WorldWideScience

Sample records for mimd distributed memory

  1. The design of a standard message passing interface for distributed memory concurrent computers

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.W.

    1993-10-01

    This paper presents an overview of MPI, a proposed standard message passing interface for MIMD distributed memory concurrent computers. The design of MPI has been a collective effort involving researchers in the United States and Europe from many organizations and institutions. MPI includes point-to-point and collective communication routines, as well as support for process groups, communication contexts, and application topologies. While making use of new ideas where appropriate, the MPI standard is based largely on current practice.

  2. Architecture independent environment for developing engineering software on MIMD computers

    Science.gov (United States)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  3. Maximizing sparse matrix vector product performance in MIMD computers

    Energy Technology Data Exchange (ETDEWEB)

    McLay, R.T.; Kohli, H.S.; Swift, S.L.; Carey, G.F.

    1994-12-31

    A considerable component of the computational effort involved in conjugate gradient solution of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP), and hence it is the focus of most efforts at improving performance. Such efforts are hindered on MIMD machines due to constraints on memory, cache and speed of memory-cpu data transfer. This paper describes a strategy for maximizing the performance of the local computations associated with the MVP. The method focuses on single stride memory access, and the efficient use of cache by pre-loading it with data that is re-used while bypassing it for other data. The algorithm is designed to behave optimally for varying grid sizes and number of unknowns per gridpoint. Results from an assembly language implementation of the strategy on the iPSC/860 show a significant improvement over the performance using FORTRAN.

  4. Platforms for artificial neural networks : neurosimulators and performance prediction of MIMD-parallel systems

    NARCIS (Netherlands)

    Vuurpijl, L.G.

    1998-01-01

    In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to

  5. Platforms for artificial neural networks : neurosimulators and performance prediction of MIMD-parallel systems

    NARCIS (Netherlands)

    Vuurpijl, L.G.

    1998-01-01

    In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to

  6. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov

    1995-01-01

    in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers...

  7. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov

    1995-01-01

    in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers...... performance can we expect to achieve? Why? 2.Solving systems of linear equations using a Strassen-type matrix-inversion algorithm. A good way to solve systems of linear equations on massively parallel computers? 3.Aspects of computing the singular value decomposition on the Connec-tion Machine CM-5/CM-5E...

  8. Total recall in distributive associative memories

    Science.gov (United States)

    Danforth, Douglas G.

    1991-01-01

    Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.

  9. Porting of a serial molecular dynamics code on MIMD platforms

    Energy Technology Data Exchange (ETDEWEB)

    Celino, M. [ENEA Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). HPCN Project

    1999-07-01

    A molecular dynamics (MD) code, utilized for the study of atomistic models of metallic systems has been parallelized for MIMD (multiple instructions multiple data) parallel platforms by means of the parallel virtual machine (PVM) message passing library. Since the parallelization implies modifications of the sequential algorithms, these are described from the point of view of the statistical mechanical theory. Furthermore, techniques and parallelization strategies utilized and the MD parallel code are described in detail. Benchmarks on several MIMD platforms (IBM SP1, SP2, Cray T3D, cluster of workstations) allow performances evaluation of the code versus the different characteristics of the parallel platforms. [Italian] Un codice seriale di dinamica molecolare (MD) utilizzato per lo studio di modelli atomici di materiali metallici e' stato parallelizzato per piattaforme parallele MIMD (multiple instructions multiple data) utilizzando librerie del parallel virtual machine (PVM). Poiche' l'operazione di parallelizzazione ha implicato la modifica degli algoritmi seriali del codice, questi vengono descritti ripercorrendo i concetti fondamentali della meccanica statistica. Inoltre sono presentate le tecniche e le strategie di parallelizzazione utilizzate descrivendo in dettaglio il codice parallelo di MD: Risultati di benchmark su diverse piattaforme MIMD (IBM SP1, SP2, Cray T3D, cluster of workstations) permettono di analizzare le performances del codice in funzione delle differenti caratteristiche delle piattaforme parallele.

  10. Integer sparse distributed memory: analysis and results.

    Science.gov (United States)

    Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun

    2013-10-01

    Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented.

  11. Programming distributed memory architectures using Kali

    Science.gov (United States)

    Mehrotra, Piyush; Vanrosendale, John

    1990-01-01

    Programming nonshared memory systems is more difficult than programming shared memory systems, in part because of the relatively low level of current programming environments for such machines. A new programming environment is presented, Kali, which provides a global name space and allows direct access to remote data values. In order to retain efficiency, Kali provides a system on annotations, allowing the user to control those aspects of the program critical to performance, such as data distribution and load balancing. The primitives and constructs provided by the language is described, and some of the issues raised in translating a Kali program for execution on distributed memory systems are also discussed.

  12. Distributed memory compiler design for sparse problems

    Science.gov (United States)

    Wu, Janet; Saltz, Joel; Berryman, Harry; Hiranandani, Seema

    1991-01-01

    A compiler and runtime support mechanism is described and demonstrated. The methods presented are capable of solving a wide range of sparse and unstructured problems in scientific computing. The compiler takes as input a FORTRAN 77 program enhanced with specifications for distributing data, and the compiler outputs a message passing program that runs on a distributed memory computer. The runtime support for this compiler is a library of primitives designed to efficiently support irregular patterns of distributed array accesses and irregular distributed array partitions. A variety of Intel iPSC/860 performance results obtained through the use of this compiler are presented.

  13. In-Memory Computing Architectures for Sparse Distributed Memory.

    Science.gov (United States)

    Kang, Mingu; Shanbhag, Naresh R

    2016-08-01

    This paper presents an energy-efficient and high-throughput architecture for Sparse Distributed Memory (SDM)-a computational model of the human brain [1]. The proposed SDM architecture is based on the recently proposed in-memory computing kernel for machine learning applications called Compute Memory (CM) [2], [3]. CM achieves energy and throughput efficiencies by deeply embedding computation into the memory array. SDM-specific techniques such as hierarchical binary decision (HBD) are employed to reduce the delay and energy further. The CM-based SDM (CM-SDM) is a mixed-signal circuit, and hence circuit-aware behavioral, energy, and delay models in a 65 nm CMOS process are developed in order to predict system performance of SDM architectures in the auto- and hetero-associative modes. The delay and energy models indicate that CM-SDM, in general, can achieve up to 25 × and 12 × delay and energy reduction, respectively, over conventional SDM. When classifying 16 × 16 binary images with high noise levels (input bad pixel ratios: 15%-25%) into nine classes, all SDM architectures are able to generate output bad pixel ratios (Bo) ≤ 2%. The CM-SDM exhibits negligible loss in accuracy, i.e., its Bo degradation is within 0.4% as compared to that of the conventional SDM.

  14. Environmental concept for engineering software on MIMD computers

    Science.gov (United States)

    Lopez, L. A.; Valimohamed, K.

    1989-01-01

    The issues related to developing an environment in which engineering systems can be implemented on MIMD machines are discussed. The problem is presented in terms of implementing the finite element method under such an environment. However, neither the concepts nor the prototype implementation environment are limited to this application. The topics discussed include: the ability to schedule and synchronize tasks efficiently; granularity of tasks; load balancing; and the use of a high level language to specify parallel constructs, manage data, and achieve portability. The objective of developing a virtual machine concept which incorporates solutions to the above issues leads to a design that can be mapped onto loosely coupled, tightly coupled, and hybrid systems.

  15. Distributed terascale volume visualization using distributed shared virtual memory

    KAUST Repository

    Beyer, Johanna

    2011-10-01

    Table 1 illustrates the impact of different distribution unit sizes, different screen resolutions, and numbers of GPU nodes. We use two and four GPUs (NVIDIA Quadro 5000 with 2.5 GB memory) and a mouse cortex EM dataset (see Figure 2) of resolution 21,494 x 25,790 x 1,850 = 955GB. The size of the virtual distribution units significantly influences the data distribution between nodes. Small distribution units result in a high depth complexity for compositing. Large distribution units lead to a low utilization of GPUs, because in the worst case only a single distribution unit will be in view, which is rendered by only a single node. The choice of an optimal distribution unit size depends on three major factors: the output screen resolution, the block cache size on each node, and the number of nodes. Currently, we are working on optimizing the compositing step and network communication between nodes. © 2011 IEEE.

  16. Distributed Shared Memory for the Cell Broadband Engine (DSMCBE)

    DEFF Research Database (Denmark)

    Larsen, Morten Nørgaard; Skovhede, Kenneth; Vinter, Brian

    2009-01-01

    in and out of non-coherent local storage blocks for each special processor element. In this paper we present a software library, namely the Distributed Shared Memory for the Cell Broadband Engine (DSMCBE). By using techniques known from distributed shared memory DSMCBE allows programmers to program the CELL...

  17. Shark: Fast Data Analysis Using Coarse-grained Distributed Memory

    Science.gov (United States)

    2013-05-01

    Shark : Fast Data Analysis Using Coarse-grained Distributed Memory Clifford Engle Electrical Engineering and Computer Sciences University of...TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Shark : Fast Data Analysis Using Coarse-grained Distributed Memory 5a...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Shark is a

  18. Memory-assisted measurement-device-independent quantum key distribution

    Science.gov (United States)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  19. Distributed representations in memory: insights from functional brain imaging.

    Science.gov (United States)

    Rissman, Jesse; Wagner, Anthony D

    2012-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses.

  20. Distributed trace using central performance counter memory

    Science.gov (United States)

    Satterfield, David L.; Sexton, James C.

    2013-01-22

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  1. A comparison of distributed memory and virtual shared memory parallel programming models

    Energy Technology Data Exchange (ETDEWEB)

    Keane, J.A. [Univ. of Manchester (United Kingdom). Dept. of Computer Science; Grant, A.J. [Univ. of Manchester (United Kingdom). Computer Graphics Unit; Xu, M.Q. [Argonne National Lab., IL (United States)

    1993-04-01

    The virtues of the different parallel programming models, shared memory and distributed memory, have been much debated. Conventionally the debate could be reduced to programming convenience on the one hand, and high salability factors on the other. More recently the debate has become somewhat blurred with the provision of virtual shared memory models built on machines with physically distributed memory. The intention of such models/machines is to provide scalable shared memory, i.e. to provide both programmer convenience and high salability. In this paper, the different models are considered from experiences gained with a number of system ranging from applications in both commerce and science to languages and operating systems. Case studies are introduced as appropriate.

  2. Execution time support for scientific programs on distributed memory machines

    Science.gov (United States)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  3. Supporting shared data structures on distributed memory architectures

    Science.gov (United States)

    Koelbel, Charles; Mehrotra, Piyush; Vanrosendale, John

    1990-01-01

    Programming nonshared memory systems is more difficult than programming shared memory systems, since there is no support for shared data structures. Current programming languages for distributed memory architectures force the user to decompose all data structures into separate pieces, with each piece owned by one of the processors in the machine, and with all communication explicitly specified by low-level message-passing primitives. A new programming environment is presented for distributed memory architectures, providing a global name space and allowing direct access to remote parts of data values. The analysis and program transformations required to implement this environment are described, and the efficiency of the resulting code on the NCUBE/7 and IPSC/2 hypercubes are described.

  4. Quantum associative memory with improved distributed queries

    CERN Document Server

    Njafa, J -P Tchapet; Woafo, Paul

    2012-01-01

    The paper proposes an improved quantum associative algorithm with distributed query based on model proposed by Ezhov et al. We introduce two modifications of the query that optimized data retrieval of correct multi-patterns simultaneously for any rate of the number of the recognition pattern on the total patterns. Simulation results are given.

  5. Communication Lower Bounds for Distributed-Memory Computations

    DEFF Research Database (Denmark)

    Scquizzato, Michele; Silvestri, Francesco

    2014-01-01

    In this paper we propose a new approach to the study of the communication requirements of distributed computations, which advocates for the removal of the restrictive assumptions under which earlier results were derived. We illustrate our approach by giving tight lower bounds on the communication...... complexity required to solve several computational problems in a distributed-memory parallel machine, namely standard matrix multiplication, stencil computations, comparison sorting, and the Fast Fourier Transform. Our bounds rely only on a mild assumption on work distribution, and significantly strengthen...... previous results which require either the computation to be balanced among the processors, or specific initial distributions of the input data, or an upper bound on the size of processors' local memories....

  6. PRISMA database machine: A distributed, main-memory approach

    NARCIS (Netherlands)

    Schmidt, J.W.; Apers, Peter M.G.; Ceri, S.; Kersten, Martin L.; Oerlemans, Hans C.M.; Missikoff, M.

    1988-01-01

    The PRISMA project is a large-scale research effort in the design and implementation of a highly parallel machine for data and knowledge processing. The PRISMA database machine is a distributed, main-memory database management system implemented in an object-oriented language that runs on top of a m

  7. Lifetime-Based Memory Management for Distributed Data Processing Systems

    DEFF Research Database (Denmark)

    Lu, Lu; Shi, Xuanhua; Zhou, Yongluan

    2016-01-01

    In-memory caching of intermediate data and eager combining of data in shuffle buffers have been shown to be very effective in minimizing the re-computation and I/O cost in distributed data processing systems like Spark and Flink. However, it has also been widely reported that these techniques would...

  8. PRISMA database machine: A distributed, main-memory approach

    NARCIS (Netherlands)

    Apers, Peter M.G.; Kersten, Martin L.; Oerlemans, Hans C.M.; Schmidt, J.W.; Ceri, S.; Missikoff, M.

    1988-01-01

    The PRISMA project is a large-scale research effort in the design and implementation of a highly parallel machine for data and knowledge processing. The PRISMA database machine is a distributed, main-memory database management system implemented in an object-oriented language that runs on top of a m

  9. Sparse Distributed Memory: understanding the speed and robustness of expert memory

    Directory of Open Access Journals (Sweden)

    Marcelo Salhab Brogliato

    2014-04-01

    Full Text Available How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the `tip-of-tongue' memory event--which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve to this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory.

  10. Memory Allocation in Distributed Storage Networks

    CERN Document Server

    Sardari, Mohsen; Fekri, Faramarz; Soljanin, Emina

    2010-01-01

    We consider the problem of distributing a file in a network of storage nodes whose storage budget is limited but at least equals to the size file. We first generate $T$ encoded symbols (from the file) which are then distributed among the nodes. We investigate the optimal allocation of $T$ encoded packets to the storage nodes such that the probability of reconstructing the file by using any $r$ out of $n$ nodes is maximized. Since the optimal allocation of encoded packets is difficult to find in general, we find another objective function which well approximates the original problem and yet is easier to optimize. We find the optimal symmetric allocation for all coding redundancy constraints using the equivalent approximate problem. We also investigate the optimal allocation in random graphs. Finally, we provide simulations to verify the theoretical results.

  11. Large Data Visualization on Distributed Memory Mulit-GPU Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Henry R.

    2010-03-01

    Data sets of immense size are regularly generated on large scale computing resources. Even among more traditional methods for acquisition of volume data, such as MRI and CT scanners, data which is too large to be effectively visualization on standard workstations is now commonplace. One solution to this problem is to employ a 'visualization cluster,' a small to medium scale cluster dedicated to performing visualization and analysis of massive data sets generated on larger scale supercomputers. These clusters are designed to fit a different need than traditional supercomputers, and therefore their design mandates different hardware choices, such as increased memory, and more recently, graphics processing units (GPUs). While there has been much previous work on distributed memory visualization as well as GPU visualization, there is a relative dearth of algorithms which effectively use GPUs at a large scale in a distributed memory environment. In this work, we study a common visualization technique in a GPU-accelerated, distributed memory setting, and present performance characteristics when scaling to extremely large data sets.

  12. Lifetime-Based Memory Management for Distributed Data Processing Systems

    DEFF Research Database (Denmark)

    Lu, Lu; Shi, Xuanhua; Zhou, Yongluan;

    2016-01-01

    In-memory caching of intermediate data and eager combining of data in shuffle buffers have been shown to be very effective in minimizing the re-computation and I/O cost in distributed data processing systems like Spark and Flink. However, it has also been widely reported that these techniques would...... create a large amount of long-living data objects in the heap, which may quickly saturate the garbage collector, especially when handling a large dataset, and hence would limit the scalability of the system. To eliminate this problem, we propose a lifetime-based memory management framework, which......, by automatically analyzing the user-defined functions and data types, obtains the expected lifetime of the data objects, and then allocates and releases memory space accordingly to minimize the garbage collection overhead. In particular, we present Deca, a concrete implementation of our proposal on top of Spark...

  13. Lifetime-Based Memory Management for Distributed Data Processing Systems

    DEFF Research Database (Denmark)

    Lu, Lu; Shi, Xuanhua; Zhou, Yongluan;

    2016-01-01

    , by automatically analyzing the user-defined functions and data types, obtains the expected lifetime of the data objects, and then allocates and releases memory space accordingly to minimize the garbage collection overhead. In particular, we present Deca, a concrete implementation of our proposal on top of Spark......In-memory caching of intermediate data and eager combining of data in shuffle buffers have been shown to be very effective in minimizing the re-computation and I/O cost in distributed data processing systems like Spark and Flink. However, it has also been widely reported that these techniques would...... create a large amount of long-living data objects in the heap, which may quickly saturate the garbage collector, especially when handling a large dataset, and hence would limit the scalability of the system. To eliminate this problem, we propose a lifetime-based memory management framework, which...

  14. Distributed Shared Memory for the Cell Broadband Engine (DSMCBE)

    DEFF Research Database (Denmark)

    Larsen, Morten Nørgaard; Skovhede, Kenneth; Vinter, Brian

    2009-01-01

    in and out of non-coherent local storage blocks for each special processor element. In this paper we present a software library, namely the Distributed Shared Memory for the Cell Broadband Engine (DSMCBE). By using techniques known from distributed shared memory DSMCBE allows programmers to program the CELL......The CELL-BE processor provides high performance and has been shown to reach a performance close to the theoretical peak, however, the high performance comes at the price of a quite complex programming model. Central to the complexity of the CELL-BE programming model is the need to move data......-BE with relative ease and in addition scale their applications to use multiple CELL-BE processors in a network. Performance experiments show that a quite high performance can be obtained with DSMCBE even in a cluster environment....

  15. A portable implementation of ARPACK for distributed memory parallel architectures

    Energy Technology Data Exchange (ETDEWEB)

    Maschhoff, K.J.; Sorensen, D.C.

    1996-12-31

    ARPACK is a package of Fortran 77 subroutines which implement the Implicitly Restarted Arnoldi Method used for solving large sparse eigenvalue problems. A parallel implementation of ARPACK is presented which is portable across a wide range of distributed memory platforms and requires minimal changes to the serial code. The communication layers used for message passing are the Basic Linear Algebra Communication Subprograms (BLACS) developed for the ScaLAPACK project and Message Passing Interface(MPI).

  16. A Linear Algebra Framework for Static High Performance Fortran Code Distribution

    Directory of Open Access Journals (Sweden)

    Corinne Ancourt

    1997-01-01

    Full Text Available High Performance Fortran (HPF was developed to support data parallel programming for single-instruction multiple-data (SIMD and multiple-instruction multiple-data (MIMD machines with distributed memory. The programmer is provided a familiar uniform logical address space and specifies the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors, and to migrate data between processors when required. We show here that linear algebra is a powerful framework to encode HPF directives and to synthesize distributed code with space-efficient array allocation, tight loop bounds, and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, and overlap analysis. The systematic use of an affine framework makes it possible to prove the compilation scheme correct.

  17. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    Directory of Open Access Journals (Sweden)

    Danish Shehzad

    2016-01-01

    Full Text Available Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  18. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    Science.gov (United States)

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  19. Parallel Breadth-First Search on Distributed Memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Computational Research Division; Buluc, Aydin; Madduri, Kamesh

    2011-04-15

    Data-intensive, graph-based computations are pervasive in several scientific applications, and are known to to be quite challenging to implement on distributed memory systems. In this work, we explore the design space of parallel algorithms for Breadth-First Search (BFS), a key subroutine in several graph algorithms. We present two highly-tuned par- allel approaches for BFS on large parallel systems: a level-synchronous strategy that relies on a simple vertex-based partitioning of the graph, and a two-dimensional sparse matrix- partitioning-based approach that mitigates parallel commu- nication overhead. For both approaches, we also present hybrid versions with intra-node multithreading. Our novel hybrid two-dimensional algorithm reduces communication times by up to a factor of 3.5, relative to a common vertex based approach. Our experimental study identifies execu- tion regimes in which these approaches will be competitive, and we demonstrate extremely high performance on lead- ing distributed-memory parallel systems. For instance, for a 40,000-core parallel execution on Hopper, an AMD Magny- Cours based system, we achieve a BFS performance rate of 17.8 billion edge visits per second on an undirected graph of 4.3 billion vertices and 68.7 billion edges with skewed degree distribution.

  20. Optimized Parallel Execution of Declarative Programs on Distributed Memory Multiprocessors

    Institute of Scientific and Technical Information of China (English)

    沈美明; 田新民; 等

    1993-01-01

    In this paper,we focus on the compiling implementation of parlalel logic language PARLOG and functional language ML on distributed memory multiprocessors.Under the graph rewriting framework, a Heterogeneous Parallel Graph Rewriting Execution Model(HPGREM)is presented firstly.Then based on HPGREM,a parallel abstact machine PAM/TGR is described.Furthermore,several optimizing compilation schemes for executing declarative programs on transputer array are proposed.The performance statistics on transputer array demonstrate the effectiveness of our model,parallel abstract machine,optimizing compilation strategies and compiler.

  1. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  2. Distributing Working Memory Resources and the Use of External Representations on Problem Solving

    OpenAIRE

    大塚, 一徳; 宮谷, 真人

    2007-01-01

    This study examines how problem solvers use distributing working memory resources over internal and external epresentations. Participants played three-dimensional versions of number guessing games. The playing of number guessing games is directly related to consumption of working memory resources. They could use arbitrarily the game record windows which are the external representations of these games and, thus, they could distribute working memory demands over internal working memory resource...

  3. Conversion via software of a simd processor into a mimd processor

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, A.; Gerzso, M.; Norkin, K.B.; Vilenkin, S.Y.

    1983-01-01

    A method is described which takes a pure LISP program and automatically decomposes it via automatic parallelization into several parts, one for each processor of an SIMD architecture. Each of these parts is a different execution flow, i.e., a different program. The execution of these different programs by an SIMD architecture is examined. The method has been developed in some detail for the PS-2000, an SIMD Soviet multiprocessor, making it behave like AHR, a Mexican MIMD multi-microprocessor. Both the PS-2000 and AHR execute a pure LISP program in parallel; its decomposition into >n> pieces, their synchronization, scheduling, etc., are performed by the system (hardware and software). In order to achieve simultaneous execution of different programs in an SIMD processor, the method uses a scheme of node scheduling and node exportation. 14 references.

  4. Migration of vectorized iterative solvers to distributed memory architectures

    Energy Technology Data Exchange (ETDEWEB)

    Pommerell, C. [AT& T Bell Labs., Murray Hill, NJ (United States); Ruehl, R. [CSCS-ETH, Manno (Switzerland)

    1994-12-31

    Both necessity and opportunity motivate the use of high-performance computers for iterative linear solvers. Necessity results from the size of the problems being solved-smaller problems are often better handled by direct methods. Opportunity arises from the formulation of the iterative methods in terms of simple linear algebra operations, even if this {open_quote}natural{close_quotes} parallelism is not easy to exploit in irregularly structured sparse matrices and with good preconditioners. As a result, high-performance implementations of iterative solvers have attracted a lot of interest in recent years. Most efforts are geared to vectorize or parallelize the dominating operation-structured or unstructured sparse matrix-vector multiplication, or to increase locality and parallelism by reformulating the algorithm-reducing global synchronization in inner products or local data exchange in preconditioners. Target architectures for iterative solvers currently include mostly vector supercomputers and architectures with one or few optimized (e.g., super-scalar and/or super-pipelined RISC) processors and hierarchical memory systems. More recently, parallel computers with physically distributed memory and a better price/performance ratio have been offered by vendors as a very interesting alternative to vector supercomputers. However, programming comfort on such distributed memory parallel processors (DMPPs) still lags behind. Here the authors are concerned with iterative solvers and their changing computing environment. In particular, they are considering migration from traditional vector supercomputers to DMPPs. Application requirements force one to use flexible and portable libraries. They want to extend the portability of iterative solvers rather than reimplementing everything for each new machine, or even for each new architecture.

  5. Sensorimotor memory of object weight distribution during multidigit grasp.

    Science.gov (United States)

    Albert, Frederic; Santello, Marco; Gordon, Andrew M

    2009-10-09

    We studied the ability to transfer three-digit force sharing patterns learned through consecutive lifts of an object with an asymmetric center of mass (CM). After several object lifts, we asked subjects to rotate and translate the object to the contralateral hand and perform one additional lift. This task was performed under two weight conditions (550 and 950 g) to determine the extent to which subjects would be able to transfer weight and CM information. Learning transfer was quantified by measuring the extent to which force sharing patterns and peak object roll on the first post-translation trial resembled those measured on the pre-translation trial with the same CM. We found that the overall gain of fingertip forces was transferred following object rotation, but that the scaling of individual digit forces was specific to the learned digit-object configuration, and thus was not transferred following rotation. As a result, on the first post-translation trial there was a significantly larger object roll following object lift-off than on the pre-translation trial. This suggests that sensorimotor memories for weight, requiring scaling of fingertip force gain, may differ from memories for mass distribution.

  6. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  7. Parallel matrix transpose algorithms on distributed memory concurrent computers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Walker, D.W. [Oak Ridge National Lab., TN (United States); Dongarra, J.J. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science

    1993-10-01

    This paper describes parallel matrix transpose algorithms on distributed memory concurrent processors. It is assumed that the matrix is distributed over a P x Q processor template with a block scattered data distribution. P, Q, and the block size can be arbitrary, so the algorithms have wide applicability. The communication schemes of the algorithms are determined by the greatest common divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algorithm involves complete exchange communication. If P and Q are not relatively prime, processors are divided into GCD groups and the communication operations are overlapped for different groups of processors. Processors transpose GCD wrapped diagonal blocks simultaneously, and the matrix can be transposed with LCM/GCD steps, where LCM is the least common multiple of P and Q. The algorithms make use of non-blocking, point-to-point communication between processors. The use of nonblocking communication allows a processor to overlap the messages that it sends to different processors, thereby avoiding unnecessary synchronization. Combined with the matrix multiplication routine, C = A{center_dot}B, the algorithms are used to compute parallel multiplications of transposed matrices, C = A{sup T}{center_dot}B{sup T}, in the PUMMA package. Details of the parallel implementation of the algorithms are given, and results are presented for runs on the Intel Touchstone Delta computer.

  8. Translation techniques for distributed-shared memory programming models

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Douglas James [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The high performance computing community has experienced an explosive improvement in distributed-shared memory hardware. Driven by increasing real-world problem complexity, this explosion has ushered in vast numbers of new systems. Each new system presents new challenges to programmers and application developers. Part of the challenge is adapting to new architectures with new performance characteristics. Different vendors release systems with widely varying architectures that perform differently in different situations. Furthermore, since vendors need only provide a single performance number (total MFLOPS, typically for a single benchmark), they only have strong incentive initially to optimize the API of their choice. Consequently, only a fraction of the available APIs are well optimized on most systems. This causes issues porting and writing maintainable software, let alone issues for programmers burdened with mastering each new API as it is released. Also, programmers wishing to use a certain machine must choose their API based on the underlying hardware instead of the application. This thesis argues that a flexible, extensible translator for distributed-shared memory APIs can help address some of these issues. For example, a translator might take as input code in one API and output an equivalent program in another. Such a translator could provide instant porting for applications to new systems that do not support the application's library or language natively. While open-source APIs are abundant, they do not perform optimally everywhere. A translator would also allow performance testing using a single base code translated to a number of different APIs. Most significantly, this type of translator frees programmers to select the most appropriate API for a given application based on the application (and developer) itself instead of the underlying hardware.

  9. Translation techniques for distributed-shared memory programming models

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Douglas James

    2005-08-01

    The high performance computing community has experienced an explosive improvement in distributed-shared memory hardware. Driven by increasing real-world problem complexity, this explosion has ushered in vast numbers of new systems. Each new system presents new challenges to programmers and application developers. Part of the challenge is adapting to new architectures with new performance characteristics. Different vendors release systems with widely varying architectures that perform differently in different situations. Furthermore, since vendors need only provide a single performance number (total MFLOPS, typically for a single benchmark), they only have strong incentive initially to optimize the API of their choice. Consequently, only a fraction of the available APIs are well optimized on most systems. This causes issues porting and writing maintainable software, let alone issues for programmers burdened with mastering each new API as it is released. Also, programmers wishing to use a certain machine must choose their API based on the underlying hardware instead of the application. This thesis argues that a flexible, extensible translator for distributed-shared memory APIs can help address some of these issues. For example, a translator might take as input code in one API and output an equivalent program in another. Such a translator could provide instant porting for applications to new systems that do not support the application's library or language natively. While open-source APIs are abundant, they do not perform optimally everywhere. A translator would also allow performance testing using a single base code translated to a number of different APIs. Most significantly, this type of translator frees programmers to select the most appropriate API for a given application based on the application (and developer) itself instead of the underlying hardware.

  10. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    Science.gov (United States)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  11. Adaptive Dynamic Process Scheduling on Distributed Memory Parallel Computers

    Directory of Open Access Journals (Sweden)

    Wei Shu

    1994-01-01

    Full Text Available One of the challenges in programming distributed memory parallel machines is deciding how to allocate work to processors. This problem is particularly important for computations with unpredictable dynamic behaviors or irregular structures. We present a scheme for dynamic scheduling of medium-grained processes that is useful in this context. The adaptive contracting within neighborhood (ACWN is a dynamic, distributed, load-dependent, and scalable scheme. It deals with dynamic and unpredictable creation of processes and adapts to different systems. The scheme is described and contrasted with two other schemes that have been proposed in this context, namely the randomized allocation and the gradient model. The performance of the three schemes on an Intel iPSC/2 hypercube is presented and analyzed. The experimental results show that even though the ACWN algorithm incurs somewhat larger overhead than the randomized allocation, it achieves better performance in most cases due to its adaptiveness. Its feature of quickly spreading the work helps it outperform the gradient model in performance and scalability.

  12. Differentiation and Response Bias in Episodic Memory: Evidence from Reaction Time Distributions

    Science.gov (United States)

    Criss, Amy H.

    2010-01-01

    In differentiation models, the processes of encoding and retrieval produce an increase in the distribution of memory strength for targets and a decrease in the distribution of memory strength for foils as the amount of encoding increases. This produces an increase in the hit rate and decrease in the false-alarm rate for a strongly encoded compared…

  13. The reminiscence bump without memories: The distribution of imagined word-cued and important autobiographical memories in a hypothetical 70-year-old

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Berntsen, Dorthe

    2016-01-01

    of autobiographical memories per se, most notably factors that aid in their encoding or retention, by asking students to generate imagined word-cued and imagined ‘most important’ autobiographical memories of a hypothetical, prototypical 70-year-old of their own culture and gender. We compared the distribution...... of these fictional memories with the distributions of actual word-cued and most important autobiographical memories in a sample of 61–70-year-olds. We found a striking similarity between the temporal distributions of the imagined memories and the actual memories. These results suggest that the reminiscence bump...

  14. Topology Dependence in Lattice Simulations of Non-Linear Pdes on a Mimd Computer

    Science.gov (United States)

    Valin, P.; Goulard, B.; Sanielevici, M.

    We tested the parallelization of explicit schemes for the solution of non-linear classical field theories of complex scalar fields which are capable of simulating hadronic collisions. Our attention focused on collisions in a fractional model with a particularly rich inelastic spectrum of final states. Relativistic collisions of all types were performed by computer on large lattices (64 to 256 sites per dimension). The stability and accuracy of the objects were tested by the use of two other methods of solutions: Pseudo-spectral and semi-implicit. Parallelization of the Fortran code on a 64-transputer MIMD Volvox machine revealed, for certain topologies, communication deadlock and less-than-optimum routing strategies when the number of transputers used was less than the maximum. The observed speedup, for N transputers in an appropriate topology, is shown to scale approximately as N, but the overall gain in execution speed, for physically interesting problems, is a modest 2-3 when compared to state-of-the-art workstations.

  15. Associative memory model with long-tail-distributed Hebbian synaptic connections

    Directory of Open Access Journals (Sweden)

    Naoki eHiratani

    2013-02-01

    Full Text Available The postsynaptic potentials of pyramidal neurons have a non-Gaussian amplitude distribution with a heavy tail in both hippocampus and neocortex. Such distributions of synaptic weights were recently shown to generate spontaneous internal noise optimal for spike propagation in recurrent cortical circuits. However, whether this internal noise generation by heavy-tailed weight distributions is possible for and beneficial to other computational functions remains unknown. To clarify this point, we construct an associative memory network model of spiking neurons that stores multiple memory patterns in a connection matrix with a lognormal weight distribution. In associative memory networks, non-retrieved memory patterns generate a cross-talk noise that severely disturbs memory recall. We demonstrate that neurons encoding a retrieved memory pattern and those encoding non-retrieved memory patterns have different subthreshold membrane-potential distributions in our model. Consequently, the probability of responding to inputs at strong synapses increases for the encoding neurons, whereas it decreases for the non-encoding neurons. Our results imply that heavy-tailed distributions of connection weights can generate noise useful for associative memory recall.

  16. Parallelizing Sylvester-like operations on a distributed memory computer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, D.Y.; Sorensen, D.C. [Rice Univ., Houston, TX (United States)

    1994-12-31

    Discretization of linear operators arising in applied mathematics often leads to matrices with the following structure: M(x) = (D {circle_times} A + B {circle_times} I{sub n} + V)x, where x {element_of} R{sup mn}, B, D {element_of} R{sup nxn}, A {element_of} R{sup mxm} and V {element_of} R{sup mnxmn}; both D and V are diagonal. For the notational convenience, the authors assume that both A and B are symmetric. All the results through this paper can be easily extended to the cases with general A and B. The linear operator on R{sup mn} defined above can be viewed as a generalization of the Sylvester operator: S(x) = (I{sub m} {circle_times} A + B {circle_times} I{sub n})x. The authors therefore refer to it as a Sylvester-like operator. The schemes discussed in this paper therefore also apply to Sylvester operator. In this paper, the authors present the SIMD scheme for parallelization of the Sylvester-like operator on a distributed memory computer. This scheme is designed to approach the best possible efficiency by avoiding unnecessary communication among processors.

  17. Languages, compilers and run-time environments for distributed memory machines

    CERN Document Server

    Saltz, J

    1992-01-01

    Papers presented within this volume cover a wide range of topics related to programming distributed memory machines. Distributed memory architectures, although having the potential to supply the very high levels of performance required to support future computing needs, present awkward programming problems. The major issue is to design methods which enable compilers to generate efficient distributed memory programs from relatively machine independent program specifications. This book is the compilation of papers describing a wide range of research efforts aimed at easing the task of programmin

  18. A Working Memory System With Distributed Executive Control.

    Science.gov (United States)

    Vandierendonck, André

    2016-01-01

    Working memory consists of domain-specific storage facilities and domain-general executive control processes. In some working memory theories, these control processes are accounted for via a homunculus, the central executive. In the present article, the author defends a mechanistic view of executive control by adopting the position that executive control is situated in the context of goal-directed behavior to maintain and protect the goal and to select an action to attain the goal. On the basis of findings in task switching and dual tasking, he proposes an adapted multicomponent working memory model in which the central executive is replaced by three interacting components: an executive memory that maintains the task set, a collection of acquired procedural rules, and an engine that executes the procedural rules that match the ensemble of working memory contents. The strongest among the rules that match the ensemble of working memory contents is applied, resulting in changes of the working memory contents or in motor actions. According to this model, goals are attained when the route to the goals is known or can be searched when the route is unknown (problem solving). Empirical evidence for this proposal and new predictions are discussed.

  19. An empirical investigation of sparse distributed memory using discrete speech recognition

    Science.gov (United States)

    Danforth, Douglas G.

    1990-01-01

    Presented here is a step by step analysis of how the basic Sparse Distributed Memory (SDM) model can be modified to enhance its generalization capabilities for classification tasks. Data is taken from speech generated by a single talker. Experiments are used to investigate the theory of associative memories and the question of generalization from specific instances.

  20. The Distribution of Subjective Memory Strength: List Strength and Response Bias

    Science.gov (United States)

    Criss, Amy H.

    2009-01-01

    Models of recognition memory assume that memory decisions are based partially on the subjective strength of the test item. Models agree that the subjective strength of targets increases with additional time for encoding however the origin of the subjective strength of foils remains disputed. Under the fixed strength assumption the distribution of…

  1. Encoding of fear learning and memory in distributed neuronal circuits.

    Science.gov (United States)

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory.

  2. A system for simulating shared memory in heterogeneous distributed-memory networks with specialization for robotics applications

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.P.; Bangs, A.L.; Butler, P.L.

    1991-01-01

    Hetero Helix is a programming environment which simulates shared memory on a heterogeneous network of distributed-memory computers. The machines in the network may vary with respect to their native operating systems and internal representation of numbers. Hetero Helix presents a simple programming model to developers, and also considers the needs of designers, system integrators, and maintainers. The key software technology underlying Hetero Helix is the use of a compiler'' which analyzes the data structures in shared memory and automatically generates code which translates data representations from the format native to each machine into a common format, and vice versa. The design of Hetero Helix was motivated in particular by the requirements of robotics applications. Hetero Helix has been used successfully in an integration effort involving 27 CPUs in a heterogeneous network and a body of software totaling roughly 100,00 lines of code. 25 refs., 6 figs.

  3. Distributed memory compiler methods for irregular problems: Data copy reuse and runtime partitioning

    Science.gov (United States)

    Das, Raja; Ponnusamy, Ravi; Saltz, Joel; Mavriplis, Dimitri

    1991-01-01

    Outlined here are two methods which we believe will play an important role in any distributed memory compiler able to handle sparse and unstructured problems. We describe how to link runtime partitioners to distributed memory compilers. In our scheme, programmers can implicitly specify how data and loop iterations are to be distributed between processors. This insulates users from having to deal explicitly with potentially complex algorithms that carry out work and data partitioning. We also describe a viable mechanism for tracking and reusing copies of off-processor data. In many programs, several loops access the same off-processor memory locations. As long as it can be verified that the values assigned to off-processor memory locations remain unmodified, we show that we can effectively reuse stored off-processor data. We present experimental data from a 3-D unstructured Euler solver run on iPSC/860 to demonstrate the usefulness of our methods.

  4. High speed vision processor with reconfigurable processing element array based on full-custom distributed memory

    Science.gov (United States)

    Chen, Zhe; Yang, Jie; Shi, Cong; Qin, Qi; Liu, Liyuan; Wu, Nanjian

    2016-04-01

    In this paper, a hybrid vision processor based on a compact full-custom distributed memory for near-sensor high-speed image processing is proposed. The proposed processor consists of a reconfigurable processing element (PE) array, a row processor (RP) array, and a dual-core microprocessor. The PE array includes two-dimensional processing elements with a compact full-custom distributed memory. It supports real-time reconfiguration between the PE array and the self-organized map (SOM) neural network. The vision processor is fabricated using a 0.18 µm CMOS technology. The circuit area of the distributed memory is reduced markedly into 1/3 of that of the conventional memory so that the circuit area of the vision processor is reduced by 44.2%. Experimental results demonstrate that the proposed design achieves correct functions.

  5. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  6. Execution time supports for adaptive scientific algorithms on distributed memory machines

    Science.gov (United States)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  7. ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung; Walker, D.W. (Oak Ridge National Lab., TN (United States)); Dongarra, J.J. (Oak Ridge National Lab., TN (United States) Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science); Pozo, R. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1992-01-01

    This paper describes ScaLAPACK, a distributed memory version of the LAPACK software package for dense and banded matrix computations. Key resign features are the use of distributed versions of the Level 3 BLAS as building blocks, and an object-based interface to the library routines. The square block scattered decomposition is described. The implementation of a distributed memory version of the right-looking LU factorization algorithm on the Intel Delta multicomputer is discussed, and performance results are presented that demonstrate the scalability of the algorithm.

  8. ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung; Walker, D.W. [Oak Ridge National Lab., TN (United States); Dongarra, J.J. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science; Pozo, R. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1992-09-01

    This paper describes ScaLAPACK, a distributed memory version of the LAPACK software package for dense and banded matrix computations. Key resign features are the use of distributed versions of the Level 3 BLAS as building blocks, and an object-based interface to the library routines. The square block scattered decomposition is described. The implementation of a distributed memory version of the right-looking LU factorization algorithm on the Intel Delta multicomputer is discussed, and performance results are presented that demonstrate the scalability of the algorithm.

  9. A database for on-line event analysis on a distributed memory machine

    CERN Document Server

    Argante, E; Van der Stok, P D V; Willers, Ian Malcolm

    1995-01-01

    Parallel in-memory databases can enhance the structuring and parallelization of programs used in High Energy Physics (HEP). Efficient database access routines are used as communication primitives which hide the communication topology in contrast to the more explicit communications like PVM or MPI. A parallel in-memory database, called SPIDER, has been implemented on a 32 node Meiko CS-2 distributed memory machine. The spider primitives generate a lower overhead than the one generated by PVM or PMI. The event reconstruction program, CPREAD of the CPLEAR experiment, has been used as a test case. Performance measurerate generated by CPLEAR.

  10. Synchronization and associative memory of FitzHugh-Nagumo neuronal networks with randomly distributed time delays

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J H; Wu, Y J [School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Yu, H J [Department of Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: jhpeng@ecust.edu.cn

    2008-02-15

    Synchronization and associative memory in a neural network composed of the widely discussed FitzHugh-Nagumo neurons is investigated in this paper. Based on the reality of the microscopic biological structure in the neural system, the couplings among those neurons are accompanied with randomly distributed time delays which models the times needed for pulses propagating on the axons from the presynaptic neurons to the postsynaptic neurons. The memory is represented in the spatiotemporal firing pattern of the neurons, and the memory retrieval is accomplished with the fluctuations of the noise in the system.

  11. SuperLU{_}DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoye S.; Demmel, James W.

    2002-03-27

    In this paper, we present the main algorithmic features in the software package SuperLU{_}DIST, a distributed-memory sparse direct solver for large sets of linear equations. We give in detail our parallelization strategies, with focus on scalability issues, and demonstrate the parallel performance and scalability on current machines. The solver is based on sparse Gaussian elimination, with an innovative static pivoting strategy proposed earlier by the authors. The main advantage of static pivoting over classical partial pivoting is that it permits a priori determination of data structures and communication pattern for sparse Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we designed highly parallel and scalable algorithms for both LU decomposition and triangular solve and we show that they are suitable for large-scale distributed memory machines.

  12. PGHPF – An Optimizing High Performance Fortran Compiler for Distributed Memory Machines

    Directory of Open Access Journals (Sweden)

    Zeki Bozkus

    1997-01-01

    Full Text Available High Performance Fortran (HPF is the first widely supported, efficient, and portable parallel programming language for shared and distributed memory systems. HPF is realized through a set of directive-based extensions to Fortran 90. It enables application developers and Fortran end-users to write compact, portable, and efficient software that will compile and execute on workstations, shared memory servers, clusters, traditional supercomputers, or massively parallel processors. This article describes a production-quality HPF compiler for a set of parallel machines. Compilation techniques such as data and computation distribution, communication generation, run-time support, and optimization issues are elaborated as the basis for an HPF compiler implementation on distributed memory machines. The performance of this compiler on benchmark programs demonstrates that high efficiency can be achieved executing HPF code on parallel architectures.

  13. Toward a high performance distributed memory climate model

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, M.F.; Ambrosiano, J.J.; Brown, J.C.; Dannevik, W.P.; Eltgroth, P.G.; Mirin, A.A. [Lawrence Livermore National Lab., CA (United States); Farrara, J.D.; Ma, C.C.; Mechoso, C.R.; Spahr, J.A. [Univ. of California, Los Angeles, CA (US). Dept. of Atmospheric Sciences

    1993-02-15

    As part of a long range plan to develop a comprehensive climate systems modeling capability, the authors have taken the Atmospheric General Circulation Model originally developed by Arakawa and collaborators at UCLA and have recast it in a portable, parallel form. The code uses an explicit time-advance procedure on a staggered three-dimensional Eulerian mesh. The authors have implemented a two-dimensional latitude/longitude domain decomposition message passing strategy. Both dynamic memory management and interprocessor communication are handled with macro constructs that are preprocessed prior to compilation. The code can be moved about a variety of platforms, including massively parallel processors, workstation clusters, and vector processors, with a mere change of three parameters. Performance on the various platforms as well as issues associated with coupling different models for major components of the climate system are discussed.

  14. Assessing Programming Costs of Explicit Memory Localization on a Large Scale Shared Memory Multiprocessor

    Directory of Open Access Journals (Sweden)

    Silvio Picano

    1992-01-01

    Full Text Available We present detailed experimental work involving a commercially available large scale shared memory multiple instruction stream-multiple data stream (MIMD parallel computer having a software controlled cache coherence mechanism. To make effective use of such an architecture, the programmer is responsible for designing the program's structure to match the underlying multiprocessors capabilities. We describe the techniques used to exploit our multiprocessor (the BBN TC2000 on a network simulation program, showing the resulting performance gains and the associated programming costs. We show that an efficient implementation relies heavily on the user's ability to explicitly manage the memory system.

  15. Power profiling of Cholesky and QR factorizations on distributed memory systems

    KAUST Repository

    Bosilca, George

    2012-08-30

    This paper presents the power profile of two high performance dense linear algebra libraries on distributed memory systems, ScaLAPACK and DPLASMA. From the algorithmic perspective, their methodologies are opposite. The former is based on block algorithms and relies on multithreaded BLAS and a two-dimensional block cyclic data distribution to achieve high parallel performance. The latter is based on tile algorithms running on top of a tile data layout and uses fine-grained task parallelism combined with a dynamic distributed scheduler (DAGuE) to leverage distributed memory systems. We present performance results (Gflop/s) as well as the power profile (Watts) of two common dense factorizations needed to solve linear systems of equations, namely Cholesky and QR. The reported numbers show that DPLASMA surpasses ScaLAPACK not only in terms of performance (up to 2X speedup) but also in terms of energy efficiency (up to 62 %). © 2012 Springer-Verlag (outside the USA).

  16. Distributed Memory Breadth-First Search Revisited: Enabling Bottom-Up Search

    Science.gov (United States)

    2013-01-03

    10227). Additional support comes from Par Lab affiliates National Instruments, Nokia , NVIDIA, Oracle, and Samsung. Distributed Memory Breadth-First...by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, Nokia , NVIDIA

  17. Parallelization of the molecular dynamics code GROMOS87 for distributed memory parallel architectures

    NARCIS (Netherlands)

    Green, DG; Meacham, KE; vanHoesel, F; Hertzberger, B; Serazzi, G

    1995-01-01

    This paper describes the techniques and methodologies employed during parallelization of the Molecular Dynamics (MD) code GROMOS87, with the specific requirement that the program run efficiently on a range of distributed-memory parallel platforms. We discuss the preliminary results of our parallel

  18. Parallel Implementation of a Semidefinite Programming Solver based on CSDP in a distributed memory cluster

    NARCIS (Netherlands)

    Ivanov, I.D.; de Klerk, E.

    2007-01-01

    In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the Sc

  19. Parallel Implementation of a Semidefinite Programming Solver based on CSDP in a distributed memory cluster

    NARCIS (Netherlands)

    Ivanov, I.D.; de Klerk, E.

    2007-01-01

    In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the Sc

  20. Extending and implementing the Self-adaptive Virtual Processor for distributed memory architectures

    NARCIS (Netherlands)

    van Tol, M.W.; Koivisto, J.

    2011-01-01

    Many-core architectures of the future are likely to have distributed memory organizations and need fine grained concurrency management to be used effectively. The Self-adaptive Virtual Processor (SVP) is an abstract concurrent programming model which can provide this, but the model and its current i

  1. Extending and implementing the Self-adaptive Virtual Processor for distributed memory architectures

    NARCIS (Netherlands)

    van Tol, M.W.; Koivisto, J.

    2011-01-01

    Many-core architectures of the future are likely to have distributed memory organizations and need fine grained concurrency management to be used effectively. The Self-adaptive Virtual Processor (SVP) is an abstract concurrent programming model which can provide this, but the model and its current

  2. Immigration, language proficiency, and autobiographical memories: Lifespan distribution and second-language access.

    Science.gov (United States)

    Esposito, Alena G; Baker-Ward, Lynne

    2016-08-01

    This investigation examined two controversies in the autobiographical literature: how cross-language immigration affects the distribution of autobiographical memories across the lifespan and under what circumstances language-dependent recall is observed. Both Spanish/English bilingual immigrants and English monolingual non-immigrants participated in a cue word study, with the bilingual sample taking part in a within-subject language manipulation. The expected bump in the number of memories from early life was observed for non-immigrants but not immigrants, who reported more memories for events surrounding immigration. Aspects of the methodology addressed possible reasons for past discrepant findings. Language-dependent recall was influenced by second-language proficiency. Results were interpreted as evidence that bilinguals with high second-language proficiency, in contrast to those with lower second-language proficiency, access a single conceptual store through either language. The final multi-level model predicting language-dependent recall, including second-language proficiency, age of immigration, internal language, and cue word language, explained ¾ of the between-person variance and (1)/5 of the within-person variance. We arrive at two conclusions. First, major life transitions influence the distribution of memories. Second, concept representation across multiple languages follows a developmental model. In addition, the results underscore the importance of considering language experience in research involving memory reports.

  3. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    Science.gov (United States)

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  4. Analysis of a distributed neural system involved in spatial information, novelty, and memory processing.

    Science.gov (United States)

    Menon, V; White, C D; Eliez, S; Glover, G H; Reiss, A L

    2000-10-01

    Perceiving a complex visual scene and encoding it into memory involves a hierarchical distributed network of brain regions, most notably the hippocampus (HIPP), parahippocampal gyrus (PHG), lingual gyrus (LNG), and inferior frontal gyrus (IFG). Lesion and imaging studies in humans have suggested that these regions are involved in spatial information processing as well as novelty and memory encoding; however, the relative contributions of these regions of interest (ROIs) are poorly understood. This study investigated regional dissociations in spatial information and novelty processing in the context of memory encoding using a 2 x 2 factorial design with factors Novelty (novel vs. repeated) and Stimulus (viewing scenes with rich vs. poor spatial information). Greater activation was observed in the right than left hemisphere; however, hemispheric effects did not differ across regions, novelty, or stimulus type. Significant novelty effects were observed in all four regions. A significant ROI x Stimulus interaction was observed - spatial information processing effects were largest effects in the LNG, significant in the PHG and HIPP and nonsignificant in the IFG. Novelty processing was stimulus dependent in the LNG and stimulus independent in the PHG, HIPP, and IFG. Analysis of the profile of Novelty x Stimulus interaction across ROIs provided evidence for a hierarchical independence in novelty processing characterized by increased dissociation from spatial information processing. Despite these differences in spatial information processing, memory performance for novel scenes with rich and poor spatial information was not significantly different. Memory performance was inversely correlated with right IFG activation, suggesting the involvement of this region in strategically flawed encoding effort. Stepwise regression analysis revealed that memory encoding accounted for only a small fraction of the variance (temporal lobe activation. The implications of these results for

  5. MAPE: A MIMD Architecture Performance Evaluating Simulation Environment%MAPE:一个并行系统结构性能评价模拟环境

    Institute of Scientific and Technical Information of China (English)

    王继龙; 方滨兴; 唐朔飞; 景晓军

    2000-01-01

    Parallel procssing is a hot dot in research of computer architecture,but the high price of parallel computer limited the experiment of the research. In this paper we introduce a package called MAPE which will provide experiment environment and convenience for research on performance of MIMD architecture by simulating the running of a parallel computer. Here we mainly debate some important issues to design MAPE.

  6. Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2011-07-27

    Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy in reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.

  7. pyCTQW: A continuous-time quantum walk simulator on distributed memory computers

    Science.gov (United States)

    Izaac, Josh A.; Wang, Jingbo B.

    2015-01-01

    In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of pyCTQW on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis.

  8. Global stability of bidirectional associative memory neural networks with continuously distributed delays

    Institute of Scientific and Technical Information of China (English)

    张强; 马润年; 许进

    2003-01-01

    Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the acti-vation functions, two sufficient conditions ensuring global stability of such networks are derived by utiliz-ing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.

  9. Properties of Sparse Distributed Representations and their Application to Hierarchical Temporal Memory

    OpenAIRE

    Ahmad, Subutai; Hawkins, Jeff

    2015-01-01

    Empirical evidence demonstrates that every region of the neocortex represents information using sparse activity patterns. This paper examines Sparse Distributed Representations (SDRs), the primary information representation strategy in Hierarchical Temporal Memory (HTM) systems and the neocortex. We derive a number of properties that are core to scaling, robustness, and generalization. We use the theory to provide practical guidelines and illustrate the power of SDRs as the basis of HTM. Our ...

  10. LDRD final report : managing shared memory data distribution in hybrid HPC applications.

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Alexander M. (Georgia Institute of Technology, Atlanta, GA); Pedretti, Kevin Thomas Tauke

    2010-09-01

    MPI is the dominant programming model for distributed memory parallel computers, and is often used as the intra-node programming model on multi-core compute nodes. However, application developers are increasingly turning to hybrid models that use threading within a node and MPI between nodes. In contrast to MPI, most current threaded models do not require application developers to deal explicitly with data locality. With increasing core counts and deeper NUMA hierarchies seen in the upcoming LANL/SNL 'Cielo' capability supercomputer, data distribution poses an upper boundary on intra-node scalability within threaded applications. Data locality therefore has to be identified at runtime using static memory allocation policies such as first-touch or next-touch, or specified by the application user at launch time. We evaluate several existing techniques for managing data distribution using micro-benchmarks on an AMD 'Magny-Cours' system with 24 cores among 4 NUMA domains and argue for the adoption of a dynamic runtime system implemented at the kernel level, employing a novel page table replication scheme to gather per-NUMA domain memory access traces.

  11. A cross-cultural study of the lifespan distributions of life script events and autobiographical memories of life story events

    DEFF Research Database (Denmark)

    Zaragoza Scherman, Alejandra; Salgado, Sinué; Shao, Zhifang

    of major transitional life events in an idealized life course. By comparing the lifespan distribution of life scripts events and memories of life story events, we can determine the degree to which the cultural life script serves as a recall template for autobiographical memories, especially of positive...

  12. Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors

    Energy Technology Data Exchange (ETDEWEB)

    D' Azevedo, E.F.; Romine, C.H.

    1992-09-01

    The standard formulation of the conjugate gradient algorithm involves two inner product computations. The results of these two inner products are needed to update the search direction and the computed solution. In a distributed memory parallel environment, the computation and subsequent distribution of these two values requires two separate communication and synchronization phases. In this paper, we present a mathematically equivalent rearrangement of the standard algorithm that reduces the number of communication phases. We give a second derivation of the modified conjugate gradient algorithm in terms of the natural relationship with the underlying Lanczos process. We also present empirical evidence of the stability of this modified algorithm.

  13. An object oriented design for high performance linear algebra on distributed memory architectures

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science; Walker, D.W. [Oak Ridge National Lab., TN (United States); Pozo, R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science

    1993-12-31

    We describe the design of ScaLAPACK++, an object oriented C++ library for implementing linear algebra computations on distributed memory multicomputers. This package, when complete, will support distributed dense, banded, sparse matrix operations for symmetric, positive-definite, and non-symmetric cases. In ScaLAPACK++ we have employed object oriented design methods to enchance scalability, portability, flexibility, and ease-of-use. We illustrate some of these points by describing the implementation of a right-looking LU factorization for dense systems in ScaLAPACK++.

  14. Spatial Memory Activity Distributions Indicate the Hippocampus Operates in a Continuous Manner.

    Science.gov (United States)

    Jeye, Brittany M; Karanian, Jessica M; Slotnick, Scott D

    2016-08-26

    There is a long-standing debate as to whether recollection is a continuous/graded process or a threshold/all-or-none process. In the current spatial memory functional magnetic resonance imaging (fMRI) study, we examined the hippocampal activity distributions-the magnitude of activity as a function of memory strength-to determine the nature of processing in this region. During encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, old shapes were presented at fixation and participants classified each shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus. The hippocampal activity distributions for left shapes and right shapes were completely overlapping. Critically, the magnitude of activity associated with right-miss-very sure responses was significantly greater than zero. These results support the continuous model of recollection, which predicts overlapping activity distributions, and contradict the threshold model of recollection, which predicts a threshold above which only one distribution exists. Receiver operating characteristic analysis did not distinguish between models. The present results demonstrate that the hippocampus operates in a continuous manner during recollection and highlight the utility of analyzing activity distributions to determine the nature of neural processing.

  15. Numerics of High Performance Computers and Benchmark Evaluation of Distributed Memory Computers

    Directory of Open Access Journals (Sweden)

    H. S. Krishna

    2004-07-01

    Full Text Available The internal representation of numerical data, their speed of manipulation to generate the desired result through efficient utilisation of central processing unit, memory, and communication links are essential steps of all high performance scientific computations. Machine parameters, in particular, reveal accuracy and error bounds of computation, required for performance tuning of codes. This paper reports diagnosis of machine parameters, measurement of computing power of several workstations, serial and parallel computers, and a component-wise test procedure for distributed memory computers. Hierarchical memory structure is illustrated by block copying and unrolling techniques. Locality of reference for cache reuse of data is amply demonstrated by fast Fourier transform codes. Cache and register-blocking technique results in their optimum utilisation with consequent gain in throughput during vector-matrix operations. Implementation of these memory management techniques reduces cache inefficiency loss, which is known to be proportional to the number of processors. Of the two Linux clusters-ANUP16, HPC22 and HPC64, it has been found from the measurement of intrinsic parameters and from application benchmark of multi-block Euler code test run that ANUP16 is suitable for problems that exhibit fine-grained parallelism. The delivered performance of ANUP16 is of immense utility for developing high-end PC clusters like HPC64 and customised parallel computers with added advantage of speed and high degree of parallelism.

  16. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines

    KAUST Repository

    Woźniak, Maciej

    2015-02-01

    This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on parallel distributed memory machines. We show theoretically that for the Cp-1 global continuity of the isogeometric solution, both the computational cost and the communication cost of a direct solver are of order O(log(N)p2) for the one dimensional (1D) case, O(Np2) for the two dimensional (2D) case, and O(N4/3p2) for the three dimensional (3D) case, where N is the number of degrees of freedom and p is the polynomial order of the B-spline basis functions. The theoretical estimates are verified by numerical experiments performed with three parallel multi-frontal direct solvers: MUMPS, PaStiX and SuperLU, available through PETIGA toolkit built on top of PETSc. Numerical results confirm these theoretical estimates both in terms of p and N. For a given problem size, the strong efficiency rapidly decreases as the number of processors increases, becoming about 20% for 256 processors for a 3D example with 1283 unknowns and linear B-splines with C0 global continuity, and 15% for a 3D example with 643 unknowns and quartic B-splines with C3 global continuity. At the same time, one cannot arbitrarily increase the problem size, since the memory required by higher order continuity spaces is large, quickly consuming all the available memory resources even in the parallel distributed memory version. Numerical results also suggest that the use of distributed parallel machines is highly beneficial when solving higher order continuity spaces, although the number of processors that one can efficiently employ is somehow limited.

  17. Cyber-EDA: Estimation of Distribution Algorithms with Adaptive Memory Programming

    Directory of Open Access Journals (Sweden)

    Peng-Yeng Yin

    2013-01-01

    Full Text Available The estimation of distribution algorithm (EDA aims to explicitly model the probability distribution of the quality solutions to the underlying problem. By iterative filtering for quality solution from competing ones, the probability model eventually approximates the distribution of global optimum solutions. In contrast to classic evolutionary algorithms (EAs, EDA framework is flexible and is able to handle inter variable dependence, which usually imposes difficulties on classic EAs. The success of EDA relies on effective and efficient building of the probability model. This paper facilitates EDA from the adaptive memory programming (AMP domain which has developed several improved forms of EAs using the Cyber-EA framework. The experimental result on benchmark TSP instances supports our anticipation that the AMP strategies can enhance the performance of classic EDA by deriving a better approximation for the true distribution of the target solutions.

  18. Spatial Memory Activity Distributions Indicate the Hippocampus Operates in a Continuous Manner

    Directory of Open Access Journals (Sweden)

    Brittany M. Jeye

    2016-08-01

    Full Text Available There is a long-standing debate as to whether recollection is a continuous/graded process or a threshold/all-or-none process. In the current spatial memory functional magnetic resonance imaging (fMRI study, we examined the hippocampal activity distributions—the magnitude of activity as a function of memory strength—to determine the nature of processing in this region. During encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, old shapes were presented at fixation and participants classified each shape as previously in the “left” or “right” visual field followed by an “unsure”–“sure”–“very sure” confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus. The hippocampal activity distributions for left shapes and right shapes were completely overlapping. Critically, the magnitude of activity associated with right-miss-very sure responses was significantly greater than zero. These results support the continuous model of recollection, which predicts overlapping activity distributions, and contradict the threshold model of recollection, which predicts a threshold above which only one distribution exists. Receiver operating characteristic analysis did not distinguish between models. The present results demonstrate that the hippocampus operates in a continuous manner during recollection and highlight the utility of analyzing activity distributions to determine the nature of neural processing.

  19. Distribution of glutamine synthetase in the chick forebrain: implications for passive avoidance memory formation.

    Science.gov (United States)

    O'Dowd, B S; Ng, K T; Robinson, S R

    1997-01-01

    The glial enzyme glutamine synthetase (GS) converts glutamate to glutamine; the latter is used by neurons for the resynthesis of glutamate and GABA. We have used a monoclonal antibody to GS to examine the regional distribution of this enzyme in the forebrains of day-old chicks. GS was detected in glia throughout the rostral and caudal regions of the forebrain and was particularly intense in the hippocampus, area parahippocampus and parts of the hyperstriatal and paleostriatal complex, regions widely considered to be involved in memory formation. Thus, our data provide an anatomical framework for the conclusion that neurons require the support of glia in order to restock their glutamate and/or GABA transmitter supplies during memory processing.

  20. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn

    2014-11-14

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.

  1. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim

    2014-07-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.

  2. MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.

    Science.gov (United States)

    González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil

    2016-12-15

    MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively.

  3. Shared and Distributed Memory Parallel Security Analysis of Large-Scale Source Code and Binary Applications

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, D; Barany, G; Panas, T

    2007-08-30

    Many forms of security analysis on large scale applications can be substantially automated but the size and complexity can exceed the time and memory available on conventional desktop computers. Most commercial tools are understandably focused on such conventional desktop resources. This paper presents research work on the parallelization of security analysis of both source code and binaries within our Compass tool, which is implemented using the ROSE source-to-source open compiler infrastructure. We have focused on both shared and distributed memory parallelization of the evaluation of rules implemented as checkers for a wide range of secure programming rules, applicable to desktop machines, networks of workstations and dedicated clusters. While Compass as a tool focuses on source code analysis and reports violations of an extensible set of rules, the binary analysis work uses the exact same infrastructure but is less well developed into an equivalent final tool.

  4. Individual differences in components of reaction time distributions and their relations to working memory and intelligence.

    Science.gov (United States)

    Schmiedek, Florian; Oberauer, Klaus; Wilhelm, Oliver; Süss, Heinz-Martin; Wittmann, Werner W

    2007-08-01

    The authors bring together approaches from cognitive and individual differences psychology to model characteristics of reaction time distributions beyond measures of central tendency. Ex-Gaussian distributions and a diffusion model approach are used to describe individuals' reaction time data. The authors identified common latent factors for each of the 3 ex-Gaussian parameters and for 3 parameters central to the diffusion model using structural equation modeling for a battery of choice reaction tasks. These factors had differential relations to criterion constructs. Parameters reflecting the tail of the distribution (i.e., tau in the ex-Gaussian and drift rate in the diffusion model) were the strongest unique predictors of working memory, reasoning, and psychometric speed. Theories of controlled attention and binding are discussed as potential theoretical explanations.

  5. Efficient and Scalable Algorithms for Smoothed Particle Hydrodynamics on Hybrid Shared/Distributed-Memory Architectures

    CERN Document Server

    Gonnet, Pedro

    2014-01-01

    This paper describes a new fast and implicitly parallel approach to neighbour-finding in multi-resolution Smoothed Particle Hydrodynamics (SPH) simulations. This new approach is based on hierarchical cell decompositions and sorted interactions, within a task-based formulation. It is shown to be faster than traditional tree-based codes, and to scale better than domain decomposition-based approaches on hybrid shared/distributed-memory parallel architectures, e.g. clusters of multi-cores, achieving a $40\\times$ speedup over the Gadget-2 simulation code.

  6. PUMMA: Parallel Universal Matrix Multiplication Algorithms on distributed memory concurrent computers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung; Walker, D.W. [Oak Ridge National Lab., TN (US); Dongarra, J.J. [Oak Ridge National Lab., TN (US)]|[Univ. of Tennessee, Knoxville, TN (US). Dept. of Computer Science

    1993-08-01

    This paper describes the Parallel Universal Matrix Multiplication Algorithms (PUMMA) on distributed memory concurrent computers. The PUMMA package includes not only the non-transposed matrix multiplication routine C = A{center_dot}B, but also transposed multiplication routines C = A{sup T}{center_dot}B, C = A{center_dot}B{sup T}, and C = A{sup T}{center_dot}B{sup T}, for a block scattered data distribution. The routines perform efficiently for a wide range of processor configurations and block sizes. The PUMMA together provide the same functionality as the Level 3 BLAS routine xGEMM. Details of the parallel implementation of the routines are given, and results are presented for runs on the Intel Touchstone Delta computer.

  7. On distributed memory MPI-based parallelization of SPH codes in massive HPC context

    Science.gov (United States)

    Oger, G.; Le Touzé, D.; Guibert, D.; de Leffe, M.; Biddiscombe, J.; Soumagne, J.; Piccinali, J.-G.

    2016-03-01

    Most of particle methods share the problem of high computational cost and in order to satisfy the demands of solvers, currently available hardware technologies must be fully exploited. Two complementary technologies are now accessible. On the one hand, CPUs which can be structured into a multi-node framework, allowing massive data exchanges through a high speed network. In this case, each node is usually comprised of several cores available to perform multithreaded computations. On the other hand, GPUs which are derived from the graphics computing technologies, able to perform highly multi-threaded calculations with hundreds of independent threads connected together through a common shared memory. This paper is primarily dedicated to the distributed memory parallelization of particle methods, targeting several thousands of CPU cores. The experience gained clearly shows that parallelizing a particle-based code on moderate numbers of cores can easily lead to an acceptable scalability, whilst a scalable speedup on thousands of cores is much more difficult to obtain. The discussion revolves around speeding up particle methods as a whole, in a massive HPC context by making use of the MPI library. We focus on one particular particle method which is Smoothed Particle Hydrodynamics (SPH), one of the most widespread today in the literature as well as in engineering.

  8. Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory

    KAUST Repository

    Pearce, Roger

    2013-05-01

    We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash. We apply an edge list partitioning technique, designed to accommodate high-degree vertices (hubs) that create scaling challenges when processing scale-free graphs. In addition to partitioning hubs, we use ghost vertices to represent the hubs to reduce communication hotspots. We present a scaling study with three important graph algorithms: Breadth-First Search (BFS), K-Core decomposition, and Triangle Counting. We also demonstrate scalability on BG/P Intrepid by comparing to best known Graph500 results. We show results on two clusters with local NVRAM storage that are capable of traversing trillion-edge scale-free graphs. By leveraging node-local NAND Flash, our approach can process thirty-two times larger datasets with only a 39% performance degradation in Traversed Edges Per Second (TEPS). © 2013 IEEE.

  9. Aho-Corasick String Matching on Shared and Distributed Memory Parallel Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    2012-03-01

    String matching is at the core of many critical applications, including network intrusion detection systems, search engines, virus scanners, spam filters, DNA and protein sequencing, and data mining. For all of these applications string matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. Many software based implementations targeting conventional cache-based microprocessors fail to achieve high and predictable performance requirements, while Field-Programmable Gate Array (FPGA) implementations and dedicated hardware solutions fail to support large data sets (dictionary sizes) and are difficult to integrate and customize. The advent of multicore, multithreaded, and GPU-based systems is opening the possibility for software based solutions to reach very high performance at a sustained rate. This paper compares several software-based implementations of the Aho-Corasick string searching algorithm for high performance systems. We discuss the implementation of the algorithm on several types of shared-memory high-performance architectures (Niagara 2, large x86 SMPs and Cray XMT), distributed memory with homogeneous processing elements (InfiniBand cluster of x86 multicores) and heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C10 GPUs). We describe in detail how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets.

  10. Comparison between sparsely distributed memory and Hopfield-type neural network models

    Science.gov (United States)

    Keeler, James D.

    1986-01-01

    The Sparsely Distributed Memory (SDM) model (Kanerva, 1984) is compared to Hopfield-type neural-network models. A mathematical framework for comparing the two is developed, and the capacity of each model is investigated. The capacity of the SDM can be increased independently of the dimension of the stored vectors, whereas the Hopfield capacity is limited to a fraction of this dimension. However, the total number of stored bits per matrix element is the same in the two models, as well as for extended models with higher order interactions. The models are also compared in their ability to store sequences of patterns. The SDM is extended to include time delays so that contextual information can be used to cover sequences. Finally, it is shown how a generalization of the SDM allows storage of correlated input pattern vectors.

  11. A new parallel-vector finite element analysis software on distributed-memory computers

    Science.gov (United States)

    Qin, Jiangning; Nguyen, Duc T.

    1993-01-01

    A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.

  12. Advanced compilation techniques in the PARADIGM compiler for distributed-memory multicomputers

    Science.gov (United States)

    Su, Ernesto; Lain, Antonio; Ramaswamy, Shankar; Palermo, Daniel J.; Hodges, Eugene W., IV; Banerjee, Prithviraj

    1995-01-01

    The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. .A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multidimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica. This paper describes some of the Mathematica routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.

  13. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    Science.gov (United States)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  14. Evaluation of a connectionless NoC for a real-time distributed shared memory many-core system

    NARCIS (Netherlands)

    Rutgers, Jochem H.; Bekooij, Marco J.G.; Smit, Gerard J.M.

    2012-01-01

    Real-time embedded systems like smartphones tend to comprise an ever increasing number of processing cores. For scalability and the need for guaranteed performance, the use of a connection-oriented network-on-chip (NoC) is advocated. Furthermore, a distributed shared memory architecture is preferred

  15. A new metric enabling an exact hypergraph model for the communication volume in distributed-memory parallel applications

    NARCIS (Netherlands)

    Fortmeier, O.; Bücker, H.M.; Fagginger Auer, B.O.; Bisseling, R.H.

    2013-01-01

    A hypergraph model for mapping applications with an all-neighbor communication pattern to distributed-memory computers is proposed, which originated in finite element triangulations. Rather than approximating the communication volume for linear algebra operations, this new model represents the commu

  16. Matrix-dependent Strain Distributions of Au and Ag Nanoparticles in a Metal-oxide-semiconductor-based Nonvolatile Memory Device

    OpenAIRE

    Honghua Huang; Ying Zhang; Wenyan Wei; Ting Yu; Xingfang Luo; Cailei Yuan

    2015-01-01

    The matrix-dependent strain distributions of Au and Ag nanoparticles in a metal-oxide-semiconductor based nonvolatile memory device are investigated by finite element calculations. The simulation results clearly indicate that both Au and Ag nanoparticles incur compressive strain by high-k Al2O3 and conventional SiO2 dielectrics. The strain distribution of nanoparticles is closely related to the surrounding matrix. Nanoparticles embedded in different matrices experience different compressive s...

  17. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Claudia eCasellato

    2015-02-01

    Full Text Available The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  18. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Science.gov (United States)

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  19. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Esteban R Fernández

    Full Text Available Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  20. Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory.

    Science.gov (United States)

    Sala, Joseph B; Rämä, Pia; Courtney, Susan M

    2003-01-01

    We investigated the degree to which the distributed and overlapping patterns of activity for working memory (WM) maintenance of objects and spatial locations are functionally dissociable. Previous studies of the neural system responsible for maintenance of different types of information in WM have reported seemingly contradictory results concerning the degree to which spatial and nonspatial information maintenance leads to distinct patterns of activation in prefrontal cortex. These inconsistent results may be partly attributable to the fact that different types of objects were used for the "object WM task" across studies. In the current study, we directly compared the patterns of response during WM tasks for face identity, house identity, and spatial location using functional magnetic resonance imaging (fMRI). Furthermore, independence of the neural resources available for spatial and object WM was tested behaviorally using a dual-task paradigm. Together, these results suggest that the mechanisms for the maintenance of house identity information are distributed and overlapping with those that maintain spatial location information, while the mechanisms for maintenance of face identity information are relatively more independent. There is, however, a consistent functional topography that results in superior prefrontal cortex producing the greatest response during spatial WM tasks, and middle and inferior prefrontal cortices producing their greatest responses during object WM tasks, independent of the object type. These results argue for a dorsal-ventral functional organization for spatial and nonspatial information. However, objects may contain both spatial and nonspatial information and, thus, have a distributed but not equipotent representation across both dorsal and ventral prefrontal cortex.

  1. Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect

    Science.gov (United States)

    Pei, Xin; Pan, Yan; Wang, Haixin; Wong, S. C.; Choi, Keechoo

    2016-05-01

    Car-following models, which describe the reactions of the driver of a following car to the changes of the leading car, are essential for the development of traffic flow theory. A car-following model with a stochastic memory effect is considered to be more realistic in modeling drivers' behavior. Because a gamma-distributed memory function has been shown to outperform other forms according to empirical data, in this study, we thus focus on a car-following model with a gamma-distributed memory effect; analytical and numerical studies are then conducted for stability analysis. Accordingly, the general expression of undamped and stability points is achieved by analytical study. The numerical results show great agreement with the analytical results: introducing the effect of the driver's memory causes the stable regions to weaken slightly, but the metastable region is obviously enlarged. In addition, a numerical study is performed to further analyze the variation of the stable and unstable regions with respect to the different profiles of gamma distribution.

  2. Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay

    Science.gov (United States)

    Guesmia, Aissa

    2014-08-01

    In this paper, we consider a Timoshenko system in one-dimensional bounded domain with infinite memory and distributed time delay both acting on the equation of the rotation angle. Without any restriction on the speeds of wave propagation and under appropriate assumptions on the infinite memory and distributed time delay convolution kernels, we prove, first, the well-posedness and, second, the stability of the system, where we present some decay estimates depending on the equal-speed propagation case and the opposite one. The obtained decay rates depend on the growths of the memory and delay kernels at infinity. In the nonequal-speed case, the decay rate depends also on the regularity of initial data. Our stability results show that the only dissipation resulting from the infinite memory guarantees the asymptotic stability of the system regardless to the speeds of wave propagation and in spite of the presence of a distributed time delay. Applications of our approach to specific coupled Timoshenko-heat and Timoshenko-wave systems as well as the discrete time delay case are also presented.

  3. Cluster-Enabled OpenMP: An OpenMP Compiler for the SCASH Software Distributed Shared Memory System

    Directory of Open Access Journals (Sweden)

    Mitsuhisa Sato

    2001-01-01

    Full Text Available OpenMP is attracting wide-spread interest because of its easy-to-use parallel programming model for shared memory multiprocessors. We have implemented a "cluster-enabled" OpenMP compiler for a page-based software distributed shared memory system, SCASH, which works on a cluster of PCs. It allows OpenMP programs to run transparently in a distributed memory environment. The compiler transforms OpenMP programs into parallel programs using SCASH so that shared global variables are allocated at run time in the shared address space of SCASH. A set of directives is added to specify data mapping and loop scheduling method which schedules iterations onto threads associated with the data mapping. Our experimental results show that the data mapping may greatly impact on the performance of OpenMP programs in the software distributed shared memory system. The performance of some NAS parallel benchmark programs in OpenMP is improved by using our extended directives.

  4. Fast Incremental and Personalized PageRank over Distributed Main Memory Databases

    CERN Document Server

    Bahmani, Bahman; Goel, Ashish

    2010-01-01

    In this paper, we analyze the efficiency of Monte Carlo methods for incremental computation of PageRank, personalized PageRank, and similar random walk based methods (with focus on SALSA), on large-scale dynamically evolving social networks. We assume that the graph of friendships is stored in distributed shared memory, as is the case for large social networks such as Twitter. For global PageRank, we assume that the social network has $n$ nodes, and $m$ adversarially chosen edges arrive in a random order. We show that with a reset probability of $\\epsilon$, the total work needed to maintain an accurate estimate (using the Monte Carlo method) of the PageRank of every node at all times is $O(\\frac{n\\log m}{\\epsilon^{2}})$. This is significantly better than all known bounds for incremental PageRank. For instance, if we naively recompute the PageRanks as each edge arrives, the simple power iteration method needs $\\Omega(\\frac{m^2}{\\log(1/(1-\\epsilon))})$ total time and the Monte Carlo method needs $O(mn/\\epsilon)...

  5. Rapid distributed fronto-parieto-occipital processing stages during working memory in humans.

    Science.gov (United States)

    Halgren, E; Boujon, C; Clarke, J; Wang, C; Chauvel, P

    2002-07-01

    Cortical potentials were recorded from implanted electrodes during a difficult working memory task requiring rapid storage, modification and retrieval of multiple memoranda. Synchronous event-related potentials were generated in distributed occipital, parietal, Rolandic and prefrontal sites beginning approximately 130 ms after stimulus onset and continuing for >500 ms. Coherent phase-locked, event-related oscillations supported interaction between these dorsal stream structures throughout the task period. The Rolandic structures generated early as well as sustained potentials to sensory stimuli in the absence of movement. Activation peaks and phase lags between synaptic populations suggested that perceptual processing occurred exclusively in the visual association cortex from approximately 90 to 130 ms, with its results projected to fronto-parietal areas for interpretation from approximately 130 to 280 ms. The direction of interaction then appeared to reverse from approximately 300 to 400 ms, consistent with mental arithmetic being performed by fronto-parietal areas operating upon a visual scratch pad in the dorsolateral occipital cortex. A second reversal, from approximately 420 to 600 ms, may have represented an updating of memoranda stored in fronto-parietal sites. Lateralized perisylvian oscillations suggested an articulatory loop. Anterior cingulate activity was evoked by feedback signals indicating errors. These results indicate how a fronto-centro-parietal 'central executive' might interact with an occipital visual scratch pad, perisylvian articulatory loop and limbic monitor to implement the sequential stages of a complex mental operation.

  6. Extracting the temperature distribution on a phase-change memory cell during crystallization

    Science.gov (United States)

    Bakan, Gokhan; Gerislioglu, Burak; Dirisaglik, Faruk; Jurado, Zoila; Sullivan, Lindsay; Dana, Aykutlu; Lam, Chung; Gokirmak, Ali; Silva, Helena

    2016-10-01

    Phase-change memory (PCM) devices are enabled by amorphization- and crystallization-induced changes in the devices' electrical resistances. Amorphization is achieved by melting and quenching the active volume using short duration electrical pulses (˜ns). The crystallization (set) pulse duration, however, is much longer and depends on the cell temperature reached during the pulse. Hence, the temperature-dependent crystallization process of the phase-change materials at the device level has to be well characterized to achieve fast PCM operations. A main challenge is determining the cell temperature during crystallization. Here, we report extraction of the temperature distribution on a lateral PCM cell during a set pulse using measured voltage-current characteristics and thermal modelling. The effect of the thermal properties of materials on the extracted cell temperature is also studied, and a better cell design is proposed for more accurate temperature extraction. The demonstrated study provides promising results for characterization of the temperature-dependent crystallization process within a cell.

  7. Chemokine receptor co-expression reveals aberrantly distributed TH effector memory cells in GPA patients.

    Science.gov (United States)

    Lintermans, Lucas L; Rutgers, Abraham; Stegeman, Coen A; Heeringa, Peter; Abdulahad, Wayel H

    2017-06-14

    Persistent expansion of circulating CD4(+) effector memory T cells (TEM) in patients with granulomatosis with polyangiitis (GPA) suggests their fundamental role in disease pathogenesis. Recent studies have shown that distinct functional CD4(+) TEM cell subsets can be identified based on expression patterns of chemokine receptors. The current study aimed to determine different CD4(+) TEM cell subsets based on chemokine receptor expression in peripheral blood of GPA patients. Identification of particular circulating CD4(+) TEM cells subsets may reveal distinct contributions of specific CD4(+) TEM subsets to the disease pathogenesis in GPA. Peripheral blood of 63 GPA patients in remission and 42 age- and sex-matched healthy controls was stained immediately after blood withdrawal with fluorochrome-conjugated antibodies for cell surface markers (CD3, CD4, CD45RO) and chemokine receptors (CCR4, CCR6, CCR7, CRTh2, CXCR3) followed by flow cytometry analysis. CD4(+) TEM memory cells (CD3(+)CD4(+)CD45RO(+)CCR7(-)) were gated, and the expression patterns of chemokine receptors CXCR3(+)CCR4(-)CCR6(-)CRTh2(-), CXCR3(-)CCR4(+)CCR6(-)CRTh2(+), CXCR3(-)CCR4(+)CCR6(+)CRTh2(-), and CXCR3(+)CCR4(-)CCR6(+)CRTh2(-) were used to distinguish TEM1, TEM2, TEM17, and TEM17.1 cells, respectively. The percentage of CD4(+) TEM cells was significantly increased in GPA patients in remission compared to HCs. Chemokine receptor co-expression analysis within the CD4(+) TEM cell population demonstrated a significant increase in the proportion of TEM17 cells with a concomitant significant decrease in the TEM1 cells in GPA patients compared to HC. The percentage of TEM17 cells correlated negatively with TEM1 cells in GPA patients. Moreover, the circulating proportion of TEM17 cells showed a positive correlation with the number of organs involved and an association with the tendency to relapse in GPA patients. Interestingly, the aberrant distribution of TEM1 and TEM17 cells is modulated in CMV

  8. Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects

    Science.gov (United States)

    Voller, Vaughan R.; Falcini, Federico; Garra, Roberto

    2013-04-01

    We consider fractional Stefan melting problems which involve a memory of the latent-heat accumulation. We show that the manner in which the memory of the latent-heat accumulation is recorded depends on the assumed nature of the transition between the liquid and the solid phases. When a sharp interface between the liquid and the solid phases is assumed, the memory of the accumulation of the latent heat is “lumped” in the history of the speed of the interface. In contrast, when a diffuse interface is assumed, the memory of the accumulation is “distributed” throughout the liquid phase. By use of an example problem, we demonstrate that the equivalence of the sharp- and diffuse-interface models can only occur when there is no memory in the system.

  9. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  10. Tissue Distribution of Memory T and B Cells in Rhesus Monkeys following Influenza A Infection

    Science.gov (United States)

    Yongvanitchit, Kosol; Limsalakpetch, Amporn; Kum-Arb, Utaiwan; Im-Erbsin, Rawiwan; Boonnak, Kobporn; Thitithayanont, Arunee; Jongkaewwattana, Anan; Wiboon-ut, Suwimon; Mongkolsirichaikul, Duangrat; Mahanonda, Rangsini; Spring, Michele; Chuang, Ilin; Mason, Carl J.; Saunders, David L.

    2015-01-01

    Studies of influenza-specific immune responses in humans have largely assessed systemic responses involving serum Ab and peripheral blood T cell responses. However, recent evidence indicates that tissue-resident memory T (TRM) cells play an important role in local murine intrapulmonary immunity. Rhesus monkeys were pulmonary exposed to 2009 pandemic H1N1 virus at days 0 and 28 and immune responses in different tissue compartments were measured. All animals were asymptomatic postinfection. Although only minimal memory immune responses were detected in peripheral blood, a high frequency of influenza nucleoprotein–specific memory T cells was detected in the lung at the “contraction phase,” 49–58 d after second virus inoculation. A substantial proportion of lung nucleoprotein-specific memory CD8+ T cells expressed CD103 and CD69, phenotypic markers of TRM cells. Lung CD103+ and CD103- memory CD8+ T cells expressed similar levels of IFN-γ and IL-2. Unlike memory T cells, spontaneous Ab secreting cells and memory B cells specific to influenza hemagglutinin were primarily observed in the mediastinal lymph nodes. Little difference in systemic and local immune responses against influenza was observed between young adult (6–8 y) and old animals (18–28 y). Using a nonhuman primate model, we revealed substantial induction of local T and B cell responses following 2009 pandemic H1N1 infection. Our study identified a subset of influenza-specific lung memory T cells characterized as TRM cells in rhesus monkeys. The rhesus monkey model may be useful to explore the role of TRM cells in local tissue protective immunity after rechallenge and vaccination. PMID:26408671

  11. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  12. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  13. Somatosensory working memory performance depends on both engagement and disengagement of regions in a distributed network

    NARCIS (Netherlands)

    Haegens, S.; Osipova, D.; Oostenveld, R.; Jensen, O.

    2010-01-01

    Successful working memory (WM) requires the engagement of relevant brain areas but possibly also the disengagement of irrelevant areas. We used magnetoencephalography (MEG) to elucidate the temporal dynamics of areas involved in a somatosensory WM task. We found an increase in gamma band activity in

  14. Dynamic Memory Allocation Algorithm in Distributed Simulation System%分布仿真系统中的动态内存分配算法

    Institute of Scientific and Technical Information of China (English)

    李雨江

    2014-01-01

    According to the memory allocation problem in distributed simulation system , a dynamic memory allocation algo-rithm is proposed based on VMIC , which allocates and frees the memory space dynamically by vector and map .The test indicates that the algorithm is able to allocate memory and free memory for simulation data accurately , deal with the exceptions during memory allocation and release , and combine free memory together timely to reduce memory fragments as well , thus satisfying the access re-quirements of huge data in distributed simulation system .%针对分布仿真系统中的内存分配问题,提出了一种基于VMIC的内存分配算法,利用向量和映射相结合的方式对VMIC板卡的内存空间进行动态分配和释放。试验表明,该算法能够准确地为仿真数据分配和释放空间,处理内存分配和释放过程中出现的异常,且能够及时合并空闲空间以减少内存碎片,从而满足分布仿真系统对大量数据的存取需求。

  15. Number of traps and trap depth position on statistical distribution of random telegraph noise in scaled NAND flash memory

    Science.gov (United States)

    Tomita, Toshihiro; Miyaji, Kousuke

    2016-04-01

    The dependence of random telegraph noise (RTN) amplitude distribution on the number of traps and trap depth position is investigated using three-dimensional Monte Carlo device simulation including random dopant fluctuation (RDF) in a 30 nm NAND multi level flash memory. The ΔV th tail distribution becomes broad at fixed double traps, indicating that the number of traps greatly affects the worst RTN characteristics. It is also found that for both fixed single and fixed double traps, the ΔV th distribution in the lowest cell threshold voltage (V th) state shows the broadest distribution among all cell V th states. This is because the drain current flows at the channel surface in the lowest cell V th state, while at a high cell V th, it flows at the deeper position owing to the fringing coupling between the control gate (CG) and the channel. In this work, the ΔV th distribution with the number of traps following the Poisson distribution is also considered to cope with the variations in trap number. As a result, it is found that the number of traps is an important factor for understanding RTN characteristics. In addition, considering trap position in the tunnel oxide thickness direction is also an important factor.

  16. Extending distributed shared memory for the cell broadband engine to a channel model

    DEFF Research Database (Denmark)

    Skovhede, Kenneth; Larsen, Morten Nørgaard; Vinter, Brian

    2010-01-01

    at the price of a quite complex programming model. In this paper we present an easy-to-use, CSP-like, communication method, which enables transfers of shared memory objects. The channel based communication method can significantly reduce the complexity of massively parallel programs. By implementing a few...... scientific computational cores we show that performance and scalability of the system is acceptable for most problems. © 2012 Springer-Verlag....

  17. What happens when we compare the lifespan distributions of life script events and autobiographical memories of life story events? A cross-cultural study

    DEFF Research Database (Denmark)

    Zaragoza Scherman, Alejandra; Salgado, Sinué; Shao, Zhifang

    and memories of life story events, we can determine the degree to which the cultural life script serves as a recall template for autobiographical memories, especially of positive life events from adolescence and early adulthood, also known as the reminiscence bump period........ Most of these memories are rated as emotionally positive (Rubin & Berntsen, 2003). The cultural life script represents culturally shared expectations about the order and timing of life events in an typical, idealised life course. By comparing the lifespan distribution of the life scripts events...

  18. Cyber-EDA: Estimation of Distribution Algorithms with Adaptive Memory Programming

    OpenAIRE

    Peng-Yeng Yin; Hsi-Li Wu

    2013-01-01

    The estimation of distribution algorithm (EDA) aims to explicitly model the probability distribution of the quality solutions to the underlying problem. By iterative filtering for quality solution from competing ones, the probability model eventually approximates the distribution of global optimum solutions. In contrast to classic evolutionary algorithms (EAs), EDA framework is flexible and is able to handle inter variable dependence, which usually imposes difficulties on classic EAs. The suc...

  19. A Distributed Memory Hierarchy and Data Management for Interactive Scene Navigation and Modification on Tiled Display Walls.

    Science.gov (United States)

    Duy-Quoc Lai; Sajadi, Behzad; Jiang, Shan; Meenakshisundaram, Gopi; Majumder, Aditi

    2015-06-01

    Simultaneous modification and navigation of massive 3D models are difficult because repeated data edits affect the data layout and coherency on a secondary storage, which in turn affect the interactive out-of-core rendering performance. In this paper, we propose a novel approach for distributed data management for simultaneous interactive navigation and modification of massive 3D data using the readily available infrastructure of a tiled display. Tiled multi-displays, projection or LCD panel based, driven by a PC cluster, can be viewed as a cluster of storage-compute-display (SCD) nodes. Given a cluster of SCD node infrastructure, we first propose a distributed memory hierarchy for interactive rendering applications. Second, in order to further reduce the latency in such applications, we propose a new data partitioning approach for distributed storage among the SCD nodes that reduces the variance in the data load across the SCD nodes. Our data distribution method takes in a data set of any size, and reorganizes it into smaller partitions, and stores it across the multiple SCD nodes. These nodes store, manage, and coordinate data with other SCD nodes to simultaneously achieve interactive navigation and modification. Specifically, the data is not duplicated across these distributed secondary storage devices. In addition, coherency in data access, due to screen-space adjacency of adjacent displays in the tile, as well as object space adjacency of the data sets, is well leveraged in the design of the data management technique. Empirical evaluation on two large data sets, with different data density distribution, demonstrates that the proposed data management approach achieves superior performance over alternative state-of-the-art methods.

  20. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    Energy Technology Data Exchange (ETDEWEB)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I. [VNIIEF (Russian Federation)] [and others

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  1. Distributed computing and data storage in proteomics: many hands make light work, and a stronger memory.

    Science.gov (United States)

    Verheggen, Kenneth; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Modern day proteomics generates ever more complex data, causing the requirements on the storage and processing of such data to outgrow the capacity of most desktop computers. To cope with the increased computational demands, distributed architectures have gained substantial popularity in the recent years. In this review, we provide an overview of the current techniques for distributed computing, along with examples of how the techniques are currently being employed in the field of proteomics. We thus underline the benefits of distributed computing in proteomics, while also pointing out the potential issues and pitfalls involved.

  2. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory

    Science.gov (United States)

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-01-01

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain. PMID:28266595

  3. Time-frequency distribution properties of event-related potentials in mental fatigue induced by visual memory tasks.

    Science.gov (United States)

    Liu, Xinyang; Liu, Juntao; Gai, Shuping; Meyer, Kristina; Xu, Shengwei; Cai, Xinxia

    2016-09-28

    Prolonged periods of demanding cognitive tasks lead to an exhausted feeling known as mental fatigue. The neural underpinnings of mental fatigue are still under exploration. In the present study, we aimed to identify neurophysiological indicators of mental fatigue by studying the time-frequency distribution of the event-related potentials (ERPs) measured in N=26 adults in nonfatigued versus fatigued states. We were interested in the frontal theta and occipital alpha variations, which have shown consistent relationships with mental fatigue in previous studies. Furthermore, we expected differential changes in left and right electrodes, in line with previously detected lateralization effects in cognitive tasks. Mental fatigue was induced by a sustained two-back verbal visual memory task for 125 min and assessed using the Chalder Fatigue Scale. We applied a high-resolution time-frequency analysis method called smoothed pseudo Wigner Ville distribution and used regional integrals as indicators for changing trends of signal energy. Results showed an increase in ERP frontal theta energy (P=0.03) and a decrease in occipital alpha energy (P=0.028) when participants became mentally fatigued. The change in frontal theta was more pronounced in left electrode sites (P=0.032), hinting toward a differential fatigue effect in the two hemispheres. The results were discussed on the basis of previous lateralization studies with memory tasks and interpreted as an indicator of a causal relationship between the sustained task execution and the physiological changes. Our findings also suggest that the ERP signal energy variations in frontal theta and occipital alpha might be used as neural biomarkers to assess mental fatigue.

  4. Kemari: A Portable High Performance Fortran System for Distributed Memory Parallel Processors

    Directory of Open Access Journals (Sweden)

    T. Kamachi

    1997-01-01

    Full Text Available We have developed a compilation system which extends High Performance Fortran (HPF in various aspects. We support the parallelization of well-structured problems with loop distribution and alignment directives similar to HPF's data distribution directives. Such directives give both additional control to the user and simplify the compilation process. For the support of unstructured problems, we provide directives for dynamic data distribution through user-defined mappings. The compiler also allows integration of message-passing interface (MPI primitives. The system is part of a complete programming environment which also comprises a parallel debugger and a performance monitor and analyzer. After an overview of the compiler, we describe the language extensions and related compilation mechanisms in detail. Performance measurements demonstrate the compiler's applicability to a variety of application classes.

  5. Stochastic fluctuations and distributed control of gene expression impact cellular memory.

    Directory of Open Access Journals (Sweden)

    Guillaume Corre

    Full Text Available Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.

  6. Solution of large nonlinear quasistatic structural mechanics problems on distributed-memory multiprocessor computers

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, M. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    Most commercially-available quasistatic finite element programs assemble element stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain nodal displacements. However, for large problems (greater than a few hundred thousand degrees of freedom), the memory size and computation time required for this approach becomes prohibitive. Moreover, direct solution does not lend itself to the parallel processing needed for today`s multiprocessor systems. This talk gives an overview of the iterative solution strategy of JAS3D, the nonlinear large-deformation quasistatic finite element program. Because its architecture is derived from an explicit transient-dynamics code, it does not ever assemble a global stiffness matrix. The author describes the approach he used to implement the solver on multiprocessor computers, and shows examples of problems run on hundreds of processors and more than a million degrees of freedom. Finally, he describes some of the work he is presently doing to address the challenges of iterative convergence for ill-conditioned problems.

  7. 分布内存系统中节点间软流水优化技术%Exploiting Inter-node Pipelining Parallelism in Distributed Memory Systems

    Institute of Scientific and Technical Information of China (English)

    陈莉; 张兆庆; 冯晓兵

    2002-01-01

    Maximize parallelism and minimize communication overheads are important issues for distributed memory systems. Communication and data redistribution cannot be avoided even when considering global optimization of data distribution and computation decomposition. A new approach based on loop fusion is presented exploiting pipelining parallelism, thus communication overhead can be hidden and data redistribution can be avoided. This technique exploits pipelining from complex loop structures, which distinguishes itself from traditional pipelining techniques. Ex-periments show that the technique is superior to other optimizations.

  8. The reminiscence bump without memories: The distribution of imagined word-cued and important autobiographical memories in a hypothetical 70-year-old

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump is the disproportionate number of autobiographical memories dating from adolescence and early adulthood. It has often been ascribed to a consolidation of the mature self in the period covered by the bump. Here we stripped away factors relating to the characteristics of autob......The reminiscence bump is the disproportionate number of autobiographical memories dating from adolescence and early adulthood. It has often been ascribed to a consolidation of the mature self in the period covered by the bump. Here we stripped away factors relating to the characteristics...

  9. Modeling Mental Speed: Decomposing Response Time Distributions in Elementary Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence

    Directory of Open Access Journals (Sweden)

    Florian Schmitz

    2016-10-01

    Full Text Available Previous research has shown an inverse relation between response times in elementary cognitive tasks and intelligence, but findings are inconsistent as to which is the most informative score. We conducted a study (N = 200 using a battery of elementary cognitive tasks, working memory capacity (WMC paradigms, and a test of fluid intelligence (gf. Frequently used candidate scores and model parameters derived from the response time (RT distribution were tested. Results confirmed a clear correlation of mean RT with WMC and to a lesser degree with gf. Highly comparable correlations were obtained for alternative location measures with or without extreme value treatment. Moderate correlations were found as well for scores of RT variability, but they were not as strong as for mean RT. Additionally, there was a trend towards higher correlations for slow RT bands, as compared to faster RT bands. Clearer evidence was obtained in an ex-Gaussian decomposition of the response times: the exponential component was selectively related to WMC and gf in easy tasks, while mean response time was additionally predictive in the most complex tasks. The diffusion model parsimoniously accounted for these effects in terms of individual differences in drift rate. Finally, correlations of model parameters as trait-like dispositions were investigated across different tasks, by correlating parameters of the diffusion and the ex-Gaussian model with conventional RT and accuracy scores.

  10. Some methods of encoding simple visual images for use with a sparse distributed memory, with applications to character recognition

    Science.gov (United States)

    Jaeckel, Louis A.

    1989-01-01

    To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.

  11. Immunological memory is associative

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.J.; Forrest, S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; Perelson, A.S. [Los Alamos National Lab., NM (United States)

    1996-12-31

    The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associative recall in the immune response can be both beneficial and detrimental to the fitness of an individual.

  12. Two dimensional basic linear algebra communication subprograms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.; Whaley, R.C. [Univ. of Tennessee, Knoxville, TN (United States); Geijn, R.A. van de [Univ. of Texas, Austin, TX (United States)

    1993-12-31

    This paper describes a package of linear algebra communication routines for manipulating and communicating data structures that are distributed among the memories of a distributed memory MIMD computer. The motivation for the BLACS is to increase portability, efficiency and modularity at a high level. The audience of the BLACS are mathematical software experts and people with large scale scientific computation to perform.

  13. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-11-01

    Full Text Available The spleen is a highly compartmentalized lymphoid organ that allows for efficient antigen presentation and activation of immune responses. Additionally, the spleen itself functions to remove senescent red blood cells, filter bacteria, and sequester platelets. Splenectomy, commonly performed after blunt force trauma or splenomegaly, has been shown to increase risk of certain bacterial and parasitic infections years after removal of the spleen. Although previous studies report defects in memory B cells and IgM titers in splenectomized patients, the effect of splenectomy on CD8 T cell responses and memory CD8 T cell function remains ill defined. Using TCR-transgenic P14 cells, we demonstrate that homeostatic proliferation and representation of pathogen-specific memory CD8 T cells in the blood are enhanced in splenectomized compared to sham surgery mice. Surprisingly, despite the enhanced turnover, splenectomized mice displayed no changes in total memory CD8 T cell numbers nor impaired protection against lethal dose challenge with Listeria monocytogenes. Thus, our data suggest that memory CD8 T cell maintenance and function remain intact in the absence of the spleen.

  14. Chemokine receptor co-expression reveals aberrantly distributed T-H effector memory cells in GPA patients

    NARCIS (Netherlands)

    Lintermans, Lucas L.; Rutgers, Abraham; Stegeman, Coen A.; Heeringa, Peter; Abdulahad, Wayel H.

    2017-01-01

    Background: Persistent expansion of circulating CD4(+) effector memory T cells (TEM) in patients with granulomatosis with polyangiitis (GPA) suggests their fundamental role in disease pathogenesis. Recent studies have shown that distinct functional CD4(+) TEM cell subsets can be identified based on

  15. Neural markers of negative symptom outcomes in distributed working memory brain activity of antipsychotic-naive schizophrenia patients

    DEFF Research Database (Denmark)

    Nejad, Ayna B.; Madsen, Kristoffer H.; Ebdrup, Bjørn H.

    2013-01-01

    Since working memory deficits in schizophrenia have been linked to negative symptoms, we tested whether features of the one could predict the treatment outcome in the other. Specifically, we hypothesized that working memory-related functional connectivity at pre-treatment can predict improvement......-back task. Spatial independent component analysis identified task-modulated brain networks. A linear support vector machine was trained with these components to discriminate six patients who showed improvement in negative symptoms from eight non-improvers. Classification accuracy and significance...... was estimated by leave-one-out cross-validation and permutation tests, respectively. Two frontoparietal and one default mode network components predicted negative symptom improvement with a classification accuracy of 79% (p = 0.003). Discriminating features were found in the frontoparietal networks...

  16. Skewed distribution of IL-7 receptor-α-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jang-Jaer Lee

    Full Text Available CD8(+ T cells play important roles in anti-tumor immunity but distribution profile or functional characteristics of effector memory subsets during tumor progression are unclear. We found that, in oral squamous carcinoma patients, circulating CD8(+ T cell pools skewed toward effector memory subsets with the distribution frequency of CCR7(-CD45RA(-CD8(+ T cells and CCR7(- CD45RA(+CD8(+ T cells negatively correlated with each other. A significantly higher frequency of CD127(lo CCR7(-CD45RA(-CD8(+ T cells or CCR7(-CD45RA(+CD8(+ T cells among total CD8(+ T cells was found in peripheral blood or tumor infiltrating lymphocytes, but not in regional lymph nodes. The CD127(hi CCR7(-CD45RA(-CD8(+ T cells or CCR7(-CD45RA(+CD8(+ T cells maintained significantly higher IFN-γ, IL-2 productivity and ex vivo proliferative capacity, while the CD127(lo CCR7(-CD45RA(-CD8(+ T cells or CCR7(-CD45RA(+CD8(+ T cells exhibited higher granzyme B productivity and susceptibility to activation induced cell death. A higher ratio of CCR7(-CD45RA(+CD8(+ T cells to CCR7(-CD45RA(-CD8(+ T cells was associated with advanced cancer staging and poor differentiation of tumor cells. Therefore, the CD127(lo CCR7(-CD45RA(-CD8(+ T cells and CCR7(-CD45RA(+CD8(+ T cells are functionally similar CD8(+ T cell subsets which exhibit late differentiated effector phenotypes and the shift of peripheral CD8(+ effector memory balance toward CCR7(-CD45RA(+CD8(+ T cells is associated with OSCC progression.

  17. Memories of Physical Education

    Science.gov (United States)

    Sidwell, Amy M.; Walls, Richard T.

    2014-01-01

    The purpose of this investigation was to explore college students' autobiographical memories of physical education (PE). Questionnaires were distributed to students enrolled in undergraduate Introduction to PE and Introduction to Communications courses. The 261 participants wrote about memories of PE. These students recalled events from Grades…

  18. Snapple : A distributed, fault-tolerant, in-memory key-value store using Conflict-Free Replicated Data Types

    OpenAIRE

    Stenberg, Johan

    2016-01-01

    As services grow and receive more traffic, data resilience through replication becomes increasingly important. Modern large-scale Internet services such as Facebook, Google and Twitter serve millions of users concurrently. Replication is a vital component of distributed systems. Eventual consistency and Conflict-Free Replicated Data Types (CRDTs) are suggested as an alternative to strong consistency systems. This thesis implements and evaluates Snapple, a distributed, fault-tolerant, in-memor...

  19. Combined shared and distributed memory ab-initio computations of molecular-hydrogen systems in the correlated state: Process pool solution and two-level parallelism

    Science.gov (United States)

    Biborski, Andrzej; Kądzielawa, Andrzej P.; Spałek, Józef

    2015-12-01

    An efficient computational scheme devised for investigations of ground state properties of the electronically correlated systems is presented. As an example, (H2)n chain is considered with the long-range electron-electron interactions taken into account. The implemented procedure covers: (i) single-particle Wannier wave-function basis construction in the correlated state, (ii) microscopic parameters calculation, and (iii) ground state energy optimization. The optimization loop is based on highly effective process-pool solution - specific root-workers approach. The hierarchical, two-level parallelism was applied: both shared (by use of Open Multi-Processing) and distributed (by use of Message Passing Interface) memory models were utilized. We discuss in detail the feature that such approach results in a substantial increase of the calculation speed reaching factor of 300 for the fully parallelized solution. The scheme elaborated in detail reflects the situation in which the most demanding task is the single-particle basis optimization.

  20. Fast decision tree-based method to index large DNA-protein sequence databases using hybrid distributed-shared memory programming model.

    Science.gov (United States)

    Jaber, Khalid Mohammad; Abdullah, Rosni; Rashid, Nur'Aini Abdul

    2014-01-01

    In recent times, the size of biological databases has increased significantly, with the continuous growth in the number of users and rate of queries; such that some databases have reached the terabyte size. There is therefore, the increasing need to access databases at the fastest rates possible. In this paper, the decision tree indexing model (PDTIM) was parallelised, using a hybrid of distributed and shared memory on resident database; with horizontal and vertical growth through Message Passing Interface (MPI) and POSIX Thread (PThread), to accelerate the index building time. The PDTIM was implemented using 1, 2, 4 and 5 processors on 1, 2, 3 and 4 threads respectively. The results show that the hybrid technique improved the speedup, compared to a sequential version. It could be concluded from results that the proposed PDTIM is appropriate for large data sets, in terms of index building time.

  1. Memory Matters

    Science.gov (United States)

    ... Emergency Room? What Happens in the Operating Room? Memory Matters KidsHealth > For Kids > Memory Matters A A ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...

  2. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  3. An efficient parallel algorithm for O(N^2) direct summation method and its variations on distributed-memory parallel machines

    CERN Document Server

    Makino, J

    2001-01-01

    We present a novel, highly efficient algorithm to parallelize O(N^2) direct summation method for N-body problems with individual timesteps on distributed-memory parallel machines such as Beowulf clusters. Previously known algorithms, in which all processors have complete copies of the N-body system, has the serious problem that the communication-computation ratio increases as we increase the number of processors, since the communication cost is independent of the number of processors. In the new algorithm, p processors are organized as a $\\sqrt{p}\\times \\sqrt{p}$ two-dimensional array. Each processor has $N/\\sqrt{p}$ particles, but the data are distributed in such a way that complete system is presented if we look at any row or column consisting of $\\sqrt{p}$ processors. In this algorithm, the communication cost scales as $N /\\sqrt{p}$, while the calculation cost scales as $N^2/p$. Thus, we can use a much larger number of processors without losing efficiency compared to what was practical with previously know...

  4. Human learning and memory.

    Science.gov (United States)

    Johnson, M K; Hasher, L

    1987-01-01

    There have been several notable recent trends in the area of learning and memory. Problems with the episodic/semantic distinction have become more apparent, and new efforts have been made (exemplar models, distributed-memory models) to represent general knowledge without assuming a separate semantic system. Less emphasis is being placed on stable, prestored prototypes and more emphasis on a flexible memory system that provides the basis for a multitude of categories or frames of reference, derived on the spot as tasks demand. There is increasing acceptance of the idea that mental models are constructed and stored in memory in addition to, rather than instead of, memorial representations that are more closely tied to perceptions. This gives rise to questions concerning the conditions that permit inferences to be drawn and mental models to be constructed, and to questions concerning the similarities and differences in the nature of the representations in memory of perceived and generated information and in their functions. There has also been a swing from interest in deliberate strategies to interest in automatic, unconscious (even mechanistic!) processes, reflecting an appreciation that certain situations (e.g. recognition, frequency judgements, savings in indirect tasks, aspects of skill acquisition, etc) seem not to depend much on the products of strategic, effortful or reflective processes. There is a lively interest in relations among memory measures and attempts to characterize memory representations and/or processes that could give rise to dissociations among measures. Whether the pattern of results reflects the operation of functional subsystems of memory and, if so, what the "modules" are is far from clear. This issue has been fueled by work with amnesics and has contributed to a revival of interaction between researchers studying learning and memory in humans and those studying learning and memory in animals. Thus, neuroscience rivals computer science as a

  5. Emotional organization of autobiographical memory.

    Science.gov (United States)

    Schulkind, Matthew D; Woldorf, Gillian M

    2005-09-01

    The emotional organization of autobiographical memory was examined by determining whether emotional cues would influence autobiographical retrieval in younger and older adults. Unfamiliar musical cues that represented orthogonal combinations of positive and negative valence and high and low arousal were used. Whereas cue valence influenced the valence of the retrieved memories, cue arousal did not affect arousal ratings. However, high-arousal cues were associated with reduced response latencies. A significant bias to report positive memories was observed, especially for the older adults, but neither the distribution of memories across the life span nor response latencies varied across memories differing in valence or arousal. These data indicate that emotional information can serve as effective cues for autobiographical memories and that autobiographical memories are organized in terms of emotional valence but not emotional arousal. Thus, current theories of autobiographical memory must be expanded to include emotional valence as a primary dimension of organization.

  6. Construction of a Parallel Algorithm to Solve the Multiphase Gas Dynamics Problem

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    1995-11-01

    Full Text Available This paper considers questions of an effective use of multiprocessor computing system to implement a parallel algorithm solving the multiphase gas dynamics problem. A technique is offered to parallelize the two-dimensional explicit differential scheme to implement it on multiprocessor systems with distributed memory (MIMD architecture.

  7. Experiments with the auction algorithm for the shortest path problem

    DEFF Research Database (Denmark)

    Larsen, Jesper; Pedersen, Ib

    1999-01-01

    The auction approach for the shortest path problem (SPP) as introduced by Bertsekas is tested experimentally. Parallel algorithms using the auction approach are developed and tested. Both the sequential and parallel auction algorithms perform significantly worse than a state-of-the-art Dijkstra......-like reference algorithm. Experiments are run on a distributed-memory MIMD class Meiko parallel computer....

  8. Emergence of collective memories

    CERN Document Server

    Lee, Sungmin; Holme, Petter

    2010-01-01

    We understand the dynamics of the world around us as by associating pairs of events, where one event has some influence on the other. These pairs of events can be aggregated into a web of memories representing our understanding of an episode of history. The events and the associations between them need not be directly experienced-they can also be acquired by communication. In this paper we take a network approach to study the dynamics of memories of history. First we investigate the network structure of a data set consisting of reported events by several individuals and how associations connect them. We focus our measurement on degree distributions, degree correlations, cycles (which represent inconsistencies as they would break the time ordering) and community structure. We proceed to model effects of communication using an agent-based model. We investigate the conditions for the memory webs of different individuals to converge to collective memories, how groups where the individuals have similar memories (b...

  9. Quantifying bid-ask spreads in the Chinese stock market using limit-order book data. Intraday pattern, probability distribution, long memory, and multifractal nature

    Science.gov (United States)

    Gu, G.-F.; Chen, W.; Zhou, W.-X.

    2007-05-01

    The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions of spread are considered based on the time right before transactions, the time whenever the highest buying price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns consisting of a big L-shape in morning transactions and a small L-shape in the afternoon. The distributions of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction level are well within the interval (2,3) and that of average spreads are well in line with the inverse cubic law for different time intervals. Based on the detrended fluctuation analysis, we found the evidence of long memory in the bid-ask spread time series for all three definitions, even after the removal of the intraday pattern. Using the classical box-counting approach for multifractal analysis, we show that the time series of bid-ask spread do not possess multifractal nature.

  10. TCR sequences and tissue distribution discriminate the subsets of naïve and activated/memory Treg cells in mice.

    Science.gov (United States)

    Bergot, Anne-Sophie; Chaara, Wahiba; Ruggiero, Eliana; Mariotti-Ferrandiz, Encarnita; Dulauroy, Sophie; Schmidt, Manfred; von Kalle, Christof; Six, Adrien; Klatzmann, David

    2015-05-01

    Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44(hi) CD62L(low) activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-β deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation.

  11. Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature

    CERN Document Server

    Gu, G F; Zhou, W X; Chen, Wei; Gu, Gao-Feng; Zhou, Wei-Xing

    2006-01-01

    The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions of spread are considered based on the time right before transactions, the time whenever the highest buying price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns consisting of a big L-shape in the morning and a small L-shape in the afternoon. The distributions of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction level are well within the interval $(2,3)$ and that of average spreads are well in line with the inverse cubic law for different time intervals. Based on the detrended fluctuation analysis, we find evidence of long memory in the bid-ask spread time series for all three definitions, even aft...

  12. The parallel processing of EGS4 code on distributed memory scalar parallel computer:Intel Paragon XP/S15-256

    Energy Technology Data Exchange (ETDEWEB)

    Takemiya, Hiroshi; Ohta, Hirofumi; Honma, Ichirou

    1996-03-01

    The parallelization of Electro-Magnetic Cascade Monte Carlo Simulation Code, EGS4 on distributed memory scalar parallel computer: Intel Paragon XP/S15-256 is described. EGS4 has the feature that calculation time for one incident particle is quite different from each other because of the dynamic generation of secondary particles and different behavior of each particle. Granularity for parallel processing, parallel programming model and the algorithm of parallel random number generation are discussed and two kinds of method, each of which allocates particles dynamically or statically, are used for the purpose of realizing high speed parallel processing of this code. Among four problems chosen for performance evaluation, the speedup factors for three problems have been attained to nearly 100 times with 128 processor. It has been found that when both the calculation time for each incident particles and its dispersion are large, it is preferable to use dynamic particle allocation method which can average the load for each processor. And it has also been found that when they are small, it is preferable to use static particle allocation method which reduces the communication overhead. Moreover, it is pointed out that to get the result accurately, it is necessary to use double precision variables in EGS4 code. Finally, the workflow of program parallelization is analyzed and tools for program parallelization through the experience of the EGS4 parallelization are discussed. (author).

  13. Tunable and Memory Metamaterials

    Science.gov (United States)

    2015-12-02

    AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One

  14. [Memory disorders in schizophrenia].

    Science.gov (United States)

    Danion, J M; Peretti, S; Gras-Vincendon, A; Singer, L

    1992-01-01

    disorders, those relating to a disturbance of the action planning process and to that of the internal representation of context are compatible with the observed memory disorders. All the clinically derived data and those produced by the cognitive and neurosciences indicate a need to reformulate the links between memory, selective attention and evaluation of the relevance of a stimulus, to develop a general model of the reciprocal interactions between cognition and affectivity and to look for the origin of a pathology as complex as schizophrenia, not in a local lesion in an isolated cerebral structure but in a disturbance of the dynamic interactions within a functional, parallel and distributed network of broadly interconnected regions.

  15. Distribution of Alox15 in the Rat Brain and Its Role in Prefrontal Cortical Resolvin D1 Formation and Spatial Working Memory.

    Science.gov (United States)

    Shalini, Suku-Maran; Ho, Christabel Fung-Yih; Ng, Yee-Kong; Tong, Jie-Xin; Ong, Eng-Shi; Herr, Deron R; Dawe, Gavin S; Ong, Wei-Yi

    2017-02-08

    Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory

  16. General Geometry PIC for MIMD Computers

    Science.gov (United States)

    1993-06-01

    34* transfinite interpolation subdivision of the curvilinear quadrilateral multi- blocks into quadrilateral elements, "* indirect ("glue patch") addressing...9 regular (i.j./k) cubic lattice addressing within blocks. * transfinite interpolation subdivision of curvilinear hexahedral blocky. into finite...combination of isoparametric hezahedral elements, generated by transfinite interpolation, and multiblock decomposition leads to algorithms ideally suited to

  17. Memory Modulation

    NARCIS (Netherlands)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evi

  18. Memory Matters

    Science.gov (United States)

    ... the brain that actually make memories harder to recall. previous continue Signs of a Memory Problem A person might — or might not — be ... A doctor will test the person's ability to recall events, names, or places by ... . If the person has memory loss from a head injury, the doctor will ...

  19. An innovative approach to achieve re-centering and ductility of cement mortar beams through randomly distributed pseudo-elastic shape memory alloy fibers

    Science.gov (United States)

    Shajil, N.; Srinivasan, S. M.; Santhanam, M.

    2012-04-01

    Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.

  20. Memory protection

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  1. Distribution and levels of [{sup 125}I]IGF-I, [{sup 125}I]IGF-II and [{sup 125}I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats

    Energy Technology Data Exchange (ETDEWEB)

    Quirion, R.; Rowe, W.; Kar, S.; Dore, S. [Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal (Canada)

    1997-08-11

    The insulin-like growth factors (IGF-I and IGF-II) and insulin are localized within distinct brain regions and their respective functions are mediated by specific membrane receptors. High densities of binding sites for these growth factors are discretely and differentially distributed throughout the brain, with prominent levels localized to the hippocampal formation. IGFs and insulin, in addition to their growth promoting actions, are considered to play important roles in the development and maintenance of normal cell functions throughout life. We compared the anatomical distribution and levels of IGF and insulin receptors in young (five month) and aged (25 month) memory-impaired and memory-unimpaired male Long-Evans rats as determined in the Morris water maze task in order to determine if alterations in IGF and insulin activity may be related to the emergence of cognitive deficits in the aged memory-impaired rat. In the hippocampus, [{sup 125}I]IGF-I receptors are concentrated primarily in the dentate gyrus (DG) and the CA3 sub-field while high amounts of [{sup 125}I]IGF-II binding sites are localized to the pyramidal cell layer, and the granular cell layer of the DG. [{sup 125}I]insulin binding sites are mostly found in the molecular layer of the DG and the CA1 sub-field. No significant differences were found in [{sup 125}I]IGF-I, [{sup 125}I]IGF-II or [{sup 125}I]insulin binding levels in any regions or laminae of the hippocampus of young vs aged rats, and deficits in cognitive performance did not relate to altered levels of these receptors in aged memory-impaired vs aged memory-unimpaired rats. Other regions, including various cortical areas, were also examined and failed to reveal any significant differences between the three groups studied.It thus appears that IGF-I, IGF-II and insulin receptor sites are not markedly altered during the normal ageing process in the Long-Evans rat, in spite of significant learning deficits in a sub-group (memory-impaired) of

  2. Memory design

    DEFF Research Database (Denmark)

    Tanderup, Sisse

    Mind and Matter - Nordik 2009 Conference for Art Historians Design Matters Contributed Memory design BACKGROUND My research concerns the use of memory categories in the designs by the companies Alessi and Georg Jensen. When Alessi's designers create their products, they are usually inspired...... by cultural forms, often specifically by the concept of memory in philosophy, sociology and psychology, while Danish design traditionally has been focusing on form and function with frequent references to the forms of nature. Alessi's motivation for investigating the concept of memory is that it adds...... a cultural dimension to the design objects, enabling the objects to make an identity-forming impact. Whether or not the concept of memory plays a significant role in Danish design has not yet been elucidated fully. TERMINOLOGY The concept of "memory design" refers to the idea that design carries...

  3. Disputed Memory

    DEFF Research Database (Denmark)

    The world wars, genocides and extremist ideologies of the 20th century are remembered very differently across Central, Eastern and Southeastern Europe, resulting sometimes in fierce memory disputes. This book investigates the complexity and contention of the layers of memory of the troubled 20th...... century in the region. Written by an international group of scholars from a diversity of disciplines, the chapters approach memory disputes in methodologically innovative ways, studying representations and negotiations of disputed pasts in different media, including monuments, museum exhibitions......, individual and political discourse and electronic social media. Analyzing memory disputes in various local, national and transnational contexts, the chapters demonstrate the political power and social impact of painful and disputed memories. The book brings new insights into current memory disputes...

  4. Main Memory

    OpenAIRE

    Boncz, Peter; Liu, Lei; Özsu, Tamer, M.

    2008-01-01

    Primary storage, presently known as main memory, is the largest memory directly accessible to the CPU in the prevalent Von Neumann model and stores both data and instructions (program code). The CPU continuously reads instructions stored there and executes them. It is also called Random Access Memory (RAM), to indicate that load/store instructions can access data at any location at the same cost, is usually implemented using DRAM chips, which are connected to the CPU and other peripherals (di...

  5. Flavor Memory

    NARCIS (Netherlands)

    Mojet, Jos; Köster, Ep

    2016-01-01

    Odor, taste, texture, temperature, and pain all contribute to the perception and memory of food flavor. Flavor memory is also strongly linked to the situational aspects of previous encounters with the flavor, but does not depend on the precise recollection of its sensory features as in vision and

  6. Memory integration

    NARCIS (Netherlands)

    Sweegers, C.C.G.

    2014-01-01

    The aim of this thesis was to characterize the neural mechanisms underlying memory integration. In chapter 2, we studied the neural underpinnings of regularity extraction across hippocampus-dependent episodic memories. We found higher connectivity between the hippocampus and the mPFC for the

  7. Shared Memories?

    DEFF Research Database (Denmark)

    Wæhrens, Anne

    2011-01-01

    This paper analyses how the memory of the Holocaust has been addressed in the European Parliament from 1989 to 2009. I identify two major changes that occurred in the 1990s and after the 2004 enlargement of the European Union respectively. In the 1990s the war in Bosnia and the question of restit......This paper analyses how the memory of the Holocaust has been addressed in the European Parliament from 1989 to 2009. I identify two major changes that occurred in the 1990s and after the 2004 enlargement of the European Union respectively. In the 1990s the war in Bosnia and the question...... of restitution universalised the memory of the Holocaust and made it present. The 2004 enlargement brought the memory of Soviet Communism into the Union and made it a central task to construct a community of memory that includes both the memory of the Holocaust and of Soviet Communism. The analysis also...... identifies what seems to be a political memory split between Left and Right; and it shows that the time might not be ripe for a shared European memory....

  8. Collaging Memories

    Science.gov (United States)

    Wallach, Michele

    2011-01-01

    Even middle school students can have memories of their childhoods, of an earlier time. The art of Romare Bearden and the writings of Paul Auster can be used to introduce ideas about time and memory to students and inspire works of their own. Bearden is an exceptional role model for young artists, not only because of his astounding art, but also…

  9. Main Memory

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractPrimary storage, presently known as main memory, is the largest memory directly accessible to the CPU in the prevalent Von Neumann model and stores both data and instructions (program code). The CPU continuously reads instructions stored there and executes them. It is also called Random

  10. Memory conformity affects inaccurate memories more than accurate memories.

    Science.gov (United States)

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  11. Perceptual Cognition in the Distributed Cognition (DCOG) Framework: A Study of Dual Coding and Temporal Factors in a Knowledge-Based Memory System

    Science.gov (United States)

    2006-08-01

    demonstrated successful cognitive performance in a complex air traffic management and leaning task (Eggleston, McCreight, and Young, 2005). For this study, we...engaged in an air traffic control task that required real-time learning. A more detailed description of the basic DCOG memory model is provided in...interpretation. Such interpretive tensions may be addressed by mechanisms involved in managing stereopsis . For this project we do not address these more detailed

  12. Digital Extension of Music Memory Music as a Collective Cultural Memory

    Directory of Open Access Journals (Sweden)

    Dimitrije Buzarovski

    2014-11-01

    Full Text Available Artistic works represent a very important part of collective cultural memory. Every artistic work, by definition, can confirm its existence only through the presence in collective cultural memory. The migration from author’s individual memory to common collective cultural memory forms the cultural heritage. This equally applies to tangible and intangible cultural artifacts. Being part of collective cultural memory, music reflects the spatial (geographic and temporal (historic dimensions of this memory. Until the appearance of written signs (scores music was preserved only through collective cultural memory. Scores have facilitated further distribution of music artifacts. The appearance of different means for audio, and later audio/video recordings have greatly improved the distribution of music. The transition from analog to digital recording and carriers has been a revolutionary step which substantially extended the chances for the survival of music artifacts in collective memory.

  13. Memory loss

    Science.gov (United States)

    A person with memory loss needs a lot of support. It helps to show the person familiar objects, music, or and photos or play familiar music. Write down when the person should take any medicine or do other ...

  14. Memory clinics

    OpenAIRE

    Jolley, D; Benbow, S M; Grizzell, M

    2006-01-01

    Memory clinics were first described in the 1980s. They have become accepted worldwide as useful vehicles for improving practice in the identification, investigation, and treatment of memory disorders, including dementia. They are provided in various settings, the setting determining clientele and practice. All aim to facilitate referral from GPs, other specialists, or by self referral, in the early stages of impairment, and to avoid the stigma associated with psychiatric services. They bring ...

  15. Thermodynamic Model of Spatial Memory

    Science.gov (United States)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  16. Dielectric elastomer memory

    Science.gov (United States)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  17. Memory consolidation.

    Science.gov (United States)

    Squire, Larry R; Genzel, Lisa; Wixted, John T; Morris, Richard G

    2015-08-03

    Conscious memory for a new experience is initially dependent on information stored in both the hippocampus and neocortex. Systems consolidation is the process by which the hippocampus guides the reorganization of the information stored in the neocortex such that it eventually becomes independent of the hippocampus. Early evidence for systems consolidation was provided by studies of retrograde amnesia, which found that damage to the hippocampus-impaired memories formed in the recent past, but typically spared memories formed in the more remote past. Systems consolidation has been found to occur for both episodic and semantic memories and for both spatial and nonspatial memories, although empirical inconsistencies and theoretical disagreements remain about these issues. Recent work has begun to characterize the neural mechanisms that underlie the dialogue between the hippocampus and neocortex (e.g., "neural replay," which occurs during sharp wave ripple activity). New work has also identified variables, such as the amount of preexisting knowledge, that affect the rate of consolidation. The increasing use of molecular genetic tools (e.g., optogenetics) can be expected to further improve understanding of the neural mechanisms underlying consolidation. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Is external memory memory? Biological memory and extended mind.

    Science.gov (United States)

    Michaelian, Kourken

    2012-09-01

    Clark and Chalmers (1998) claim that an external resource satisfying the following criteria counts as a memory: (1) the agent has constant access to the resource; (2) the information in the resource is directly available; (3) retrieved information is automatically endorsed; (4) information is stored as a consequence of past endorsement. Research on forgetting and metamemory shows that most of these criteria are not satisfied by biological memory, so they are inadequate. More psychologically realistic criteria generate a similar classification of standard putative external memories, but the criteria still do not capture the function of memory. An adequate account of memory function, compatible with its evolution and its roles in prospection and imagination, suggests that external memory performs a function not performed by biological memory systems. External memory is thus not memory. This has implications for: extended mind theorizing, ecological validity of memory research, the causal theory of memory.

  19. Memory training in depression

    NARCIS (Netherlands)

    Becker, E.S.; Vanderhasselt, M.A.; Vrijsen, J.N.

    2015-01-01

    Memory biases, that is, general memory impairments as well as specific mood-congruent memory biases, are important vulnerability factors in depression. Recently, computerized memory trainings have been developed to target these biases, reducing rumination and lightening depressive symptoms. This

  20. Improved polycrystalline Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy by γ phase distributing along grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuiyuan; Zhang, Fan; Zhang, Kaixin; Huang, Yangyang; Wang, Cuiping; Liu, Xingjun [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome

    2016-09-15

    In this study, the shape recovery and mechanical properties of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy are improved simultaneously. This results from the low, about 4.4%, volume fraction of γ phase being almost completely distributed along grain boundaries. The recovery strain gradually increases with the increase in residual strain with a shape recovery rate of above 68%, up to a maximum value of 5.3%. The compressive fracture strain of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} alloy is about 35%. The results further reveal that when applying a high compression deformation two types of cracks form and propagate either within martensite grains (type I) or along the boundaries between martensite phase and γ phase (type II) in the present two-phase alloy.

  1. Retracing Memories

    Science.gov (United States)

    Harrison, David L.

    2005-01-01

    There are plenty of paths to poetry but few are as accessible as retracing ones own memories. When students are asked to write about something they remember, they are given them the gift of choosing from events that are important enough to recall. They remember because what happened was funny or scary or embarrassing or heartbreaking or silly.…

  2. Memory consolidation

    NARCIS (Netherlands)

    Takashima, A.; Bakker, I.

    2016-01-01

    In order to make use of novel experiences and knowledge to guide our future behavior, we must keep large amounts of information accessible for retrieval. The memory system that stores this information needs to be flexible in order to rapidly incorporate incoming information, but also requires that

  3. Broadcast Memories

    Institute of Scientific and Technical Information of China (English)

    陈淑娴

    1995-01-01

    At the root of all memory is a communication among neurons,millions of neurons, passing signals to one another like the transistors in a computer. Transistors have to be linked by wires in order to communicate—but neurons,it now seems, are different. According to a recent study dnne at Stanford, neu-

  4. Concrete Memories

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2015-01-01

    This article traces the presence of Atlantikwall bunkers in amateur holiday snapshots and discusses the ambiguous role of the bunker site in visual cultural memory. Departing from my family’s private photo collection from twenty years of vacationing at the Danish West coast, the different mundane...

  5. Event boundaries and memory improvement.

    Science.gov (United States)

    Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A

    2016-03-01

    The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition.

  6. The reminiscence bump in autobiographical memory and for public events

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised......The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories...... of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced...

  7. The reminiscence bump in autobiographical memory and for public events

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories...... of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced...... for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised...

  8. Three Types of Memory in Emergency Medical Services Communication

    Science.gov (United States)

    Angeli, Elizabeth L.

    2015-01-01

    This article examines memory and distributed cognition involved in the writing practices of emergency medical services (EMS) professionals. Results from a 16-month study indicate that EMS professionals rely on distributed cognition and three kinds of memory: individual, collaborative, and professional. Distributed cognition and the three types of…

  9. Three Types of Memory in Emergency Medical Services Communication

    Science.gov (United States)

    Angeli, Elizabeth L.

    2015-01-01

    This article examines memory and distributed cognition involved in the writing practices of emergency medical services (EMS) professionals. Results from a 16-month study indicate that EMS professionals rely on distributed cognition and three kinds of memory: individual, collaborative, and professional. Distributed cognition and the three types of…

  10. Holographic Memories

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, NCR; Berg, RH

    1999-01-01

    A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...... storage. They exhibit high resolution, high diffraction efficiency, have long storage life, are fully erasable and are mechanically stable....

  11. Transactional Memory

    OpenAIRE

    Grahn, Håkan

    2010-01-01

    Current and future processor generations are based on multicore architectures where the performance increase comes from an increasing number of cores on a chip. In order to utilize the performance potential of multicore architectures the programs also need to be parallel, but writing parallel programs is a non-trivial task. Transactional memory tries to ease parallel program development by providing atomic and isolated execution of code sequences, enabling software composability and protected...

  12. [Neural correlates of memory].

    Science.gov (United States)

    Fujii, Toshikatsu

    2013-01-01

    Memory can be divided into several types, although all of them involve three successive processes: encoding, storage, and retrieval. In terms of the duration of retention, neurologists classify memory into immediate, recent, and remote memories, whereas psychologists classify memory into short-term and long-term memories. In terms of the content, episodic, semantic, and procedural memories are considered to be different types of memory. Furthermore, researchers on memory have proposed relatively new concepts of memory, i.e., working memory and prospective memory. This article first provides explanations for these several types of memory. Next, neuropsychological characteristics of amnesic syndrome are briefly outlined. Finally, how several different types of memory are affected (or preserved) in patients with amnesic syndrome is described.

  13. Goal-Directed Modulation of Neural Memory Patterns: Implications for fMRI-Based Memory Detection.

    Science.gov (United States)

    Uncapher, Melina R; Boyd-Meredith, J Tyler; Chow, Tiffany E; Rissman, Jesse; Wagner, Anthony D

    2015-06-03

    Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel pattern analysis (MVPA) of fMRI data. Brain-based memory detection--if valid and reliable--would have clear utility beyond the domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory decoding validity may be the deployment of "countermeasures": strategies used to mask memory signals. Here we tested the vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identification. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on their real-world utility.

  14. A Cerebellar-model Associative Memory as a Generalized Random-access Memory

    Science.gov (United States)

    Kanerva, Pentti

    1989-01-01

    A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.

  15. The molecular basis of memory.

    Science.gov (United States)

    Marx, Gerard; Gilon, Chaim

    2012-08-15

    We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (N(A) = 6 × 10(23)). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson's disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of "synaptic plasticity" affecting short-term memory, long-term memory, and forgetting.

  16. Transactional Memory

    CERN Document Server

    Harris, Tim; Rajwar, Ravi

    2010-01-01

    The advent of multicore processors has renewed interest in the idea of incorporating transactions into the programming model used to write parallel programs.This approach, known as transactional memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that concurrent reads and writes of shared data do not produce inconsistent or incorrect results. At a higher level, a computation wrapped in a transaction executes atomically - either it completes successfullyand

  17. Memory effects in turbulence

    Science.gov (United States)

    Hinze, J. O.

    1979-01-01

    Experimental investigations of the wake flow of a hemisphere and cylinder show that such memory effects can be substantial and have a significant influence on momentum transport. Memory effects are described in terms of suitable memory functions.

  18. Angle- and distance-constrained matcher with parallel implementations for model-based vision

    Science.gov (United States)

    Anhalt, David J.; Raney, Steven; Severson, William E.

    1992-02-01

    The matching component of a model-based vision system hypothesizes one-to-one correspondences between 2D image features and locations on the 3D model. As part of Wright Laboratory's ARAGTAP program [a synthetic aperture radar (SAR) object recognition program], we developed a matcher that searches for feature matches based on the hypothesized object type and aspect angle. Search is constrained by the presumed accuracy of the hypothesized aspect angle and scale. These constraints reduce the search space for matches, thus improving match performance and quality. The algorithm is presented and compared with a matcher based on geometric hashing. Parallel implementations on commercially available shared memory MIMD machines, distributed memory MIMD machines, and SIMD machines are presented and contrasted.

  19. STRUKTUR DAN PROSES MEMORI

    Directory of Open Access Journals (Sweden)

    Magda Bhinnety

    2015-09-01

    Full Text Available This paper describes structures and processes of human memory system according to the modal model. Sensory memory is described as the first system to store information from outside world. Short‐term memory, or now called working memory, represents a system characterized by limited ability in storing as well as retrieving information. Long‐term memory on the hand stores information larger in amount and longer than short‐term memory

  20. Memory effect in growing trees

    OpenAIRE

    Malarz, K.; Kulakowski, K.

    2003-01-01

    We show that the structure of a growing tree preserves an information on the shape of an initial graph. For the exponential trees, evidence of this kind of memory is provided by means of the iterative equations, derived for the moments of the node-node distance distribution. Numerical calculations confirm the result and allow to extend the conclusion to the Barabasi--Albert scale-free trees. The memory effect almost disappears, if subsequent nodes are connected to the network with more than o...

  1. Memory, collective memory, orality and the gospels

    African Journals Online (AJOL)

    Test

    2011-06-07

    Jun 7, 2011 ... with collective memory theory in the works of Halbwachs, Connerton, Gillis, Fentress and. Wickham, Olick, Schwartz ..... critical importance of cultural memory for (re)constructing history. ...... Frankfurt am Main. Baddeley, A.D. ...

  2. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  3. Quantum memory in quantum cryptography

    CERN Document Server

    Mor, T

    1999-01-01

    [Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...

  4. DOLIB: Distributed Object Library

    Energy Technology Data Exchange (ETDEWEB)

    D`Azevedo, E.F.; Romine, C.H.

    1994-10-01

    This report describes the use and implementation of DOLIB (Distributed Object Library), a library of routines that emulates global or virtual shared memory on Intel multiprocessor systems. Access to a distributed global array is through explicit calls to gather and scatter. Advantages of using DOLIB include: dynamic allocation and freeing of huge (gigabyte) distributed arrays, both C and FORTRAN callable interfaces, and the ability to mix shared-memory and message-passing programming models for ease of use and optimal performance. DOLIB is independent of language and compiler extensions and requires no special operating system support. DOLIB also supports automatic caching of read-only data for high performance. The virtual shared memory support provided in DOLIB is well suited for implementing Lagrangian particle tracking techniques. We have also used DOLIB to create DONIO (Distributed Object Network I/O Library), which obtains over a 10-fold improvement in disk I/O performance on the Intel Paragon.

  5. Semantic graphs and associative memories.

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  6. Memory and Study

    Institute of Scientific and Technical Information of China (English)

    沈园

    1996-01-01

    Of all the myths that surround memory, the most damaging is that it is agift. That is quite untrue. Memory is a skill; and like any skill its performancedepends on application, on practice, and on regular training. Everyone poten-tially has a first-class memory; and everyone can train their memory, and there-

  7. Memory, microprocessor, and ASIC

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    System Timing. ROM/PROM/EPROM. SRAM. Embedded Memory. Flash Memories. Dynamic Random Access Memory. Low-Power Memory Circuits. Timing and Signal Integrity Analysis. Microprocessor Design Verification. Microprocessor Layout Method. Architecture. ASIC Design. Logic Synthesis for Field Programmable Gate Array (EPGA) Technology. Testability Concepts and DFT. ATPG and BIST. CAD Tools for BIST/DFT and Delay Faults.

  8. Memory recall and modifications by activating neurons with elevated CREB.

    Science.gov (United States)

    Kim, Jieun; Kwon, Jeong-Tae; Kim, Hyung-Su; Josselyn, Sheena A; Han, Jin-Hee

    2014-01-01

    Memory is supported by a specific ensemble of neurons distributed in the brain that form a unique memory trace. We previously showed that neurons in the lateral amygdala expressing elevated levels of cAMP response-element binding protein are preferentially recruited into fear memory traces and are necessary for the expression of those memories. However, it is unknown whether artificially activating just these selected neurons in the absence of behavioral cues is sufficient to recall that fear memory. Using an ectopic rat vanilloid receptor TRPV1 and capsaicin system, we found that activating this specific ensemble of neurons was sufficient to recall established fear memory. Furthermore, this neuronal activation induced a reconsolidation-like reorganization process, or strengthening of the fear memory. Thus, our findings establish a direct link between the activation of specific ensemble of neurons in the lateral amygdala and the recall of fear memory and its subsequent modifications.

  9. Life story chapters, specific memories and the reminiscence bump

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Pillemer, David B.; Ivcevic, Zorana

    2011-01-01

    Theories of autobiographical memory posit that extended time periods (here termed chapters) and memories are organised hierarchically. If chapters organise memories and guide their recall, then chapters and memories should show similar temporal distributions over the life course. Previous research...... demonstrates that positive but not negative memories show a reminiscence bump and that memories cluster at the beginning of extended time periods. The current study tested the hypotheses that (1) ages marking the beginning of positive but not negative chapters produce a bump, and that (2) specific memories...... are over-represented at the beginning of chapters. Potential connections between chapters and the cultural life script are also examined. Adult participants first divided their life story into chapters and identified their most positive and most negative chapter. They then recalled a specific memory from...

  10. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Nusbaum, Howard C

    2017-08-31

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training, and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterwards, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  11. Research on Distributed Memory of Crown Size Small Files Based on Improved HDFS%基于改进HDFS的冠字号小文件分布式存储研究

    Institute of Scientific and Technical Information of China (English)

    徐俊; 王庆华; 赵云龙

    2014-01-01

    Aiming at the access bottleneck problem caused by storage crown size small picture to the HDFS system, improved the existing HDFS system, new mechanism of distributed system is fully based on files correlation (File Correlation) and combined these correlated files. Because of all the files in HDFS are made by the master node server hosting the-NameNode single, each stored in the HDFS file needs to store the metadata it in NameNode main memory, which is bound to lead to a larger number of small file HDFS performance worse. For small file storage and management, NameNode is a heavy burden. The number of HDFS stored documents is constrainted by NameNode memory size. In addition, HDFS does not consider the correlation be-tween files. In order to improve the efficiency of small file storage and access of HDFS, this paper proposes an efficient mecha-nism for handling small files based on crown size file association. In this method, according to differentiate customer and time, a group of related files are combined into one big file, thereby reducing the number of files. To access a single file from the file cor-responding to the new index mechanism. The experimental results show that, FCHDFS greatly reduce the number of master nodes in data memory, and also improve the efficiency of storage and access to a large number of small files.%针对冠字号小图片存储到HDFS系统中带来的访问瓶颈问题,改进了原有的HDFS系统,新提出的分布式系统机制是充分基于文件相关性(File Correlation)进行合并处理的HDFS(FCHDFS)。由于HDFS中所有的文件都是由单一的主节点服务器托管-NameNode,每个存储到HDFS的文件在NameNode主存储器中都需要存储它的元数据,这必然导致小文件数量越大HDFS性能就越差。存储和管理大量的小文件,对NameNode是一个沉重的负担。可以存储在HDFS的文件数量是受到NameNode的内存大小约束。为了提高存储和访问HDFS上的

  12. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  13. Verbal memory and menopause.

    Science.gov (United States)

    Maki, Pauline M

    2015-11-01

    Midlife women frequently report memory problems during the menopausal transition. Recent studies validate those complaints by showing significant correlations between memory complaints and performance on validated memory tasks. Longitudinal studies demonstrate modest declines in verbal memory during the menopausal transition and a likely rebound during the postmenopausal stage. Clinical studies that examine changes in memory following hormonal withdrawal and add-back hormone therapy (HT) demonstrate that estradiol plays a critical role in memory. Although memory changes are frequently attributed to menopausal symptoms, studies show that the memory problems occur during the transition even after controlling for menopausal symptoms. It is well established that self-reported vasomotor symptoms (VMS) are unrelated to objective memory performance. However, emerging evidence suggests that objectively measured VMS significantly correlate with memory performance, brain activity during rest, and white matter hyperintensities. This evidence raises important questions about whether VMS and VMS treatments might affect memory during the menopausal transition. Unfortunately, there are no clinical trials to inform our understanding of how HT affects both memory and objectively measured VMS in women in whom HT is indicated for treatment of moderate to severe VMS. In clinical practice, it is helpful to normalize memory complaints, to note that evidence suggests that memory problems are temporary, and to counsel women with significant VMS that memory might improve with treatment.

  14. Salam Memorial

    CERN Document Server

    Rubbia, Carlo

    1997-01-01

    by T.W.B. KIBBLE / Blackett Laboratory, Imperial College, London. Recollections of Abdus Salam at Imperial College I shall give a personal account of Professor Salam's life and work from the perspective of a colleague at Imperial College, concentrating particularly but not exclusively on the period leading up to the discovery of the electro-weak theory. If necessary I could perhaps give more detail, but only once I have given more thought to what ground I shall cover. by Sheldon Lee GLASHOW / Harvard University, Cambridge, MA, USA. Memories of Abdus Salam. My interactions with Abdus Salam, weak as they have been, extended over five decades. I regret that we never once collaborated in print or by correspondence. I visited Abdus only twice in London and twice again in Trieste, and met him at the occasional conference or summer school. Our face-to-face encounters could be counted on one's fingers and toes, but we became the best of friends. Others will discuss Abdus as an inspiring teacher, as a great scientist,...

  15. Efficient entanglement distillation without quantum memory

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  16. Efficient entanglement distillation without quantum memory

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  17. Efficient entanglement distillation without quantum memory.

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  18. Effect sizes in memory research.

    Science.gov (United States)

    Morris, Peter E; Fritz, Catherine O

    2013-01-01

    Effect sizes are omitted from many research articles and are rarely discussed. To help researchers evaluate effect sizes we collected values for the more commonly reported effect size measures (partial eta squared and d) from papers reporting memory research published in 2010. Cohen's small, medium, and large generic guideline values for d mapped neatly onto the observed distributions, but his values for partial eta squared were considerably lower than those observed in current memory research. We recommend interpreting effect sizes in the context of either domain-specific guideline values agreed for an area of research or the distribution of effect size estimates from published research in the domain. We provide cumulative frequency tables for both partial eta squared and d enabling authors to report and consider not only the absolute size of observed effects but also the percentage of reported effects that are larger or smaller than those observed.

  19. Adaptive Memory Coherence Algorithms in DSVM

    Institute of Scientific and Technical Information of China (English)

    周建强; 谢立; 等

    1994-01-01

    Based on the characteristics of distrubuted system and the behavior of parallel programs,this paper presents the fixed and randomized competitive memory coherence algorithms for distributed shared virtual memory.These algorithms exploit parallel programs' locality of reference and exhibit good competitive property.Our simulation shows that the fixed and randomized algorithms achieve better performance and higher stability than other strategies such as write-invalidate and write-update.

  20. Organizational memory: from expectations memory to procedural memory

    NARCIS (Netherlands)

    Ebbers, J.J.; Wijnberg, N.M.

    2009-01-01

    Organizational memory is not just the stock of knowledge about how to do things, but also of expectations of organizational members vis-à-vis each other and the organization as a whole. The central argument of this paper is that this second type of organizational memory -organizational expectations

  1. Organizational memory: from expectations memory to procedural memory

    NARCIS (Netherlands)

    Ebbers, J.J.; Wijnberg, N.M.

    2009-01-01

    Organizational memory is not just the stock of knowledge about how to do things, but also of expectations of organizational members vis-à-vis each other and the organization as a whole. The central argument of this paper is that this second type of organizational memory -organizational expectations

  2. CONTENT-ADDRESSABLE MEMORY SYSTEMS,

    Science.gov (United States)

    The utility of content -addressable memories (CAM’s) within a general purpose computing system is investigated. Word cells within CAM may be...addressed by the character of all or a part of cell contents . Multimembered sets of word cells may be addressed simultaneously. The distributed logical...capabilities of CAM are extended to allow simultaneous transformation of multimembered sets and to allow communication between neighboring word cells. A

  3. Exploring history and memory through autobiographical memory

    Directory of Open Access Journals (Sweden)

    Ivor Goodson

    2015-02-01

    Full Text Available The article reviews the role of autobiographical memory as a site of narrative construction. Far from being a place of liberal retrospective recall it is a site of active recapitulation and reconstruction. The article provides examples of how history and memory are intermingled. It also draws in the author’s autobiographical vignettes to explore the underpinning desires for historical reconstruction in autobiographical memory work

  4. Memory Without Parties or Parties Without Memory?

    Directory of Open Access Journals (Sweden)

    Juan Mario Solís Delgadillo

    2011-01-01

    Full Text Available This paper explores the role of political parties in Argentina, Chile and Guatemala in relation to the implementation of public policies of memory after the return to democracy in each of these countries. To do this, we discuss the concept of memory and the problems of memorial obsession. We consider the uses and abuses of memory that human rights organizations manifest on the subject, and examine the work of the parties about the level of adaptation that allows claims of human rights movement to become matters of public policy.

  5. Distributed Processor/Memory Architectures Design Program

    Science.gov (United States)

    1975-02-01

    plemnen ted onl tile imemory UUE 2. lrrir Defctceion BIU INP-UT IFFF MESSAGE Nfeir’nr~~noriir~f fases rie oiri~’ jCONTROL. cr’Ii eIItecion Ir id. ill...is discussed Iin Subsection MD.B.". Trhe ne\\t problem. which to a great extenit is of’ nanagement-decisiois nature. is to comec up with a sensible

  6. Distributed Memory Programming on Many-Cores

    DEFF Research Database (Denmark)

    Berthold, Jost; Dieterle, Mischa; Lobachev, Oleg;

    2009-01-01

    Eden is a parallel extension of the lazy functional language Haskell providing dynamic process creation and automatic data exchange. As a Haskell extension, Eden takes a high-level approach to parallel programming and thereby simplifies parallel program development. The current implementation is ...

  7. Synthetic models of distributed memory parallel programs

    Energy Technology Data Exchange (ETDEWEB)

    Poplawski, D.A. (Michigan Technological Univ., Houghton, MI (USA). Dept. of Computer Science)

    1990-09-01

    This paper deals with the construction and use of simple synthetic programs that model the behavior of more complex, real parallel programs. Synthetic programs can be used in many ways: to construct an easily ported suite of benchmark programs, to experiment with alternate parallel implementations of a program without actually writing them, and to predict the behavior and performance of an algorithm on a new or hypothetical machine. Synthetic programs are constructed easily from scratch, from existing programs, and can even be constructed using nothing but information obtained from traces of the real program's execution.

  8. [Neuroscience and collective memory: memory schemas linking brain, societies and cultures].

    Science.gov (United States)

    Legrand, Nicolas; Gagnepain, Pierre; Peschanski, Denis; Eustache, Francis

    2015-01-01

    During the last two decades, the effect of intersubjective relationships on cognition has been an emerging topic in cognitive neurosciences leading through a so-called "social turn" to the formation of new domains integrating society and cultures to this research area. Such inquiry has been recently extended to collective memory studies. Collective memory refers to shared representations that are constitutive of the identity of a group and distributed among all its members connected by a common history. After briefly describing those evolutions in the study of human brain and behaviors, we review recent researches that have brought together cognitive psychology, neuroscience and social sciences into collective memory studies. Using the reemerging concept of memory schema, we propose a theoretical framework allowing to account for collective memories formation with a specific focus on the encoding process of historical events. We suggest that (1) if the concept of schema has been mainly used to describe rather passive framework of knowledge, such structure may also be implied in more active fashions in the understanding of significant collective events. And, (2) if some schema researches have restricted themselves to the individual level of inquiry, we describe a strong coherence between memory and cultural frameworks. Integrating the neural basis and properties of memory schema to collective memory studies may pave the way toward a better understanding of the reciprocal interaction between individual memories and cultural resources such as media or education.

  9. Hippocampal functional connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Tracy Riggins

    2016-06-01

    Full Text Available Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n = 40. Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4 regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.

  10. Incorporating animal spatial memory in step selection functions.

    Science.gov (United States)

    Oliveira-Santos, Luiz Gustavo R; Forester, James D; Piovezan, Ubiratan; Tomas, Walfrido M; Fernandez, Fernando A S

    2016-03-01

    Memory is among the most important and neglected forces that shapes animal movement patterns. Research on the movement-memory interface is crucial to understand how animals use spatial learning to navigate across space because memory-based navigation is directly linked to animals' space use and home range behaviour; however, because memory cannot be measured directly, it is difficult to account for. Here, we incorporated spatial memory into step selection functions (SSF) to understand how resource selection and spatial memory affect space use of feral hogs (Sus scrofa). We used Biased Random Bridge kernel estimates linked to residence time as a surrogate for memory and tested four conceptually different dynamic maps of spatial memory. We applied this memory-based SSF to a data set of hog relocations to evaluate the importance of land cover type, time of day and spatial memory on the animals' space use. Our approach has shown how the incorporation of spatial memory into animal movement models can improve estimates of habitat selection. Memory-based SSF provided a feasible way to gain insight into how animals use spatial learning to guide their movement decisions. We found that while hogs selected forested areas and water bodies and avoided grasslands during the day (primarily at noon), they had a strong tendency to select previously visited areas, mainly those held in recent memory. Beyond actively updating their memory with recent experiences, hogs were able to discriminate among spatial memories encoded at different circadian phases of their activity. Even though hogs are thought to have long memory retention, they likely relied on recent experiences because the local food resources are quickly depleted and slowly renewed, yielding an uncertain spatial distribution of resources.

  11. Message-Passing Multi-Cell Molecular Dynamics on the Connection Machine 5

    CERN Document Server

    Beazley, D M

    1993-01-01

    We present a new scalable algorithm for short-range molecular dynamics simulations on distributed memory MIMD multicomputer based on a message-passing multi-cell approach. We have implemented the algorithm on the Connection Machine 5 (CM-5) and demonstrate that meso-scale molecular dynamics with more than $10^8$ particles is now possible on massively parallel MIMD computers. Typical runs show single particle update-times of $0.15 \\mu s$ in 2 dimensions (2D) and approximately $1 \\mu s$ in 3 dimensions (3D) on a 1024 node CM-5 without vector units, corresponding to more than 1.8 GFlops overall performance. We also present a scaling equation which agrees well with actually observed timings.

  12. Medications for Memory Loss

    Science.gov (United States)

    ... by state Home > Alzheimer's Disease > Treatments > Medications for Memory Overview What Is Dementia? What Is Alzheimer's? Younger/ ... Interactive Tour Risk Factors Diagnosis Treatments Medications for Memory Treatments for Behavior For Sleep Changes Alternative Treatments ...

  13. Tracing Cultural Memory

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    We encounter, relate to and make use of our past and that of others in multifarious and increasingly mobile ways. Tourism is one of the main paths for encountering sites of memory. This thesis examines tourists’ creative appropriations of sites of memory – the objects and future memories inspired...... by their encounters – to address a question that thirty years of ground - breaking research into memory has not yet sufficiently answered: What can we learn about the dynamics of cultural memory by examining mundane accounts of touristic encounters with sites of memory? From Blaavand Beach in Western Denmark...... to Soweto’s Regina Mundi Church, this thesis analyses tourists’ snapshots at sites of memory and outlines their tracing activity in cultural memory. It draws on central concepts of actor - network theory and visual culture studies for a cross - disciplinary methodology to comprehend the collective...

  14. Coping with Memory Loss

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Coping With Memory Loss Share Tweet Linkedin Pin it More sharing ... a health professional. back to top What Causes Memory Loss? Anything that affects cognition—the process of ...

  15. Music, memory and emotion

    National Research Council Canada - National Science Library

    Jäncke, Lutz

    2008-01-01

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music...

  16. Memory and Aging

    Science.gov (United States)

    Memory and Aging Losing keys, misplacing a wallet, or forgetting someone’s name are common experiences. But for people nearing or over age 65, such memory lapses can be frightening. They wonder if they ...

  17. ARACHNID: A prototype object-oriented database tool for distributed systems

    Science.gov (United States)

    Younger, Herbert; Oreilly, John; Frogner, Bjorn

    1994-01-01

    This paper discusses the results of a Phase 2 SBIR project sponsored by NASA and performed by MIMD Systems, Inc. A major objective of this project was to develop specific concepts for improved performance in accessing large databases. An object-oriented and distributed approach was used for the general design, while a geographical decomposition was used as a specific solution. The resulting software framework is called ARACHNID. The Faint Source Catalog developed by NASA was the initial database testbed. This is a database of many giga-bytes, where an order of magnitude improvement in query speed is being sought. This database contains faint infrared point sources obtained from telescope measurements of the sky. A geographical decomposition of this database is an attractive approach to dividing it into pieces. Each piece can then be searched on individual processors with only a weak data linkage between the processors being required. As a further demonstration of the concepts implemented in ARACHNID, a tourist information system is discussed. This version of ARACHNID is the commercial result of the project. It is a distributed, networked, database application where speed, maintenance, and reliability are important considerations. This paper focuses on the design concepts and technologies that form the basis for ARACHNID.

  18. A ten-year follow-up of a study of memory for the attack of September 11, 2001: Flashbulb memories and memories for flashbulb events.

    Science.gov (United States)

    Hirst, William; Phelps, Elizabeth A; Meksin, Robert; Vaidya, Chandan J; Johnson, Marcia K; Mitchell, Karen J; Buckner, Randy L; Budson, Andrew E; Gabrieli, John D E; Lustig, Cindy; Mather, Mara; Ochsner, Kevin N; Schacter, Daniel; Simons, Jon S; Lyle, Keith B; Cuc, Alexandru F; Olsson, Andreas

    2015-06-01

    Within a week of the attack of September 11, 2001, a consortium of researchers from across the United States distributed a survey asking about the circumstances in which respondents learned of the attack (their flashbulb memories) and the facts about the attack itself (their event memories). Follow-up surveys were distributed 11, 25, and 119 months after the attack. The study, therefore, examines retention of flashbulb memories and event memories at a substantially longer retention interval than any previous study using a test-retest methodology, allowing for the study of such memories over the long term. There was rapid forgetting of both flashbulb and event memories within the first year, but the forgetting curves leveled off after that, not significantly changing even after a 10-year delay. Despite the initial rapid forgetting, confidence remained high throughout the 10-year period. Five putative factors affecting flashbulb memory consistency and event memory accuracy were examined: (a) attention to media, (b) the amount of discussion, (c) residency, (d) personal loss and/or inconvenience, and (e) emotional intensity. After 10 years, none of these factors predicted flashbulb memory consistency; media attention and ensuing conversation predicted event memory accuracy. Inconsistent flashbulb memories were more likely to be repeated rather than corrected over the 10-year period; inaccurate event memories, however, were more likely to be corrected. The findings suggest that even traumatic memories and those implicated in a community's collective identity may be inconsistent over time and these inconsistencies can persist without the corrective force of external influences. (c) 2015 APA, all rights reserved).

  19. Saving Malta's music memory

    OpenAIRE

    Sant, Toni

    2013-01-01

    Maltese music is being lost. Along with it Malta loses its culture, way of life, and memories. Dr Toni Sant is trying to change this trend through the Malta Music Memory Project (M3P) http://www.um.edu.mt/think/saving-maltas-music-memory-2/

  20. Music, memory and emotion.

    Science.gov (United States)

    Jäncke, Lutz

    2008-08-08

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory.

  1. Data Handover: Reconciling Message Passing and Shared Memory

    OpenAIRE

    Gustedt, Jens

    2004-01-01

    Data Handover (DHO) is a programming paradigm and interface that aims to handle data between parallel or distributed processes that mixes aspects of message passing and shared memory. It is designed to overcome the potential problems in terms of efficiency of both: (1) memory blowup and forced copies for message passing and (2) data consistency and latency problems for shared memory. Our approach attempts to be simple and easy to understand. It content...

  2. Shape Memory Alloy Isolation Valves: Public Quad Chart

    Science.gov (United States)

    2017-05-12

    NUMBER (Include area code) 12 May 2017 Briefing Charts 12 April 2017 - 12 May 2017 Shape Memory Alloy Isolation Valves: Public Quad Chart William...spacecraft (15+ yrs) • Shaped memory alloy isolation valves provide an intrinsically safe isolation system that increases lifetime >5x over SOTA and... Shape Memory Alloy Isolation Valves POC: W. Hargus, Ph.D., AFRL/RQRC B-52 Teardrop Antenna Depolymerization WC-130J Leading Edge Erosion Distribution

  3. The study of radiation damage of EPROM 2764 memory

    Directory of Open Access Journals (Sweden)

    Domanski Grzegorz

    2016-01-01

    Full Text Available A simple statistical theory of radiation damage of semiconductor memory has been constructed. The radiation damage of EPROM memory has been investigated. The measured number of damaged bytes is significantly lower than the expected number resulting from the purely random distribution of the damaged bits. In this way it has been proven that there is a correlation between the failures of individual memory bits which are located in the same byte.

  4. Circular polarization memory in polydisperse scattering media

    CERN Document Server

    Macdonald, Callum M; Meglinski, Igor

    2015-01-01

    We investigate the survival of circularly polarized light in random scattering media. The surprising persistence of this form of polarization has a known dependence on the size and refractive index of scattering particles, however a general description regarding polydisperse media is lacking. Through analysis of Mie theory, we present a means of calculating the magnitude of circular polarization memory in complex media, with total generality in the distribution of particle sizes and refractive indices. Quantification of this memory effect enables an alternate pathway towards recovering particle size distribution, based on measurements of diffusing circularly polarized light.

  5. Field Discontinuities and the Memory Effect

    Science.gov (United States)

    Tolish, Alexander; Wald, Robert

    2017-01-01

    The ``memory effect,'' a permanent change in the separation of test particles after the passage of a pulse of gravitational radiation, is a well-defined and fairly well-understood phenomenon in spacetimes with a notion of null infinity. However, many valid questions remain unanswered. For example, how do we define memory in the absence of null infinity? Or, does memory depend on the precise details of the radiation source or just on the source's asymptotic behavior? We believe that such questions are best answered using a simplified, distributional model of memory. If we consider linearized gravity on fixed background spacetimes, we can study the scattering of point particles, which radiate metric perturbations with sharp, step-function wave fronts. These steps correspond to derivative-of-delta-function discontinuities in the curvature, and according to the geodesic deviation equation, it is these discontinuities (and these alone) that contribute to permanent, finite changes in test particle separation-i.e., memory. Using this analysis of field discontinuities (as well as scalar and electromagnetic analogues of gravitational memory) we can isolate the physics of the memory effect from other, background phenomena.

  6. Parallelization for MIMD multiprocessors with applications to linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Nelken, I.H.

    1989-01-01

    In this thesis, the author considers the parallelization problem. Given a sequential algorithm and a target architecture, how can the sequential algorithm be converted into a parallel algorithm suitable for the target architecture The parallel algorithm must be correct and produce the same results as the sequential one. It must also utilize the resources of the target architecture efficiently. The parallelization problem can be divided into three main stages: identification of parallelism which includes dependency analysis, partitioning the statements into atomic tasks of granularity suitable to the target architecture and scheduling these tasks into the processors. The identification of parallelism is independent of the target architecture while the partitioning and scheduling stages are very dependent on it. For example, the partitioning for a machine with many small processors is very different than the partitioning for a machine with a few large ones. It is well known that the problems arising in the partitioning and scheduling stages are NP-complete. The thesis shows that for some algorithms arising in linear algebra, simple heuristics are sufficient to produce good solutions to the partitioning and scheduling problems. He considers the Gaussian elimination and Gauss-Jordan algorithms for general dense matrices and the Cholesky decomposition algorithms for symmetric positive definite matrices. In addition he studies algorithms for the solution of simultaneous triangular systems with the same coefficient matrix and different right hand sides and for the solution of the triangular Sylvester equation. Most of the results in this thesis are related to the more difficult problems of partitioning and scheduling for message passing architectures.

  7. System and method for programmable bank selection for banked memory subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Hoenicke, Dirk (Seebruck-Seeon, DE); Ohmacht, Martin (Yorktown Heights, NY); Salapura, Valentina (Chappaqua, NY); Sugavanam, Krishnan (Mahopac, NY)

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  8. Memory: Organization and Control

    Science.gov (United States)

    Eichenbaum, Howard

    2017-01-01

    A major goal of memory research is to understand how cognitive processes in memory are supported at the level of brain systems and network representations. Especially promising in this direction are new findings in humans and animals that converge in indicating a key role for the hippocampus in the systematic organization of memories. New findings also indicate that the prefrontal cortex may play an equally important role in the active control of memory organization during both encoding and retrieval. Observations about the dialog between the hippocampus and prefrontal cortex provide new insights into the operation of the larger brain system that serves memory. PMID:27687117

  9. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2017-06-19

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  10. Flexible kernel memory.

    Science.gov (United States)

    Nowicki, Dimitri; Siegelmann, Hava

    2010-06-11

    This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors can be added, deleted, and updated on-line simply, without harming existing memories, and the number of attractors is independent of input dimension. Input vectors do not have to adhere to a fixed or bounded dimensionality; they can increase and decrease it without relearning previous memories. A memory consolidation process enables the network to generalize concepts and form clusters of input data, which outperforms many unsupervised clustering techniques; this process is demonstrated on handwritten digits from MNIST. Another process, reminiscent of memory reconsolidation is introduced, in which existing memories are refreshed and tuned with new inputs; this process is demonstrated on series of morphed faces.

  11. Flexible kernel memory.

    Directory of Open Access Journals (Sweden)

    Dimitri Nowicki

    Full Text Available This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors can be added, deleted, and updated on-line simply, without harming existing memories, and the number of attractors is independent of input dimension. Input vectors do not have to adhere to a fixed or bounded dimensionality; they can increase and decrease it without relearning previous memories. A memory consolidation process enables the network to generalize concepts and form clusters of input data, which outperforms many unsupervised clustering techniques; this process is demonstrated on handwritten digits from MNIST. Another process, reminiscent of memory reconsolidation is introduced, in which existing memories are refreshed and tuned with new inputs; this process is demonstrated on series of morphed faces.

  12. NAND flash memory technologies

    CERN Document Server

    Aritome, Seiichi

    2016-01-01

    This book discusses basic and advanced NAND flash memory technologies, including the principle of NAND flash, memory cell technologies, multi-bits cell technologies, scaling challenges of memory cell, reliability, and 3-dimensional cell as the future technology. Chapter 1 describes the background and early history of NAND flash. The basic device structures and operations are described in Chapter 2. Next, the author discusses the memory cell technologies focused on scaling in Chapter 3, and introduces the advanced operations for multi-level cells in Chapter 4. The physical limitations for scaling are examined in Chapter 5, and Chapter 6 describes the reliability of NAND flash memory. Chapter 7 examines 3-dimensional (3D) NAND flash memory cells and discusses the pros and cons in structure, process, operations, scalability, and performance. In Chapter 8, challenges of 3D NAND flash memory are dis ussed. Finally, in Chapter 9, the author summarizes and describes the prospect of technologies and market for the fu...

  13. Generating memory with vaccination.

    Science.gov (United States)

    Castellino, Flora; Galli, Grazia; Del Giudice, Giuseppe; Rappuoli, Rino

    2009-08-01

    The goal of vaccination is to induce long-lasting protective immune memory. Although most vaccines induce good memory responses, the type of memory induced by different vaccines may be considerably different. In addition, memory responses to the same vaccine may be influenced by age, environmental and genetic factors. Results emerging from detailed and integrated profiling of immune-responses to natural infection or vaccination suggest that the type and duration of immune memory are largely determined by the magnitude and complexity of innate immune signals that imprint the acquired immune primary responses. Here we summarize results obtained from analyzing human immune memory responses to different types of vaccines. We will also discuss how extending clinical investigation to events occurring early after vaccination can help identify early predictive markers of protective memory and thus contribute to faster development of better and safer vaccines.

  14. Long Memory, Fractional Integration, and Cross-Sectional Aggregation

    DEFF Research Database (Denmark)

    Haldrup, Niels; Vera-Valdés, Eduardo

    It is commonly argued that observed long memory in time series variables can result from cross-sectional aggregation of dynamic heterogeneous micro units. For instance, Granger (1980) demonstrated that aggregation of AR(1) processes with a Beta distributed AR coefficient can exhibit long memory...

  15. Research of predictable embedded memory distribution mechanism based on Markov%基于马尔可夫链的嵌入式内存预测分配算法

    Institute of Scientific and Technical Information of China (English)

    程小辉; 龚幼民; 许安明

    2013-01-01

    为了提高嵌入式系统内存动态分配效率,在分析经典内存分配算法和马尔可夫链预测原理的基础上,提出了一种嵌入式系统内存预测分配算法.该算法融合聚类分析法,利用内存分配的转移量统计信息及其概率矩阵对嵌入式系统内存动态分配进行预测.在实现中采用轻量级预测线程预测下一次申请的内存块大小,减少内存动态分配时等待内存创建的时间.通过增加预测线程的μC/OS-Ⅱ系统和未增加预测线程的μC/OS-Ⅱ系统进行对比实验,实验结果表明了该算法的可行性和高效性.%To increase the allocation efficiency of dynamic memory for embedded system,a new design forecast method of embedded memory allocation algorithm based on analysis of classical memory allocation algorithm and Markov chain prediction principle is presented.The algorithm is used to predict the embedded system memory dynamic allocation by transfer quantity statistics from the memory allocation and probability matrix,combined with the clustering analysis.In the algorithm realization,lightweight prediction thread is proposed to forecast the next application in memory so as to reduce time of waiting for creating memory when system allocates memory.By the experiment comparison between μC/OS-Ⅱ system with predicted thread and μC/OS-Ⅱ system with no predicted thread,it is verified that the proposed algorithm is feasible and efficient.

  16. Between Cultural Memory and Communicative Memory – the Dilemmas of Reconstruction of Annihilated Past of Polish Jews

    Directory of Open Access Journals (Sweden)

    Krzysztof Malicki

    2015-08-01

    Full Text Available This text presents briefly some of the elements of Polish discourse about collective memory of Holocaust during transformations. I refer to Assmann’s concept of communicative and cultural memories, which seems to help to explain the phenomenon of present memory, which can be observed. This text concentrates not on Polish memory of annihilation of Jews (so different from the memory of victims or perpetrators, not to mention different memory of other nations but on its internal divisions and dilemmas which it generates. Along with war generation passing away, the decisive role of creating Polish memory about Shoah will be taken over by specialised institutions and rituals commemorating the past. In the early post -war period the transfer of memory happened mainly by the witness. The role of specialised institutions was marginal. From the beginning of XX century along with last witnesses passing away, the memory of Shoah became the focus of institutions (scientific institutions gathering documents including witnesses’ reports and anniversaries. It is a very important moment to look again at the memory distributed from the roots and confront it with models and standards of commemorating the past, which will create the memory of the next generations.

  17. Bán, Zsófia and Turai, Hedvig, eds.: "Exposed Memories: Family Pictures in Private and Collective Memory"

    Directory of Open Access Journals (Sweden)

    Katalin Kádár Lynn

    2011-01-01

    Full Text Available Zsófia Bán and Hedvig Turai, eds. Exposed Memories: Family Pictures in Private and Collective Memory. AICA: International Association of Art Critics: Hungarian Section: Distributed by Central European University Press, 2010, 193 pp. Reviewed by Katalin Kádár Lynn, Senior Researcher, ELTE.

  18. Dynamic object management for distributed data structures

    Science.gov (United States)

    Totty, Brian K.; Reed, Daniel A.

    1992-01-01

    In distributed-memory multiprocessors, remote memory accesses incur larger delays than local accesses. Hence, insightful allocation and access of distributed data can yield substantial performance gains. The authors argue for the use of dynamic data management policies encapsulated within individual distributed data structures. Distributed data structures offer performance, flexibility, abstraction, and system independence. This approach is supported by data from a trace-driven simulation study of parallel scientific benchmarks. Experimental data on memory locality, message count, message volume, and communication delay suggest that data-structure-specific data management is superior to a single, system-imposed policy.

  19. MEMOS: a mobile extensible memory aid system.

    Science.gov (United States)

    Schulze, Hendrik

    2004-01-01

    Memory disturbances are a frequent outcome of brain damages. Maintenance or enhancement of the patients' quality of life requires enormous effort on the part of caregivers. To support patients with brain injuries, the mobile distributed care system named MEMOS (Mobile Extensible Memory System) was designed, implemented, and tested in the day-care clinic for cognitive neurology at Leipzig University. MEMOS is implemented as a distributed system, using CORBA technologies and Enterprise Java Beans. A special palmtop computer, the Personal Memory Assistant (PMA), reminds the patient of important tasks and supervises the patient's actions. The PMA communicates with the stationary care system via a bi-directional cellular radio connection. The stationary care system was developed to be dependable and scalable. This paper describes the design and function of the MEMOS system.

  20. Psychophysiology of prospective memory.

    Science.gov (United States)

    Rothen, Nicolas; Meier, Beat

    2014-01-01

    Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

  1. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    Science.gov (United States)

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Quantum Associative Memory

    CERN Document Server

    Ventura, D; Ventura, Dan; Martinez, Tony

    1998-01-01

    This paper combines quantum computation with classical neural network theory to produce a quantum computational learning algorithm. Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts. The unique characteristics of quantum theory may also be used to create a quantum associative memory with a capacity exponential in the number of neurons. This paper combines two quantum computational algorithms to produce such a quantum associative memory. The result is an exponential increase in the capacity of the memory when compared to traditional associative memories such as the Hopfield network. The paper covers necessary high-level quantum mechanical and quantum computational ideas and introduces a quantum associative memory. Theoretical analysis proves the utility of the memory, and it is noted that a small version should be physically realizable in the near future.

  3. Time for memory

    DEFF Research Database (Denmark)

    Murakami, Kyoko

    2012-01-01

    This article is a continuous dialogue on memory triggered by Brockmeier’s (2010) article. I drift away from the conventionalization of the archive as a spatial metaphor for memory in order to consider the greater possibility of “time” for conceptualizing memory. The concept of time is central...... in terms of autobiographical memory. The second category of time is discussed, drawing on Augustine and Bergson amongst others. Bergson’s notion of duration has been considered as a promising concept for a better understanding of autobiographical memory. Psychological phenomena such as autobiographical...... memory should embrace not only spatial dimension, but also a temporal dimension, in which a constant flow of irreversible time, where multiplicity, momentarily, dynamic stability and becoming and emergence of novelty can be observed....

  4. Regulatory T cell memory

    Science.gov (United States)

    Rosenblum, Michael D.; Way, Sing Sing; Abbas, Abul K.

    2016-01-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  5. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  6. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  7. CD4 T-Cell Memory Generation and Maintenance

    Science.gov (United States)

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  8. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update

    Directory of Open Access Journals (Sweden)

    Ales eStuchlik

    2014-04-01

    Full Text Available Mammalian memory is the result of the interaction of millions of neurons in the brain and their coordinated activity. Candidate mechanisms for memory are synaptic plasticity changes, such as long-term potentiation (LTP. LTP is essentially an electrophysiological phenomenon manifested in hours-lasting increase on postsynaptic potentials after synapse tetanization. It is thought to ensure long-term changes in synaptic efficacy in distributed networks, leading to persistent changes in the behavioral patterns, actions and choices, which are often interpreted as the retention of information, i.e., memory. Interestingly, new neurons are born in the mammalian brain and adult hippocampal neurogenesis is proposed to provide a substrate for dynamic and flexible aspects of behavior such as pattern separation, prevention of interference, flexibility of behavior and memory resolution. This work provides a brief review on the memory and involvement of LTP and adult neurogenesis in memory phenomena.

  9. Random Access Memory Technologies.

    Science.gov (United States)

    1985-02-01

    extreme temperatures. True nonvolatility is offered by the NVRAM or shadow RAM. In the NVRAM , a volatile NMOS static RAM memory cell is merged with the...or reapplied, and no longer require special power sources. The size of the nine-device memory cell required for the NVRAM has limited its capacity to...4K. While 8K NVRAMs are expected in 1985, the 30 . . .’o .-. . high cost of these devices will hamper further development for larger capacity memories

  10. Ginseng and Memory

    OpenAIRE

    Shergill, Amandeep

    1998-01-01

    For thousands of years, Chinese medicine has used the herb ginseng as a memory tonic with the belief that ginseng can improve learning and memory, especially in aging humans. Recent studies have sought to validate this claim. Experiments done on rats have shown that ginsenosides, the saponins of ginseng, can partially prevent scopolamine-induced memory deficits in rats. Ginsenosides are thought to increase choline uptake in the central cholinergic nervous system, which plays important roles i...

  11. Music, memory and emotion

    OpenAIRE

    Jäncke, Lutz

    2008-01-01

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory. Music has a prominent role in the everyday life of many people. Whether it is for recreation, distraction or mood enhancement, a lot of people listen to music from early in t...

  12. The Cosmological Memory Effect

    OpenAIRE

    Tolish, Alexander; Wald, Robert M.

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to m...

  13. Emotion and Autobiographical Memory

    Directory of Open Access Journals (Sweden)

    Nuray Sarp

    2011-09-01

    Full Text Available Self and mind are constituted with the cumulative effects of significant life events. This description is regarded as a given explicitly or implicitly in vari-ous theories of personality. Such an acknowledgment inevitably brings together these theories on two basic concepts. The first one is the emotions that give meaning to experiences and the second one is the memory which is related to the storage of these experiences. The part of the memory which is responsible for the storage and retrieval of life events is the autobiographical memory. Besides the development of personality, emotions and autobiographical memory are important in the development of and maintenance of psychopathology. Therefore, these two concepts have both longitudinal and cross-sectional functions in understanding human beings. In case of psychopathology, understanding emotions and autobiographical memory developmentally, aids in understanding the internal susceptibility factors. In addition, understanding how these two structures work and influence each other in an acute event would help to understand the etiological mechanisms of mental disorders. In the literature, theories that include both of these structures and that have clinical implications, are inconclusive. Theories on memory generally focus on cognitive and semantic structures while neglecting emotions, whereas theories on emotions generally neglect memory and its organization. There are only a few theories that cover both of these two concepts. In the present article, these theories that include both emotions and autobiographical memory in the same framework (i.e. Self Memory System, Associative Network Theory, Structural and Contextual theories and Affect Regulation Theory were discussed to see the full picture. Taken together, these theories seem to have the potential to suggest data-driven models in understanding and explaining symptoms such as flashbacks, dissociation, amnesia, over general memory seen in

  14. Memories of art.

    Science.gov (United States)

    Hirstein, William

    2013-04-01

    Although the art-historical context of a work of art is important to our appreciation of it, it is our knowledge of that history that plays causal roles in producing the experience itself. This knowledge is in the form of memories, both semantic memories about the historical circumstances, but also episodic memories concerning our personal connections with an artwork. We also create representations of minds in order to understand the emotions that artworks express.

  15. Phase change memory

    CERN Document Server

    Qureshi, Moinuddin K

    2011-01-01

    As conventional memory technologies such as DRAM and Flash run into scaling challenges, architects and system designers are forced to look at alternative technologies for building future computer systems. This synthesis lecture begins by listing the requirements for a next generation memory technology and briefly surveys the landscape of novel non-volatile memories. Among these, Phase Change Memory (PCM) is emerging as a leading contender, and the authors discuss the material, device, and circuit advances underlying this exciting technology. The lecture then describes architectural solutions t

  16. Memories Persist in Silence

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Arenas Grisales

    2012-08-01

    Full Text Available This article exposes the hypothesis that memory artifacts, created to commemorate the victims of armed conflict in Colombia, are an expression of the underground memories and a way of political action in the midst of war. We analyze three cases of creations of memory artifacts in Medellín, Colombia, as forms of suffering, perceiving and resisting the power of armed groups in Medellín. The silence, inherent in these objects, should not be treated as an absence of language, but as another form of expression of memory. Silence is a tactic used to overcome losses and reset everyday life in contexts of protracted violence.

  17. The future of memory

    Science.gov (United States)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed ( 1012), nonvolatility (retention > 10 years), and low switching energies (Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  18. Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

    Science.gov (United States)

    Santoro, Adam; Frankland, Paul W; Richards, Blake A

    2016-11-30

    Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales.

  19. A Study on Associative Neural Memories

    OpenAIRE

    B.D.C.N.Prasad; P. E. S. N. Krishna Prasad; Sagar Yeruva; P Sita Rama Murty

    2011-01-01

    Memory plays a major role in Artificial Neural Networks. Without memory, Neural Network can not be learned itself. One of the primary concepts of memory in neural networks is Associative neural memories. A survey has been made on associative neural memories such as Simple associative memories (SAM), Dynamic associative memories (DAM), Bidirectional Associative memories (BAM), Hopfield memories, Context Sensitive Auto-associative memories (CSAM) and so on. These memories can be applied in vari...

  20. The alignment-distribution graph

    Science.gov (United States)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  1. Memory and power: (de-statizing memories and (de-centering State power

    Directory of Open Access Journals (Sweden)

    Elsa Blair

    2011-07-01

    Full Text Available This paper intends to show, in first instance, the existence of some “artifacts” as devices of memory, born out from various exercises conducted among communities having undergone violence. These devices are the “living” embodiment of underground memories that were gathered within various inquiry and extension projects by the research group. In the second part, a more theoretical reflection is put forward on the Memory/Power relationship as the frame of discussion within which these experiences are situated, emphasizing two aspects: making visible those “spaces of power” where both memories are situated within today’s Colombian society so as to show specifically how those spaces of power appear, as well as the instruments they make use of, qualifying memories either as dominant or underground; and to show those spaces, just like any other social process, are not immutable or unchangeable phenomena, but are prone to be transformed, redefined and even reconfigured up to leading all the way to make changes to differently distribute the resources of power leaving their mark on them. In a third final part, a reflection “as a working hypothesis” is made, which could be the way to change the issue at hand and suggest new paths aiming to shift the place in society for those underground (marginal, hidden and scarcely visibilized memories and make them emerge to surface so that they can develop all of their political potential and get their due place in Colombia’s historical memory.

  2. [Repeated measurement of memory with valenced test items: verbal memory, working memory and autobiographic memory].

    Science.gov (United States)

    Kuffel, A; Terfehr, K; Uhlmann, C; Schreiner, J; Löwe, B; Spitzer, C; Wingenfeld, K

    2013-07-01

    A large number of questions in clinical and/or experimental neuropsychology require the multiple repetition of memory tests at relatively short intervals. Studies on the impact of the associated exercise and interference effects on the validity of the test results are rare. Moreover, hardly any neuropsychological instruments exist to date to record the memory performance with several parallel versions in which the emotional valence of the test material is also taken into consideration. The aim of the present study was to test whether a working memory test (WST, a digit-span task with neutral or negative distraction stimuli) devised by our workgroup can be used with repeated measurements. This question was also examined in parallel versions of a wordlist learning paradigm and an autobiographical memory test (AMT). Both tests contained stimuli with neutral, positive and negative valence. Twenty-four participants completed the memory testing including the working memory test and three versions of a wordlist and the AMT at intervals of a week apiece (measuring points 1. - 3.). The results reveal consistent performances across the three measuring points in the working and autobiographical memory test. The valence of the stimulus material did not influence the memory performance. In the delayed recall of the wordlist an improvement in memory performance over time was seen. The tests on working memory presented and the parallel versions for the declarative and autobiographical memory constitute informal economic instruments within the scope of the measurement repeatability designs. While the WST and AMT are appropriate for study designs with repeated measurements at relatively short intervals, longer intervals might seem more favourable for the use of wordlist learning paradigms. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Working memory and fluid intelligence

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole; Conway, A.

    2009-01-01

    The present study investigates how working memory and fluid intelligence are related in young children and which aspect of working memory span tasks– short-term storage or controlled attention - might drive the relationship. A sample of 119 children were followed from kindergarten to 2nd grade and completed assessments of working memory, short-term memory, and fluid intelligence. The data showed that working memory, verbal short-term memory, and fluid intelligence were highly related but sepa...

  4. Human memory search

    NARCIS (Netherlands)

    Davelaar, E.J.; Raaijmakers, J.G.W.; Hills, T.T.; Robbins, T.W.; Todd, P.M.

    2012-01-01

    The importance of understanding human memory search is hard to exaggerate: we build and live our lives based on what whe remember. This chapter explores the characteristics of memory search, with special emphasis on the use of retrieval cues. We introduce the dependent measures that are obtained

  5. Human Memory: The Basics

    Science.gov (United States)

    Martinez, Michael E.

    2010-01-01

    The human mind has two types of memory: short-term and long-term. In all types of learning, it is best to use that structure rather than to fight against it. One way to do that is to ensure that learners can fit new information into patterns that can be stored in and more easily retrieved from long-term memory.

  6. Bipolar spectral associative memories.

    Science.gov (United States)

    Spencer, R G

    2001-01-01

    Nonlinear spectral associative memories are proposed as quantized frequency domain formulations of nonlinear, recurrent associative memories in which volatile network attractors are instantiated by attractor waves. In contrast to conventional associative memories, attractors encoded in the frequency domain by convolution may be viewed as volatile online inputs, rather than nonvolatile, off-line parameters. Spectral memories hold several advantages over conventional associative memories, including decoder/attractor separability and linear scalability, which make them especially well suited for digital communications. Bit patterns may be transmitted over a noisy channel in a spectral attractor and recovered at the receiver by recurrent, spectral decoding. Massive nonlocal connectivity is realized virtually, maintaining high symbol-to-bit ratios while scaling linearly with pattern dimension. For n-bit patterns, autoassociative memories achieve the highest noise immunity, whereas heteroassociative memories offer the added flexibility of achieving various code rates, or degrees of extrinsic redundancy. Due to linear scalability, high noise immunity and use of conventional building blocks, spectral associative memories hold much promise for achieving robust communication systems. Simulations are provided showing bit error rates for various degrees of decoding time, computational oversampling, and signal-to-noise ratio.

  7. Tracing Cultural Memory

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    to Soweto’s Regina Mundi Church, this thesis analyses tourists’ snapshots at sites of memory and outlines their tracing activity in cultural memory. It draws on central concepts of actor - network theory and visual culture studies for a cross - disciplinary methodology to comprehend the collective...

  8. [Learning and memory].

    Science.gov (United States)

    Lombroso, Paul

    2004-09-01

    Memory is broadly divided into declarative and nondeclarative forms of memory. The hippocampus is required for the formation of declarative memories, while a number of other brain regions including the striatum, amygdala and nucleus accumbens are involved in the formation of nondeclarative memories. The formation of all memories require morphological changes of synapses: new ones must be formed or old ones strengthened. These changes are thought to reflect the underlying cellular basis for persistent memories. Considerable advances have occurred over the last decade in our understanding of the molecular bases of how these memories are formed. A key regulator of synaptic plasticity is a signaling pathway that includes the mitogen activated protein (MAP) kinase. As this pathway is required for normal memory and learning, it is not surprising that mutations in members of this pathway lead to disruptions in learning. Neurofibromatosis, Coffin-Lowry syndrome and Rubinstein-Taybi syndrome are three examples of developmental disorders that have mutations in key components of the MAP kinase signaling pathway.

  9. A Space for Memory

    Science.gov (United States)

    Charman, Karen

    2015-01-01

    In this article I examine the possibilities of reparation in an era of privatisation and de-industrialisation. I examine the effect of a recent project Sunshine Memory Space, a space, designed to evoke memories of a de-industrialised urban Melbourne suburb Sunshine. This project offered the opportunity for the effects of industrial change to be…

  10. Human Memory: The Basics

    Science.gov (United States)

    Martinez, Michael E.

    2010-01-01

    The human mind has two types of memory: short-term and long-term. In all types of learning, it is best to use that structure rather than to fight against it. One way to do that is to ensure that learners can fit new information into patterns that can be stored in and more easily retrieved from long-term memory.

  11. LSTM with Working Memory

    OpenAIRE

    Pulver, Andrew; Lyu, Siwei

    2016-01-01

    LSTM is arguably the most successful RNN architecture for many tasks that involve sequential information. In the past few years there have been several proposed improvements to LSTM. We propose an improvement to LSTM which allows communication between memory cells in different blocks and allows an LSTM layer to carry out internal computation within its memory.

  12. Predicting Reasoning from Memory

    Science.gov (United States)

    Heit, Evan; Hayes, Brett K.

    2011-01-01

    In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the…

  13. An Exceptional Memory

    Science.gov (United States)

    Hunter, Ian M. L.

    1977-01-01

    An account is given of the exceptional memory of the late Professor A. C. Aitken who was also a distinguished mathematician and mental calculator. Compared with Shereshevskii, another man with exceptional memory, he shows the scholar's reliance on conceptual mapping rather than the mnemonist's reliance on perceptual chaining. (Editor)

  14. Visual Memory at Birth.

    Science.gov (United States)

    Slater, Alan; And Others

    1982-01-01

    Explored new-born babys' capacity for forming visual memories. Used an habituation procedure that accommodated individual differences by allowing each infant to control the time course of habituation trials. Found significant novelty preference, providing strong evidence that recognition memory can be reliably demonstrated from birth. (Author/JAC)

  15. Human Learning and Memory

    Science.gov (United States)

    Lieberman, David A.

    2012-01-01

    This innovative textbook is the first to integrate learning and memory, behaviour, and cognition. It focuses on fascinating human research in both memory and learning (while also bringing in important animal studies) and brings the reader up to date with the latest developments in the subject. Students are encouraged to think critically: key…

  16. Animal models of source memory.

    Science.gov (United States)

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory.

  17. Memory: Pandora's hippocampus?

    Science.gov (United States)

    Gabrieli, John D E

    2004-01-01

    Greater knowledge of the human brain has enabled us to begin devising therapies to rescue or modify memory for the afflicted, such as Alzheimer's patients or post-traumatic stress disorder victims. This same knowledge could also allow us to alter how normal, healthy memory operates; we may become able to enhance memory and learning through biological intervention. But the brain consists of complex, interactive networks, and unintended consequences could easily occur. Moreover, memory is woven into our individuality. Altering our memory processes therefore risks altering us fundamentally. We may not be able to resist opening this neuroscientific Pandora's Box, John Gabrieli writes, but we must proceed with all the wisdom we can muster.

  18. Schemas and memory consolidation.

    Science.gov (United States)

    Tse, Dorothy; Langston, Rosamund F; Kakeyama, Masaki; Bethus, Ingrid; Spooner, Patrick A; Wood, Emma R; Witter, Menno P; Morris, Richard G M

    2007-04-01

    Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.

  19. Making memories matter

    Directory of Open Access Journals (Sweden)

    Paul E. Gold

    2012-12-01

    Full Text Available This article reviews some of the neuroendocrine bases by which emotional events regulate brain mechanisms of learning and memory. In laboratory rodents, there is extensive evidence that epinephrine influences memory processing through an inverted-U relationship, at which moderate levels enhance and high levels impair memory. These effects are, in large part, mediated by increases in blood glucose levels subsequent to epinephrine release, which then provide support for the brain processes engaged by learning and memory. These brain processes include augmentation of neurotransmitter release and of energy metabolism, the latter apparently including a key role for astrocytic glycogen. In addition to up- and down-regulation of learning and memory in general, physiological concomitants of emotion and arousal can also switch the neural system that controls learning at a particular time, at once improving some attributes of learning and impairing others in a manner that results in a change in the strategy used to solve a problem.

  20. Cosmological memory effect

    Science.gov (United States)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  1. The Cosmological Memory Effect

    CERN Document Server

    Tolish, Alexander

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.

  2. Innate Memory T cells

    Science.gov (United States)

    Jameson, Stephen C.; Lee, You Jeong; Hogquist, Kristin A.

    2015-01-01

    Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation. PMID:25727290

  3. Russell on Memory

    Directory of Open Access Journals (Sweden)

    Thomas Baldwin

    2001-12-01

    Full Text Available Russell famously propounded scepticism about memory in The Analysis of Mind (1921. As he there acknowledged, one way to counter this sceptical position is to hold that memory involves direct acquaintance with past, and this is in fact a thesis Russell had advanced in The Problems of Philosophy (1911. Indeed he had there used the case of memory to develop a sophisticated falibilist, non-sceptical, epistemology. By 1921, however, Russell had rejected the early conception of memory as incompatible with the neutral monism he now affirmed. In its place he argued that memory involves a distinctive type of belief whose content is given by imagery. Russell's language here is off-putting but without much distortion his later position can be interpreted as an early formulation of a functionalist theory of mind based on a causal theory of mental representation. Thus interpreted it provides the basis for a different response to Russell's sceptical thesis.

  4. Serotonin transporter and memory.

    Science.gov (United States)

    Meneses, Alfredo; Perez-Garcia, Georgina; Ponce-Lopez, Teresa; Tellez, Ruth; Castillo, Carlos

    2011-09-01

    The serotonin transporter (SERT) has been associated to diverse functions and diseases, though seldom to memory. Therefore, we made an attempt to summarize and discuss the available publications implicating the involvement of the SERT in memory, amnesia and anti-amnesic effects. Evidence indicates that Alzheimer's disease and drugs of abuse like d-methamphetamine (METH) and (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") have been associated to decrements in the SERT expression and memory deficits. Several reports have indicated that memory formation and amnesia affected the SERT expression. The SERT expression seems to be a reliable neural marker related to memory mechanisms, its alterations and potential treatment. The pharmacological, neural and molecular mechanisms associated to these changes are of great importance for investigation.

  5. Conflict and memory

    DEFF Research Database (Denmark)

    Wagoner, Brady; Brescó, Ignacio

    2016-01-01

    This introduction to the special issue on conflict and memory aims to underscore the importance of memory (whether individual and collective) in relation to intergroup conflicts. We argue that the way in which societies reconstruct and bring the past into the present—especially, the historical past......—is crucial when it comes to the study of intergroup conflict dynamics. In this regard, we also highlight the growing importance of memory studies within the area of social sciences as well as the multiple ways of approaching memory. Drawing from this wide theoretical framework, we introduce the articles...... of this issue, eight articles that tackle the role of memory in different conflicts, whether currently under way, in progress of being resolved, in postwar settings, or in contexts conflicts expected to happen do not arise....

  6. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  7. Towards the Preservation of the Scientific Memory

    Directory of Open Access Journals (Sweden)

    Brian Matthews

    2015-02-01

    Full Text Available In this paper we consider the requirements for preserving the memory of science.  This is becoming more challenging as data volumes and rates continue to increase.  Further, to capture a full picture of the scientific memory we need to move beyond the bit preservation challenge to consider how to capture research in context, represent the meaning of the data, and how to interpret data in relation to other scientific artefacts distributed in multiple information spaces. We review the progress of scientific research into the digital preservation of science over the last decade, emphasising in particular the research and development programme of STFC. We conclude with a number of observations into the future directions of research and also the practical deployment of policy and infrastructure to effectively preserve the scientific memory.

  8. Measuring Memory Reactivation With Functional MRI: Implications for Psychological Theory.

    Science.gov (United States)

    Levy, Benjamin J; Wagner, Anthony D

    2013-01-01

    Environmental cues often remind us of earlier experiences by triggering the reactivation of memories of events past. Recent evidence suggests that memory reactivation can be observed using functional MRI and that distributed pattern analyses can even provide evidence of reactivation on individual trials. The ability to measure memory reactivation offers unique and powerful leverage on theoretical issues of long-standing interest in cognitive psychology, providing a means to address questions that have proven difficult to answer with behavioral data alone. In this article, we consider three instances. First, reactivation measures can indicate whether memory-based inferences (i.e., generalization) arise through the encoding of integrated cross-event representations or through the flexible expression of separable event memories. Second, online measures of memory reactivation may inform theories of forgetting by providing information about when competing memories are reactivated during competitive retrieval situations. Finally, neural reactivation may provide a window onto the role of replay in memory consolidation. The ability to track memory reactivation, including at the individual trial level, provides unique leverage that is not afforded by behavioral measures and thus promises to shed light on such varied topics as generalization, integration, forgetting, and consolidation.

  9. Impaired short-term memory for pitch in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Acceleration-induced nonlocality: kinetic memory versus dynamic memory

    OpenAIRE

    Chicone, C.; Mashhoon, B.

    2001-01-01

    The characteristics of the memory of accelerated motion in Minkowski spacetime are discussed within the framework of the nonlocal theory of accelerated observers. Two types of memory are distinguished: kinetic and dynamic. We show that only kinetic memory is acceptable, since dynamic memory leads to divergences for nonuniform accelerated motion.

  11. Aging Memories: Differential Decay of Episodic Memory Components

    Science.gov (United States)

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  12. Associative working memory and subsequent episodic memory in Alzheimer's disease.

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.; Tilborg, I.A. Van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  13. Associative working memory and subsequent episodic memory in Alzheimer's disease

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.C.; Tilborg, I.A.D.A. van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  14. Early skewed distribution of total and HIV-specific CD8+ T-cell memory phenotypes during primary HIV infection is related to reduced antiviral activity and faster disease progression.

    Directory of Open Access Journals (Sweden)

    Yanina Ghiglione

    Full Text Available The important role of the CD8+ T-cells on HIV control is well established. However, correlates of immune protection remain elusive. Although the importance of CD8+ T-cell specificity and functionality in virus control has been underscored, further unraveling the link between CD8+ T-cell differentiation and viral control is needed. Here, an immunophenotypic analysis (in terms of memory markers and Programmed cell death 1 (PD-1 expression of the CD8+ T-cell subset found in primary HIV infection (PHI was performed. The aim was to seek for associations with functional properties of the CD8+ T-cell subsets, viral control and subsequent disease progression. Also, results were compared with samples from Chronics and Elite Controllers. It was found that normal maturation of total and HIV-specific CD8+ T-cells into memory subsets is skewed in PHI, but not at the dramatic level observed in Chronics. Within the HIV-specific compartment, this alteration was evidenced by an accumulation of effector memory CD8+ T (TEM cells over fully differentiated terminal effector CD8+ T (TTE cells. Furthermore, higher proportions of total and HIV-specific CD8+ TEM cells and higher HIV-specific TEM/(TEM+TTE ratio correlated with markers of faster progression. Analysis of PD-1 expression on total and HIV-specific CD8+ T-cells from PHI subjects revealed not only an association with disease progression but also with skewed memory CD8+ T-cell differentiation. Most notably, significant direct correlations were obtained between the functional capacity of CD8+ T-cells to inhibit viral replication in vitro with higher proportions of fully-differentiated HIV-specific CD8+ TTE cells, both at baseline and at 12 months post-infection. Thus, a relationship between preservation of CD8+ T-cell differentiation pathway and cell functionality was established. This report presents evidence concerning the link among CD8+ T-cell function, phenotype and virus control, hence supporting the

  15. Recurrent correlation associative memories.

    Science.gov (United States)

    Chiueh, T D; Goodman, R M

    1991-01-01

    A model for a class of high-capacity associative memories is presented. Since they are based on two-layer recurrent neural networks and their operations depend on the correlation measure, these associative memories are called recurrent correlation associative memories (RCAMs). The RCAMs are shown to be asymptotically stable in both synchronous and asynchronous (sequential) update modes as long as their weighting functions are continuous and monotone nondecreasing. In particular, a high-capacity RCAM named the exponential correlation associative memory (ECAM) is proposed. The asymptotic storage capacity of the ECAM scales exponentially with the length of memory patterns, and it meets the ultimate upper bound for the capacity of associative memories. The asymptotic storage capacity of the ECAM with limited dynamic range in its exponentiation nodes is found to be proportional to that dynamic range. Design and fabrication of a 3-mm CMOS ECAM chip is reported. The prototype chip can store 32 24-bit memory patterns, and its speed is higher than one associative recall operation every 3 mus. An application of the ECAM chip to vector quantization is also described.

  16. European Union of Memories?

    DEFF Research Database (Denmark)

    Wæhrens, Anne

    After a very brief introduction to history and memory in Europe after 1989, as seen by Aleida Assmann, I will give a short introduction to the EP and to their adoption of resolutions and declarations. Then I will define some concepts central to my study before I proceed to the analysis. Finally I...... these changes have come about. Moreover, I show that there seems to be a political memory split between Left and Right and I suggest that the time might not be ripe for a shared European memory....

  17. Extended associative memories

    OpenAIRE

    J.H Sossa Azuela; R. Barrón Fernández

    2007-01-01

    The #945; #946; associative memories recently developed in Ref 10 have proven to be powerful tools for memorizing and recalling patterns when they appear distorted by noise. However they are only useful in the binary case. In this paper we show that it is possible to extend these memories now to the gray-level case. To get the desired extension, we take the original operators #945; and #946;, foundation of the #945; #946; memories, and propose a more general family of operators. We find t...

  18. Maximum Likelihood Associative Memories

    OpenAIRE

    Gripon, Vincent; Rabbat, Michael

    2013-01-01

    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  19. History, Memory and Film

    DEFF Research Database (Denmark)

    Bondebjerg, Ib

    In this paper I discuss history and memory from a theoretical and philosophical point of view and the non-fiction and fiction aspects of historical representation. I use Edgar Reitz’ monumental work Heimat 1-3 (and his recent film Die Andere Heimat) as examples of very different transformative...... historical narratives. In terms of narrative construction and aesthetic form the Heimat-project challenges the dominant forms of historical fiction. By combining personal memory, everyday life and collective memory and a more indirect way of representing factual history Reitz wants to transform our look...

  20. New gravitational memories

    Energy Technology Data Exchange (ETDEWEB)

    Pasterski, Sabrina; Strominger, Andrew; Zhiboedov, Alexander [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2016-12-14

    The conventional gravitational memory effect is a relative displacement in the position of two detectors induced by radiative energy flux. We find a new type of gravitational ‘spin memory’ in which beams on clockwise and counterclockwise orbits acquire a relative delay induced by radiative angular momentum flux. It has recently been shown that the displacement memory formula is a Fourier transform in time of Weinberg’s soft graviton theorem. Here we see that the spin memory formula is a Fourier transform in time of the recently-discovered subleading soft graviton theorem.

  1. Mapping autobiographical memory in schizophrenia: Clinical implications.

    Science.gov (United States)

    Ricarte, J J; Ros, L; Latorre, J M; Watkins, E

    2017-02-01

    Increasing evidence suggests that impaired autobiographical memory (AM) mechanisms may be associated with the onset and maintenance of psychopathology. However, there is not yet a comprehensive review of the components of autobiographical memory in schizophrenic patients. The first aim of this review is a synthesis of evidence about the functioning of AM in schizophrenic patients. The main autobiographical elements reviewed in schizophrenic patients include the study of overgeneral memory (form); self-defining memories (contents); consciousness during the process of retrieval (awareness), and the abnormal early reminiscence bump (distribution). AM impairments have been involved in the clinical diagnosis and prognosis of other psychopathologies, especially depression. The second aim is to examine potential parallels between the mechanisms responsible for the onset and maintenance of disturbed AM in other clinical diagnosis and the mechanisms of disturbed autobiographical memory functioning in schizophrenic patients. Cognitive therapies for schizophrenic patients are increasingly demanded. The third aim is the suggestion of key elements for the adaptation of components of autobiographical recall in cognitive therapies for the treatment of symptoms and consequences of schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Memory-based logic synthesis

    CERN Document Server

    Sasao, Tsutomu

    2011-01-01

    This book describes the synthesis of logic functions using memories. It is useful to design field programmable gate arrays (FPGAs) that contain both small-scale memories, called look-up tables (LUTs), and medium-scale memories, called embedded memories. This is a valuable reference for both FPGA system designers and CAD tool developers, concerned with logic synthesis for FPGAs.

  3. Context memory in Alzheimer's disease

    NARCIS (Netherlands)

    El Haj, M.; Kessels, R.P.C.

    2013-01-01

    Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by a gradual loss of memory. Specifically, context aspects of memory are impaired in AD. Our review sheds light on the neurocognitive mechanisms of this memory component that forms the core of episodic memory function.

  4. Reduced False Memory after Sleep

    Science.gov (United States)

    Fenn, Kimberly M.; Gallo, David A.; Margoliash, Daniel; Roediger, Henry L., III; Nusbaum, Howard C.

    2009-01-01

    Several studies have shown that sleep contributes to the successful maintenance of previously encoded information. This research has focused exclusively on memory for studied events, as opposed to false memories. Here we report three experiments showing that sleep reduces false memories in the Deese-Roediger-McDermott (DRM) memory illusion. False…

  5. Context memory in Alzheimer's disease

    NARCIS (Netherlands)

    El Haj, M.; Kessels, R.P.C.

    2013-01-01

    Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by a gradual loss of memory. Specifically, context aspects of memory are impaired in AD. Our review sheds light on the neurocognitive mechanisms of this memory component that forms the core of episodic memory function.

  6. Memory effect of the online user preference

    CERN Document Server

    Hou, Lei; Guo, Qiang; Liu, Jian-Guo

    2014-01-01

    The mechanism of the online user preference evolution is of great significance for understanding the online user behaviors and improving the quality of online services. Since users are allowed to rate on objects in many online systems, ratings can well reflect the users' preference. With two benchmark datasets from online systems, we uncover the memory effect in users' selecting behavior which is the sequence of qualities of selected objects and the rating behavior which is the sequence of ratings delivered by each user. Furthermore, the memory duration is presented to describe the length of a memory, which exhibits the power-law distribution, i.e., the probability of the occurring of long-duration memory is much higher than that of the random case which follows the exponential distribution. We present a preference model in which a Markovian process is utilized to describe the users' selecting behavior, and the rating behavior depends on the selecting behavior. With only one parameter for each of the user's s...

  7. Evolution of working memory

    National Research Council Canada - National Science Library

    Peter Carruthers

    2013-01-01

    Working memory (WM) is fundamental to many aspects of human life, including learning, speech and text comprehension, prospection and future planning, and explicit "system 2" forms of reasoning, as well as overlapping...

  8. Conglomerate memory and cosmopolitanism

    Directory of Open Access Journals (Sweden)

    Susannah Ryan

    2016-01-01

    Full Text Available Under what conditions do countries and cultures considered radically different find a basis for allegiance and kinship? What part does memory play in this process? This article responds to these questions in two ways: 1 Through Emmanuel Levinas and Hannah Arendt, I propose that when an other appears in empathetic discourses that both honor difference and cite shared human experiences, seemingly irreconcilable people can develop a sense of mutual responsibility and 2 Conglomerate memory, memories that fuse together others through common pains, contributes to such an appearance. To illustrate this point, I turn to Congolese voices as they are articulated in online American discourses; although currently, authors of online texts typically rely on traditional narrative forms that position Central Africa as incommensurate to Western civilizations, the Internet's worldwide accessibility and intertextual capacities render it a place primed for developing international collectives by connecting memories while maintaining difference.

  9. The Rational Memory

    National Research Council Canada - National Science Library

    1903-01-01

    FEW could read this useful little book of 115 pages without benefit. The author does not claim originality, but has selected the principles and facts of recognised importance from other works on memory...

  10. Modelling Immunological Memory

    CERN Document Server

    Garret, Simon; Walker, Joanne; Wilson, William; Aickelin, Uwe

    2010-01-01

    Accurate immunological models offer the possibility of performing highthroughput experiments in silico that can predict, or at least suggest, in vivo phenomena. In this chapter, we compare various models of immunological memory. We first validate an experimental immunological simulator, developed by the authors, by simulating several theories of immunological memory with known results. We then use the same system to evaluate the predicted effects of a theory of immunological memory. The resulting model has not been explored before in artificial immune systems research, and we compare the simulated in silico output with in vivo measurements. Although the theory appears valid, we suggest that there are a common set of reasons why immunological memory models are a useful support tool; not conclusive in themselves.

  11. Islamic Myths and Memories

    DEFF Research Database (Denmark)

    and globalization and to the study of the place of the mass media in the contemporary Islamic resurgence. It explores the annulment of spatial and temporal distance by globalization and by the communications revolution underlying it, and how this has affected the cherished myths and memories of the Muslim community......Islamic myths and collective memory are very much alive in today’s localized struggles for identity, and are deployed in the ongoing construction of worldwide cultural networks. This book brings the theoretical perspectives of myth-making and collective memory to the study of Islam....... It shows how contemporary Islamic thinkers and movements respond to the challenges of globalization by preserving, reviving, reshaping, or transforming myths and memories....

  12. Serriform Strip Crosstie Memory.

    Science.gov (United States)

    edge effect of the margin serrations upon magnetization, a form of shape anisotropy, inherently defines memory cell boundaries in the domain walls, thereby giving the crossties and Bloch lines preferred locations and allowing the use of a simplified propagation

  13. Memory mass storage

    CERN Document Server

    Campardo, Giovanni; Iaculo, Massimo

    2011-01-01

    Covering all the fundamental storage technologies such as semiconductor, magnetic, optical and uncommon, this volume details their core characteristics. In addition, it includes an overview of the 'biological memory' of the human brain and its organization.

  14. Just a Memory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While Beijing accelerates its modernization drive,it needs to retain its city culture before the ancient parts of the capital are only seen in photographs and live on only in the memories of residents

  15. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  16. Multiresonator quantum memory

    Science.gov (United States)

    Moiseev, S. A.; Gubaidullin, F. F.; Kirillov, R. S.; Latypov, R. R.; Perminov, N. S.; Petrovnin, K. V.; Sherstyukov, O. N.

    2017-01-01

    In this paper we present universal broadband multiresonator quantum memory based on the spatial-frequency combs of the microresonators coupled with a common waveguide. We find a Bragg-type impedance matching condition for the coupling of the microresonators with a waveguide field that provides an efficient broadband quantum storage. The analytical solution obtained for the microresonator fields enables sustainable parametric control of all the memory characteristics. We also construct an experimental prototype of the studied quantum memory in the microwave spectral range that demonstrates basic properties of the microwave microresonators, their coupling with a common waveguide, and independent control of the microresonator frequencies. Experimentally observed narrow lines of the microresonators confirm the possibility of multiresonator quantum memory implementation.

  17. Memory Circuit Fault Simulator

    Science.gov (United States)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  18. Memory training with senior citizens

    OpenAIRE

    CHOVANCOVÁ, Lenka

    2014-01-01

    This is a theoretical work. It deals with the topics of senior citizens and the aging process in an abbreviated conception, periodization of old age, and active life of seniors. It describes forms of social work with seniors in medical facilities, home environments and communities, and in old people's homes. Further, it describes memory: its definition, types of memory, memory loss, reasons why people forget, work with memory and advice on memory improvement from the medical point of view. Th...

  19. Memory, Conviviality and Coexistence

    DEFF Research Database (Denmark)

    Duru, Deniz Neriman

    2016-01-01

    The article explores the narratives and memories of past diversity and current practices of conviviality to investigate how class, lifestyle and tastes affect the daily interactions between people belonging to different ethno-religious backgrounds. This chapter critiques ‘coexistence’ as a concep......’ emphasize the fragmentation of people into ethnic and religious groups as a consequence of the homogenization process in the post-Ottoman Turkish context, bitter sweet memories of conviviality create a sense of belonging to Burgaz....

  20. Computational principles of memory.

    Science.gov (United States)

    Chaudhuri, Rishidev; Fiete, Ila

    2016-03-01

    The ability to store and later use information is essential for a variety of adaptive behaviors, including integration, learning, generalization, prediction and inference. In this Review, we survey theoretical principles that can allow the brain to construct persistent states for memory. We identify requirements that a memory system must satisfy and analyze existing models and hypothesized biological substrates in light of these requirements. We also highlight open questions, theoretical puzzles and problems shared with computer science and information theory.

  1. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  2. Epigenetic memory in plants.

    Science.gov (United States)

    Iwasaki, Mayumi; Paszkowski, Jerzy

    2014-09-17

    Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms.

  3. Regulatory T cell memory

    OpenAIRE

    Rosenblum, Md; Way, SS; Abbas, AK

    2015-01-01

    © 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime–challenge models of infection. However, recent work ...

  4. Music and memory

    OpenAIRE

    Haefliger, Anna Berenika

    2013-01-01

    Abstract: Music and its different forms of use seem to benefit people in a number of ways. Research has suggested that extensive musical practice and musical listening enhances mental functioning in healthy adults and patients with neurodegenerative disease. Yet, the findings presented have not yet examined the effects both musical training and stimuli enhancement have on episodic memory recognition. 20 musicians and 20 non-musicians took part in an episodic memory task which evaluated m...

  5. Cognitive Memory Network

    CERN Document Server

    James, Alex Pappachen; 10.1049/el.2010.0279

    2012-01-01

    A resistive memory network that has no crossover wiring is proposed to overcome the hardware limitations to size and functional complexity that is associated with conventional analogue neural networks. The proposed memory network is based on simple network cells that are arranged in a hierarchical modular architecture. Cognitive functionality of this network is demonstrated by an example of character recognition. The network is trained by an evolutionary process to completely recognise characters deformed by random noise, rotation, scaling and shifting

  6. Kirchnerist construction of memory

    OpenAIRE

    Bermúdez, Nicolás

    2015-01-01

    The effects on the construction of collective memory caused by the arrival of the kirchnerism to the political field have been extensively studied. That construction suffered transformations with the change of president, which have been less studied. Therefore, the objective of this paper is to present an analysis about the discursive construction of memory during Cristina Fernández de Kirchner first government. This research is part of the discourse studies, and more precisely it is part of ...

  7. Collective Memories in Wikipedia

    OpenAIRE

    Ferron, Michela

    2012-01-01

    Collective memories are precious resources for the society, because they contribute to strengthening the emotional bonding between community members, maintaining groups cohesion, and directing future behavior. Understanding the formation of the collective memories of emotional upheavals is important to a better comprehension of people's reactions and of the consequences on their psychological health. Previous studies investigated the effects of single traumatizing events, but few of them app...

  8. Memory, collective memory, orality and the gospels

    Directory of Open Access Journals (Sweden)

    Dennis C. Duling

    2011-06-01

    Full Text Available This article first explores individual memory as understood from the time of the ancient Greeks and Romans to modern-day neurology and psychology. The perspective is correlated with collective memory theory in the works of Halbwachs, Connerton, Gillis, Fentress and Wickham, Olick, Schwartz, Jan and Alida Assmann and Kirk and Thatcher. The relevance of ‘orality’ is highlighted in Kelber’s works, as well as in oral poetry performance by illiterate Yugoslavian bards, as discussed in studies by Parry, Lord and Havelock. Kelber’s challenge of Bultmann’s theory of oral tradition in the gospels is also covered. The article concludes with observations and reflections, opting for a position of moderate−to−strong constructionism.

  9. Learning and memory

    Directory of Open Access Journals (Sweden)

    P. A. J. Ryke

    1989-03-01

    Full Text Available Under various circumstances and in different species the outward expression of learning varies considerably, and this has led to the classification of different categories of learning. Just as there is no generally agreed on definition of learning, there is no one system of classification. Types of learning commonly recognized are: Habituation, sensitization, classical conditioning, operant conditioning, trial and error, taste aversion, latent learning, cultural learning, imprinting, insight learning, learning-set learning and instinct. The term memory must include at least two separate processes. It must involve, on the one hand, that of learning something and on the other, at some later date, recalling that thing. What lies between the learning and (he remembering must be some permanent record — a memory trace — within the brain. Memory exists in at least two forms: memory for very recent events (short-term which is relatively labile and easily disruptable; and long-term memory, which is much more stable. Not everything that gets into short-term memory becomes fixed in the long-term store; a filtering mechanism selects things that might be important and discards the rest.

  10. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  11. Immune memory in invertebrates.

    Science.gov (United States)

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Memory and epilepsy].

    Science.gov (United States)

    Dupont, Sophie

    2010-01-01

    Medial temporal lobe epilepsy is a chronic neurological disease that begins in the early age and that is associated with frequent and disturbing memory deficits. Repeated seizures will lead to the formation of an epileptogenic network that may interfere with physiological neuronal networks and thus with normal brain function: by direct activation or indirectly by deactivation during a seizure, see for example the dreamy state or the ''déja vécu'' phenomenon during temporal seizures; by ictal or post-ictal inhibition, see for example ictal or post-ictal amnesia; by a repetitive and chronic modulation leading to a reorganization of the physiological neuronal networks. The study of these interactions between epileptic and physiological neural networks must lead to better explore the patient's memory and predict memory worsening before temporal lobe surgery and to better understand the reorganization of memory networks in chronic epilepsy. The goal is double: (1) improve the prediction of post-operative memory worsening and guide rehabilitation in epileptic clinical practice; (2) improve the pathophysiological knowledge about memory processes. © Société de Biologie, 2010.

  13. Music evokes vivid autobiographical memories.

    Science.gov (United States)

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  14. Verification of Embedded Memory Systems using Efficient Memory Modeling

    CERN Document Server

    Ganai, Malay K; Ashar, Pranav

    2011-01-01

    We describe verification techniques for embedded memory systems using efficient memory modeling (EMM), without explicitly modeling each memory bit. We extend our previously proposed approach of EMM in Bounded Model Checking (BMC) for a single read/write port single memory system, to more commonly occurring systems with multiple memories, having multiple read and write ports. More importantly, we augment such EMM to providing correctness proofs, in addition to finding real bugs as before. The novelties of our verification approach are in a) combining EMM with proof-based abstraction that preserves the correctness of a property up to a certain analysis depth of SAT-based BMC, and b) modeling arbitrary initial memory state precisely and thereby, providing inductive proofs using SAT-based BMC for embedded memory systems. Similar to the previous approach, we construct a verification model by eliminating memory arrays, but retaining the memory interface signals with their control logic and adding constraints on tho...

  15. Distributed paging for general networks

    Energy Technology Data Exchange (ETDEWEB)

    Awerbuch, B.; Bartal, Y.; Fiat, A. [Tel-Aviv Univ. (Israel)

    1996-12-31

    Distributed paging deals with the dynamic allocation of copies of files in a distributed network as to minimize the total communication cost over a sequence of read and write requests. Most previous work deals with the file allocation problem where infinite nodal memory capacity is assumed. In contrast the distributed paging problem makes the more realistic assumption that nodal memory capacity is limited. Former work on distributed paging deals with the problem only in the case of a uniform network topology. This paper gives the first distributed paging algorithm for general networks. The algorithm is competitive in storage and communication. The competitive ratios are poly-logarithmic in the total number of network nodes and the diameter of the network.

  16. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.

  17. Motor threshold predicts working memory performance in healthy humans.

    Science.gov (United States)

    Schicktanz, Nathalie; Schwegler, Kyrill; Fastenrath, Matthias; Spalek, Klara; Milnik, Annette; Papassotiropoulos, Andreas; Nyffeler, Thomas; de Quervain, Dominique J-F

    2014-01-01

    Cognitive functions, such as working memory, depend on neuronal excitability in a distributed network of cortical regions. It is not known, however, if interindividual differences in cortical excitability are related to differences in working memory performance. In the present transcranial magnetic stimulation study, which included 188 healthy young subjects, we show that participants with lower resting motor threshold, which is related to higher corticospinal excitability, had increased 2-back working memory performance. The findings may help to better understand the link between cortical excitability and cognitive functions and may also have important clinical implications with regard to conditions of altered cortical excitability.

  18. An SPICE model for phase-change memory simulations

    Institute of Scientific and Technical Information of China (English)

    Li Xi; Song Zhitang; Cai Daolin; Chen Xiaogang; Chen Houpeng

    2011-01-01

    Along with a series of research works on the physical prototype and properties of the memory cell,an SPICE model for phase-change memory (PCM) simulations based on Verilog-A language is presented.By handling it with the heat distribution algorithm,threshold switching theory and the crystallization kinetic model,the proposed SPICE model can effectively reproduce the physical behaviors of the phase-change memory cell.In particular,it can emulate the cell's temperature curve and crystallinity profile during the programming process,which can enable us to clearly understand the PCM's working principle and program process.

  19. Cognit activation: a mechanism enabling temporal integration in working memory

    OpenAIRE

    Fuster, Joaquín M.; Bressler, Steven L.

    2012-01-01

    Working memory is critical to the integration of information across time in goal-directed behavior, reasoning and language, yet its neural substrate is unknown. Based on recent research, we propose a mechanism by which the brain can retain working memory for prospective use, thereby bridging time in the perception/action cycle. The essence of the mechanism is the activation of cognits, which consist of distributed, overlapping and interactive cortical networks that in the aggregate encode the...

  20. Memory Facilitation effect in Interaction between Video Clips and Music

    OpenAIRE

    吉岡, 賢治; 岩永, 誠

    2007-01-01

    Previous studies examined memories of video clips under the condition of affects combination of pictures and music. Video clips, which were combined with music in same impressions, were easy to remember their contents. The present study aimed to examine the memory facilitation about pictures in two perspectives, the strength of affects and the distribution of the processing recourses. Participants were 39 undergraduate volunteers, who were divided into three experimental conditions randomly. ...

  1. Design of an addressable memory controller.

    OpenAIRE

    Ham, Byung Woon.

    1987-01-01

    Approved for public release; distribution in unlimited. The main memory is an essential subsystem in a Von Neumann type of stored program machine. Because of the speed gap existence between the processor and the main memor>% there has been a constant need to improve the main memor\\' to achieve a better throughput. One method is to use a CAM(Content Addressable Memorv'). It is known as a \\ery powerful facility for searching a particular item from a data array rather than from...

  2. Memory-only selection of dictionary PINs

    OpenAIRE

    Stanek, Martin

    2014-01-01

    We estimate the security of dictionary-based PINs (Personal Identification Numbers) that a user selects from his/her memory without any additional aids. The estimates take into account the distribution of words in source language. We use established security metrics, such as entropy, guesswork, marginal guesswork and marginal success rate. The metrics are evaluated for various scenarios -- aimed at improving the security of the produced PINs. In general, plain and straightforward construction...

  3. Memory engram storage and retrieval.

    Science.gov (United States)

    Tonegawa, Susumu; Pignatelli, Michele; Roy, Dheeraj S; Ryan, Tomás J

    2015-12-01

    A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage.

  4. Cholinesterase inhibitors and memory.

    Science.gov (United States)

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2010-09-06

    A consensus exists that cholinesterase inhibitors (ChEIs) are efficacious for mild to moderate Alzheimer's Disease (AD). Unfortunately, the number of non-responders is large and the therapeutic effect is usually short-lasting. In experimental animals, ChEIs exert three main actions: inhibit cholinesterase (ChE), increase extracellular levels of brain acetylcholine (ACh), improve cognitive processes, particularly when disrupted in models of AD. In this overview we shall deal with the cognitive processes that are improved by ChEI treatment because they depend on the integrity of brain cholinergic pathways and their activation. The role of cholinergic system in cognition can be investigated using different approaches. Microdialysis experiments demonstrate the involvement of the cholinergic system in attention, working, spatial and explicit memory, information encoding, sensory-motor gating, skill learning. No involvement in long-term memory has yet been demonstrated. Conversely, memory consolidation is facilitated by low cholinergic activity. Experiments on healthy human subjects, notwithstanding caveats concerning age, dose, and different memory tests, confirm the findings of animal experiments and demonstrate that stimulation of the cholinergic system facilitates attention, stimulus detection, perceptual processing and information encoding. It is not clear whether information retrieval may be improved but memory consolidation is reduced by cholinergic activation. ChEI effects in AD patients have been extensively investigated using rating scales that assess cognitive and behavioural responses. Few attempts have been made to identify which scale items respond better to ChEIs and therefore, presumably, depend on the activity of the cholinergic system. Improvement in attention and executive functions, communication, expressive language and mood stability have been reported. Memory consolidation and retrieval may be impaired by high ACh levels. Therefore, considering

  5. Embodied Memory: Unconscious Smiling Modulates Emotional Evaluation of Episodic Memories

    Directory of Open Access Journals (Sweden)

    Mathieu eArminjon

    2015-05-01

    Full Text Available Since Damasio introduced the somatic markers hypothesis in 1991, it has spread through the psychological community, where it is now commonly acknowledged that somatic states are a factor in producing the qualitative dimension of our experiences. Present actions are emotionally guided by those somatic states that were previously activated in similar experiences. In this model, somatic markers serve as a kind of embodied memory.Here we test whether the manipulation of somatic markers can modulate the emotional evaluation of negative memories. Because facial feedback has been shown to be a powerful means of modifying emotional judgements, we used it to manipulate somatic markers. Participants first read a sad story in order to induce a negative emotional memory and then were asked to rate their emotions and memory about the text. Twenty-four hours later, the same participants were asked to assume a predetermined facial feedback (smiling while reactivating their memory of the sad story. The participants were once again asked to fill in emotional and memory questionnaires about the text. Our results showed that participants who had smiled during memory reactivation later rated the text less negatively than control participants. However, the contraction of the zygomaticus muscles during memory reactivation did not have any impact on episodic memory scores. This suggests that manipulating somatic states modified emotional memory without affecting episodic memory. Thus, modulating memories through bodily states might pave the way to studying memory as an embodied function and help shape new kinds of psychotherapeutic interventions.

  6. Embodied memory: unconscious smiling modulates emotional evaluation of episodic memories

    KAUST Repository

    Arminjon, Mathieu

    2015-05-26

    Since Damasio introduced the somatic markers hypothesis in Damasio (1994), it has spread through the psychological community, where it is now commonly acknowledged that somatic states are a factor in producing the qualitative dimension of our experiences. Present actions are emotionally guided by those somatic states that were previously activated in similar experiences. In this model, somatic markers serve as a kind of embodied memory. Here, we test whether the manipulation of somatic markers can modulate the emotional evaluation of negative memories. Because facial feedback has been shown to be a powerful means of modifying emotional judgements, we used it to manipulate somatic markers. Participants first read a sad story in order to induce a negative emotional memory and then were asked to rate their emotions and memory about the text. Twenty-four hours later, the same participants were asked to assume a predetermined facial feedback (smiling) while reactivating their memory of the sad story. The participants were once again asked to fill in emotional and memory questionnaires about the text. Our results showed that participants who had smiled during memory reactivation later rated the text less negatively than control participants. However, the contraction of the zygomaticus muscles during memory reactivation did not have any impact on episodic memory scores. This suggests that manipulating somatic states modified emotional memory without affecting episodic memory. Thus, modulating memories through bodily states might pave the way to studying memory as an embodied function and help shape new kinds of psychotherapeutic interventions.

  7. Primitive parallel operations for computational linear algebra

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, J.

    1985-01-01

    This work is a small step in the direction of code portability over parallel and vector machines. The proposal consists of a style of programming and a set of parallel operators built over abstract data types. Objects and operators are directed to the Computational Linear Algebra area, although the principles of the proposal can be applied to any other area. A subset of the operators was implemented on a 64-processor, distributed memory MIMD machine, and the results are that computationally intensive operators achieve asymptotically optimal speed-ups, but data movement operators are inefficient, some even intrinsically sequential.

  8. MEMORY IMPROVING FOODS

    Directory of Open Access Journals (Sweden)

    Akula Annapurna

    2013-09-01

    Full Text Available Learning is a lifelong process of transforming information and experience into knowledge, skills, behaviorand attitudes. Memory is the ability of the brain to store, retain and subsequently to recall information received fromthe world. Cognition can be defined as organization of information. It includes acquiring information (perception,selecting (attention, representing (understanding and retaining (memory information and using it to guidebehavior (reasoning and coordination of motor outputs.There are so many conditions associated with memory and cognitive impairment which include Aging,Alzheimer’s disease, Stroke, Stress, Head injuries, Seizures, Benzodiazepines, Brain tumors, Depression, Temporallobe defects and Schizophrenia etc.Choline rich foods can enhance memory and learning and may be useful in improving cognitive abilities. Theseinclude sea foods, liver, egg yolk, soysbeans, broccoli, ash gourd. Coloured fruits and vegetables are good source ofantioxidants which improve concentration. It is advised to decrease the consumption of foods rich in transfats likehydrogenated oils, fried foods, beef, pork, mutton and ice creams and pastries. Such foods increase the deposition offats in the neurons and impair cognition. Tea, cocoa and turmeric are reported to have good nootropic activity i.e.improving memory and learning. Apart from the foods, one should keep the brain active to maintain its cognitivefunction well.

  9. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A balanced memory network.

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2007-09-01

    Full Text Available A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.

  11. Nanoporous silicon oxide memory.

    Science.gov (United States)

    Wang, Gunuk; Yang, Yang; Lee, Jae-Hwang; Abramova, Vera; Fei, Huilong; Ruan, Gedeng; Thomas, Edwin L; Tour, James M

    2014-08-13

    Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited an extremely low electroforming voltage (∼ 1.6 V) and outstanding performance metrics. These include multibit storage ability (up to 9-bits), a high ON-OFF ratio (up to 10(7) A), a long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (∼ 6 × 10(-5) W/bit). Also provided is the room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

  12. Memory Loss: 7 Tips to Improve Your Memory

    Science.gov (United States)

    ... re not alone. Everyone forgets things occasionally. Still, memory loss is nothing to take lightly. Although there are no guarantees when it comes to preventing memory loss or dementia, certain activities might help. Consider ...

  13. Negative affect impairs associative memory but not item memory.

    OpenAIRE

    Bisby, J. A.; Burgess, N.

    2014-01-01

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine the effects of emotion on memory for items and their associations. By presenting neutral and negative items with background contexts, Experiment 1 ...

  14. Special Operations Commemoration: Monuments, Memory & Memorialization Practices of Elite Organizations

    Science.gov (United States)

    2013-04-01

    Although controversial at the time the precedent set for repatriation remains U.S. policy today.27 For example, Private Thomas Enright , Private Merle...organization. The first ceremony was held in 1987 and was presided over by the Deputy Director Robert M. Gates. The Memorial Ceremony has evolved over...memorial ceremonies timelessly capture the essence of any memorialization or commemorative practice. At the inaugural Memorial Ceremony in 1987 Robert

  15. The reminiscence bump in autobiographical memory and for public events: A comparison across different cueing methods.

    Science.gov (United States)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised by spikes in citations according to the years these events occurred. Follow-up analyses suggested that the bump in most important autobiographical memories was a function of the cultural life script. Our findings did not yield support for any of the dominant existing accounts of the bump as underlying the bump in word-cued memories.

  16. Matter and memory

    CERN Document Server

    Bergson, Henri

    1991-01-01

    Since the end of the last century," Walter Benjamin wrote, "philosophy has made a series of attempts to lay hold of the 'true' experience as opposed to the kind that manifests itself in the standardized, denatured life of the civilized masses. It is customary to classify these efforts under the heading of a philosophy of life. Towering above this literature is Henri Bergson's early monumental work, Matter and Memory."Along with Husserl's Ideas and Heidegger's Being and Time, Bergson's work represents one of the great twentieth-century investigations into perception and memory, movement and time, matter and mind. Arguably Bergson's most significant book, Matter and Memory is essential to an understanding of his philosophy and its legacy.This new edition includes an annotated bibliography prepared by Bruno Paradis.Henri Bergson (1859-1941) was awarded the Nobel Prize in 1927. His works include Time and Free Will, An Introduction to Metaphysics, Creative Evolution, and The Creative Mind.

  17. Emotion and autobiographical memory

    Science.gov (United States)

    Holland, Alisha C.; Kensinger, Elizabeth A.

    2010-03-01

    Autobiographical memory encompasses our recollections of specific, personal events. In this article, we review the interactions between emotion and autobiographical memory, focusing on two broad ways in which these interactions occur. First, the emotional content of an experience can influence the way in which the event is remembered. Second, emotions and emotional goals experienced at the time of autobiographical retrieval can influence the information recalled. We discuss the behavioral manifestations of each of these types of interactions and describe the neural mechanisms that may support those interactions. We discuss how findings from the clinical literature (e.g., regarding depression) and the social psychology literature (e.g., on emotion regulation) might inform future investigations of the interplay between the emotions experienced at the time of retrieval and the memories recalled, and we present ideas for future research in this domain.

  18. Mediated Cultural Memories

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    (A revised, full paper will be published in the journal Mediekultur, spring 2014) This paper explores two examples of narratives representing memories of acts of mass violence: Gzim Rewind (Sweden, 2011, director Knutte Wester) about 1990’s Kosovo, and The Act of Killing (Denmark, 2012, director...... perspectives of semiosis (meaning-making) in relation to the films as redefining genres and what sorts of meanings different audiences create about the films. Acts of mass violence, including murder on civilians, genocide, and wars, can be seen as seeds for memories of the involved persons and following...... generations. Acts of mass violence also construct a sort of looking glass of culturally dominant memories that are mediated through stories: retold as oral stories through generations, as myths or sagas, or remediated in contemporary documentary or fiction films. In these processes of retelling acts...

  19. Albert Einstein memorial lectures

    CERN Document Server

    Mechoulam, Raphael; The Israel Academy for Sciences and Humanities

    2012-01-01

    This volume consists of a selection of the Albert Einstein Memorial Lectures presented annually at the Israel Academy of Sciences and Humanities. Delivered by eminent scientists and scholars, including Nobel laureates, they cover a broad spectrum of subjects in physics, chemistry, life science, mathematics, historiography and social issues. This distinguished memorial lecture series was inaugurated by the Israel Academy of Sciences and Humanities following an international symposium held in Jerusalem in March 1979 to commemorate the centenary of Albert Einstein's birth. Considering that Einstein's interests, activities and influence were not restricted to theoretical physics but spanned broad fields affecting society and the welfare of humankind, it was felt that these memorial lectures should be addressed to scientists, scholars and erudite laypersons rather than to physicists alone.

  20. External-Memory Multimaps

    CERN Document Server

    Angelino, Elaine; Mitzenmacher, Michael; Thaler, Justin

    2011-01-01

    Many data structures support dictionaries, also known as maps or associative arrays, which store and manage a set of key-value pairs. A \\emph{multimap} is generalization that allows multiple values to be associated with the same key. For example, the inverted file data structure that is used prevalently in the infrastructure supporting search engines is a type of multimap, where words are used as keys and document pointers are used as values. We study the multimap abstract data type and how it can be implemented efficiently online in external memory frameworks, with constant expected I/O performance. The key technique used to achieve our results is a combination of cuckoo hashing using buckets that hold multiple items with a multiqueue implementation to cope with varying numbers of values per key. Our external-memory results are for the standard two-level memory model.

  1. When Memories are Mediated

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    that are mediated through stories: told and retold as oral stories through generations, as myths or sagas, or remediated as contemporary documentary film accounts or more fictional film accounts. In these processes of retelling acts of violence, transformations of meanings across time, cultural, social......Acts of mass violence, including murder on civilians, genocide, oppression and wars, can mobilize memories of the involved persons and following generations in a certain historical situation. Acts of mass violence can also create a sort of looking glass of culturally dominant memories...... makes meaning about past events. In the discussion, we consider how mediated memories affect audiences, and the potential of achieving development of present political and cultural understandings of past acts of violence....

  2. When Memories are Mediated

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    and political contexts and media platforms take place and become contexts for audience reception. This paper explores two examples of narratives that construct memories of acts of mass violence: “Gzim Rewind” (Sweden, 2011, director Knutte Wester) about 1990’s Kosovo, and “The Act of Killing” (Denmark, 2012......Acts of mass violence, including murder on civilians, genocide, oppression and wars, can mobilize memories of the involved persons and following generations in a certain historical situation. Acts of mass violence can also create a sort of looking glass of culturally dominant memories...... that are mediated through stories: told and retold as oral stories through generations, as myths or sagas, or remediated as contemporary documentary film accounts or more fictional film accounts. In these processes of retelling acts of violence, transformations of meanings across time, cultural, social...

  3. Networks with Memory

    CERN Document Server

    Rosvall, Martin; Lancichinetti, Andrea; West, Jevin D; Lambiotte, Renaud

    2013-01-01

    It is a paradigm to capture the spread of information and disease with random flow on networks. However, this conventional approach ignores an important feature of the dynamics: where flow moves to depends on where it comes from. That is, memory matters. We analyze multi-step pathways from different systems and show that ignoring memory has profound consequences for community detection and ranking as well as for epidemic spreading. Specifically, memoryless dynamics on networks understate the effect of communities and exaggerate the effect of highly connected nodes. Including memory reveals actual travel patterns in air traffic, ranking that favors specialized journals in scientific communication, and diseases that spread more slowly and persist longer in hospitals.

  4. Shape-memory polymers

    Directory of Open Access Journals (Sweden)

    Marc Behl

    2007-04-01

    Full Text Available Shape-memory polymers are an emerging class of active polymers that have dual-shape capability. They can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus. While shape B is given by the initial processing step, shape A is determined by applying a process called programming. We review fundamental aspects of the molecular design of suitable polymer architectures, tailored programming and recovery processes, and the quantification of the shape-memory effect. Shape-memory research was initially founded on the thermally induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. Finally, polymers are introduced that can be multifunctional. Besides their dual-shape capability, these active materials are biofunctional or biodegradable. Potential applications for such materials as active medical devices are highlighted.

  5. Psychobiology of Active and Inactive Memory.

    Science.gov (United States)

    Lewis, Donald J.

    1979-01-01

    Argues that the distinction between short-term memory and long-term memory is no longer adequate for either human or animal memory data. Recommends additional research on the physiological brain processes underlying memory interference and retrieval. (MP)

  6. Memory before Modernity : Practices of Memory in Early Modern Europe

    NARCIS (Netherlands)

    Kuijpers, H.M.E.P.; Pollmann, J.S.; Müller, J.M.; Steen, van der J.A.

    2013-01-01

    Many students of memory assume that the practice of memory changed dramatically around 1800; this volume shows that there was much continuity as well as change. Premodern ways of negotiating memories of pain and loss, for instance, were indeed quite different to those in the modern West. Yet by exam

  7. Negative Affect Impairs Associative Memory but Not Item Memory

    Science.gov (United States)

    Bisby, James A.; Burgess, Neil

    2014-01-01

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine…

  8. Aging memories: differential decay of episodic memory components

    NARCIS (Netherlands)

    Talamini, L.M.; Gorree, E.

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent

  9. Memory and burstiness in dynamic networks

    CERN Document Server

    Colman, Ewan R

    2015-01-01

    We introduce a class of complex network models which evolve through the addition of edges between nodes selected randomly according to their intrinsic fitness, and the deletion of edges according to their age. We add to this a memory effect where the attractiveness of a node is increased by the number of edges it is currently attached to, and observe that this creates burst-like activity in the attachment events of each individual node which is characterised by a power-law distribution of inter-event times. The fitness of each node depends on the probability distribution from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network data such as online social communications and fMRI scans.

  10. Shape memory polymer foams

    Science.gov (United States)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  11. Natural Killer Cell Memory.

    Science.gov (United States)

    O'Sullivan, Timothy E; Sun, Joseph C; Lanier, Lewis L

    2015-10-20

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity and can acquire immunological memory in a manner similar to that of T and B cells. In this review, we discuss evidence of NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. 009 Rehabilitation of memory disorders

    National Research Council Canada - National Science Library

    Wilson, B

    2010-01-01

      Abstract: In the past memory rehabilitation focused on teaching lists of words, giving people memory exercises or teaching mnemonics that brain injured people were expected to take on board and use spontaneously...

  13. Clinical Perspectives on Autobiographical Memory

    DEFF Research Database (Denmark)

    Autobiographical memory plays a key role in psychological well-being, and the field has been investigated from multiple perspectives for more than thirty years. One large body of research has examined the basic mechanisms and characteristics of autobiographical memory during general cognition......, and another body has studied what happens to it during psychological disorders, and how psychological therapies targeting memory disturbances can improve psychological well-being. This edited collection reviews and integrates current theories on autobiographical memory when viewed in a clinical perspective....... It presents an overview of basic applied and clinical approaches to autobiographical memory, covering memory specificity, traumatic memories, involuntary and intrusive memories, and the role of self-identity. The book discusses a wide range of psychological disorders, including depression, posttraumatic...

  14. Neuroepigenetic regulation of pathogenic memories

    Directory of Open Access Journals (Sweden)

    Stephanie E. Sillivan

    2015-01-01

    Full Text Available Our unique collection of memories determines our individuality and shapes our future interactions with the world. Remarkable advances into the neurobiological basis of memory have identified key epigenetic mechanisms that support the stability of memory. Various forms of epigenetic regulation at the levels of DNA methylation, histone modification, and noncoding RNAs can modulate transcriptional and translational events required for memory processes. By changing the cellular profile in the brain’s emotional, reward, and memory circuits, these epigenetic modifications have also been linked to perseverant, pathogenic memories. In this review, we will delve into the relevance of epigenetic dysregulation to pathogenic memory mechanisms by focusing on 2 neuropsychiatric disorders perpetuated by aberrant memory associations: substance use disorder and post-traumatic stress disorder. As our understanding improves, neuroepigenetic mechanisms may someday be harnessed to develop novel therapeutic targets for the treatment of these chronic, relapsing disorders.

  15. Memory Can Fade After Menopause

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161930.html Memory Can Fade After Menopause But women still outperform ... their own age, but new research suggests that memory may fade as estrogen levels drop during menopause. ...

  16. Time-Predictable Virtual Memory

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Schoeberl, Martin

    2016-01-01

    Virtual memory is an important feature of modern computer architectures. For hard real-time systems, memory protection is a particularly interesting feature of virtual memory. However, current memory management units are not designed for time-predictability and therefore cannot be used...... in such systems. This paper investigates the requirements on virtual memory from the perspective of hard real-time systems and presents the design of a time-predictable memory management unit. Our evaluation shows that the proposed design can be implemented efficiently. The design allows address translation...... and address range checking in constant time of two clock cycles on a cache miss. This constant time is in strong contrast to the possible cost of a miss in a translation look-aside buffer in traditional virtual memory organizations. Compared to a platform without a memory management unit, these two additional...

  17. Memory and Forgetfulness: NIH Research

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Memory & Forgetfulness NIH Research Past Issues / Summer 2013 Table ... agency for research on Alzheimer's disease and related memory research. An analysis funded by the NIA finds ...

  18. Dopaminergic neurons write and update memories with cell-type-specific rules.

    Science.gov (United States)

    Aso, Yoshinori; Rubin, Gerald M

    2016-07-21

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.

  19. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

    Directory of Open Access Journals (Sweden)

    George Kastellakis

    2016-11-01

    Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

  20. On the Performance of Three In-Memory Data Systems for On Line Analytical Processing

    Directory of Open Access Journals (Sweden)

    Ionut HRUBARU

    2017-01-01

    Full Text Available In-memory database systems are among the most recent and most promising Big Data technologies, being developed and released either as brand new distributed systems or as extensions of old monolith (centralized database systems. As name suggests, in-memory systems cache all the data into special memory structures. Many are part of the NewSQL strand and target to bridge the gap between OLTP and OLAP into so-called Hybrid Transactional Analytical Systems (HTAP. This paper aims to test the performance of using such type of systems for TPCH analytical workloads. Performance is analyzed in terms of data loading, memory footprint and execution time of the TPCH query set for three in-memory data systems: Oracle, SQL Server and MemSQL. Tests are subsequently deployed on classical on-disk architectures and results compared to in-memory solutions. As in-memory is an enterprise edition feature, associated costs are also considered.

  1. Reconstructions of information in visual spatial working memory degrade with memory load.

    Science.gov (United States)

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex.

  2. About sleep's role in memory.

    Science.gov (United States)

    Rasch, Björn; Born, Jan

    2013-04-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

  3. Self, Nation, and Generational Memory

    DEFF Research Database (Denmark)

    Böss/Bøss, Michael

    2014-01-01

    A study of the former Irish president Eamon de Valera's self-narrative in his official autobiography as an illustration Alistair Thomson's theory of memory as 'composure' and as reflecting generational memory........A study of the former Irish president Eamon de Valera's self-narrative in his official autobiography as an illustration Alistair Thomson's theory of memory as 'composure' and as reflecting generational memory.....

  4. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  5. Serotonin, neural markers, and memory

    OpenAIRE

    Alfredo eMeneses

    2015-01-01

    Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The i...

  6. Novel Nanocrystal Floating Gate Memory

    OpenAIRE

    Zhou, Huimei

    2012-01-01

    This work is devoted to investigating the feasibility of engineering nanocrystals and tunnel oxide layer with a novel structure. Several novel devices are demonstrated to improve the performance of the novel nanocrystal memories.A novel TiSi2 nanocrystal memory was demonstrated. TiSi2 nanocrystals were synthesized on SiO2 by annealing Ti covered Si nanocrystals. Compared to the reference Si nanocrystal memory, both experiment and simulation results show that TiSi2 nanocrystal memory exhibits ...

  7. Memory Constraints for Power-Law Series

    CERN Document Server

    Guo, Fangjian; Zhao, Zhi-Dan; Zhou, Tao

    2015-01-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents $\\alpha$. By permuting the independently drawn samples from a power-law distribution, we present non-trivial bounds on the memory (1st-order autocorrelation) as a function of $\\alpha$, which are markedly different from the ordinary $\\pm 1$ bounds for Gaussian or uniform distributions. When $1 3$, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the ratings of MovieLens and posts in Twitter, we also find that empirical power-law distributed data produced by human activities conform to such constraints.

  8. Heritage and Memory Studies (HMS)

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Heritage and Memory StudiesSeries in development with the Amsterdam School for Heritage and Memory StudiesThis ground-breaking series examines the dynamics of heritage and memory from a transnational, interdisciplinary and integrated approaches. Monographs or edited volumes critically interrogate th

  9. NUMA obliviousness through memory mapping

    NARCIS (Netherlands)

    Gawade, M.; Kersten, M.; Pandis, I.; Kersten, M.

    2015-01-01

    With the rise of multi-socket multi-core CPUs a lot of effort is being put into how to best exploit their abundant CPU power. In a shared memory setting the multi-socket CPUs are equipped with their own memory module, and access memory modules across sockets in a non-uniform access pattern (NUMA).

  10. Stroke and Episodic Memory Disorders

    Science.gov (United States)

    Lim, Chun; Alexander, Michael P.

    2009-01-01

    Memory impairments are common after stroke, and the anatomical basis for impairments may be quite variable. To determine the range of stroke-related memory impairment, we identified all case reports and group studies through the Medline database and the Science Citation Index. There is no hypothesis about memory that is unique to stroke, but there…

  11. Body memories in dance improvisation

    DEFF Research Database (Denmark)

    Ravn, Susanne

    In the analysis of body-memory and improvisation presented in this paper I contend that dancers’ specialised body-memory are not to be understood as more or less automatized. Rather, in each repetition, body-memories – or habits – are to be understood as unfolding in response to the actual contex...

  12. Stress disrupts response memory retrieval.

    Science.gov (United States)

    Guenzel, Friederike M; Wolf, Oliver T; Schwabe, Lars

    2013-08-01

    Stress effects on memory are well-known. Most studies, however, focused on the impact of stress on hippocampus-dependent 'declarative' memory processes. Less is known about whether stress influences also striatum-based memory processes, such as stimulus-response (S-R) memory. First evidence from rodent experiments shows that glucocorticoid stress hormones may enhance the consolidation of S-R memories. Whether stress affects also S-R memory retrieval remains largely elusive. Therefore, we tested in the present experiment in humans the effect of stress on the retrieval of S-R memories. Healthy men and women were trained to locate three objects in an S-R version of a virtual eight-arm radial maze. One week later, participants underwent a stressor or a control condition before their memory of the S-R task was tested. Our results showed that participants (n=43) who were exposed to the stressor before retention testing made significantly more errors in this test trial, suggesting that stress impaired S-R memory retrieval. Moreover, high cortisol concentrations were associated with reduced S-R memory. These findings indicate that stress may affect memory retrieval processes in humans beyond hippocampal 'declarative' memory.

  13. Heritage and Memory Studies (HMS)

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Heritage and Memory StudiesSeries in development with the Amsterdam School for Heritage and Memory StudiesThis ground-breaking series examines the dynamics of heritage and memory from a transnational, interdisciplinary and integrated approaches. Monographs or edited volumes critically interrogate

  14. Heritage and Memory Studies (HMS)

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Heritage and Memory Studies Series in development with the Amsterdam School for Heritage and Memory Studies This ground-breaking series examines the dynamics of heritage and memory from a transnational, interdisciplinary and integrated approaches. Monographs or edited volumes critically interrogate

  15. Memory Storage and Neural Systems.

    Science.gov (United States)

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  16. Transacted Memory for Smart Cards

    NARCIS (Netherlands)

    Hartel, Pieter H.; Butler, Michael J.; de Jong, Eduard; Longley, Mark; Olivieira, J.N.; Zave, P.

    A transacted memory that is implemented using EEPROM technology offers persistence, undoability and auditing. The transacted memory system is formally specified in Z, and refined in two steps to a prototype C implementation / SPIN model. Conclusions are offered both on the transacted memory system

  17. Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-08-01

    Memory Alloy ( SMA ) by Cory R Knick and Christopher J Morris Approved for public release; distribution unlimited...Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy ( SMA ) by Cory R Knick and Christopher J Morris Sensors...2014 – 05/2015 4. TITLE AND SUBTITLE Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy ( SMA ) 5a. CONTRACT NUMBER

  18. Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory

    Science.gov (United States)

    2016-05-12

    SECURITY CLASSIFICATION OF: Three areas were investigated. First, new memory models of discrete-time and finitely-valued information sources are...computational and storage complexities are proved. Second, a statistical method is developed to estimate the memory depth of discrete-time and continuously...Distribution Unlimited UU UU UU UU 12-05-2016 15-May-2014 14-Feb-2015 Final Report: Statistical Inference on Memory Structure of Processes and Its Applications

  19. "Memorial de agravios"

    Directory of Open Access Journals (Sweden)

    Boletín Cultural y Bibliográfico Banco de la República

    1959-12-01

    Full Text Available El texto de este célebre documento, conocido con el nombre de Memorial de Agravios, fue redactado por Don Camilo Torres, en su calidad de Asesor del Cabildo de Santafé y se publicó por primera vez en folleto en 1832.

  20. Memorial Alexander Center

    Directory of Open Access Journals (Sweden)

    AECK Associates, Arquitectos

    1958-05-01

    Full Text Available En Atlanta, el Instituto Tecnológico de Georgia acaba de ampliar sus instalaciones deportivas, construyendo el Alexander Memorial Center. Consta este nuevo Centro de dos edificios: una pista de baloncesto cubierta y un edificio anejo con vestuarios, duchas, una pista de entrenamiento, equipos técnicos y la emisora de radio Georgia Tech W. G. S. T.

  1. Memory Mechanisms in Grasping

    Science.gov (United States)

    Hesse, Constanze; Franz, Volker H.

    2009-01-01

    The availability of visual information influences the execution of goal-directed movements. This is very prominent in memory conditions, where a delay is introduced between stimulus presentation and execution of the movement. The corresponding effects could be due to a decay of the visual information or to different processing mechanisms used for…

  2. Connecting Competing Memories

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Research Expert Meeting: Connecting Competing Memories of War in Contemporary Europe5 March 2014NIAS hosts, 6 - 7 March, the expert meeting of the Consortium for 'The Cultural Heritage of War in Contemporary Europe'. The aim is to draft main themes and discuss financial and research structures regar

  3. YANGTZE DISCHARGE MEMORY

    Institute of Scientific and Technical Information of China (English)

    Klaus Fraedrich; Xiuhua Zhu

    2009-01-01

    We present a review on studies focusing on memories in hydrological time series in the Yangtze Basin based on observational and reconstructed historical data.Memory appears as scaling of power spectra,S(f)~f-β,with 0 <β≤ 1.The presence of scaling is noteworthy in daily river discharge time series:1)from weeks to a couple of years,power spectra follow flicker noise,that is β≈ 1;2)beyond years,spectral scaling appraaclTes β≈0.3.In historical time series of floods and draughts,power spectra also shows scaling with β≈ 0.38 ~0.52.Furthermore,a 70-year peak is detected in historical maritime events series,which also appears in other past climate indicators.Presence of memory in these hydrological time series implies clustering of extremes and scaling of their recurrence times,therefore,probabilistic forecast potential for extremes can be derived.On the other hand,although several physical processes,for example,soil moisture storage and high intermittency of precipitation,have been suggested to be the possible candidates contributing to the presence of long term memory,they remain open for future research.

  4. Visualizing Dynamic Memory Allocations

    NARCIS (Netherlands)

    Moreta, Sergio; Telea, Alexandru

    2007-01-01

    We present a visualization tool for dynamic memory allocation information obtained from instrumenting the runtime allocator used by C programs. The goal of the presented visualization techniques is to convey insight in the dynamic behavior of the allocator. The purpose is to help the allocator desig

  5. Dreams Memories & Photography

    Science.gov (United States)

    Young, Bernard

    2012-01-01

    Photography students spend a considerable amount of time working on technical issues in shooting, composing, editing, and processing prints. Another aspect of their learning should include the conception and communication of their ideas. A student's memories and dreams can serve as motivation to create images in visual art. Some artists claim that…

  6. Advanced image memory architecture

    Science.gov (United States)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  7. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  8. Wolfgang Gentner Memorial

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The Memorial was held in the Main Auditorium on 30 April 1981. The photo shows (centre, first row) Volker Soergel (DESY Director), Mrs. Gentner, Jean Teillac (President of the Council), Hélène Langevin-Joliot, Herwig Schopper (CERN Director-General).

  9. Dreams Memories & Photography

    Science.gov (United States)

    Young, Bernard

    2012-01-01

    Photography students spend a considerable amount of time working on technical issues in shooting, composing, editing, and processing prints. Another aspect of their learning should include the conception and communication of their ideas. A student's memories and dreams can serve as motivation to create images in visual art. Some artists claim that…

  10. Echoic memory in pigeons

    NARCIS (Netherlands)

    C. Kretzschmar; T. Kalenscher; O. Güntürkün; C. Kaernbach

    2008-01-01

    It is unknown whether birds are able to retain the memory of purely sensory auditory information such as white noise over an extended period of time. In a Pavlovian heart rate conditioning paradigm, four pigeons were trained to associate a mild electric shock with periodic random waveforms, and no s

  11. Memory Loss and Retrieval

    Science.gov (United States)

    Reid, Ian

    2016-01-01

    Underlying the generally oblivious attitude of teachers and learners towards the past is insufficient respect for the role of memory in giving meaning to experience and access to knowledge. We shape our identity by making sense of our past and its relationship to present and future selves, a process that should be intensively cultivated when we…

  12. Islamic Myths and Memories

    DEFF Research Database (Denmark)

    and globalization and to the study of the place of the mass media in the contemporary Islamic resurgence. It explores the annulment of spatial and temporal distance by globalization and by the communications revolution underlying it, and how this has affected the cherished myths and memories of the Muslim community...

  13. The Memory Library

    DEFF Research Database (Denmark)

    Olesen-Bagneux, Ole

    2014-01-01

    of classification and retrieval processes is presented. The key element is to understand the library both as a physical structure and as a structure in the memory of the Alexandrian scholars. In this article, these structures are put together so to propose a new interpretation of the library....

  14. The Memory of God

    DEFF Research Database (Denmark)

    Rasmussen, Ulrik Houlind

    The thematic aim of the present dissertation is twofold: To contribute to the contemporary discussion within philosophy of religion, which revolves around ‘the death and (alleged) return of God’; more specifically, I want to rethink God through the concept memory, drawing on selected writings from...

  15. Memory for Routines.

    Science.gov (United States)

    Galambos, James A.; Rips, Lance J.

    1982-01-01

    Presents experiments which compare two theories of memory for routine events, one emphasizing temporal sequence of events, the other focusing on events' hierarchical structure or centrality. Findings suggest that sequence and centrality information may be computed as needed, rather than precompiled. (Author/BK)

  16. The role of stress during memory reactivation on intrusive memories.

    Science.gov (United States)

    Cheung, Jessica; Garber, Benjamin; Bryant, Richard A

    2015-09-01

    Intrusive memories are unwanted recollections that maintain distress in psychological disorders. Increasing evidence suggests that memories that are reactivated through retrieval become temporarily vulnerable to environmental or pharmacological manipulation, including changes in levels of circulating stress hormones. This study investigated the influence of stress during memory reactivation of an emotionally arousing trauma film on subsequent intrusive memories. Three groups of participants (N=63) viewed a trauma film depicting a serious car accident at baseline. Two days later (Time 2), one group received a reactivation induction following a socially evaluated cold pressor test (SECPT; Stress/Reactivation condition), whilst the second group reactivated the memory after a control procedure (Reactivation condition). A third group underwent the SECPT but was not asked to reactivate memory of the trauma film (Stress condition). Two days later (Time 3), all participants received a surprise cued memory recall test and intrusions questionnaire which they completed online. Results showed that those in the Stress/Reactivation group had higher intrusions scores than the other two groups, suggesting that acute stress promotes intrusive memories only when the memory trace is reactivated shortly afterwards. Increased cortisol predicted enhanced intrusive experiences in the Stress/Reactivation condition but not in the other conditions. This pattern of results suggests that acute stress during the reactivation of emotional material impacts on involuntary emotional memories. These findings suggest a possible explanation for the mechanism underlying the maintenance of intrusive memories in clinical disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Exploring memory hierarchy design with emerging memory technologies

    CERN Document Server

    Sun, Guangyu

    2014-01-01

    This book equips readers with tools for computer architecture of high performance, low power, and high reliability memory hierarchy in computer systems based on emerging memory technologies, such as STTRAM, PCM, FBDRAM, etc.  The techniques described offer advantages of high density, near-zero static power, and immunity to soft errors, which have the potential of overcoming the “memory wall.”  The authors discuss memory design from various perspectives: emerging memory technologies are employed in the memory hierarchy with novel architecture modification;  hybrid memory structure is introduced to leverage advantages from multiple memory technologies; an analytical model named “Moguls” is introduced to explore quantitatively the optimization design of a memory hierarchy; finally, the vulnerability of the CMPs to radiation-based soft errors is improved by replacing different levels of on-chip memory with STT-RAMs.   ·         Provides a holistic study of using emerging memory technologies i...

  18. False memories and memory confidence in borderline patients.

    Science.gov (United States)

    Schilling, Lisa; Wingenfeld, Katja; Spitzer, Carsten; Nagel, Matthias; Moritz, Steffen

    2013-12-01

    Mixed results have been obtained regarding memory in patients with borderline personality disorder (BPD). Prior reports and anecdotal evidence suggests that patients with BPD are prone to false memories but this assumption has to been put to firm empirical test, yet. Memory accuracy and confidence was assessed in 20 BPD patients and 22 healthy controls using a visual variant of the false memory (Deese-Roediger-McDermott) paradigm which involved a negative and a positive-valenced picture. Groups did not differ regarding veridical item recognition. Importantly, patients did not display more false memories than controls. At trend level, borderline patients rated more items as new with high confidence compared to healthy controls. The results tentatively suggest that borderline patients show uncompromised visual memory functions and display no increased susceptibility for distorted memories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. False memories in highly superior autobiographical memory individuals.

    Science.gov (United States)

    Patihis, Lawrence; Frenda, Steven J; LePort, Aurora K R; Petersen, Nicole; Nichols, Rebecca M; Stark, Craig E L; McGaugh, James L; Loftus, Elizabeth F

    2013-12-24

    The recent identification of highly superior autobiographical memory (HSAM) raised the possibility that there may be individuals who are immune to memory distortions. We measured HSAM participants' and age- and sex-matched controls' susceptibility to false memories using several research paradigms. HSAM participants and controls were both susceptible to false recognition of nonpresented critical lure words in an associative word-list task. In a misinformation task, HSAM participants showed higher overall false memory compared with that of controls for details in a photographic slideshow. HSAM participants were equally as likely as controls to mistakenly report they had seen nonexistent footage of a plane crash. Finding false memories in a superior-memory group suggests that malleable reconstructive mechanisms may be fundamental to episodic remembering. Paradoxically, HSAM individuals may retrieve abundant and accurate autobiographical memories using fallible reconstructive processes.

  20. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L; Gasch, Audrey P

    2012-10-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.

  1. Recollection- and familiarity-based decisions reflect memory strength

    Directory of Open Access Journals (Sweden)

    Martin Wiesmann

    2008-05-01

    Full Text Available We used event-related fMRI to investigate whether recollection- and familiarity-based memory judgments are modulated by the degree of visual similarity between old and new art paintings. Subjects performed a flower detection task, followed by a Remember/Know/New surprise memory test. The old paintings were randomly presented with new paintings, which were either visually similar or visually different. Consistent with our prediction, subjects were significantly faster and more accurate to reject new, visually different paintings than new, visually similar ones. The proportion of false alarms, namely remember and know responses to new paintings, was significantly reduced with decreased visual similarity. The retrieval task evoked activation in multiple visual, parietal and prefrontal regions, within which remember judgments elicited stronger activation than know judgments. New, visually different paintings evoked weaker activation than new, visually similar items in the intraparietal sulcus. Contrasting recollection with familiarity revealed activation predominantly within the precuneus, where the BOLD response elicited by recollection peaked significantly earlier than the BOLD response evoked by familiarity judgments. These findings suggest that successful memory retrieval of pictures is mediated by activation in a distributed cortical network, where memory strength is manifested by differential hemodynamic profiles. Recollection- and familiarity-based memory decisions may therefore reflect strong memories and weak memories, respectively.

  2. Correlated bursts and the role of memory range

    CERN Document Server

    Jo, Hang-Hyun; Kaski, Kimmo; Kertesz, Janos

    2015-01-01

    Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed inter-event time distributions, higher-order correlations between inter-event times, called \\emph{correlated bursts}, have been studied only recently. As the possible mechanisms underlying such correlated bursts are far from being fully understood, we devise a simple model for correlated bursts by using a self-exciting point process with variable memory range. Here the probability that a new event occurs is determined by a memory function that is the sum of decaying memories of the past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms, namely either fixed number or variable number of memories. By using theoretical analysis and numerical simulations we find that excessive amount of memory effect ma...

  3. Computational modeling of memory allocation in neuronal and dendritic populations

    Directory of Open Access Journals (Sweden)

    George I Kastellakis

    2014-03-01

    Full Text Available Recent studies using molecular and cellular approaches have established that memory is supported by distributed and sparse populations of neurons. The allocation of neurons and synapses to store a long term memory engram is not random, but depends on properties such as neuronal excitability and CREB activation. The consolidation of synaptic plasticity, which is believed to serve long-term memory storage, is dependent on protein availability, and shaped by the mechanism of synaptic tagging and capture. In addition, dendritic protein synthesis allows for compartmentalized plasticity and synapse clustering. The implications of the rules governing long-term memory allocation in neurons and their dendrites are not yet known. To this aim, we present a model that incorporates multiple plasticity-related mechanisms which are known to be active during memory allocation and consolidation. Using this model, we show that memory allocation in neurons and their dendrites is affected by dendritic protein synthesis, and that the late-LTP associativity mechanisms allow related memories to be stored in overlapping populations of neurons.

  4. Mnemonic Training Reshapes Brain Networks to Support Superior Memory.

    Science.gov (United States)

    Dresler, Martin; Shirer, William R; Konrad, Boris N; Müller, Nils C J; Wagner, Isabella C; Fernández, Guillén; Czisch, Michael; Greicius, Michael D

    2017-03-08

    Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world's most successful memory athletes and matched controls with fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that, in a group of naive controls, functional connectivity changes induced by 6 weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain's functional network organization to enable superior memory performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. About Sleep's Role in Memory

    Science.gov (United States)

    2013-01-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of “sleep and memory” research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems. PMID:23589831

  6. An Overview of Non-Volatile Flip-Flops Based on Emerging Memory Technologies An Overview of Non-Volatile Flip-Flops Based on Emerging Memory Technologies

    Institute of Scientific and Technical Information of China (English)

    J. M. Portal; C. Chappert; W.-S. Zhao; M. Bocquet; M. Moreau; H. Aziza; D. Deleruyelle; Y. Zhang; W. Kang; J.-O. Klein; Y.-G. Zhang

    2014-01-01

    Low power consumption is a major issue in nowadays electronics systems. This trend is pushed by the development of data center related to cloud services and soon to the Internet of Things (IoT) deployment. Memories are one of the major contributors to power consumption. However, the development of emerging memory technologies paves the way to low-power design, through the partial replacement of the dynamic random access memory (DRAM) with the non-volatile stand-alone memory in servers or with the embedded or distributed emerging non-volatile memory in IoT objects. In the latter case, non-volatile flip-flops (NVFFs) seem a promising candidate to replace the retention latch. Indeed, IoT objects present long sleep time and NVFFs offer to save data in registers with zero power when the application is idle. This paper gives an overview of NVFF architecture flavors for various emerging memory technologies.

  7. Dissociation and memory fragmentation: Experimental effects on meta-memory but not on actual memory performance.

    NARCIS (Netherlands)

    van den Hout, M.; Kindt, M.

    2003-01-01

    The relation between state dissociation and fragmentary memory was investigated by assessing both actual memory performance and meta-memory. From a sample of 330 normal subjects, 2 subsamples were selected on basis of trait dissociation, as measured by the Dissociative Experience Scale. 20 subjects

  8. Dissociation and memory fragmentation: Experimental effects on meta-memory but not on actual memory performance.

    NARCIS (Netherlands)

    van den Hout, M.; Kindt, M.

    2003-01-01

    The relation between state dissociation and fragmentary memory was investigated by assessing both actual memory performance and meta-memory. From a sample of 330 normal subjects, 2 subsamples were selected on basis of trait dissociation, as measured by the Dissociative Experience Scale. 20 subjects

  9. Control of crack pattern using memory effect of paste

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Akio; Shinohara, Yuu; Matsuo, Yousuke, E-mail: nakahara@phys.ge.cst.nihon-u.ac.jp [Laboratory of Physics, College of Science and Technology, Nihon University, Funabashi 274-8501 (Japan)

    2011-09-15

    A densely packed colloidal suspension, called as a paste, remembers the direction of external mechanical fields, such as flow and vibration. When the pastes are dried, memories in pastes are visualized as macroscopically anisotropic crack patterns, such as lamellar, radial, ring and spiral. Here, we experimentally investigate how pastes remember such experiences by using paste with different size distribution of colloidal particles. We find that a paste with smaller particles have a better memory, in the sense it remembers external mechanical fields at smaller solid volume fraction, which implies that interparticle forces between colloidal particles play an important role in memory effects, causing a quantitative change in the phase diagram for the same material. This result supports the hypothesis that memories in pastes are maintained as microscopically anisotropic network structure of colloidal particles, connected via interparticle forces between colloidal particles, such as van der Waals interaction.

  10. Memory consolidation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Daniel O Kellett

    Full Text Available Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABAA agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage.

  11. 5-HT(1A) receptors and memory.

    Science.gov (United States)

    Meneses, Alfredo; Perez-Garcia, Georgina

    2007-01-01

    The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.

  12. Neuropeptides in learning and memory.

    Science.gov (United States)

    Borbély, Eva; Scheich, Bálint; Helyes, Zsuzsanna

    2013-12-01

    Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to

  13. Atomic memory access hardware implementations

    Science.gov (United States)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  14. Implicit Memory in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    G. Latchford

    1993-01-01

    Full Text Available A number of neuropsychological studies have revealed that memory problems are relatively common in patients with multiple sclerosis (MS. It may be useful to compare MS with conditions such as Huntington's disease (HD, which have been referred to as subcortical dementia. A characteristic of these conditions may be an impairment in implicit (unconscious memory, but not in explicit (conscious memory. The present study examined the functioning of explicit and implicit memory in MS. Results showed that implicit memory was not significantly impaired in the MS subjects, and that they were impaired on recall but not recognition. A correlation was found between implicit memory performance and disability status in MS patients. Findings also suggest the possibility of long-term priming of implicit memory in the control subjects. The implications of these results are discussed.

  15. Flashbulb memories in older adults.

    Science.gov (United States)

    Cohen, G; Conway, M A; Maylor, E A

    1994-09-01

    In this study of age differences in flashbulb memory, groups of young and older adults gave detailed accounts of how they heard the news of the resignation of the British Prime Minister Margaret Thatcher. They were tested within 14 days after the event and again 11 months later. They also gave ratings for the encoding variables (surprise, emotion, importance, knowledge, and interest) and for frequency of rehearsal. Memories that met a strict criterion of consistency between the original and delayed responses were classified as flashbulb memories. Although 90% of young Ss had flashbulb memories, only 42% of the elderly met the criterion. The age groups also differed in the type of details remembered and in the relationship between the encoding and rehearsal variables and the occurrence of flashbulb memory. The age-related deficit in flashbulb memory is related to source amnesia and to a deficit in memory for context.

  16. Longevity pathways and memory ageing

    Directory of Open Access Journals (Sweden)

    Ilias eGkikas

    2014-06-01

    Full Text Available The ageing process has been associated with numerous pathologies at the cellular, tissue, and organ level. Decline or loss of brain functions, including learning and memory, is one of the most devastating and feared aspects of ageing. Learning and memory are fundamental processes by which animals adjust to environmental changes, evaluate various sensory signals based on context and experience, and make decisions to generate adaptive behaviours. Age-related memory impairment is an important phenotype of brain ageing. Understanding the molecular mechanisms underlying age-related memory impairment is crucial for the development of therapeutic strategies that may eventually lead to the development of drugs to combat memory loss. Studies in invertebrate animal models have taught us much about the physiology of ageing and its effects on learning and memory. In this review we survey recent progress relevant to conserved molecular pathways implicated in both ageing and memory formation and consolidation.

  17. Memory loss in Alzheimer's disease.

    Science.gov (United States)

    Jahn, Holger

    2013-12-01

    Loss of memory is among the first symptoms reported by patients suffering from Alzheimer's disease (AD) and by their caretakers. Working memory and long-term declarative memory are affected early during the course of the disease. The individual pattern of impaired memory functions correlates with parameters of structural or functional brain integrity. AD pathology interferes with the formation of memories from the molecular level to the framework of neural networks. The investigation of AD memory loss helps to identify the involved neural structures, such as the default mode network, the influence of epigenetic and genetic factors, such as ApoE4 status, and evolutionary aspects of human cognition. Clinically, the analysis of memory assists the definition of AD subtypes, disease grading, and prognostic predictions. Despite new AD criteria that allow the earlier diagnosis of the disease by inclusion of biomarkers derived from cerebrospinal fluid or hippocampal volume analysis, neuropsychological testing remains at the core of AD diagnosis.

  18. Sleep deprivation and false memories.

    Science.gov (United States)

    Frenda, Steven J; Patihis, Lawrence; Loftus, Elizabeth F; Lewis, Holly C; Fenn, Kimberly M

    2014-09-01

    Many studies have investigated factors that affect susceptibility to false memories. However, few have investigated the role of sleep deprivation in the formation of false memories, despite overwhelming evidence that sleep deprivation impairs cognitive function. We examined the relationship between self-reported sleep duration and false memories and the effect of 24 hr of total sleep deprivation on susceptibility to false memories. We found that under certain conditions, sleep deprivation can increase the risk of developing false memories. Specifically, sleep deprivation increased false memories in a misinformation task when participants were sleep deprived during event encoding, but did not have a significant effect when the deprivation occurred after event encoding. These experiments are the first to investigate the effect of sleep deprivation on susceptibility to false memories, which can have dire consequences.

  19. Hierarchical organization of cognitive memory.

    Science.gov (United States)

    Mishkin, M; Suzuki, W A; Gadian, D G; Vargha-Khadem, F

    1997-10-29

    This paper addresses the question of the organization of memory processes within the medial temporal lobe. Evidence obtained in patients with late-onset amnesia resulting from medial temporal pathology has given rise to two opposing interpretations of the effects of such damage on long-term cognitive memory. One view is that cognitive memory, including memory for both facts and events, is served in a unitary manner by the hippocampus and its surrounding cortices; the other is that the basic function affected in amnesia is event memory, the memory for factual material often showing substantial preservation. Recent findings in patients with amnesia resulting from relatively selective hippocampal damage sustained early in life suggest a possible reconciliation of the two views. The new findings suggest that the hippocampus may be especially important for event as opposed to fact memory, with the surrounding cortical areas contributing to both. Evidence from neuroanatomical and neurobehavioural studies in monkeys is presented in support of this proposal.

  20. Superpositions of probability distributions

    Science.gov (United States)

    Jizba, Petr; Kleinert, Hagen

    2008-09-01

    Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=σ2 play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.

  1. Superpositions of probability distributions.

    Science.gov (United States)

    Jizba, Petr; Kleinert, Hagen

    2008-09-01

    Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=sigma;{2} play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.

  2. Persistent expansion of CD4(+) effector memory T cells in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, W. H.; van der Geld, Y. M.; Stegeman, C. A.; Kallenberg, C. G. M.

    2006-01-01

    In order to test the hypothesis that Wegener's granulomatosis (WG) is associated with an ongoing immune effector response, even in remission, we examined the distribution of peripheral naive and memory T-lymphocytes in this disease, and analyzed the function-related phenotypes of the memory T-cell p

  3. MulticoreBSP for C : A high-performance library for shared-memory parallel programming

    NARCIS (Netherlands)

    Yzelman, A. N.; Bisseling, R. H.; Roose, D.; Meerbergen, K.

    2014-01-01

    The bulk synchronous parallel (BSP) model, as well as parallel programming interfaces based on BSP, classically target distributed-memory parallel architectures. In earlier work, Yzelman and Bisseling designed a MulticoreBSP for Java library specifically for shared-memory architectures. In the prese

  4. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men

    OpenAIRE

    Mathias Luethi; Beat Meier; Carmen Sandi

    2009-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult...

  5. Working memory and the memory distortion component of hindsight bias.

    Science.gov (United States)

    Calvillo, Dustin P

    2012-01-01

    One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.

  6. Method and apparatus for faulty memory utilization

    Science.gov (United States)

    Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2016-04-19

    A method for faulty memory utilization in a memory system includes: obtaining information regarding memory health status of at least one memory page in the memory system; determining an error tolerance of the memory page when the information regarding memory health status indicates that a failure is predicted to occur in an area of the memory system affecting the memory page; initiating a migration of data stored in the memory page when it is determined that the data stored in the memory page is non-error-tolerant; notifying at least one application regarding a predicted operating system failure and/or a predicted application failure when it is determined that data stored in the memory page is non-error-tolerant and cannot be migrated; and notifying at least one application regarding the memory failure predicted to occur when it is determined that data stored in the memory page is error-tolerant.

  7. A unified theory for systems and cellular memory consolidation.

    Science.gov (United States)

    Dash, Pramod K; Hebert, April E; Runyan, Jason D

    2004-04-01

    The time-limited role of the hippocampus for explicit memory storage has been referred to as systems consolidation where learning-related changes occur first in the hippocampus followed by the gradual development of a more distributed memory trace in the neocortex. Recent experiments are beginning to show that learning induces plasticity-related molecular changes in the neocortex as well as in the hippocampus and with a similar time course. Present memory consolidation theories do not account for these findings. In this report, we present a theory (the C theory) that incorporates these new findings, provides an explanation for the length of time for hippocampal dependency, and that can account for the apparent longer consolidation periods in species with larger brains. This theory proposes that a process of cellular consolidation occurs in the hippocampus and in areas of the neocortex during and shortly after learning resulting in long-term memory storage in both areas. For a limited time, the hippocampus is necessary for memory retrieval, a process involving the coordinated reactivation of these areas. This reactivation is later mediated by longer extrahippocampal connectivity between areas. The delay in hippocampal-independent memory retrieval is the time it takes for gene products in these longer extrahippocampal projections to be transported from the soma to tagged synapses by slow axonal transport. This cellular transport event defines the period of hippocampal dependency and, thus, the duration of memory consolidation. The theoretical description for memory consolidation presented in this review provides alternative explanations for several experimental observations and presents a unification of the concepts of systems and cellular memory consolidation.

  8. fMRI characterization of visual working memory recognition.

    Science.gov (United States)

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in

  9. Plant electrical memory.

    Science.gov (United States)

    Volkov, Alexander G; Carrell, Holly; Adesina, Tejumade; Markin, Vladislav S; Jovanov, Emil

    2008-07-01

    Electrical signaling, short-term memory and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since the XIX century. We found that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The closing time of Venus flytrap by electrical stimulation is the same as mechanically induced closing. Transmission of a single electrical charge between a lobe and the midrib causes closure of the trap and induces an electrical signal propagating between both lobes and midrib. The Venus flytrap can accumulate small subthreshold charges, and when the threshold value is reached, the trap closes. Repeated application of smaller charges demonstrates the summation of stimuli. The cumulative character of electrical stimuli points to the existence of short-term electrical memory in the Venus flytrap.

  10. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  11. TED KYCIA MEMORIAL SYMPOSIUM.

    Energy Technology Data Exchange (ETDEWEB)

    LITTENBERG, L.; RUBINSTEIN, R.; SAMIOS, N.; LI, K.; GIACOMELLI, G.; MOCKETT, P.; CARROLL, A.; JOHNSON, R.; BRYMAN, D.; TIPPENS, B.

    2000-05-19

    On the afternoon of May 19 2000, a Memorial Seminar was held in the BNL physics Large Seminar Room to honor the memory of Ted Kyeia, a prominent particle physicist who had been a member of the BNL staff for 40 years. Although it was understandably a somewhat sad occasion because Ted was no longer with us, nevertheless there was much for his colleagues and friends to celebrate in recalling the outstanding contributions that he had made in those four decades. The Seminar speakers were all people who had worked with Ted during that period; each discussed one aspect of his career, but also included anecdotes and personal reminiscences. This booklet contains the Seminar program, listing the speakers, and also copies of transparencies of the talks (and one paper which was a later expansion of a talk); sadly, not all of the personal remarks appeared on the transparencies.

  12. Learning, memory, and synesthesia.

    Science.gov (United States)

    Witthoft, Nathan; Winawer, Jonathan

    2013-03-01

    People with color-grapheme synesthesia experience color when viewing written letters or numerals, usually with a particular color evoked by each grapheme. Here, we report on data from 11 color-grapheme synesthetes who had startlingly similar color-grapheme pairings traceable to childhood toys containing colored letters. These are the first and only data to show learned synesthesia of this kind in more than a single individual. Whereas some researchers have focused on genetic and perceptual aspects of synesthesia, our results indicate that a complete explanation of synesthesia must also incorporate a central role for learning and memory. We argue that these two positions can be reconciled by thinking of synesthesia as the automatic retrieval of highly specific mnemonic associations, in which perceptual contents are brought to mind in a manner akin to mental imagery or the perceptual-reinstatement effects found in memory studies.

  13. Mediated Cultural Memories

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    (A revised, full paper will be published in the journal Mediekultur, spring 2014) This paper explores two examples of narratives representing memories of acts of mass violence: Gzim Rewind (Sweden, 2011, director Knutte Wester) about 1990’s Kosovo, and The Act of Killing (Denmark, 2012, director...... Joshua Oppenheimer) about 1960’s Indonesia. The two films, in very different ways, focus on persons who tell about their involvement in acts of mass violence. Both films are told as "a film within a film" and experiment with “documentary” as genre. The two film projects and audiences are analyzed from...... perspectives of semiosis (meaning-making) in relation to the films as redefining genres and what sorts of meanings different audiences create about the films. Acts of mass violence, including murder on civilians, genocide, and wars, can be seen as seeds for memories of the involved persons and following...

  14. Skill and Working Memory.

    Science.gov (United States)

    1982-04-30

    Bower (Ed.), The Psychology of Learning and-Motivation, Vol. 16, Academic Press, in press. 19. KEY WORDS (Continue on revees side It necoessar md...Spence & J.T. Spence (Eds.), The Psychology of Learning and Motivation: Advances in Research and Theory. New York: Academic Press, Inc., 1968...Cognition, 1981, 10, 17-23. Baddeley, A.D. & Hitch, G. Working Memory. In G.. Bower (Ed.), The Psychology of Learning and Motivation. : ,1974. Biederman

  15. Fuzzy associative memories

    Science.gov (United States)

    Kosko, Bart

    1991-01-01

    Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.

  16. Coupled Neural Associative Memories

    OpenAIRE

    Karbasi, Amin; Salavati, Amir Hesam; Shokrollahi, Amin

    2013-01-01

    We propose a novel architecture to design a neural associative memory that is capable of learning a large number of patterns and recalling them later in presence of noise. It is based on dividing the neurons into local clusters and parallel plains, very similar to the architecture of the visual cortex of macaque brain. The common features of our proposed architecture with those of spatially-coupled codes enable us to show that the performance of such networks in eliminating noise is drastical...

  17. Representation in Memory.

    Science.gov (United States)

    1983-06-07

    notion of the schema finds its way into modern cognitive psychology from the writings of Bartlett (1932) and from Piaget (1952). Throughout most of its...Anderson. Cognitive algebra: Information integration applied to social attribution. December, 1972. 32. Jean H. Handler and Nancy L. Stein. Recall...knowledge in memory. January, 1976. 56. David E. Rumelhart. Toward an interactive model of reading. March, 1976. 57. Jean M. Handler, Nancy S

  18. A Memorial Gathering

    CERN Multimedia

    2004-01-01

    Bob Dobinson (1943-2004) Bob's friends and colleagues are warmly invited to join in a memorial gathering on Thursday 15th April 2004 at 11:00 hours in the CERN Council Chamber/ Salle de Conseil (Bldg 503 1st floor) Some colleagues will pay tribute to Bob's lifetime achievements and his contributions to past and present experiments. The gathering will conclude with refreshments in the Salle des Pas Perdus.

  19. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  20. Hypnosis, memory and amnesia.

    OpenAIRE

    Kihlstrom, J F

    1997-01-01

    Hypnotized subjects respond to suggestions from the hypnotist for imaginative experiences involving alterations in perception and memory. Individual differences in hypnotizability are only weakly related to other forms of suggestibility. Neuropsychological speculations about hypnosis focus on the right hemisphere and/or the frontal lobes. Posthypnotic amnesia refers to subjects' difficulty in remembering, after hypnosis, the events and experiences that transpired while they were hypnotized. P...