth (AOD) values have been observed during the measuring period, with duration of two days, i.e. 11-12, 16-17 and 25-26 April 2005. In this paper we mainly focus on the intense dust event of 16-17 April 2005, when a thick dust layer transported from Libya affected the whole Greek territory. Very high AOD values obtained from Aqua-MODIS sensor were observed over Greece (mean 2.42 ± 1.25) on 17 April, while the respective mean April value was 0.31 ± 0.09. The AOD at 550 nm (AOD 550) values over Crete were even larger, reaching ˜4.0. As a consequence, the PM 10 concentrations over Athens dramatically increased reaching up to 200 μg m -3. On the other hand, the fine-mode fraction values obtained from Terra-MODIS showed a substantial decrease in the whole Greek area on 17 April with values below 0.2 in the Southern regions. The intense dust layer showed a complex behavior concerning its spatial and temporal evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport routes due to the mixing processes with other aerosol types. The results from different measurements (ground-based and remote-sensing) did not contradict each other and, therefore, are adequate for monitoring of dust load over the Eastern Mediterranean.

  4. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Directory of Open Access Journals (Sweden)

    P. Bohleber

    2018-01-01

    Full Text Available Among ice core drilling sites in the European Alps, Colle Gnifetti (CG is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  5. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of coal mine dust personal sampler units... Personal Sampler Unit § 74.5 Tests of coal mine dust personal sampler units. (a) The National Institute for... tests and evaluations to determine whether the pump unit of a CMDPSU that is submitted for approval...

  6. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  7. 77 FR 38323 - Proposed Extension of Existing Information Collection; Respirable Coal Mine Dust Sampling

    Science.gov (United States)

    2012-06-27

    ... Information Collection; Respirable Coal Mine Dust Sampling AGENCY: Mine Safety and Health Administration... Sampling'' to more accurately reflect the type of information that is collected. Chronic exposure to... dust levels since 1970 and, consequently, the prevalence rate of black lung among coal miners, severe...

  8. 30 CFR 71.100 - Respirable dust standard.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... shall be measured with an approved sampling device and expressed in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations). ...

  9. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  10. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate

    DEFF Research Database (Denmark)

    Újvári, Gábor; Stevens, Thomas; Molnár, Mihály

    2017-01-01

    Centennial-scale mineral dust peaks in last glacial Greenland ice cores match the timing of lowest Greenland temperatures, yet little is known of equivalent changes in dust-emitting regions, limiting our understanding of dust−climate interaction. Here, we present the most detailed and precise age...... model for European loess dust deposits to date, based on 125 accelerator mass spectrometry14C ages from Dunaszekcso, } Hungary. The record shows that variations in glacial dust deposition variability on centennial–millennial timescales in east central Europe and Greenland were synchronous within...

  11. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  12. The uptake of SO2 on Saharan dust: a flow tube study

    Directory of Open Access Journals (Sweden)

    J. W. Adams

    2005-01-01

    Full Text Available The uptake of SO2 onto Saharan mineral dust from the Cape Verde Islands was investigated using a coated wall flow tube coupled to a mass spectrometer. The rate of loss of SO2 to the dust coating was measured and uptake coefficients were determined using the measured BET surface area of the sample. The uptake of SO2, with an initial concentration between (2-40x1010molecule cm-3 (0.62-12 µTorr, was found to be strongly time dependent over the first few hundred seconds of an experiment, with an initial uptake γ0,BET of (6.6±0.8x10-5 (298 K, declining at longer times. The amount of SO2 adsorbed on the dust samples was measured over a range of SO2 concentrations and mineral dust loadings. The uptake of SO2 was found to be up to 98% irreversible over the timescale of these investigations. Experiments were also performed at 258 K, at a relative humidity of 27% and at 298 K in the presence of ozone. The initial uptake and the amount of SO2 taken up per unit area of BET dust surface was the same within error, irrespective of the conditions used; however the presence of ozone reduced the amount of SO2 released back into the gas-phase per unit area once exposure of the surface ended. Multiple uptakes to the same surface revealed a loss of surface reactivity, which did not return if the samples were exposed to gas-phase water, or left under vacuum overnight. A mechanism which accounts for the observed uptake behaviour is proposed and numerically modelled, allowing quantitative estimates of the rate and amount of SO2 removal in the atmosphere to be estimated. Removal of SO2 by mineral dust is predicted to be significant at high dust loadings.

  13. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Cibin, G. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX110DE (United Kingdom); IMONT/EIM, Ente Italiano della Montagna, P.za dei Caprettari 70, 00176 Roma (Italy); Universita' degli Studi di Roma Tre, Dipartimento di Scienze Geologiche, L.go S. Leonardo Murialdo 1, 00146 Roma (Italy)], E-mail: giannantonio.cibin@diamond.ac.uk; Marcelli, A. [INFN - Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Roma) (Italy); Maggi, V. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Sala, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Universita degli Studi di Milano, Dipartimento di Scienze della Terra ' A. Desio' , Sez. Mineralogia, Via Mangiagalli 34, 20133 Milano (Italy); Marino, F.; Delmonte, B. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Albani, S. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Universita degli Studi di Siena, Dottorato in Scienze Polari, via Laterina 8, 53100 Siena (Italy); Pignotti, S. [IMONT/EIM, Ente Italiano della Montagna, P.za dei Caprettari 70, 00176 Roma (Italy)

    2008-12-15

    Aeolian mineral dust archived in polar and mid latitude ice cores represents a precious proxy for assessing environmental and climatic variations at different timescales. In this respect, the identification of dust mineralogy plays a key role. In this work we performed the first preliminary X-ray absorption spectroscopy (XAS) experiments on mineral dust particles extracted from Antarctic and from Alpine firn cores using grazing incidence geometry at the Fe K-edge. A dedicated high vacuum experimental chamber was set up for normal-incidence and total-reflection X-Ray Fluorescence and Absorption Spectroscopy analyses on minor amounts of mineral materials at the Stanford Synchrotron Radiation Laboratory. Results show that this experimental technique and protocol allows recognizing iron inclusion mineral fraction on insoluble dust in the 1-10 {mu}g range.

  14. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores

    International Nuclear Information System (INIS)

    Cibin, G.; Marcelli, A.; Maggi, V.; Sala, M.; Marino, F.; Delmonte, B.; Albani, S.; Pignotti, S.

    2008-01-01

    Aeolian mineral dust archived in polar and mid latitude ice cores represents a precious proxy for assessing environmental and climatic variations at different timescales. In this respect, the identification of dust mineralogy plays a key role. In this work we performed the first preliminary X-ray absorption spectroscopy (XAS) experiments on mineral dust particles extracted from Antarctic and from Alpine firn cores using grazing incidence geometry at the Fe K-edge. A dedicated high vacuum experimental chamber was set up for normal-incidence and total-reflection X-Ray Fluorescence and Absorption Spectroscopy analyses on minor amounts of mineral materials at the Stanford Synchrotron Radiation Laboratory. Results show that this experimental technique and protocol allows recognizing iron inclusion mineral fraction on insoluble dust in the 1-10 μg range

  15. Dust Transport And Force Equilibria In Magnetized Dusty DC Discharges

    International Nuclear Information System (INIS)

    Land, Victor; Thomas, Edward Jr.; Williams, Jeremaiah

    2005-01-01

    We have performed experiments on magnetized dusty Argon DC discharges. Here we report on the characterization of the plasma- and the dustparameters and on the response of the dust particles and the plasma to a change in the magnetic configuration inside the discharge. Finally, we show a case in which the balance of forces acting on the dust particles differs from the classical balance (in which the electrostatic force balances the downward force of gravity). In this case the electrostatic force acts as a downward force on the dust particles. From observations we will argue that the ion drag force might be the force that balances this downward electrostatic force

  16. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest that more detailed treatment

  17. Phytoremediation Reduces Dust Emissions from Metal(loid)-Contaminated Mine Tailings.

    Science.gov (United States)

    Gil-Loaiza, Juliana; Field, Jason P; White, Scott A; Csavina, Janae; Felix, Omar; Betterton, Eric A; Sáez, A Eduardo; Maier, Raina M

    2018-04-27

    Environmental and health risk concerns relating to airborne particles from mining operations have focused primarily on smelting activities. However, there are only three active copper smelters and less than a dozen smelters for other metals compared to an estimated 500000 abandoned and unreclaimed hard rock mine tailings in the US that have the potential to generate dust. The problem can also extend to modern tailings impoundments, which may take decades to build and remain barren for the duration before subsequent reclamation. We examined the impact of vegetation cover and irrigation on dust emissions and metal(loid) transport from mine tailings during a phytoremediation field trial at the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site. Measurements of horizontal dust flux following phytoremediation reveals that vegetated plots with 16% and 32% canopy cover enabled an average dust deposition of 371.7 and 606.1 g m -2 y -1 , respectively, in comparison to the control treatment which emitted dust at an average rate of 2323 g m -2 y -1 . Horizontal dust flux and dust emissions from the vegetated field plots are comparable to emission rates in undisturbed grasslands. Further, phytoremediation was effective at reducing the concentration of fine particulates, including PM 1 , PM 2.5 , and PM 4 , which represent the airborne particulates with the greatest health risks and the greatest potential for long-distance transport. This study demonstrates that phytoremediation can substantially decrease dust emissions as well as the transport of windblown contaminants from mine tailings.

  18. Atmospheric deposition of radioactive cesium (137Cs) associated with dust events in East Asia

    International Nuclear Information System (INIS)

    Fujiwara, H.

    2010-01-01

    Since the cessation of atmospheric nuclear testing in 1980, there has been no known serious atmospheric contamination by radioactive cesium (sup(137)Cs) apart from the Chernobyl nuclear reactor accident in 1986. There now remain only small amounts of anthropogenic radionuclides in the atmosphere that can be directly related to past testing. However, sup(137)Cs is still regularly found in atmospheric deposition samples in Japan. In this study, we analyzed sup(137)Cs monitoring data, meteorological data, and field survey results to investigate the recent transport and deposition of sup(137)Cs associated with dust phenomena. Monthly records of nationwide sup(137)Cs deposition in Japan during the 1990s show a consistent seasonal variation, with higher levels of deposition occurring in spring. In March 2002, an unexpectedly high amount of sup(137)Cs was deposited in the northwestern coastal area of Japan at the same time as an Asian dust event was observed. Analysis of land-based weather data showed that sandstorms and other dust-raising phenomena also occurred in March 2002 over areas of Mongolia and northeastern China where grassland and shrubs predominated. Furthermore, radioactivity measurements showed sup(137)Cs enrichment in the surface layer of grassland soils in the areas affected by these sandstorms. These results suggest that grasslands are potential sources of sup(137)Cs-bearing dust. Continued desertification of the East Asian continent in response to recent climate change can be expected to result in an increase in sup(137)Cs-bearing soil particles in the atmosphere, and their subsequent re-deposition in Japan. However, soil dust is also raised around Japanese monitoring sites by the strong winds that are common in Japan in spring, and this local dust might also contribute to sup(137)Cs deposition in Japan. To estimate the relative contributions of local and distant dust events to the total sup(137)Cs deposition, we monitored deposition of mineral particles

  19. Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products

    Science.gov (United States)

    Pérez García-Pando, C.; Ginoux, P. A.

    2015-12-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.

  20. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-01-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate

  1. Mineralogy of dust deposited during the Harmattan season in Ghana

    DEFF Research Database (Denmark)

    He, Changling; Breuning-Madsen, Henrik; Awadzi, Theodore W.

    2007-01-01

    Ocean. In this project, we studied samples of dust and topsoils in various agroecological zones, from the north to the south of Ghana, focussing mainly on the mineralogy of these materials. Some data about grain sizes and morphology of the samples are also presented. Feldspars, together with quartz......In Ghana, a dust-laden Harmattan wind blows from the Sahara in the period November to March. Some of the dust is trapped in the vegetation, in lakes and other inland waters, and a little on the bare land, whereas the rest of the dust is blown further away to the Ivory Coast or out into the Atlantic......, are the common minerals found in Harmattan dust, but the relative contents of K-feldspars and plagioclase vary markedly in the different zones. This variation is consistent with changes in the relative content of the feldspars in the topsoil, indicating a substantial local contribution to the Harmattan dust...

  2. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Science.gov (United States)

    2010-07-01

    ... District Manager and posting. 71.301 Section 71.301 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... plan; approval by District Manager and posting. (a) The District Manager will approve respirable dust control plans on a mine-by-mine basis. When approving respirable dust control plans, the District Manager...

  3. Dusty air masses transport between Amazon Basin and Caribbean Islands

    Science.gov (United States)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  4. PAH-Mineral Interactions. A Laboratory Approach to Astrophysical Catalysis

    Science.gov (United States)

    Adolfo Cruz Diaz, Gustavo; Mattioda, Andrew

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules carry the infrared emission features which dominate the spectra of most galactic and extragalactic sources. Our study investigates the chemical evolution, chemical properties, physical properties, thermal stability, and photostability of samples produced from the UV-irradiation of simulated mineral dust grains coated with aromatics and astrobiologically relevant ices, using infrared spectroscopy. We investigate the chemical evolution of aromatic organics via anhydrous (no H2O ice) and hydrous (H2O ice) mechanisms. The anhydrous mechanism involves UV-induced catalytic reactions between organics and dense-cloud mineral grains, whereas the hydrous mechanism incorporates H2O-rich ice mixtures with the minerals and organics. These investigations identify the chemical and physical interactions occurring between the organic species, the dust grains and water-rich ices.These laboratory simulations also generate observable IR spectroscopic parameters for future astronomical observations with infrared telescopes such as SOFIA and JWST as well as provide empirical parameters for input into astronomical models of the early stages of planetary formation. These studies give us a deeper understanding of the potential catalytic pathways mineral surfaces provide and a deeper understanding of the role of ice-organic compositions in the chemical reaction pathways and how these processes fit into the formation of new planetary systems.In order to achieve these goals we use the Harrick ‘Praying Mantis’ Diffuse Reflectance Accessory (DRIFTS), which allows FTIR measurements of dust samples under ambient conditions by measuring the light scattered by the dust sample. We have also incorporated a low -temperature reaction chamber permitting the DRIFTS measurements at low temperatures and high-vacuum. This set-up permits the analysis of the solid particles surfaces revealing the chemical species adsorbed as well as their chemical evolution

  5. Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings.

    Science.gov (United States)

    Stovern, Michael; Guzmán, Héctor; Rine, Kyle P; Felix, Omar; King, Matthew; Ela, Wendell P; Betterton, Eric A; Sáez, Avelino Eduardo

    2016-02-01

    Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure.

  6. High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula

    KAUST Repository

    Kalenderski, Stoitchko; Stenchikov, Georgiy L.

    2016-01-01

    is mostly transported below 2 km height. Dust is the dominant contributor (87%) to the aerosol optical depth, producing a domain average cooling effect of -12.1 W m-2 at the surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W

  7. Dust emission at Franklin Lake Playa, Mojave Desert (USA): Response to meteorological and hydrologic changes 2005-2008

    Science.gov (United States)

    Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James

    2009-01-01

    Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly accumulate on the surface of Franklin Lake playa because through-going drainage prevents frequent inundation and deposition of widespread flood sediment.

  8. Developing a Dust Emission Procedure for Central Asia

    Directory of Open Access Journals (Sweden)

    Longlei Li

    2017-05-01

    Full Text Available Airborne mineral dust is thought to have a significant influence on the climate through absorbing and scattering both shortwave and longwave radiations and affecting cloud microphysical processes. However, a knowledge of long-term dust emissions is limited from both temporal and spatial perspectives. Here, we have developed a quantitative climatology: the column-integrated mass of the dust aerosol loading in Central Asia by incorporating the dust module (DuMo into the Weather Research and Forecasting coupled with Chemistry (WRF-Chem model and accounting for regional climate and Land-Cover and Land-Use Changes for the 1950-2010 period in April. This data set is lowly to moderately correlated (0.22-0.48 with the satellite Aerosol Optical Depth in April of the 2000s and lowly correlated (0.02-0.11 with the Absorbing Aerosol Index in April of the 1980s, 1990s, and 2000s. The total dust loading is approximately 207.85 Mton per month in April during the recent decade (2000-2014 over dust source regions. Although only the month of April was simulated, results suggest that trends and magnitudes are captured well, using the WRF-Chem-DuMo.

  9. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  10. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    Science.gov (United States)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  11. Using aircraft measurements to determine the refractive index of Saharan dust during the DODO Experiments

    Directory of Open Access Journals (Sweden)

    C. L. McConnell

    2010-03-01

    Full Text Available Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550 is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550 are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different

  12. Characterization of events of transport over the Mediterranean Basin during summer 2012

    Science.gov (United States)

    Bucci, Silvia; Fierli, Federico; Di Donfrancesco, Guido; Diliberto, Luca; Viterbini, Maurizio; Ravetta, François; Pap, Ines; Weinhold, Kay; Größ, Johannes; Wiedensohler, Alfred; Cairo, Francesco

    2014-05-01

    Long-range transport has a great influence on the atmospheric composition in the Mediterranean Basin (MB). This work focuses on the dust intrusion events and the outflows of polluted air from the Po Valley during the PEGASOS (Pan-European Gas-AeroSOls Climate Interaction Study), TRAQA (TRAnsport et Qualité de l'Air au dessus du bassin Méditerranéen) and Supersito Arpa (Emilia Romagna) measurements campaigns of June - July 2012. In order to investigate the sources and identify the transport patterns, numerical simulations, in-situ, remote sensing and airborne aerosol measurements were jointly used. The ground based lidar situated at the San Pietro Capofiume (SPC) station, in the eastern part of the Po Valley, provides continuous measurements of backscatter and depolarization profiles and the Aerodynamical Particle Sizer (APS), in the same site, gives the aerosol spectral distribution at the ground. Observations show two main events of mineral aerosol inflow over north Italy (19- 21 June and 29-01 July). Optical properties provide a primary discrimination between coarser (likely dust) and finer particles (probably anthropogenic). The vertical statistical distribution of the different aerosol classes shows that larger particles are mainly individuated over the Planetary Boundary Layer (PBL) level while smaller particles tend to follow the daily evolution of the PBL or remain confined under it. Dust events are also detected during the TRAQA airborne campaign in the area of the gulf of Genoa, contributing to the identification of the dust plume characterization. Cluster trajectories analysis coupled to mesoscale simulations highlights the effective export of air masses from the Sahara with frequent intrusions of dust over the Po Valley, as recorded in the observational SPC site. Transport analysis also indicates an inversion of the main advection pattern (the Po Valley outflow is mainly directed eastward in the Adriatic region) during 23th and 26th June, with a

  13. The influence of organic-containing soil dust on ice nucleation and cloud properties

    Science.gov (United States)

    Hummel, Matthias; Grini, Alf; Berntsen, Terje K.; Ekman, Annica

    2017-04-01

    Natural mineral dust from desert regions is known to be the most important contributor to atmospheric ice-nucleating particles (INP) which induce heterogeneous ice nucleation in mixed-phase clouds. Its ability to nucleate ice effectively is shown by various laboratory (Hoose and Möhler 2012) and field results (DeMott et al. 2015) and its abundance in ice crystal residuals has also been shown (Cziczo et al. 2013). Thus it is an important player when representing mixed-phase clouds in climate models. MODIS satellite data indicate that 1 /4 of the global dust emission originates from semi-arid areas rather than from arid deserts (Ginoux et al. 2012). Here, organic components can mix with minerals within the soil and get into the atmosphere. These so-called 'soil dust' particles are ice-nucleating active at high sub-zero temperatures, i.e. at higher temperatures than pure desert dust (Steinke et al. 2016). In this study, soil dust is incorporated into the Norwegian Earth System Model (NorESM, Bentsen et al. 2013) and applied to a modified ice nucleation parameterization (Steinke et al. 2016). Its influence on the cloud ice phase is evaluated by comparing a control run, where only pure desert dust is considered, and a sensitivity experiment, where a fraction of the dust emissions are classified as soil dust. Both simulations are nudged to ERA-interim meteorology and they have the same loading of dust emissions. NorESM gives a lower annual soil dust emission flux compared to Ginoux et al. (2012), but the desert dust flux is similar to the MODIS-retrieved data. Although soil dust concentrations are much lower than desert dust, the NorESM simulations indicate that the annual INP concentrations from soil dust are on average lower by a just a factor of 4 than INP concentrations from pure desert dust. The highest soil dust INP concentrations occur at a lower height than for desert dust, i.e at warmer temperatures inside mixed-phase clouds. Furthermore, soil dust INP

  14. Large-Scale Analysis of Relationships between Mineral Dust, Ice Cloud Properties, and Precipitation from Satellite Observations Using a Bayesian Approach: Theoretical Basis and First Results for the Tropical Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Lars Klüser

    2017-01-01

    Full Text Available Mineral dust and ice cloud observations from the Infrared Atmospheric Sounding Interferometer (IASI are used to assess the relationships between desert dust aerosols and ice clouds over the tropical Atlantic Ocean during the hurricane season 2008. Cloud property histograms are first adjusted for varying cloud top temperature or ice water path distributions with a Bayesian approach to account for meteorological constraints on the cloud variables. Then, histogram differences between dust load classes are used to describe the impact of dust load on cloud property statistics. The analysis of the histogram differences shows that ice crystal sizes are reduced with increasing aerosol load and ice cloud optical depth and ice water path are increased. The distributions of all three variables broaden and get less skewed in dusty environments. For ice crystal size the significant bimodality is reduced and the order of peaks is reversed. Moreover, it is shown that not only are distributions of ice cloud variables simply shifted linearly but also variance, skewness, and complexity of the cloud variable distributions are significantly affected. This implies that the whole cloud variable distributions have to be considered for indirect aerosol effects in any application for climate modelling.

  15. Radiatively-driven processes in forest fire and desert dust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Bernadett Barbara

    2008-07-01

    The absorption of solar radiation by atmospheric aerosol particles is important for the climate effects of aerosols. Absorption by aerosol particles heats atmospheric layers, even though the net effect for the entire atmospheric column may still be a cooling. Most experimental studies on absorbing aerosols so far focussed mainly on the aerosol properties and did not consider the influence of the aerosols on the thermodynamic structure of the atmosphere. In this study, data from two international aircraft field experiments, the Intercontinental Transport of Ozone and Precursors study (ITOP) 2004 and the Saharan Mineral Dust Experiment (SAMUM) 2006 are investigated. The ITOP data were collected before the work on this thesis started, while the logistics and the instrument preparation of the SAMUM campaign, the weather forecast during SAMUM and the in-situ aerosol measurements during SAMUM were done within this thesis. The experimental data are used to explore the impact of layers containing absorbing forest fire and desert dust aerosol particles on the atmospheric stability and the implications of a changed stability on the development of the aerosol microphysical and optical properties during long-range transport. For the first time, vertical profiles of the Richardson number Ri are used to assess the stability and mixing in forest fire and desert dust plumes. Also for the first time, the conclusions drawn from the observations of forest fire and desert dust aerosol, at first glance apparently quite different aerosol types, are discussed from a common perspective. Two mechanisms, the selfstabilising and the sealed ageing effect, acting in both forest fire and desert dust aerosol layers, are proposed to explain the characteristic temperature structure as well as the aerosol properties observed in lofted forest fire and desert dust plumes. The proposed effects impact on the ageing of particles within the plumes and reduce the plume dilution, therefore extending the

  16. Dust emission: small-scale processes with global consequences

    Science.gov (United States)

    Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.

  17. Improved dust representation in the Community Atmosphere Model

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.; Perry, A. T.; Scanza, R. A.; Zender, C. S.; Heavens, N. G.; Maggi, V.; Kok, J. F.; Otto-Bliesner, B. L.

    2014-09-01

    Aerosol-climate interactions constitute one of the major sources of uncertainty in assessing changes in aerosol forcing in the anthropocene as well as understanding glacial-interglacial cycles. Here we focus on improving the representation of mineral dust in the Community Atmosphere Model and assessing the impacts of the improvements in terms of direct effects on the radiative balance of the atmosphere. We simulated the dust cycle using different parameterization sets for dust emission, size distribution, and optical properties. Comparing the results of these simulations with observations of concentration, deposition, and aerosol optical depth allows us to refine the representation of the dust cycle and its climate impacts. We propose a tuning method for dust parameterizations to allow the dust module to work across the wide variety of parameter settings which can be used within the Community Atmosphere Model. Our results include a better representation of the dust cycle, most notably for the improved size distribution. The estimated net top of atmosphere direct dust radiative forcing is -0.23 ± 0.14 W/m2 for present day and -0.32 ± 0.20 W/m2 at the Last Glacial Maximum. From our study and sensitivity tests, we also derive some general relevant findings, supporting the concept that the magnitude of the modeled dust cycle is sensitive to the observational data sets and size distribution chosen to constrain the model as well as the meteorological forcing data, even within the same modeling framework, and that the direct radiative forcing of dust is strongly sensitive to the optical properties and size distribution used.

  18. Transport of vanadium (V in saturated porous media: effects of pH, ionic-strength and clay mineral

    Directory of Open Access Journals (Sweden)

    Yulu Wang

    2016-10-01

    Full Text Available Vanadium, a hazardous pollutant, has been frequently detected in soil and groundwater, however, its transport behavior in porous media were not clearly understood. In this study, the effects of solution pH, ionic strength (IS and the effect of clay mineral on the transport of vanadium in saturated porous media were investigated. Laboratory experiments using a series of columns packed with quartz sand were carried out to explore the retention and transport of vanadium with a range of ionic-strength (0.001–0.1 M and pH (4–8 and two different types of clay minerals montmorillonite and kaolinite. Results of the breakthrough experiments showed that vanadium was highly mobile in the saturated porous media. The increase in pH rendered a higher transport of vanadium in saturated porous media. The study also indicated an easier transfer of vanadium with an increase in IS. Montmorillonite enhanced the mobility of vanadium in the column when compared to kaolinite. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions was used to describe the retention and transport of vanadium in the columns very well.

  19. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China

    Science.gov (United States)

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu

    2017-06-01

    The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm mixed with dust particles. The significant alterations of the chemical composition and mixing state of particles due to heterogeneous reactions are important for the direct and indirect climate effects of dust and anthropogenic aerosols.

  20. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    Directory of Open Access Journals (Sweden)

    M. L. Lamare

    2016-01-01

    Full Text Available Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  1. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    Science.gov (United States)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water

  2. Comet Dust: The Diversity of Primitive Particles and Implications

    Science.gov (United States)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  3. Optical properties of non-spherical desert dust particles in the terrestrial infrared – An asymptotic approximation approach

    International Nuclear Information System (INIS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-01-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz–Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz–Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz–Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz–Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex. - Highlights: • A fast and simple method for estimating optical properties of dust. • Can be used with non-spherical particles of arbitrary size distributions. • Comparison with Mie simulations and

  4. Correlation between Yellow Dust and Radioactivity

    International Nuclear Information System (INIS)

    AIZaabia, Mouza A; Kim, Byoung-Jik

    2015-01-01

    In East Asia, yellow dust or Asian Dust (AD) outbreaks are among the largest contributors of wind-blown dust that carry natural and anthropogenic radionuclides and subsequently alter their concentration and distribution throughout the environment. Although the Korean Peninsula has been experiencing AD events since ancient times, the research has tended to focus on the transport routes and characteristics of AD, rather than on its impact on radionuclide activity levels. This paper examines the relationship between radionuclide concentration in the air and the frequency of dusty days in South Korea during AD intrusion events. It also investigates whether increased radionuclide concentration is a function of either more mass or more dust contamination. In this study, significant linear correlations of gamma-emitting radionuclides were found with mass of dust and occurrence frequency of AD. Regardless of the source origin of the dust, 137 Cs and 7 Be concentration primarily depended on dust mass in the filter. Nonetheless, the correlations were greatly distorted in 2011 and in the spring season, particularly the correlations with AD days that were far below that of the correlations obtained for the whole study period. A possible explanation of these conflicting results is that a change in the dust source could appreciably alter the concentration, deposition, and distribution of airborne radionuclides

  5. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Science.gov (United States)

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  7. Deciphering the Role of Desert Dust in the Climate Puzzle: The Mediterranean Israeli Dust Experiment (MEIDEX)

    Science.gov (United States)

    Levin, Zev; Joseph, Joachim; Mekler, Yuri; Israelevich, Peter; Ganor, Eli; Hilsenrath, Ernest; Janz, Scott

    2002-01-01

    Numerous studies have shown that aerosol particles may be one of the primary agents that can offset the climate warming induced by the increase in the amount of atmospheric greenhouse gases. Desert aerosols are probably the most abundant and massive type of aerosol particles that are present in the atmosphere worldwide. These aerosols are carried over large distances and have various global impacts. They interact with clouds, impact the efficiency of their rain production and change their optical properties. They constitute one of the primary sources of minerals for oceanic life and influence the health of coral reefs. They have direct effects on human health, especially by inducing breathing difficulties in children. It was lately discovered that desert particles carry pathogens from the Sahara desert over the Atlantic Ocean, a fact that may explain the migration of certain types of diseases. Aerosols not only absorb solar radiation but also scatter it, so that their climatic effect is influenced not only by their physical properties and height distribution but also by the reflectivity of the underlying surface. This latter property changes greatly over land and is low over ocean surfaces. Aerosol plumes are emitted from discrete, sporadic sources in the desert areas of the world and are transported worldwide by the atmosphere's wind systems. For example, Saharan dust reaches Mexico City, Florida, Ireland, Switzerland and the Mediterranean region, while Asian dust reaches Alaska, Hawaii and the continental United States. This means that in order to assess its global effects, one must observe dust from space. The Space Shuttle is a unique platform, because it flies over the major deserts of our planet, enabling measurements and remote sensing of the aerosols as they travel from source to sink regions. Such efforts must always be accompanied by in-situ data for validation and calibration, with direct sampling of the airborne particles. MEIDEX is a joint project of

  8. Assessment of respirable dust and its free silica contents in different Indian coalmines.

    Science.gov (United States)

    Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N

    2005-04-01

    Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.

  9. Characterization of east Asian dust outbreaks in the spring of 2001 using ground-based and satellite data

    Science.gov (United States)

    Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton

    2005-01-01

    This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the

  10. Impact of dust and smoke mixing on column-integrated aerosol properties from observations during a severe wildfire episode over Valencia (Spain).

    Science.gov (United States)

    Gómez-Amo, J L; Estellés, V; Marcos, C; Segura, S; Esteve, A R; Pedrós, R; Utrillas, M P; Martínez-Lozano, J A

    2017-12-01

    The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    International Nuclear Information System (INIS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-01-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite ± tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  12. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rietmeijer, Frans J. M. [Department of Earth and Planetary Sciences, MSC 03 2040, 1-University of New Mexico, Albuquerque, NM 87131-001 (United States); Nuth, Joseph A., E-mail: fransjmr@unm.edu [Astrochemistry Laboratory, Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  13. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  14. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    Directory of Open Access Journals (Sweden)

    D. Rieger

    2017-11-01

    Full Text Available The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  15. Geochemical evidence for diversity of dust sources in the southwestern United States

    Science.gov (United States)

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.

    2002-01-01

    Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.

  16. Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/ice core records and calibrated with NASA remote sensing data

    Science.gov (United States)

    Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.

    2007-12-01

    The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust

  17. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust

  18. Long-term dust aerosol production from natural sources in Iceland.

    Science.gov (United States)

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution. Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and

  19. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2008-08-01

    Full Text Available Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.

  20. Optical characteristics of desert dust over the East Mediterranean during summer: a case study

    Directory of Open Access Journals (Sweden)

    D. Balis

    2006-05-01

    Full Text Available High aerosol optical depth (AOD values, larger than 0.6, are systematically observed in the Ultraviolet (UV region both by sunphotometers and lidar systems over Greece during summertime. To study in more detail the characteristics and the origin of these high AOD values, a campaign took place in Greece in the frame of the PHOENICS (Particles of Human Origin Extinguishing Natural solar radiation In Climate Systems and EARLINET (European Aerosol Lidar Network projects during August–September of 2003, which included simultaneous sunphotometric and lidar measurements at three sites covering the north-south axis of Greece: Thessaloniki, Athens and Finokalia, Crete. Several events with high AOD values have been observed over the measuring sites during the campaign period, many of them corresponding to Saharan dust. In this paper we focused on the event of 30 and 31 August 2003, when a dust layer in the height range of 2000-5000 m, progressively affected all three stations. This layer showed a complex behavior concerning its spatial evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport due to aging and mixing with other types of aerosol. The extinction-to-backscatter ratio determined on the 30 August 2003 at Thessaloniki was approximately 50 sr, characteristic for rather spherical mineral particles, and the measured color index of 0.4 was within the typical range of values for desert dust. Mixing of the desert dust with other sources of aerosols resulted the next day in overall smaller and less absorbing population of particles with a lidar ratio of 20 sr. Mixing of polluted air-masses originating from Northern Greece and Crete and Saharan dust result in very high aerosol backscatter values reaching 7 Mm-1 sr-1 over Finokalia. The Saharan dust observed over Athens followed a different spatial evolution and was not mixed with the boundary layer aerosols mainly originating from

  1. Saharan dust event impacts on cloud formation and radiation over Western Europe

    Directory of Open Access Journals (Sweden)

    M. Bangert

    2012-05-01

    Full Text Available We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties.

    The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l−1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds.

    Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected. This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to −75 W m−2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80 W m−2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10 W m−2.

    The

  2. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Science.gov (United States)

    2010-07-01

    ... gases, dust, fumes, mists, and vapors. 71.700 Section 71.700 Mineral Resources MINE SAFETY AND HEALTH... limit values for gases, dust, fumes, mists, and vapors. (a) No operator of an underground coal mine and... limit values adopted by the American Conference of Governmental Industrial Hygienists in “Threshold...

  3. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    Science.gov (United States)

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  4. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  5. Correlation between Yellow Dust and Radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    AIZaabia, Mouza A [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Byoung-Jik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    In East Asia, yellow dust or Asian Dust (AD) outbreaks are among the largest contributors of wind-blown dust that carry natural and anthropogenic radionuclides and subsequently alter their concentration and distribution throughout the environment. Although the Korean Peninsula has been experiencing AD events since ancient times, the research has tended to focus on the transport routes and characteristics of AD, rather than on its impact on radionuclide activity levels. This paper examines the relationship between radionuclide concentration in the air and the frequency of dusty days in South Korea during AD intrusion events. It also investigates whether increased radionuclide concentration is a function of either more mass or more dust contamination. In this study, significant linear correlations of gamma-emitting radionuclides were found with mass of dust and occurrence frequency of AD. Regardless of the source origin of the dust, {sup 137}Cs and {sup 7}Be concentration primarily depended on dust mass in the filter. Nonetheless, the correlations were greatly distorted in 2011 and in the spring season, particularly the correlations with AD days that were far below that of the correlations obtained for the whole study period. A possible explanation of these conflicting results is that a change in the dust source could appreciably alter the concentration, deposition, and distribution of airborne radionuclides.

  6. Long-range transport of dust aerosols over the Arabian Sea and Indian region – A case study using satellite data and ground-based measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Badarinath, K.V.S.; Kharol, S.K.; Kaskaoutis, D.G.; Sharma, A; Ramaswamy, V.; Kambezidis, H.D.

    The present study addresses an intense dust storm event over the Persian Gulf and the Arabian Sea (AS) region and its transport over the Indian subcontinent using multi-satellite observations and ground-based measurements. A time series of Indian...

  7. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    Science.gov (United States)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and

  8. Role of dust alkalinity in acid mobilization of iron

    OpenAIRE

    A. Ito; Y. Feng

    2010-01-01

    Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III) form) to soluble forms (e.g., Fe(II), inorganic soluble species of Fe(III), and organic complexes of iron). On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkali...

  9. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    Science.gov (United States)

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  10. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

    Science.gov (United States)

    Lu, Huizhong; Cao, Longxi; Liang, Yin; Yuan, Jiuqin; Zhu, Yayun; Wang, Yi; Gu, Yalan; Zhao, Qiguo

    2017-08-01

    Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH4+ and SO42- transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH4+ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg-1) to the gully (8.23 mg kg-1) and outside the tailing heap (13.03 mg kg-1). The contents of SO42- in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg-1. During typical rainfall events, the absorbed NH4+ concentrations (2.05, 1.26 mg L-1) in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L-1), while the absorbed SO42- concentrations (2.87, 1.92 mg L-1) were significantly lower than the dissolved concentrations (6.55, 7.51 mg L-1). The dissolved NH4+ and SO42- concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance (Y = 1. 02 ṡ exp( - 0. 00312X); Y = 3. 34 ṡ exp( - 0. 0185X)). No clear trend with increasing distance was observed for the absorbed NH4+ and SO42- contents in transported sediment. The NH4+ and SO42- contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings, which can provide a scientific foundation for erosion control and soil management in rare-earth tailing regions in southern China.

  11. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  12. Silica exposure and silicosis among Ontario hardrock miners: II. Exposure estimates.

    Science.gov (United States)

    Verma, D K; Sebestyen, A; Julian, J A; Muir, D C; Schmidt, H; Bernholz, C D; Shannon, H S

    1989-01-01

    An epidemiological investigation was carried out to determine the relationship between silicosis in hardrock miners in Ontario and cumulative exposure to silica (free crystalline silica--alpha quartz) dust. This second report describes a side-by-side air-sampling program used to derive a konimeter/gravimetric silica conversion curve. A total of 2,360 filter samples and 90,000 konimeter samples were taken over 2 years in two mines representing the ore types gold and uranium, both in existing conditions as well as in an experimental stope in which dry drilling was used to simulate the high dust conditions of the past. The method of calculating cumulative respirable silica exposure indices for each miner is reported.

  13. Geochemical Identification of Windblown Dust Deposits in the Upper Permian Brushy Canyon Formation, Southern New Mexico

    Science.gov (United States)

    Tice, M. M.; Motanated, K.; Weiss, R.

    2009-12-01

    Windblown dust is a potentially important but difficult-to-quantify source of siliciclastics for sedimentary basins worldwide. Positively identifying windblown deposits requires distinguishing them from other low density suspension transport deposits. For instance, laminated very fine grained sandstones and siltstones of the Upper Permian Brushy Canyon Formation have been variously interpreted as 1) the deposits of slow-moving, low-density turbidity currents, 2) distal overbank deposits of turbidity currents, 3) the deposits of turbulent suspensions transported across a pycnocline (interflows), and 4) windblown dust. This facies forms the bulk of Brushy Canyon Formation slope deposits, so understanding its origin is critical to understanding the evolution of the basin as a whole. We use a geochemical mapping technique (x-ray fluorescence microscopy) to show that these rocks are up to two times enriched in very fine sand sized zircon and rutile grains relative to Bouma A divisions of interbedded turbidites, suggesting substantial turbulence during transport. However, in contrast with the A divisions, the laminated sandstones and siltstones never show evidence of scour or amalgamation, implying that flow turbulence did not interact with underlying beds. Moreover, proximal loess deposits are often characterized by elevated Zr/Al2O3. These observations are most consistent with windblown interpretations for Brushy Canyon Formation slope sediments, and suggest that evolution of this early deepwater slope system was controlled largely by short-distance aeolian transport of very fine sand and silt from the coast. Heavy mineral incorporation into Brushy Canyon Formation slope deposits as reflected in laminae-scale bulk Zr and Ti abundances may preserve a long-term record of local wind intensity during the Upper Permian.

  14. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia

    OpenAIRE

    Wu, Guangjian; Zhang, Chenglong; Li, Zhongqin; Zhang, Xuelei; Gao, Shaopeng

    2012-01-01

    This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol) in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau). This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5...

  15. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  16. Geochemical evidence on the source regions of Tibetan Plateau dusts during non-monsoon period in 2008/09

    Science.gov (United States)

    Li, C.; Kang, S.; Zhang, Q.; Gao, S.

    2012-12-01

    Geochemical characteristics, source regions and related transport patterns of dust over the Tibetan Plateau (TP) are still unclear. To address these issues, major (Na, Mg, Al, K and Ca), trace (e.g. Li, Cr, Ni, As, Cd, Cs, Pb and U) and rare earth elements of dust samples from five snow-pits over the TP and its fringe areas during the non-monsoon period in 2008/2009 were analyzed. The results indicate that rare earth element compositions of snow-pit dust are similar to those of the upper continental crust. Enrichment factors of all the elements of snow-pit dust are identical to those of the pollution elements (e.g. Cu and Ni) and elements like Li, As and Cs that are concentrated in surface soils. In contrast, concentrations of some typical pollution elements (e.g. Cr and Cd) of snow pit dust are lower than those of dusts derived from the Sahara Desert and the Thar Desert surrounding the TP. Additionally, the compositions of rare earth elements and high field strength elements (Hf, Zr and Nb) of snow-pit dust are also similar to those of surface soils and different from dusts of these two deserts. The combined evidence, including dust transport patterns around the TP, supports the conclusion that the TP itself is the main source region of snow-pit dusts of the inner TP. It is unlikely that those particle-bound pollutants are transported into the TP from outside sources during the non-monsoon period. Ratios of Ce/Sm against Eu/Sm for the snow-pit dust, fine dust from the Sahara desert (A), and ratios of Ce/Er against Eu/Er for the snow-pit dust, fine dust from the Thar Desert (B). Dust from Sahasa cannot penetrate into the TP and transport only along the Himalayas at south and the Tianshan at north due to their high elevation

  17. Discharge power dependence of carbon dust flux in a divertor simulator

    International Nuclear Information System (INIS)

    Nishiyama, Katsushi; Morita, Yasuhiko; Uchida, Giichiro; Yamashita, Daisuke; Kamataki, Kunihiro; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Ashikawa, Naoko; Masuzaki, Suguru; Nishimura, Kiyohiko; Sagara, Akio; Bornholdt, Sven; Kersten, Holger

    2013-01-01

    In fusion devices, dust particles are generated due to plasma–wall interactions and may cause safety or operational problems. Therefore it is necessary to clarify the generation and transport mechanisms of dust particles. Here we have measured energy influx from H 2 plasmas toward a graphite target using a calorimetric probe and compared the results with the dust flux toward a dust collecting substrate set on the reactor wall. The dust flux decreases with increasing the energy influx. For the higher discharge power, the more number of dust particles tend to redeposit onto the graphite target due to the higher ion drag force and hence the dust flux toward the reactor wall becomes smaller. The results show that dust inventory depends strongly on energy influx to graphite divertor plates in fusion devices

  18. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    Science.gov (United States)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  19. The dissolution of natural and artificial dusts in glutamic acid

    Science.gov (United States)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  20. The risk of pulmonary tuberculosis in underground copper miners in Zambia exposed to respirable silica: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kingsley Ngosa

    2016-08-01

    Full Text Available Abstract Background Pulmonary tuberculosis (PTB among underground miners exposed to silica remains a global problem. Although well described in gold and coal mining, risk in other mining entities are not as well documented. This study aims to determine dust-related dose response risk for PTB among underground miners exposed to silica dust in Zambia's copper mines. Methods A cross sectional study of in-service miners (n = 357 was conducted at Occupational Health and Safety Institute (OHSI, Zambia. A systematic review of medical data over a 5-year period from assessments conducted by doctors at OHSI and statutory silica exposure data (n = 16678 from the Mine Safety Department (MSD were analysed. Lifetime cumulative exposure metrics were calculated. Multivariate logistic regression analysis was used to determine the association between PTB and lifetime exposure to silica, while adjusting for various confounders. Results The median respirable silica dust level was 0.3 mg/m3 (range 0.1–1.3. The overall prevalence of PTB was 9.5 % (n = 34. High cumulative respirable silica dust category showed a statistically significant association with PTB (OR = 6.4 (95 % CI 1. 8–23 and a significant trend of increasing disease prevalence with increasing cumulative respirable silica dust categories was observed (ptrend < 0.01. Smoking showed a statistically significant association with PTB with OR = 4.3 (95 % CI 1.9–9.9. Conclusions Our results demonstrate the association of increased risk for certified active TB with cumulative respirable dust in a dose related manner among this sample of copper miners. There is need to intensify dust control measures and incorporate anti-smoking interventions into TB prevention and control programmes in the mines.

  1. Ground level and Lidar monitoring of volcanic dust and dust from Patagonia

    Science.gov (United States)

    Otero, L. A.; Losno, R.; Salvador, J. O.; Journet, E.; Qu, Z.; Triquet, S.; Monna, F.; Balkanski, Y.; Bulnes, D.; Ristori, P. R.; Quel, E. J.

    2013-05-01

    A combined approach including ground level aerosol sampling, lidar and sunphotometer measurements is used to monitor suspended particles in the atmosphere at several sites in Patagonia. Motivated by the Puyehue volcanic eruption in June 2011 two aerosol monitoring stations with several passive and active instruments were installed in Bariloche and Comodoro Rivadavia. The main goal which is to monitor ground lifted and transported ashes and dust involving danger to civil aviation, is achieved by measuring continuously aerosol concentration at ground level and aerosol vertical distribution using lidar. In addition, starting from December 2011, continuous series of weekly accumulated aerosol concentrations at Rio Gallegos are being measured to study the impact of Patagonian dust over the open ocean on phytoplankton primary productivity and CO2 removal. These measurements are going to be coupled with LIDAR monitoring and a dust optical response models to test if aerosol extrapolation can be done from the ground to the top of the layer. Laboratory chemical analysis of the aerosols will include elemental composition, solubilisation kinetic and mineralogical determination. Expected deliverables for this study is the estimation of the amount of dust exported from Patagonia towards the South Atlantic, its chemical properties, including bioavailability simulation, from model and comparison to experimental measurements.

  2. Radiographic outcomes among South African coal miners.

    Science.gov (United States)

    Naidoo, Rajen N; Robins, Thomas G; Solomon, A; White, Neil; Franzblau, Alfred

    2004-10-01

    This study, the first to document the prevalence of pneumoconiosis among a living South African coal mining cohort, describes dose-response relationships between coal workers' pneumoconiosis and respirable dust exposure, and relationships between pneumoconiosis and both lung function deterioration and respiratory symptoms. A total of 684 current miners and 188 ex-miners from three bituminous-coal mines in Mpumalanga, South Africa, was studied. Chest radiographs were read according to the International Labour Organization (ILO) classification by two experienced readers, one an accredited National Institute for Occupational Safety and Health (NIOSH) "B" reader. Interviews were conducted to assess symptoms, work histories (also obtained from company records), smoking, and other risk factors. Spirometry was performed by trained technicians. Cumulative respirable dust exposure (CDE) estimates were constructed from historical company-collected sampling and researcher-collected personal dust measurements. kappa-Statistics compared the radiographic outcomes predicted by the two readers. An average profusion score was used in the analysis for the outcomes of interest. Because of possible confounding by employment status, most analyses were stratified on current and ex-miner status. The overall prevalence of pneumoconiosis was low (2%-4%). The degree of agreement between the two readers for profusion was moderate to high (kappa=0.58). A significant association (Pminers only. A significant (Pminers with pneumoconiosis than among those without. Logistic regression models showed no significant relationships between pneumoconiosis and symptoms. The overall prevalence of pneumoconiosis, although significantly associated with CDE, was low. The presence of pneumoconiosis is associated with meaningful health effects, including deterioration in lung function. Intervention measures that control exposure are indicated, to reduce these functional effects.

  3. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  4. Carcinogenesis of inhaled radio daughters with uranium ore dust in beagle dogs

    International Nuclear Information System (INIS)

    Filipy, R.E.; Dagle, G.E.; Palmer, R.F.; Stuart, B.O.

    1977-01-01

    Daily exposures of adult beagle dogs to inhaled radon daughters and to uranium ore dust for 4-1/2 to 6 yr have produced respiratory tract carcinomas, at similar cumulative working level months (WLM) of exposures to those which induced carcinomas in uranium miners. Biological data from the beagle-dog experiments can therefore be used for prediction of carcinogenic risk under changing exposure conditions in future uranium miners

  5. The Western Australian mineral sands industry: radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    The need for radiation protection in the mineral sand industry derives from the production and handling of monazite, a rare earth phosphate which contains 6 to 7% thorium. The purpose of this booklet is to outline the complex and detailed radiation protection surveillance program already in place. It is estimated that the quality of radiation protection has improved in recent years with respect to reporting and recording-keeping dust sampling procedures, analytical determination, training and instruction, as well as to a corporate commitment to implement dust reduction strategies. 15 figs., 2 tabs., ills

  6. The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds

    International Nuclear Information System (INIS)

    Hoose, C; Lohmann, U; Erdin, R; Tegen, I

    2008-01-01

    Mineral dust is the dominant natural ice nucleating aerosol. Its ice nucleation efficiency depends on the mineralogical composition. We show the first sensitivity studies with a global climate model and a three-dimensional dust mineralogy. Results show that, depending on the dust mineralogical composition, coating with soluble material from anthropogenic sources can lead to quasi-deactivation of natural dust ice nuclei. This effect counteracts the increased cloud glaciation by anthropogenic black carbon particles. The resulting aerosol indirect effect through the glaciation of mixed-phase clouds by black carbon particles is small (+0.1 W m -2 in the shortwave top-of-the-atmosphere radiation in the northern hemisphere)

  7. 30 CFR 90.209 - Respirable dust samples; transmission by operator.

    Science.gov (United States)

    2010-07-01

    ... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.209 Respirable dust samples; transmission by operator. (a) The operator shall transmit within 24 hours after the end of the sampling shift all samples...

  8. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    Science.gov (United States)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  9. Infrared emission from isolated dust clouds in the presence of very small dust grains

    Science.gov (United States)

    Lis, Dariusz C.; Leung, Chun M.

    1991-01-01

    Models of the effects of small grain-generated temperature fluctuations on the IR spectrum and surface brightness of externally heated interstellar dust clouds are presently constructed on the basis of a continuum radiation transport computer code which encompasses the transient heating of small dust grains. The models assume a constant fractional abundance of large and small grains throughout the given cloud. A comparison of model results with IRAS observations indicates that the observed 12-25 micron band emissions are associated with about 10-A radius grains, while the 60-100 micron emission is primarily due to large grains which are heated under the equilibrium conditions.

  10. Direct radiative effects during intense Mediterranean desert dust outbreaks

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2018-06-01

    temperature at 2 m by up to 4 K during day-time, whereas a reverse tendency of similar magnitude is found during night-time. Depending on the vertical distribution of dust loads and time, mineral particles heat (cool the atmosphere by up to 0.9 K (0.8 K during day-time (night-time within atmospheric dust layers. Beneath and above the dust clouds, mineral particles cool (warm the atmosphere by up to 1.3 K (1.2 K at noon (night-time. On a regional mean basis, negative feedbacks on the total emitted dust (reduced by 19.5 % and dust AOD (reduced by 6.9 % are found when dust interacts with the radiation. Through the consideration of dust radiative effects in numerical simulations, the model positive and negative biases for the downward surface SW or LW radiation, respectively, with respect to Baseline Surface Radiation Network (BSRN measurements, are reduced. In addition, they also reduce the model near-surface (at 2 m nocturnal cold biases by up to 0.5 K (regional averages, as well as the model warm biases at 950 and 700 hPa, where the dust concentration is maximized, by up to 0.4 K. However, improvements are relatively small and do not happen in all episodes because other model first-order errors may dominate over the expected improvements, and the misrepresentation of the dust plumes' spatiotemporal features and optical properties may even produce a double penalty effect. The enhancement of dust forecasts via data assimilation techniques may significantly improve the results.

  11. Minor sources of miner exposure

    International Nuclear Information System (INIS)

    Strong, J.C.; Green, N.; Brown, K.; O'Riordan, M.C.

    1983-01-01

    The sources of radiation exposure to miners in non-coal mines in addition to radon daughters are thoron daughters in mine air, long-lived radionuclides in mine dust and gamma radiation from the local rocks. A crude estimate of the total annual effective dose equivalent from these minor sources is 2 - 5 mSv which is of secondary importance compared to the dose from radon daughters. (UK)

  12. Regularities of dust formation during stone cutting for construction works

    Directory of Open Access Journals (Sweden)

    V.G. Lebedev

    2016-09-01

    Full Text Available When cutting stone, a large amount of dust release, which is a mixture of small, mostly sharp, mineral particles. Shallow dry dust with inhalation causes the pathological changes in organs that are a consequence of infiltration of acute and solids particles. Despite the importance of this problem, the questions of dust generation during the various working processes and its fractions distribution are practically not considered. This determines the time of dust standing in the air and its negative impact on a person. Aim: The aim of this research is to study the process of dusting during stones cutting and dust distribution on fractions regularities and quantification of dust formation process in order to improve the production equipment, staff individual and collective safety equipment. Materials and Methods: Many types of cutting can be divided into two types - a “dry” cutting and cutting with fluid. During “dry” cutting a dust represents a set of micro-chips which are cut off by the abrasive grains. The size of such chips very small: from a micrometer to a few micrometers fraction. Thus, the size of chips causes the possibility of creating dust slurry with low fall velocity, and which is located in the working space in large concentrations. Results: The following characteristic dependences were obtained as a result of research: dependence of the dust fall from the size of the dust particles, size of dust particles from minute feeding and grain range wheel, the specific amount of dust from the number of grit abrasive wheel and the temperature of the dust particles from the feeding at wheel turnover. It was shown that the distribution of chips (dust by size will request of a normal distribution low. Dimensions of chips during cut are in the range of 0.4...6 μm. Thus, dust slurry is formed with time of particles fall of several hours. This creates considerable minute dust concentration - within 0.28∙10^8...1.68∙10^8 units/m3.

  13. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    Science.gov (United States)

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  14. Evaluating inter-continental transport of fine aerosols:(2) Global health impact

    Science.gov (United States)

    Liu, Junfeng; Mauzerall, Denise L.; Horowitz, Larry W.

    In this second of two companion papers, we quantify for the first time the global impact on premature mortality of the inter-continental transport of fine aerosols (including sulfate, black carbon, organic carbon, and mineral dust) using the global modeling results of (Liu et al., 2009). Our objective is to estimate the number of premature mortalities in each of ten selected continental regions resulting from fine aerosols transported from foreign regions in approximately year 2000. Our simulated annual mean population-weighted (P-W) concentrations of total PM2.5 (aerosols with diameter less than 2.5 μm) are highest in East Asia (EA, 30 μg m -3) and lowest in Australia (3.6 μg m -3). Dust is the dominant component of PM2.5 transported between continents. We estimate global annual premature mortalities (for adults age 30 and up) due to inter-continental transport of PM2.5 to be nearly 380 thousand (K) in 2000. Approximately half of these deaths occur in the Indian subcontinent (IN), mostly due to aerosols transported from Africa and the Middle East (ME). Approximately 90K deaths globally are associated with exposure to foreign (i.e., originating outside a receptor region) non-dust PM2.5. More than half of the premature mortalities associated with foreign non-dust aerosols are due to aerosols originating from Europe (20K), ME (18K) and EA (15K); and nearly 60% of the 90K deaths occur in EA (21K), IN (19K) and Southeast Asia (16K). The lower and higher bounds of our estimated 95% confidence interval (considering uncertainties from the concentration-response relationship and simulated aerosol concentrations) are 18% and 240% of the estimated deaths, respectively, and could be larger if additional uncertainties were quantified. We find that in 2000 nearly 6.6K premature deaths in North America (NA) were associated with foreign PM2.5 exposure (5.5K from dust PM2.5). NA is least impacted by foreign PM2.5 compared to receptors on the Eurasian continent. However, the

  15. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over

  16. The microphysics of the Saharan dust and its implications on climate

    International Nuclear Information System (INIS)

    Kalu, A.E.

    1987-12-01

    A strong influence of Saharan dust plumes on the microphysics of cumulus clouds, especially along their long-distance transport trajectories into cloudy regions of the world, has been discussed and illustrated. This climate-related influence is primarily based on the observed anhydrous non-hygroscopic property of the Saharan dust, otherwise known as the Harmattan dust haze in Nigeria. An observational feature of the dust-cloud interaction which is strongly climate-related is the rapid clearance of cumulus clouds on arrival of a dust plume. This is because aeolian dust particles and water droplets cannot coexist comfortably. A useful practical application of this influence of the dust on clouds by means of atmospheric teleconnection principles for fine-weather prediction in cloudy remote regions seasonally affected by dust plumes from the Sahara, has therefore been suggested. (author). 37 refs, 6 figs, 3 tabs, 3 plates

  17. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    Science.gov (United States)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the

  18. Neutron activation analysis on sediments from Victoria Land, Antarctica. Multi-elemental characterization of potential atmospheric dust sources

    International Nuclear Information System (INIS)

    Baccolo, G.; Maggi, V.; Baroni, C.; Clemenza, M.; Motta, A.; Nastasi, M.; Previtali, E.; University of Milano-Bicocca, Milan; Delmonte, B.; Salvatore, M.C.

    2014-01-01

    The elemental composition of 40 samples of mineral sediments collected in Victoria Land, Antarctica, in correspondence of ice-free sites, is presented. Concentration of 36 elements was determined by instrumental neutron activation analysis, INAA. The selection of 6 standard reference materials and the development of a specific analytical procedure allowed to reduce measurements uncertainties and to verify the reproducibility of the results. The decision to analyze sediment samples from Victoria Land ice-free areas is related to recent investigations regarding mineral dust content in the TALos Dome ICE core (159deg11'E; 72deg49'S, East Antarctica, Victoria Land), in which a coarse local fraction of dust was recognized. The characterization of Antarctic potential source areas of atmospheric mineral dust is the first step to identify the active sources of dust for the Talos Dome area and to reconstruct the atmospheric pathways followed by air masses in this region during different climatic periods. Principal components analysis was used to identify elements and samples correlations; attention was paid specially to rare earth elements (REE) and incompatible/compatible elements (ICE) in respect to iron, which proved to be the most discriminating elemental groups. The analysis of REE and ICE concentration profiles supported evidences of chemical weathering in ice-free areas of Victoria Land, whereas cold and dry climate conditions of the Talos Dome area and in general of East Antarctica. (author)

  19. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1985-01-01

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema. Histopathologic data from rats are shown for approximately 300- to 10,000-working-level-month (WLM) radon-daughter exposures. Exposure of male rats to radon daughters and uranium ore dust continues, along with exposure of male and female beagle dogs to uranium ore dust alone. 4 tables

  20. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which