WorldWideScience

Sample records for milieu transverse isotrope

  1. Multi-component pre-stack time-imaging and migration-based velocity analysis in transversely isotropic media; Imagerie sismique multicomposante et analyse de vitesse de migration en milieu transverse isotrope

    Energy Technology Data Exchange (ETDEWEB)

    Gerea, C.V.

    2001-06-01

    Complementary to the recording of compressional (P-) waves, the observation of P-S converted waves has recently been receiving specific attention. This is mainly due to their tremendous potential as a tool for fracture and lithology characterization, imaging sediments in gas saturated rocks, and imaging shallow sediments with higher resolution than conventional P-P data. In a conventional marine seismic survey, we cannot record P-to-S converted-wave energy since the fluids cannot support shear-wave strain. Thus, to capture the converted-wave energy, we need to record it at the water-bottom casing an ocean-bottom cable (OBC). The S-waves recorded at the seabed are mainly converted from P to S (i.e., PS-waves or C-waves) at the subsurface reflectors. The most accurate way to image seismic data is pre-stack depth migration. In this thesis, I develop a numerically efficient 2.5-D true-amplitude elastic Kirchhoff pre-stack migration algorithm designed to handle OBC data gathered along a single line. All the kinematic and dynamic elastic Green's functions required in the computation of true-amplitude weight term of Kirchhoff summation, are based on the non-hyperbolic explicit approximations of P- and SV-wave travel-times in layered transversely isotropic (VTI) media. Hence, this elastic imaging algorithm is very well-suited for migration-based velocity analysis techniques, for which fast, robust and iterative pre-stack migration is desired. In this thesis, I approach also the topic of anisotropic velocity model building for elastic pre-stack time-imaging. and propose an original methodology for joint PP-PS migration-based velocity analysis (MVA) in layered VTI anisotropic media. Tests on elastic synthetic and real OBC seismic data ascertain the validity of the pre-stack migration algorithm and velocity analysis methodology. (author)

  2. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  3. Fundamental solutions for transversely isotropic piezoelectric media

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 梁剑; 陈波

    1996-01-01

    A general solution for the.equilibrium equations of pieajelectric media under body forces is obtained. With regard to the transversely isotropic piezoelectric material, closed forms for the displacements and electric potential function for an infinite solid loaded with point forces and point charge are then obtained by using the general solution together with potential theory and constructing a kind of harmonic functions. Thus, the fundamental solutions which are utilizable in boundary element method are obtained.

  4. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  5. Viscous propulsion in active transversely isotropic media

    Science.gov (United States)

    Cupples, G.; Dyson, R. J.; Smith, D. J.

    2017-02-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhancements to the viscosity caused by fibres. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of the constant term in Ericksen's model for the stress, which can be identified as a fibre tension or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other rheological parameters.

  6. Contact mechanics and friction for transversely isotropic viscoelastic materials

    NARCIS (Netherlands)

    Mokhtari, M.; Schipper, D.J.; Vleugels, N.; Noordermeer, J.W.M.; Yoshimoto, S.; Hashimoto, H.

    2015-01-01

    Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified

  7. A modified failure criterion for transversely isotropic rocks

    Institute of Scientific and Technical Information of China (English)

    Omid Saeidi; Vamegh Rasouli; Rashid Geranmayeh Vaneghi; Raoof Gholami; Seyed Rahman Torabi

    2014-01-01

    A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.

  8. The refined theory of transversely isotropic piezoelectric rectangular beams

    Institute of Scientific and Technical Information of China (English)

    GAO; Yang; WANG; Minzhong

    2006-01-01

    The problem of deducing one-dimensional theory from two-dimensional theory for a transversely isotropic piezoelectric rectangular beam is investigated. Based on the piezoelasticity theory, the refined theory of piezoelectric beams is derived by using the general solution of transversely isotropic piezoelasticity and Lur'e method without ad hoc assumptions. Based on the refined theory of piezoelectric beams, the exact equations for the beams without transverse surface loadings are derived, which consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beams under transverse loadings are derived directly from the refined beam theory. As a special case, the governing differential equations for transversely isotropic elastic beams are obtained from the corresponding equations of piezoelectric beams. To illustrate the application of the beam theory developed, a uniformly loaded and simply supported piezoelectric beam is examined.

  9. Elasticity of transversely isotropic materials%"Elasticity of Transversely Isotropic Materials"一书评介

    Institute of Scientific and Technical Information of China (English)

    王敏中

    2006-01-01

    @@ 浙江大学土木系丁皓江教授和陈伟球教授及澳大利亚悉尼大学航空、机械与机电工程学院章亮炽教授的专著"Elasticity of Transversely Isotropic Materials"(ISBN:1-4020-4033-4),2006年由Springer公司出版,该书是加拿大著名力学家G.M.L.Gladwell 教授主编的丛书"Solid Mechanics and its Applications"的第126本,是我国大陆学者第一次在该丛书框架下出版专著.

  10. Guided waves in a fluid-loaded transversely isotropic plate

    Directory of Open Access Journals (Sweden)

    Ahmad F.

    2002-01-01

    Full Text Available Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.

  11. Transversely isotropic higher-order averaged structure tensors

    Science.gov (United States)

    Hashlamoun, Kotaybah; Federico, Salvatore

    2017-08-01

    For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

  12. A generalized plane strain theory for transversely isotropic piezoelectric plates

    Institute of Scientific and Technical Information of China (English)

    XU Si-peng; WANG Wei

    2005-01-01

    Study of generalized plane strain has so far been limited to elasticity. The present is aimed at parallel development of transversely isotropic piezoelasticity. By assuming that the along depth distribution of electric potential is linear, and that commonly used Kane-Mindlin kinematical assumption is valid, two dimensional solution systems were deduced, for which, explicit solutions of the out-of-plane constraint factor, as well as the stress resultant concentration factor around a circular hole in a transversely isotropic piezoelectric plate subjected to remote biaxial tension are obtained. Comparisons of these formulas with their counterparts for elastic case yielded suggestions that whether the piezoelectric effect exacerbates or mitigates the stress resultant concentration greatly depends on material properties, particularly, the piezoelectric coefficients;the effect of plate thickness was extensively investigated.

  13. On the elasticity of transverse isotropic soft tissues (L).

    Science.gov (United States)

    Royer, Daniel; Gennisson, Jean-Luc; Deffieux, Thomas; Tanter, Mickaël

    2011-05-01

    Quantitative elastography techniques have recently been developed to estimate the shear modulus μ of soft tissues in vivo. In the case of isotropic and quasi-incompressible media, the Young's modulus E is close to 3 μ, which is not true in transverse anisotropic tissues such as muscles. In this letter, the transverse isotropic model established for hexagonal crystals is revisited in the case of soft solids. Relationships between elastic constants and Young's moduli are derived and validated on experimental data found in the literature. It is shown that 3 μ(⊥) ≤ E(⊥) ≤ 4 μ(⊥) and that E(//) cannot only be determined from the measurements of μ(//) and μ(⊥).

  14. Viscous propulsion in active transversely-isotropic media

    CERN Document Server

    Cupples, Gemma; Smith, David J

    2016-01-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhan...

  15. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  16. Elastic constants of Transversely Isotropically Porous (TIP) materials

    Energy Technology Data Exchange (ETDEWEB)

    Tuchinskii, L.I.; Kalimova, N.L. [Institute of Problems of Materials Science, Kiev (Ukraine)

    1994-11-01

    The authors derive formulas describing the dependence of the elastic characteristics of multicapillary materials on the capillary porosity. The investigated materials are classified as transversely isotropic, and the anisotropy in their properties is the result of the directionality of the capillary pores. Analysis of the dependences obtained has shown that the elasticity moduli of these materials may be calculated using formulas suggested for reinforced materials, in which the elastic constants of the fibers are assumed to be equal to zero. The authors derive a relation between the Poisson`s ratios and the capillary porosity.

  17. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media

    Institute of Scientific and Technical Information of China (English)

    XU Xin-sheng; GU Qian; LEUNG Andrew Y.T.; ZHENG Jian-jun

    2005-01-01

    This paper reports establishment ofa symplectic system and introduces a 3D sub-symplectic structure for transversely isotropic piezoelectric media. A complete space of eigensolutions is obtained directly. Thus all solutions of the problem are reduced to finding eigenvalues and eigensolutions, which include zero-eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian matrix and non-zero-eigenvalue solutions. The classical solutions are described by zero-eigensolutions and non-zero-eigensolutions show localized solutions. Numerical results show some rules of non-zero-eigenvalue and their eigensolutions.

  18. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker

    2011-01-01

    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  19. Modes and frequencies of transversely isotropic slightly curved Timoshenko beams.

    Science.gov (United States)

    Rossettos, J. N.; Squires, D. C.

    1973-01-01

    An analysis of the vibration of transversely isotropic Timoshenko beams, which have small constant initial curvature, is presented, and a closed-form general solution to the governing equations is derived. Natural modes and frequencies are determined for both clamped and simply supported end conditions, and comparisons are made. The combined effects of initial curvature, transverse shear deformation, and boundary conditions are evaluated and discussed. Specifically, it is shown in what manner the clamped beam tends to be more sensitive to shear deformation than the simply supported beam, and how initial curvature reduces the difference. Calculations also show how, in cases where shear deformation becomes more important, the initial curvature has a correspondingly smaller influence on the results.

  20. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...

  1. The Characteristic of Thermoelastic Waves in Transversely Isotropic Finite Cylinders

    Directory of Open Access Journals (Sweden)

    Bai Hao

    2017-01-01

    Full Text Available A theoretical as well as a numerical investigation of the propagation of thermoelastic waves and vibration of transversely isotropic cylinders of finite length is discussed. Lord-Shulman theory is adopted here to model the thermoelastic deformation of cylinders. A semi analytical finite element (SAFE method is employed to study dispersion of thermoelastic waves and natural frequencies of vibration of finite cylinders with traction free curved surfaces having both ends insulated and constrained by frictionless rigid walls. Numerical results obtained by the SAFE method for the frequencies of vibration of a sapphire rod are found to be in excellent agreement with published results. Natural frequencies of vibration for first three axisymmetric and asymmetric modes are presented graphically for a silicon nitride thermoelastic cylinder. Also, numerical results showing dispersion of both propagating and evanescent circumferential waves in infinite and finite cylinders are presented also.

  2. Stochastic representations of seismic anisotropy: transversely isotropic effective media models

    Science.gov (United States)

    Song, Xin; Jordan, Thomas H.

    2017-06-01

    We apply Jordan's self-consistent, second-order Born theory to compute the effective stiffness tensor for spatially stationary, stochastic models of 3-D elastic heterogeneity. The effects of local anisotropy can be separated from spatially extended geometric anisotropy by factoring the covariance of the moduli into a one-point variance tensor and a two-point correlation function. The latter is incorporated into the rescaled Kneer tensor, which is contracted against the one-point variance tensor to yield a second-order perturbation to the Voigt average. The theory can handle heterogeneity with orthotropic stochastic symmetry, but the calculations presented here are restricted to media with transversely isotropic (TI) statistics. We thoroughly investigate TI stochastic media that are locally isotropic. If the heterogeneity aspect ratio η is unity, the effective medium is isotropic, and the main effect of the scattering is to reduce the moduli. The two limiting regimes are a 2-D vertical stochastic bundle (η → 0), where the P and S anisotropy ratios are negative, and a 1-D horizontal stochastic laminate (η → ∞), where they are positive. The effective-medium equations for the latter yield the second-order approximation to Backus's exact solution, demonstrating the connection between Backus theory and self-consistent effective-media theory. Comparisons of the exact and second-order results for non-Gaussian laminates indicate that the approximation should be adequate for moduli heterogeneities less than about 30 per cent and thus valid for most seismological purposes. We apply the locally isotropic theory to data from the Los Angeles Basin to illustrate how it can be used to explain shallow seismic anisotropy. To assess the relative contributions of geometric and local anisotropy to the effective anisotropy, we consider a rotational model for stochastic anisotropic variability proposed by Jordan. In this model, the axis of a hexagonally symmetric stiffness

  3. Elastic-plastic Transition of Transversely Isotropic Thick-walled Rotating Cylinder under Internal Pressure

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2009-05-01

    Full Text Available Elastic-plastic stresses for a transversely isotropic thick-walled rotating cylinder under internal pressure have been obtained by using Seth’s transition theory. It has been observed that a thick-walled circular cylinder made of isotropic material yields at the internal surface at a high pressure as compared to cylinder made of transversely isotropic material. With the increase in angular speed, much less pressure is required for initial yielding at the internal surface for transversely isotropic material as compared to isotropic material. For fullyplastic state, circumferential stress is maximum at the external surface. Thick-walled circular cylinder made of transversely isotropic material requires high percentage increase in pressure to become fully plastic as compared to isotropic cylinder. Therefore, circular cylinder made of transversely isotropic material is on the safer side of the design as compared to cylinder made of  isotropic material.Defence Science Journal, 2009, 59(3, pp.260-264, DOI:http://dx.doi.org/10.14429/dsj.59.1519

  4. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  5. Traveltime approximations for transversely isotropic media with an inhomogeneous background

    KAUST Repository

    Alkhalifah, Tariq

    2011-05-01

    A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.

  6. Plane contact problem on indentation of a flat punch into a transversely-isotropic half-plane with functionally graded transversely-isotropic coating

    Science.gov (United States)

    Vasiliev, A. S.; Volkov, S. S.; Aizikovich, S. M.; Mitrin, B. I.

    2017-02-01

    Plane contact problem of the theory of elasticity on indentation of a non-deformable punch with a flat base into an elastic transversely-isotropic half-plane with a transversely-isotropic functionally graded coating is considered. Elastic moduli of the coating vary with depth according to arbitrary functions. An approximated analytical solution effective for a whole range of geometrical parameter (relative layer thickness) of the problem is constructed. Some properties of the contact normal pressure under the punch are obtained analytically and illustrated by the numerical examples for a transversely-isotropic homogeneous and functionally graded coatings with different types of variation of elastic moduli with depth. The distinctions in distribution of contact normal pressure for homogeneous and functionally graded materials, coated and non-coated bodies are studied analytically and numerically.

  7. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

    Digital Repository Service at National Institute of Oceanography (India)

    Zhu, Y.; Tsvankin, I.; Dewangan, P.; Van Wijk, K.

    Anisotropic attenuation can provide sensitive attributes for fracture detection and lithology discrimination. This paper analyzes measurements of the P-wave attenuation coefficient in a transversely isotropic sample made of phenolic material. Using...

  8. GENERAL SOLUTION FOR THE COUPLED EQUATIONS OF TRANSVERSELY ISOTROPIC MAGNETOELECTROELASTIC SOLIDS

    Institute of Scientific and Technical Information of China (English)

    刘金喜; 王祥琴; 王彪

    2003-01-01

    The coupling feature of transversely isotropic magnetoelectroelastic solids aregoverned by a system of five partial differential equations with respect to the elasticdisplacerments, the electric potential and the magnetic potential. Based on the potentialtheory, the coupled equations are reduced to the five uncoupled generalized Laplaceequations with respect to five potential functions. Further, the elastic fields andelectromagnetic fields are expressed in terms of the potential functions. These expressionsconstruct the general solution of transversely isotropic magnetoelectroelastic media.

  9. Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions

    Science.gov (United States)

    Chekhov, V. N.; Zakora, S. V.

    2011-10-01

    The refined Timoshenko-type theory that takes into account the transverse shear strains is used to find an analytic solution for the stress state of transversely isotropic shallow spherical shell with two circular rigid inclusions. The case of a shell with closely spaced rigid inclusions of unequal radii under internal pressure is analyzed numerically. The stresses in the shell increase considerably with decrease in the distance between the inclusions and increase in the transverse shear parameter

  10. P-wave seismic imaging through dipping transversely isotropic media

    Science.gov (United States)

    Leslie, Jennifer Meryl

    2000-10-01

    P-wave seismic anisotropy is of growing concern to the exploration industry. The transmissional effects through dipping anisotropic strata, such as shales, cause substantial depth and lateral positioning errors when imaging subsurface targets. Using anisotropic physical models the limitations of conventional isotropic migration routines were determined to be significant. In addition, these models were used to validate both anisotropic depth migration routines and an anisotropic, numerical raytracer. In order to include anisotropy in these processes, one must be able to quantify the anisotropy using two parameters, epsilon and delta. These parameters were determined from headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular- and 45°-to-bedding directions. This new method was developed using refraction seismic techniques to measure the necessary velocities in the Wapiabi Formation shales, the Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks were determined to be anisotropic with epsilon = 0.23 +/- 0.05, delta = --0.05 +/- 0.07 and epsilon = 0.11 +/- 0.04, delta = 0.42 +/- 0.06, respectively. The sandstones and limestones of the Cardium and Palliser formations were both determined to be isotropic, in these studies. In a complementary experiment, a new procedure using vertical seismic profiling (VSP) techniques was developed to measure the anisotropic headwave velocities. Using a multi-offset source configuration on an appropriately dipping, uniform panel of anisotropic strata, the required velocities were measured directly and modelled. In this study, the geologic model was modelled using an anisotropic raytracer, developed for the experiment. The anisotropy was successfully modelled using anisotropic parameters based on the refraction seismic results. With a firm idea of the anisotropic parameters from the

  11. 3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiang-ying; CHEN Wei-qiu

    2007-01-01

    The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media.The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.

  12. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    Science.gov (United States)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  13. TORSIONAL VIBRATIONS OF RIGID CIRCULAR PLATE ON TRANSVERSELY ISOTROPIC SATURATED SOIL

    Institute of Scientific and Technical Information of China (English)

    WU Da-zhi; CAI Yuan-qiang; XU Chang-jie; ZHAN Hong

    2006-01-01

    An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.

  14. Pure bending of simply supported circular plate of transversely isotropic functionally graded material

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-yu; DING Hao-jiang; CHEN Wei-qiu

    2006-01-01

    This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration.And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained.A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).

  15. CHARACTERISTIC ANALYSIS FOR STRESS WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC FLUID-SATURATED POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    刘颖; 刘凯欣

    2004-01-01

    According to generalized characteristic theory,a characteristic analysis for stress wave propagation in transversely isotropic fluid-saturated porous media was performed.The characteristic differential equations and compatibility relations along bicharacteristics were deduced and the analytical expressions for wave surfaces were obtained.The characteristic and shapes of the velocity surfaces and wave surfaces in the transversely isotropic fluid-saturated porous media were discussed in detail.The results also show that the characteristic equations for stress waves in pure solids are particular cases of the characteristic equations for fluid-saturated porous media.

  16. Completeness of General Solutions to Axisymmetric Problems of Transversely Isotropic Body

    Institute of Scientific and Technical Information of China (English)

    王炜; 徐新生; 王敏中

    1994-01-01

    In this paper a kind of problems,which are a little wider than the axisymmetric problems of a transversely isotropic elastic body,are considered in a rectangular coordinates system.Two new general solutions of the axisymmetric problems of a transversely isotropic body are concisely obtained in a cylindrical coordinates system.Their completeness is also proved.It is worth while pointing out thai whether the meridional half-section is simply connected or multiply connected,both the new general solutions are single-valued.Using these results eight special general solutions are derived,including some known famous solutions.

  17. CIRCULAR CRACK IN A TRANSVERSELY ISOTROPIC PIEZOELECTRIC SPACE UNDER POINT FORCES AND POINT CHARGES

    Institute of Scientific and Technical Information of China (English)

    侯鹏飞; 丁皓江; 关富玲

    2002-01-01

    In this paper, two kinds of circular crack including external circular crack and penny-shaped crack in a transversely isotropic piezoelectric space are considered. Firstly, we obtain the solution to the problem of an external circular crack in a transversely isotropic piezoelectric space subjected to antisymmetric normal point forces and point charges. Based on this, the solution of one-sided loading of an external circular crack is constructed. Secondly, the real shape of an external circular crack and the opening displacement of a penny-shaped crack under an arbitrary point force and point charge are further obtained. At last, the results are presented in a graphical form.

  18. The comparative study on analytical solutions and numerical solutions of displacement in transversely isotropic rock mass

    Science.gov (United States)

    Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao

    2016-06-01

    This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.

  19. The 3-D non-axisymmetrical Lamb's problem in transversely isotropic saturated poroelastic media

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yi; WANG; Xiaogang

    2004-01-01

    Based on Biot's theory on fluid-saturated porous media, the displacement functions are adopted to convert the 3-D Biot's wave equations in the cylindrical coordinate for transversely isotropic saturated poroelastic media into two--one 6-order and one 2-order--uncoupling differential governing equations. Then, the differential equations are solved by the Fourier expanding and Hankel integral transform method.Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media are obtained. Furthermore, the systematic study on Lamb's problems for the transversely isotropic saturated poroelastic media is performed. Integral solutions for surface radial, vertical and circumferential displacements are obtained in both cases of drained surface and undrained surface under the vertical and horizontal harmonic excitation force. In the end of this paper, the numerical examples are presented.The calculation results indicate that the difference between the model of isotropic saturated poroelastic media and that of transversely isotropic saturated poroelastic media is obvious.

  20. Multiaxial yield surface of transversely isotropic foams: Part I-Modeling

    Science.gov (United States)

    Ayyagari, Ravi Sastri; Vural, Murat

    2015-01-01

    A new yield criterion is proposed for transversely isotropic solid foams. Its derivation is based on the hypothesis that the yielding in foams is driven by the total strain energy density, rather than a completely phenomenological approach. This allows defining the yield surface with minimal number of parameters and does not require complex experiments. The general framework used leads to the introduction of new scalar measures of stress and strain (characteristic stress and strain) for transversely isotropic foams. Furthermore, the central hypothesis that the total strain energy density drives yielding in foams ascribes to the characteristic stress an analogous role of von Mises stress in metal plasticity. Unlike the overwhelming majority of yield models in literature the proposed model recognizes the tension-compression difference in yield behavior of foams through a linear mean stress term. Predictions of the proposed yield model are in excellent agreement with the results of uniaxial, biaxial and triaxial FE analyses implemented on both isotropic and transversely isotropic Kelvin foam models.

  1. DYNAMIC CONTACT STIFFNESS OF VIBRATING RIGID SPHERE CONTACTING SEMI-INFINITE TRANSVERSELY ISOTROPIC VISCOELASTIC SOLID

    Institute of Scientific and Technical Information of China (English)

    Jiayong Tian; Zhoumin Xie

    2008-01-01

    Dynamic contact stiffness at the interface between a vibrating rigid sphere and a semi-infinite transversely isotropic viscoelastic solid is investigated. An oscillating force superimposed onto a static compressive force in the vertical direction excites the vibration of a rigid sphere, which causes variable contact radius and contact pressure distribution in the contact region. The assumption of a sufficiently small oscillating force yields a dynamic contact-pressure distribution of a constant contact radius, which gives dynamic contact stiffness at the interface between the rigid sphere and the semi-infinite solid. Numerical calculations show the influence of vibration frequency of the sphere, and elastic constants of the transversely isotropic solid on dynamic contact stiffness, which benefits quantitative evaluation of elastic constants and orientation of single hexagonal grains by resonance-frequency shifts of the oscillator in resonance ultrasound microscopy.

  2. Surface wave characteristics in a micropolar transversely isotropic halfspace underlying an inviscid liquid layer

    Directory of Open Access Journals (Sweden)

    Gupta R.R.

    2014-02-01

    Full Text Available The present investigation deals with the propagation of waves in a micropolar transversely isotropic half space with an overlying inviscid fluid layer. Effects of fluid loading and anisotropy on the phase velocity, attenuation coefficient, specific loss and relative frequency shift. Finally, a numerical solution was carried out for aluminium epoxy material and the computer simulated results for the phase velocity, attenuation coefficient, specific loss and relative frequency shift are presented graphically. A particular case for the propagation of Rayleigh waves in a micropolar transversely isotropic half-space is deduced and dispersion curves are plotted for the same as functions of the wave number. An amplitude of displacements and microrotation together with the path of surface particles are also calculated for the propagation of Rayleigh waves in the latter case

  3. On the consistency of complex moduli for transversely-isotropic viscoelastic materials

    Science.gov (United States)

    Lesieutre, George A.

    The ability of advanced composite materials and structures to damp vibration is important in many applications. Use of the complex modulus approach to represent the dissipative properties of transversely-isotropic materials, such as unidirectional fiber-reinforced composites, requires the definition of a set of 5 (imaginary) loss moduli in addition to the 5 (real) storage moduli needed to describe the elastic behavior. In practice, designers of composite materials rarely have experimental data for all 5 loss moduli, and must assume values for the remaining moduli in their analyses. If values for these unknown loss moduli are specified arbitrarily, physically unreasonable behavior can result. This paper develops the conditions necessary for physical consistency of the complex moduli of transversely isotropic materials.

  4. Multiaxial yield surface of transversely isotropic foams: Part II—Experimental

    Science.gov (United States)

    Shafiq, Muhammad; Ayyagari, Ravi Sastri; Ehaab, Mohammad; Vural, Murat

    2015-03-01

    A robust understanding and modeling of the yield behavior in solid foams under complex stress states is essential to design and analysis of optimal structures using these lightweight materials. In pursuit of this objective a new custom-built Multi-Axial Testing Apparatus (MATA) is developed to probe the yield surface of transversely isotropic Divinycell H-100 PVC foam under a multitude of uniaxial, biaxial and triaxial strain paths. Experimental yield data produced constitutes the most comprehensive data set ever produced for any foam as it covers the entire spectrum of stress paths from hydrostatic compression to hydrostatic tension. Experimental results reveal that yielding in foams exhibits not only a quadratic pressure dependence, which is widely recognized in literature, but also a significant linear pressure dependence, which has been largely overlooked in previous studies. A new energy-based yield criterion developed for transversely isotropic foams is also validated using the experimental yield data.

  5. DYNAMICAL FORMATION OF CAVITY IN TRANSVERSELY ISOTROPIC HYPER-ELASTIC SPHERES

    Institute of Scientific and Technical Information of China (English)

    任九生; 程昌钧

    2003-01-01

    The cavity formation in a radial transversely isotropic hyper-elastic sphere of an incompressible Ogden material, subjected to a suddenly applied uniform radial tensile boundary deadload, is studied following the theory of finite deformation dynamics. A cavity forms at the center of the sphere when the tensile load is greater than its critical value. It is proved that the evolution of the cavity radius with time follows that of nonlinear periodic oscillations.

  6. Acoustoelastic effects of Stoneley waves in a borehole surrounded by a transversely isotropic elastic solid

    OpenAIRE

    Jinxia Liu; Zhiwen Cui; Zhengliang Cao; Kexie Wang

    2014-01-01

    Stoneley wave in a fluid-filled pressurized borehole surrounded by a transversely isotropic elastic solid with nine independent third-order elastic constants in presence of biaxial stresses are studied. A simplified acoustoelastic formulation of Stoneley wave is presented for the parallelism of the borehole axis and the formation axis of symmetry. Sensitivity coefficients and velocity dispersions for Stoneley wave due to the presence of stresses are numerically investigated, respectively. The...

  7. Vertical Dynamic Response of Pile Embedded in Layered Transversely Isotropic Soil

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2014-01-01

    Full Text Available The dynamic response of pile embedded in layered transversely isotropic soil and subjected to arbitrary vertical harmonic force is investigated. Based on the viscoelastic constitutive relations for a transversely isotropic medium, the dynamic governing equation of the transversely isotropic soil is obtained in cylindrical coordinates. By introducing the fictitious soil pile model and the distributed Voigt model, the governing equations of soil-pile system are also derived. Firstly, the vertical response of the soil layer is solved by using the Laplace transform technique and the separation of variables technique. Secondly, the analytical solution of velocity response in the frequency domain and its corresponding semianalytical solution of velocity response in the time domain are derived by means of inverse Fourier transform and convolution theorem. Finally, based on the obtained solutions, a parametric study has been conducted to investigate the influence of the soil anisotropy on the vertical dynamic response of pile. It can be seen that the influence of the shear modulus of soil in the vertical plane on the dynamic response of pile is more notable than the influence of the shear modulus of soil in the horizontal plane on the dynamic response of pile.

  8. Non-axisymmetrical vibration of elastic circular plate on layered transversely isotropic saturated ground

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions,drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.

  9. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  10. Influence of water saturation on propagation of elastic waves in transversely isotropic nearly saturated soil

    Institute of Scientific and Technical Information of China (English)

    李保忠; 蔡袁强

    2003-01-01

    Biot's two-phase theory for fluid-saturated porous media was applied in a study carried out to investigate the influence of water saturation on propagation of elastic wave in transversely isotropic nearly saturated soil. The characteristic equations for wave propagation were derived and solved analytically. The results showed that there are four waves: the first and second quasi-longitudinal waves (QP1 and QP2), the quasi-transverse wave (QSV) and the anti-plane transverse wave (SH). Numerical results are given to illustrate the influence of saturation on the velocity, dispersion and attenuation of the four body waves. Some typical numerical results are discussed and plotted. The results can be meaningful for soil dynamics and earthquake engineering.

  11. Propagation of waves in the layer of a thermo-viscoelastic transversely isotropic medium

    Directory of Open Access Journals (Sweden)

    Gupta R.R.

    2016-02-01

    Full Text Available The article is presented to enhance our knowledge about the propagation of Lamb waves in the layer of a viscoelastic transversely isotropic medium in the context of thermoelasticity with GN theory of type-II and III. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.

  12. THREE-DIMENSIONAL INTERACTIONS OF CIRCULAR CRACK IN TRANSVERSELY ISOTROPIC PIEZOELECTRIC SPACE WITH RESULTANT SOURCES

    Institute of Scientific and Technical Information of China (English)

    HOU Peng-fei; DING Hao-jiang; Leung Andraw-YT

    2006-01-01

    Exact solutions in form of elementary functions were derived for the stress and electric displacement intensity factors of a circular crack in a transversely isotropic piezoelectric space interacting with various stress and charge sources: force dipoles, electric dipoles, moments, force dilatation and rotation. The circular crack includes penny-shaped crack and external circular crack and the locations and orientations of these resultant sources with respect to the crack are arbitrary. Such stress and charge sources may model defects like vacancies, foreign particles, and dislocations. Numerical results are presented at last.

  13. PLASTIC ZONES IN AN INFINITELY LONG TRANSVERSELY ISOTROPIC SOLID CYLINDER CONTAINING A RINGSHAPED CRACK

    Directory of Open Access Journals (Sweden)

    Mesut UYANER

    1999-02-01

    Full Text Available In this study, the problem of a ring shaped-crack contained in an infinitely long solid cylinder of elastic perfectly-plastic material is considered. The problem is formulated for a transversely isotropic material by using integral transform technique under uniform load. Due to the geometry of the configuration, Hankel and Fourier integral transform techniques are chosen and the problem is reduced to a singular integral equation. This integral equation is solved numerically by using Gaussian Quadrature Formulae and the values are evaluated for discrete points. The plastic zone lengths are obtained by using the plastic strip model.

  14. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    Science.gov (United States)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  15. Reflection of plane waves in an initially stressed perfectly conducting transversely isotropic solid half-space

    Indian Academy of Sciences (India)

    Baljeet Singh; Anand Kumar Yadav

    2013-08-01

    Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios for reflected qP and qSV waves are derived and computed numerically for a particular material. Effects of the initial stress and magnetic field are shown graphically on these reflection coefficients and energy ratios.

  16. ON THE BENDING, VIBRATION AND STABILITY OF LAMINATED RECTANGULAR PLATES WITH TRANSVERSELY ISOTROPIC LAYERS

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 陈伟球; 徐荣桥

    2001-01-01

    A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three-dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems.For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability)problem, it is found that there exist two independent classes: One corresponds to the pure in-plane vibration (stability) and the other to the general bending vibration ( stability).Numerical examples are finally presented and the effects of some parameters are discussed.

  17. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    Science.gov (United States)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  18. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  19. A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects

    Science.gov (United States)

    Liu, Ming; Jin, Yan; Lu, Yunhu; Chen, Mian; Hou, Bing; Chen, Wenyi; Wen, Xin; Yu, Xiaoning

    2016-09-01

    To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.

  20. Deformation analysis of transversely isotropic coal-rock mass with porous and cracks

    Institute of Scientific and Technical Information of China (English)

    Xue Dongjie; Zhou Hongwei; Kong Lin; Tang Xianli; Zhao Tian; Yi Haiyang; Zhao Yufeng

    2012-01-01

    Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus (Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.

  1. Deformation analysis of transversely isotropic coal-rock mass with porous and cracks

    Institute of Scientific and Technical Information of China (English)

    Xue; Dongjie; Zhou; Hongwei; Kong; Lin; Tang; Xianli; Zhao; Tian; Yi; Haiyang; Zhao; Yufeng

    2012-01-01

    Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.

  2. Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with cylindrical hole

    Institute of Scientific and Technical Information of China (English)

    D.P.Acharya; Indrajit Roy; P.K.Biswas

    2008-01-01

    This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium,caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section.Following Voigt's model for higher order viscoelasticity,the nonvanishing stress components valid for a transversely isotropic and higher order viscoelastic solid medium have been deduced in terms of radial displacement component.Considering the power law variation of elastic and viscoelastic parameters,the stress equation of motion has been developed.Solving this equation under suitable boundary conditions,due to transient forces and twists,radial displacement and relevant stress components have been determined in terms of modified Bessel functions.The problem for the presence of transient radial force has been numerically analysed.Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity have been graphically depicted.The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done but is not pursued in this paper.

  3. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  4. TRANSVERSELY ISOTROPIC HYPER-ELASTIC MATERIAL RECTANGULAR PLATE WITH VOIDS UNDER A UNIAXIAL EXTENSION

    Institute of Scientific and Technical Information of China (English)

    程昌钧; 任九生

    2003-01-01

    The finite deformation and stress analyses for a transversely isotropic rectangularplate with voids and made of hyper-elastic material with the generalized neo-Hookean strainenergy function under a uniaxial extension are studied. The deformation functions of plateswith voids that are symmetrically distributed in a certain manner are given and the functionsare expressed by two parameters by solving the differential equations. The solution may beapproximately obtained from the minimum potential energy principle. Thus, the analyticsolutions of the deformation and stress of the plate are obtained. The growth of the void.s andthe distribution of stresses along the voids are analyzed and the influences of the degree ofanisotropy, the size of the voids and the distance between the voids are discussed. Thecharacteristics of the growth of the voids and the distribution of stresses of the plates with onevoid, three or five voids are obtained and compared.

  5. Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer

    Directory of Open Access Journals (Sweden)

    Rajesh Patra

    2016-03-01

    Full Text Available This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic elastic layer. The rigid punch is assumed to be axially symmetric and is being pressed towards the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be ufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship between the applied load $P$ and the contact area is obtained by solving the mathematically formulated problem through use of Hankel transform of different order. Effect of indentation on the distribution of normal stress at the surface as well as the relationship between the applied load and the area of contact have been shown graphically.

  6. Wave Propagation in a Micropolar Transversely Isotropic Generalized Thermoelastic Half-Space

    Directory of Open Access Journals (Sweden)

    Gupta R.R.

    2014-05-01

    Full Text Available Rayleigh waves in a half-space exhibiting microplar transversely isotropic generalized thermoelastic properties based on the Lord-Shulman (L-S, Green and Lindsay (G-L and Coupled thermoelasticty (C-T theories are discussed. The phase velocity and attenuation coefficient in the previous three different theories have been obtained. A comparison is carried out of the phase velocity, attenuation coefficient and specific loss as calculated from the different theories of generalized thermoelasticity along with the comparison of anisotropy. The amplitudes of displacements, microrotation, stresses and temperature distribution were also obtained. The results obtained and the conclusions drawn are discussed numerically and illustrated graphically. Relevant results of previous investigations are deduced as special cases.

  7. Fundamental connections between models of active suspensions and transversely-isotropic fluids

    CERN Document Server

    Holloway, Craig R; Smith, David J; Green, J Edward F; Clarke, Richard J; Dyson, Rosemary J

    2016-01-01

    Suspensions of self-motile, elongated particles are a topic of significant current interest, exemplifying a form of `active matter'. Examples include self-propelling bacteria, algae and sperm, and artificial swimmers. Ericksen's model of a transversely-isotropic fluid [J. L. Ericksen, Colloid Polym. Sci. 173(2):117-122 (1960)] treats suspensions of non-motile particles as a continuum with an evolving preferred direction; this model describes fibrous materials as diverse as extracellular matrix, textile tufts and cellulose microfibres. Director-dependent effects are incorporated through a modified stress tensor with four viscosity-like parameters. By making fundamental connections with recent models for active suspensions, we establish how these viscosity-like parameters relate to the solvent viscosity, volume fraction of particles and their aspect ratio. This comparison reveals previously neglected components of the stress tensor that significantly alter the rheology; these components should be included in mo...

  8. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn; Zhou, Youhe

    2015-04-15

    Highlights: • We studied fracture problem in HTS based on real fundamental solutions. • When the thickness of HTS strip increases the SIF decrease. • A higher applied field leads to a larger stress intensity factor. • The greater the critical current density is, the smaller values of the SIF is. - Abstract: Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E–J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss–Lobatto–Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  9. Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space.

    Science.gov (United States)

    Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2016-07-01

    A theoretical approach is taken into consideration to investigate Love wave propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. The magneto-electrically open and short conditions are applied to solve the problem. The phase and group velocity of the Love wave is numerically calculated for the magneto-electrically open and short cases, respectively. The variations of magneto-electromechanical coupling factor, mechanical displacements, electric and magnetic potentials along the thickness direction of the layers are obtained and discussed. The numerical results clearly show the influence of different stacking sequences on dispersion curves and on magneto-electromechanical coupling factor. This work may be relevant to analysis and design of various acoustic surface wave devices constructed from piezoelectric and piezomagnetic materials.

  10. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  11. Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-04-30

    Traveltime information is crucial for parameter estimation, especially if the medium is described by a set of anisotropy parameters. We can efficiently estimate these parameters if we are able to relate them analytically to traveltimes, which is generally hard to do in inhomogeneous media. I develop traveltime approximations for transversely isotropic media with a horizontal symmetry axis (HTI) as simplified and even linear functions of the anisotropy parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to the anellipticity parameter, η and the azimuth of the symmetry axis (typically associated with the fracture direction) from a generally inhomogeneous, elliptically anisotropic background medium. Such a perturbation is convenient since the elliptically anisotropic information might be obtained from well velocities in HTI media. Thus, we scan for only η and the symmetry-axis azimuth. The resulting approximations can provide a reasonably accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations. They also help extend the inhomogenous background isotropic or elliptically anisotropic models to an HTI one with a smoothly variable η and symmetry-axis azimuth. © 2012 European Association of Geoscientists & Engineers.

  12. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  13. Cylindrical lateral depth-sensing indentation testing of thin transversely isotropic elastic films: Incompressible and weakly compressible materials

    CERN Document Server

    Argatov, I

    2015-01-01

    An indentation testing method, which utilizes lateral contact of a long cylindrical indenter, is developed for a thin transversely isotropic incompressible elastic film deposited onto a smooth rigid substrate. It is assumed that the material symmetry plane is orthogonal to the substrate surface, and the film thickness is small compared to the cylinder indenter length. The presented testing methodology is based on a least squares best fit of the first-order asymptotic model to the depth-sensing indentation data for recovering three independent elastic moduli which characterize an incompressible transversely isotropic material. The case of a weakly compressible material, which is important for biological tissues, is also discussed.

  14. An Experimental Method to Determine the Elastic Properties of Transversely Isotropic Rocks by a Single Triaxial Test

    Science.gov (United States)

    Togashi, Yota; Kikumoto, Mamoru; Tani, Kazuo

    2017-01-01

    A novel method is proposed for determining the deformation anisotropy of rocks by a single triaxial test using a single specimen sampled from an arbitrary direction. Transversely isotropic elasticity is assumed for the purpose of application of the test method to sedimentary and metamorphic rocks, and the non-axial symmetric stress-strain relationships of anisotropic rocks are determined by triaxial testing by means of a simple improvement to the cap in the triaxial testing apparatus. Both the elastic parameters and the directions of the transversely isotropic elasticity can be obtained by measuring the shear deformations that occur under triaxial stress conditions. An overview of the method for determining transversely isotropic elasticity is presented in this paper, along with the results of a sensitivity analysis performed assuming simulated strains with random measurement errors. The results show that the directions of anisotropy can be determined precisely using the directions of the principal strains measured during isotropic compression and that the elastic parameters can be determined uniquely from the stress-strain relationships observed during both the isotropic and axial compression processes.

  15. On the effects of a dipping axis of symmetry on shear wave splitting measurements in a transversely isotropic medium

    NARCIS (Netherlands)

    Hilst, R.D. van der; Chevrot, Sébastien

    2003-01-01

    We derive the explicit expressions for the phase velocities and polarizations of quasi-shear waves propagating in a transversely isotropic medium. The normal to the plane defined by the phase normal and the symmetry axis gives the exact polarization of S₁, while the polarization of S₂ also depends o

  16. Plane Strain Deformation of a Poroelastic Half-space in Welded Contact with Transversely Isotropic Elastic Half-Space

    Directory of Open Access Journals (Sweden)

    NEELAM KUMARI

    2012-11-01

    Full Text Available The Biot linearized theory for fluid saturated porous materials is used to study the plane strain deformation of an isotropic, homogeneous, poroelastPic half space in welded contact with a homogeneous, transversely isotropic, elastic half space caused by an inclined line-load in elastic half space. The integral expressions for the displacements and stresses in the two half spaces in welded contact are obtained from the corresponding expressions for an unbounded transversely isotropic elastic and poroelastic medium by applying boundary conditions at the interface. The integrals for the inclined line-load are solved analytically for the limiting casei.e. undrained conditions in high frequency limit. The undrained displacements, stresses and pore pressure are shown graphically. Expression for the pore pressure is also calculated for undrained conditions in the high frequency limit.

  17. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  18. Exact traveltime computation in multi-layered transversely isotropic media with vertical symmetry axis

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; LI Lei

    2008-01-01

    An approach to calculate the accurate ray paths and travelfimes in multi-layered VTI media (transversely isotropic media with a vertical symmetry axis) is proposed. The expressions of phase velocity, group velocity and Snell's law used for computation are all explicit and exact. The calculation of ray paths and traveltimes for a given ele- mentary wave is equivalent to that of a transmission problem which is much easier to be treated with the formulae proposed. In the section of numerical examples, the processes of implementation are described at length using a multi-arrival example and a head-wave example. Lastly, the exact and approximate traveltime curves for the same elementary wave are calculated from the exact formulae and Thomsen's approximations, respectively. The com- parison of the curves reveals the increase of errors arising from the repeated use of approximations and indicates the limited applicable range of approximations. It is emphasized that one should keep in mind the applicable range of an approximation when using it.

  19. Migration using a transversely isotropic medium with symmetry normal to the reflector dip

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    A transversely isotropic (TI) model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TI (TTI) model. Although this model cannot be represented physically in all situations, for example, in the case of conflicting dips, it handles arbitrary reflector orientations under the assumption of symmetry axis normal to the dip. Using this assumption, we obtain efficient downward continuation algorithms compared to the general TTI ones, by utilizing the reflection features of such a model. Phase-shift migration can be easily extended to approximately handle lateral inhomogeneity using, for example, the split-step approach. This is possible because, unlike the general TTI case, the DTI model reduces to VTI for zero dip. These features enable a process in which we can extract velocity information by including tools that expose inaccuracies in the velocity model in the downward continuation process. We test this model on synthetic data corresponding to a general TTI medium and show its resilience. 2011 Tariq Alkhalifah and Paul Sava.

  20. A transverse isotropic model for microporous solids: Application to coal matrix adsorption and swelling

    Science.gov (United States)

    Espinoza, D. N.; Vandamme, M.; Dangla, P.; Pereira, J.-M.; Vidal-Gilbert, S.

    2013-12-01

    Understanding the adsorption-induced swelling in coal is critical for predictable and enhanced coal bed methane production. The coal matrix is a natural anisotropic disordered microporous solid. We develop an elastic transverse isotropic poromechanical model for microporous solids which couples adsorption and strain through adsorption stress functions and expresses the adsorption isotherm as a multivariate function depending on fluid pressure and solid strains. Experimental data from the literature help invert the anisotropic adsorptive-mechanical properties of Brzeszcze coal samples exposed to CO2. The main findings include the following: (1) adsorption-induced swelling can be modeled by including fluid-specific and pressure-dependent adsorption stress functions into equilibrium equations, (2) modeling results suggest that swelling anisotropy is mostly caused by anisotropy of the solid mechanical properties, and (3) the total amount of adsorbed gas measured by immersing coal in the adsorbate overestimates adsorption amount compared to in situ conditions up to ˜20%. The developed fully coupled model can be upscaled to determine the coal seam permeability through permeability-stress relationships.

  1. A modified nearly analytic discrete method and wavefield simulations in transversely isotropic media

    Institute of Scientific and Technical Information of China (English)

    LU; Ming

    2005-01-01

    Nearly analytic discrete method (NADM) is a higher accurate method for elastic wave equation that can suppress effectively numerical dispersion caused by discretizing the wave equation. In this paper we investigate the efficient implementation of NADM and present a refinement of the original NADM. Our theoretical analyses show that the modified NADM can improve significantly over the original one in numerous perspectives including numerical errors, storage spaces, and computational costs. Three-component synthetic VSP seismograms in 3-layered transversely isotropic (TI) media generated by the modified NADM are also reported. Theoretical analyses and numerical results show that the modified NADM can reduce storage space about 53 percent and computational costs about 30 percent compared with the original NADM. Moreover the accuracy of the modified NADM in time increases from 2-order of the original NADM to 4-order. Numerical results suggest that the modified NADM is more suitable to large-scale modeling because the modified method has little numerical dispersions even when too-coarse grids are used.

  2. Multipole expansion of Green's function for guided waves in a transversely isotropic plate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Son; Kim, Yoon Young [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    The multipole expansion of Green's function in a transversely isotropic plate is derived based on the eigenfunction expansion method. For the derivation, Green's function is expressed in a bilinear form composed of the regular and singular Lamb-type (or shear-horizontal) wave eigenfunctions. The specific form of the derived Green's function facilitates the handling of general scattering problems in an elastic plate when numerical methods such as the methods of the null-field integral equations are employed. In the derivation, the integral transform of an arbitrary guided wave field is first constructed by the Lamb-type and shear horizontal wave eigenfunctions that work as the kernel functions. After showing that the thickness-dependent parts of the eigenfunctions are orthogonal to each other in the transformed space, Green's function is explicitly derived by using the orthogonality. As an application of the derived Green's function, a scattering problem is solved by the transition matrix method.

  3. Migration velocity analysis using a transversely isotropic medium with tilt normal to the reflector dip

    KAUST Repository

    Alkhalifah, T.

    2010-06-13

    A transversely isotropic model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TTI model. Though this model, in some cases, can not be represented physically like in the case of conflicting dips, it handles all dips with the assumption of symmetry axis normal to the dip. It provides a process in which areas that meet this feature is handled properly. We use efficient downward continuation algorithms that utilizes the reflection features of such a model. For lateral inhomogeneity, phase shift migration can be easily extended to approximately handle lateral inhomogeneity, because unlike the general TTI case the DTI model reduces to VTI for zero dip. We also equip these continuation algorithms with tools that expose inaccuracies in the velocity. We test this model on synthetic data of general TTI nature and show its resilience even couping with complex models like the recently released anisotropic BP model.

  4. Single-valued definition of the multivalued function for borehole acoustic waves in transversely isotropic formations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is useful to extract all components, including compressional, shear, and guided waves, from the full waveforms when we investigate the acoustic log data. The component waves can be simulated by calculating the contributions from poles and branch points of the borehole acoustic function according to Cauchy’s theorem. For such an algorithm to be implemented, the multivalued function for the borehole wave field in the frequency-axial-wavenumber domain has to be rendered single-valued first. Assuming that the borehole axis is parallel to the symmetry axis of transverse isotropy, this paper derives the branch points of the borehole acoustic function. We discover that the number and the locations of those branch points are determined by the relation among the formation parameters c33, c44, ε, and δ. Thus the single-valued definitions in the acoustic-wave computation are sorted into two different cases. After building the Riemann surface related to each radial wavenumber, we give the single-valued definition of the borehole acoustic function inside and on the integration contour based on the radiation condition. In a formation with δ > ε + c44/2c33, if we choose the integration contour and the single-valued definition of the acoustic function in the way used in isotropic cases, the simulation results of component waves will be wrong.

  5. Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

    Directory of Open Access Journals (Sweden)

    Farzad Akbari

    2016-06-01

    Full Text Available By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-potential and displacement-potential relations, with the utilization of Fourier series and Hankel transform. As illustrations, the present Green’s functions were analytically degenerated into special cases, such as exponentially graded half-space and homogeneous full-space bi-material Green’s functions. Owing to the complicated integrand functions, the integrals were evaluated numerically, and in computing the integrals numerically, a robust and effective methodology was laid out which provided the necessary account of the presence of singularities of integration. Some typical numerical examples were also illustrated to demonstrate the general features of the exponentially graded bi-material Green’s functions which will be recognized by the effect of degree of variation of material properties.

  6. Acoustoelastic effects of Stoneley waves in a borehole surrounded by a transversely isotropic elastic solid

    Directory of Open Access Journals (Sweden)

    Jinxia Liu

    2014-11-01

    Full Text Available Stoneley wave in a fluid-filled pressurized borehole surrounded by a transversely isotropic elastic solid with nine independent third-order elastic constants in presence of biaxial stresses are studied. A simplified acoustoelastic formulation of Stoneley wave is presented for the parallelism of the borehole axis and the formation axis of symmetry. Sensitivity coefficients and velocity dispersions for Stoneley wave due to the presence of stresses are numerically investigated, respectively. The acoustoelastic formulation explicitly shows that the velocity dispersions of Stoneley wave depend on seven independent third-order elastic constants in presence of biaxial stresses and on six independent third-order elastic constants in the presence of borehole pressurization alone. Numerical results of both sensitivity coefficients and velocity dispersions of Stoneley wave show that at low frequency the velocity change of Stoneley wave is sensitive to c111 and c112. Stoneley wave velocity at low frequencies can be simplified by 3 independent third order elastic constants (c111, c112 and c123 instead of nine constants. In presence of biaxial stresses, at low frequencies the speed of the Stoneley wave is similar to White’s formula.

  7. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  8. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  9. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.

    Science.gov (United States)

    Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R

    2013-11-15

    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material.

  10. Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space

    Science.gov (United States)

    Ai, Zhi Yong; Li, Zhi Xiong; Wang, Li Hua

    2016-12-01

    The time-harmonic response of a laterally loaded fixed-head pile group embedded in a transversely isotropic multilayered half-space is investigated using a finite element and indirect boundary element coupling method. The piles are solved by the finite element method (FEM), while the soil can be modeled by the indirect boundary element method (BEM) with the aid of the fundamental solution for a transversely isotropic multilayered half-space in a cylindrical coordinate system. The governing equation of the pile-soil-pile dynamic interaction is established by applying the FEM-BEM coupling method. Numerical examples are carried out to validate the presented theory and to investigate influences of the soil's anisotropy and layering on the dynamic response of pile groups.

  11. The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Hao, Qi

    2014-12-30

    Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.

  12. THREE-DIMENSIONAL INTERACTIONS OF A HALF-PLANE CRACK IN A TRANSVERSELY ISOTROPIC PIEZOELECTRIC SPACE WITH RESULTANT SOURCES

    Institute of Scientific and Technical Information of China (English)

    Hou Pengfei; Pan Xiaoping; Ding Haojiang

    2005-01-01

    Exact solutions in elementary functions are derived for the stress and electric displacement intensity factors of a half-plane crack in a transversely isotropic piezoelectric space interacting with various resultant sources, including force dipole, electric dipole, moment, force dilatation and rotation. Such force and charge sources may model defects like vacancies, foreign particles and dislocations. The locations and orientations of the stress and charge sources with respect to the crack are arbitrary.

  13. Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material: Part II—cutting method for finite cylinders

    Science.gov (United States)

    Pourseifi, M.; Faal, R. T.; Asadi, E.

    2017-06-01

    This paper is the outcome of a companion part I paper allocated to finite hollow cylinders of transversely isotropic material. The paper provides the solution for the crack tip stress intensity factors of a system of coaxial axisymmetric planar cracks in a transversely isotropic finite hollow cylinder. The lateral surfaces of the hollow cylinder are under two inner and outer self-equilibrating distributed shear loadings. First, the stress fields due to these loadings are given for both infinite and finite cylinders. In the next step, the state of stress in an infinite hollow cylinder with transversely isotropic material containing axisymmetric prismatic and radial dislocations is extracted from part I paper. Next, using the distributed dislocation technique, the mixed mode crack problem in finite cylinder is reduced to Cauchy-type singular integral equations for dislocation densities on the surfaces of the cracks. The problem of a cracked finite hollow cylinder is treated by cutting method; i.e., the infinite cylinder is cut to a finite one by slicing it using two annular axisymmetric cracks at its ends. The cutting method is validated by comparing the state of stress of a sliced intact infinite cylinder with that of an intact finite cylinder. The paper is furnished to several examples to study the effect of crack type and location in finite cylinders on the ensuing stress intensity factors of the cracks and the interaction between the cracks.

  14. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  15. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    Directory of Open Access Journals (Sweden)

    A. K. Aggarwal

    2014-01-01

    Full Text Available The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl is on the safer side of the design as compared to the cylinders made up of isotropic material (steel. This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.

  16. Energy distribution among the reflected and refracted plane elastic waves at the boundary between transversely isotropic media - 2nd Part

    Directory of Open Access Journals (Sweden)

    G. AHMAD

    1967-06-01

    Full Text Available The energy ratios of the reflected and refracted waves
    at the boundary between transversely isotropic media have been investigated.
    The energy equation has been derived on two bases, namely as (a
    double of the kinetic energy, (ft double of the potential energy. The ratios
    of the derived waves to that of the incident quasilongitudinal wave have been
    calculated for the particular case, where the symmetry axes of the media
    coincide with the normal to the boundary surface. The influence of varying
    the different elastic parameters is shown in a few diagrams

  17. Research Note: The sensitivity of surface seismic P-wave data in transversely isotropic media to reflector depth

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-12-17

    The leading component of the high-frequency asymptotic description of the wavefield, given by the travel time, is governed by the eikonal equation. In anisotropic media, traveltime measurements from seismic experiments conducted along one surface cannot constrain the long-wavelength attribute of the medium along the orthogonal-to-the-surface direction, as anisotropy introduces an independent parameter controlling wave propagation in the orthogonal direction. Since travel times measured on the Earth\\'s surface in transversely isotropic media with a vertical symmetry axis are mainly insensitive to the absolute value of the anisotropic parameter responsible for relating these observations to depth δ, the travel time was perturbed laterally to investigate the traveltime sensitivity to lateral variations in δ. This formulation can be used to develop inversion strategies for lateral variations in δ in acoustic transversely isotropic media, as the surface-recorded data are sensitive to it even if the model is described by the normal moveout velocity and horizontal velocity, or the anellipticity parameter η. Numerical tests demonstrate the enhanced sensitivity of our data when the model is parameterised with a lateral change in δ.

  18. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  19. Exact axisymmetric solutions for laminated transversely isotropic piezoelectric circular plate (Ⅰ)——Exact solutions for piezoelectric circular plate

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 徐荣桥; 国凤林

    1999-01-01

    Based on three-dimensional elastic equations for piezoelectric materials, the state equations for piezoelectric circular plate under axisymmetric deformation are derived. Applying Hankel transform to them and letting the free boundary terms resulting from Hankel transform be zero, a set of ordinary differential equations with constant coefficients and associated boundary conditions are obtained. Furthermore, two exact solutions corresponding to generalized rigid slipping and generalized elastic simple support are deduced. Then, the governing equations obtained reduce to equations for axisymmetric problem of transversely isotropic circular plate. Under the two types of boundary conditions of elastic simple support and rigid slipping, exact solutions are derived. Finally, numerical results are presented and applicability of the classical plate theory is discussed.

  20. Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: a Cartesian grid approach

    CERN Document Server

    Blanc, Emilie; Lombard, Bruno

    2015-01-01

    A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimizat...

  1. INTERFACIAL CRACK ANALYSIS IN THREE-DIMENSIONAL TRANSVERSELY ISOTROPIC BI-MATERIALS BY BOUNDARY INTEGRAL EQUATION METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-hao; LI Dong-xia; SHEN Ya-peng

    2005-01-01

    The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropie materials.

  2. Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid

    Directory of Open Access Journals (Sweden)

    R. Selvamani

    2016-01-01

    Full Text Available Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of elasticity. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The frequency equations that include the interaction between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel functions. The numerical calculations are carried out for the non-dimensional frequency, phase velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves. The results reveal that the proposed method is very effective and simple and can be applied to other bar of different cross section by using proper geometric relation.

  3. A Method of Function Space for Vertical Impedance Function of a Circular Rigid Foundation on a Transversely Isotropic Ground

    Directory of Open Access Journals (Sweden)

    Morteza Eskandari-Ghadi

    2014-06-01

    Full Text Available This paper is concerned with investigation of vertical impedance function of a surface rigid circular foundation resting on a semi-infinite transversely isotropic alluvium. To this end, the equations of motion in cylindrical coordinate system, which because of axissymmetry are two coupled equations, are converted into one partial differential equation using a method of potential function. The governing partial differential equation for the potential function is solved via implementing Hankel integral transforms in radial direction. The vertical and radial components of displacement vector are determined with the use of transformed displacement-potential function relationships. The mixed boundary conditions at the surface are satisfied by specifying the traction between the rigid foundation and the underneath alluvium in a special function space introduced in this paper, where the vertical displacements are forced to satisfy the rigid boundary condition. Through exercising these restraints, the normal traction and then the vertical impedance function are obtained. The results are then compared with the existing results in the literature for the simpler case of isotropic half-space, which shows an excellent agreement. Eventually, the impedance functions are presented in terms of dimensionless frequency for different materials. The method presented here may be used to obtain the impedance function in any other direction as well as in buried footing in layered media.

  4. Edge preserving smoothing and segmentation of 4-D images via transversely isotropic scale-space processing and fingerprint analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reutter, Bryan W.; Algazi, V. Ralph; Gullberg, Grant T; Huesman, Ronald H.

    2004-01-19

    Enhancements are described for an approach that unifies edge preserving smoothing with segmentation of time sequences of volumetric images, based on differential edge detection at multiple spatial and temporal scales. Potential applications of these 4-D methods include segmentation of respiratory gated positron emission tomography (PET) transmission images to improve accuracy of attenuation correction for imaging heart and lung lesions, and segmentation of dynamic cardiac single photon emission computed tomography (SPECT) images to facilitate unbiased estimation of time-activity curves and kinetic parameters for left ventricular volumes of interest. Improved segmentation of lung surfaces in simulated respiratory gated cardiac PET transmission images is achieved with a 4-D edge detection operator composed of edge preserving 1-D operators applied in various spatial and temporal directions. Smoothing along the axis of a 1-D operator is driven by structure separation seen in the scale-space fingerprint, rather than by image contrast. Spurious noise structures are reduced with use of small-scale isotropic smoothing in directions transverse to the 1-D operator axis. Analytic expressions are obtained for directional derivatives of the smoothed, edge preserved image, and the expressions are used to compose a 4-D operator that detects edges as zero-crossings in the second derivative in the direction of the image intensity gradient. Additional improvement in segmentation is anticipated with use of multiscale transversely isotropic smoothing and a novel interpolation method that improves the behavior of the directional derivatives. The interpolation method is demonstrated on a simulated 1-D edge and incorporation of the method into the 4-D algorithm is described.

  5. A low order viscoplasticity of transversely isotropic quasi-rate independent materials

    Directory of Open Access Journals (Sweden)

    Mićunović Milan

    2014-01-01

    Full Text Available As found by experiments quasi rate independent materials (QRI describe very well behavior of steels in very wide range of strains and strain rates ([3],[4]. This property has been combined with tensor representation modeling using a generalized associative flow rule based not on the yield function but on a more general loading function. Seemingly rate independent QRI producing incremental evolution equations show rate sensitivity by means of variability of yield stress with stress rate. On the other hand transverse isotropy appears in metal forming issues like in rolled car body sheets [18]. Here an extension of tensor generators and invariants is needed to include the preferred anisotropy direction. Such a procedure has been made here. In addition we believe that the results of this paper are applicable to dynamic deformation of orthogneiss rocks treated recently in [5].

  6. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  7. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    DEFF Research Database (Denmark)

    Pan, E.; Chen, J.Y.; Bevis, M.

    2015-01-01

    the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth......We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations...... to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core...

  8. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.

    Science.gov (United States)

    Thorvaldsen, Tom; Osnes, Harald; Sundnes, Joakim

    2005-12-01

    In this paper we present a mixed finite element method for modeling the passive properties of the myocardium. The passive properties are described by a non-linear, transversely isotropic, hyperelastic material model, and the myocardium is assumed to be almost incompressible. Single-field, pure displacement-based formulations are known to cause numerical difficulties when applied to incompressible or slightly compressible material cases. This paper presents an alternative approach in the form of a mixed formulation, where a separately interpolated pressure field is introduced as a primary unknown in addition to the displacement field. Moreover, a constraint term is included in the formulation to enforce (almost) incompressibility. Numerical results presented in the paper demonstrate the difficulties related to employing a pure displacement-based method, applying a set of physically relevant material parameter values for the cardiac tissue. The same problems are not experienced for the proposed mixed method. We show that the mixed formulation provides reasonable numerical results for compressible as well as nearly incompressible cases, also in situations of large fiber stretches. There is good agreement between the numerical results and the underlying analytical models.

  9. Exact axisymmetric solution of laminated transversely isotropic piezoelectric circular plates (Ⅱ)——Exact solution for elastic circular plates and numerical results

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 徐荣桥; 国凤林

    1999-01-01

    Emphasis is placed on purely elastic circular plates. Let the piezoelectric coefficients be equal to zero. Then two sets of uncoupled mechanical and electric equations are obtained and they can be solved independently. Two three-dimensional exact solutions of laminated transversely isotropic circular plate are derived under two boundary conditions, i.e. rigid slipping support and elastic simple support. For isotropic circular plates, the problem of multiple root is treated. At last, some numerical results of piezoelectric and purely elastic circular plates are presented and the applicability of classical plate theory is discussed.

  10. Analysis of the traveltime sensitivity kernels for an acoustic transversely isotropic medium with a vertical axis of symmetry

    KAUST Repository

    Djebbi, Ramzi

    2016-02-05

    In anisotropic media, several parameters govern the propagation of the compressional waves. To correctly invert surface recorded seismic data in anisotropic media, a multi-parameter inversion is required. However, a tradeoff between parameters exists because several models can explain the same dataset. To understand these tradeoffs, diffraction/reflection and transmission-type sensitivity-kernels analyses are carried out. Such analyses can help us to choose the appropriate parameterization for inversion. In tomography, the sensitivity kernels represent the effect of a parameter along the wave path between a source and a receiver. At a given illumination angle, similarities between sensitivity kernels highlight the tradeoff between the parameters. To discuss the parameterization choice in the context of finite-frequency tomography, we compute the sensitivity kernels of the instantaneous traveltimes derived from the seismic data traces. We consider the transmission case with no encounter of an interface between a source and a receiver; with surface seismic data, this corresponds to a diving wave path. We also consider the diffraction/reflection case when the wave path is formed by two parts: one from the source to a sub-surface point and the other from the sub-surface point to the receiver. We illustrate the different parameter sensitivities for an acoustic transversely isotropic medium with a vertical axis of symmetry. The sensitivity kernels depend on the parameterization choice. By comparing different parameterizations, we explain why the parameterization with the normal moveout velocity, the anellipitic parameter η, and the δ parameter is attractive when we invert diving and reflected events recorded in an active surface seismic experiment. © 2016 European Association of Geoscientists & Engineers.

  11. Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach

    Science.gov (United States)

    Blanc, Emilie; Chiavassa, Guillaume; Lombard, Bruno

    2014-10-01

    A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA models are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimization is shown to be the better way of determination. A splitting strategy is then applied to approximate numerically the Biot-DA equations. The propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. An immersed interface method is implemented to take into account heterogeneous media on a Cartesian grid and to discretize the jump conditions at interfaces. Numerical experiments are presented. Comparisons with analytical solutions show the efficiency and the accuracy of the approach, and some numerical experiments are performed to investigate wave phenomena in complex media, such as multiple scattering across a set of random scatterers.

  12. Dispersion of Rayleigh, Scholte, Stoneley and Love waves in a model consisting of a liquid layer overlying a two-layer transversely isotropic solid medium

    Science.gov (United States)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad

    2015-10-01

    The dispersion of interface waves is studied theoretically in a model consisting of a liquid layer of finite thickness overlying a transversely isotropic solid layer which is itself underlain by a transversely isotropic solid of dissimilar elastic properties. The method of potential functions and Hankel transformation was utilized to solve the equations of motion. Two frequency equations were developed: one for Love waves and the other for the remaining surface and interface waves. Numerical group and phase velocity dispersion curves were computed for four different classes of model, in which the substratum is stiffer or weaker than the overlying layer, and for various thickness combinations of the layers. Dispersion curves are presented for generalized Rayleigh, Scholte, Stoneley and Love waves, each of which are possible in all proposed models. They show the dependence of the velocity on layer thicknesses and material properties (elastic constants). Special cases involving zero thickness for the water layer or the solid layer, and/or isotropic material properties for the solid exhibit interesting features and agree favourably with previously published results for these simpler cases, thus validating the new formulation.

  13. Semi-Analytical Solution for Stresses and Displacements in a Tunnel Excavated in Transversely Isotropic Formation with Non-Linear Behavior

    Science.gov (United States)

    Vu, The Manh; Sulem, Jean; Subrin, Didier; Monin, Nathalie

    2013-03-01

    A semi-analytical solution based on the transfer matrix technique is proposed to analyze the stresses and displacements in a two-dimensional circular opening excavated in transversely isotropic formation with non-linear behavior. A non-isotropic far field can be accounted for and the process of excavation is simulated by progressive reduction of the internal radial stress. A hyperbolic stress-strain law is proposed to take into account the non-linear behavior of the rock. The model contains seven independent parameters corresponding to the five elastic constants of an elastic material with transverse isotropy and to the friction coefficient and cohesion along the parallel joints (weakness planes). This approach is based on the discretization of the space into concentric rings. It requires the establishment of elementary solutions corresponding to the stress and displacement fields inside each ring for given conditions at its boundaries. These solutions, based on complex variable theory, are obtained in the form of infinite series. The appropriate number of terms to be kept for acceptable approximation is discussed. This non-linear model is applied to back analyze the convergence measurements of Saint-Martin-la-Porte access gallery. Short-term and long-term ground parameters are evaluated.

  14. SCATTERING OF ANTI-PLANE SHEAR WAVES BY A SINGLE CRACK IN AN UNBOUNDED TRANSVERSELY ISOTROPIC ELECTRO-MAGNETO-ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    杜建科; 沈亚鹏; 高波

    2004-01-01

    A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electromagneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.

  15. Simulating propagation of decomposed elastic waves using low-rank approximate mixed-domain integral operators for heterogeneous transversely isotropic media

    KAUST Repository

    Cheng, Jiubing

    2014-08-05

    In elastic imaging, the extrapolated vector fields are decomposed into pure wave modes, such that the imaging condition produces interpretable images, which characterize reflectivity of different reflection types. Conventionally, wavefield decomposition in anisotropic media is costly as the operators involved is dependent on the velocity, and thus not stationary. In this abstract, we propose an efficient approach to directly extrapolate the decomposed elastic waves using lowrank approximate mixed space/wavenumber domain integral operators for heterogeneous transverse isotropic (TI) media. The low-rank approximation is, thus, applied to the pseudospectral extrapolation and decomposition at the same time. The pseudo-spectral implementation also allows for relatively large time steps in which the low-rank approximation is applied. Synthetic examples show that it can yield dispersionfree extrapolation of the decomposed quasi-P (qP) and quasi- SV (qSV) modes, which can be used for imaging, as well as the total elastic wavefields.

  16. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi

    2014-08-05

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.

  17. Low frequency ultrasonic multi-mode Lamb wave method for characterizing the ultra-thin transversely isotropic laminate composite: Theory and experiment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui; WAN Mingxi; CHEN Xiao; CAO Wenwu

    2001-01-01

    A low-frequency multi-mode ultrasonic Lamb wave method suitable for characterizing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented, The "ultra-thin" here means that the thickness of the plate is much less than the wavelength of the ultrasonic wave so that the echoes from the front and back faces of the plate can't be separated in the time domain. The dispersion equations for the low frequency ultrasonic Lamb waves with the propagation directions parallel and vertical to the fiber direction are derived. In conjunction with the least square algorithm method, the secant algorithm is used to estimate the parameters of the ultra-thin fiber-reinforced composite layer. The evaluation errors and the sensitivity of the method to different parameters of the thin composite are analyzed. The technique has been used to characterize the ultra-thin grass fiber reinforced PES composite with thickness down to ten percents of the ultrasonic wavelength. It is observed that the agreement between the nominal and the estimation values is reasonably good.

  18. Smeerolie en Milieu

    NARCIS (Netherlands)

    Straelen, van B.C.P.M.

    1996-01-01

    In de Nederlandse landbouw gaat een flinke hoeveelheid aan smeermiddelen om. Uit een recent Duits onderzoek blijkt dat de helft van de olie die in de mobiele sector, waartoe de landbouw behoort, gebruikt wordt ongecontroleerd in het milieu terecht komt. Het is onwaarschijnlijk dat de situatie in

  19. Smeerolie en Milieu

    NARCIS (Netherlands)

    Straelen, van B.C.P.M.

    1996-01-01

    In de Nederlandse landbouw gaat een flinke hoeveelheid aan smeermiddelen om. Uit een recent Duits onderzoek blijkt dat de helft van de olie die in de mobiele sector, waartoe de landbouw behoort, gebruikt wordt ongecontroleerd in het milieu terecht komt. Het is onwaarschijnlijk dat de situatie in Ned

  20. Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: Application to in vivo lower leg muscles.

    Science.gov (United States)

    Guo, Jing; Hirsch, Sebastian; Scheel, Michael; Braun, Jürgen; Sack, Ingolf

    2016-04-01

    To develop and demonstrate MR elastography (MRE) for the measurement of three independent viscoelastic constants of skeletal muscle according to the theory of linear elasticity of incompressible materials with transverse isotropy (TI). Three-dimensional multifrequency MRE was applied to soleus, gastrocnemius, and tibialis anterior muscles in 10 healthy volunteers. The rotational wave fields were solved for complex-valued viscoelastic parameters μ12, μ13, and E3 corresponding to two shear moduli (within the planes of isotropy and symmetry of TI materials) and Young's modulus (along the principal fiber axis). Anisotropy was represented by the inequality μ12  muscles, whereas storage shear moduli of tibialis were indistinguishable. Storage moduli were: 1.06 ± 0.12, 1.33 ± 0.10, 6.92 ± 0.95 kPa (soleus); 0.90 ± 0.11, 1.30 ± 0.15, 8.22 ± 1.37 kPa (gastrocnemius); 1.26 ± 0.16, 1.27 ± 0.11, 9.29 ± 1.42 kPa (tibialis), for μ12, μ13, and E3, respectively. The muscles were different in their μ12 and E3 values, whereas μ13 was less sensitive to the muscle type. Leg differences were observed in the soleus and gastrocnemius muscles. Recovery of the full elasticity tensor in incompressible TI materials is feasible by three-dimensional inversion of the time-harmonic shear wave equation. The method is potentially useful for the clinical evaluation of skeletal muscle anisotropy. © 2015 Wiley Periodicals, Inc.

  1. MILIEU DALAM PENDIDIKAN ISLAM

    Directory of Open Access Journals (Sweden)

    Najahah Mudzakir

    2015-12-01

    Full Text Available Environment is one the urgent thing in education wolrd because environment has funcion as a place where education process is taking place. He same as with social environment, it has important role for human being. As we know human being is social creature that created from a blood cloth or something that adherence on the uterus wall, but it is also can be understood that he uterus wall created always based on oher pary or it can’t live by it self. So it can be understood that human being wih all characterization and their growth is the result of two achievment factors. Namely Heritage factor and environment factor. There factors influence human being in their interaction since they become embryo till to the end of their life. Key words :   Milieu, Islamic education

  2. Transversely isotropic constitutive properties of a columnar jointed rock mass%柱状节理岩体横观各向同性本构关系研究

    Institute of Scientific and Technical Information of China (English)

    狄圣杰; 徐卫亚; 王伟; 石安池

    2011-01-01

    A constitutive model of a transversely isotropic,columnar jointed rock mass is presented.The methods of composite material mechanics were used to consider staggered joints,inner disturbed belts,coordinate deflection,and other factors.Equivalent elastic parameters were calculated from the model.An in situ test at a dam for a hydro-power station showed the impact of the inner disturbed belts and of the joints of a columnar jointed rock mass.It appears that the inner disturbed belts have a large effect upon the elastic parameters of the columnar jointed basaltic mass located at the dam site.This impact reduces the elastic modulus more than 50% in the vertical direction.The effect of dip angle is obvious.In this case the dip angle is 15 degrees and so the equivalent vertical elastic modulus is reduced by about 19%.This approach allows an improved description of the anisotropic columnar jointed rock mass.The field application shows the horizontal elastic modulus is larger than the vertical elastic modulus.%采用复合材料力学方法,针对柱状节理岩体考虑节理交错、层内错动带及柱轴偏转等因素建立了横观各向同性本构模型,对其等效弹性参数进行了系统分析,并根据某拟建水电站坝址区玄武岩体原位试验资料,探讨了层内错动带和节理等因素对弹性参数的影响.研究表明:坝址区分布的层内错动带对柱状节理岩体弹性参数影响较大,在垂直于层内错动带方向上弹性模量减小了50%以上;柱状节理倾角影响也比较明显,在倾角为15°时,等效弹性模量下降低约19%.该方法可以完善描述柱状节理岩体各向异性变形特征和规律,揭示了原位测试水平向弹性模量大于铅直向的原因.

  3. 横向各向同性地层(VTI)井孔声弹效应对弯曲波的影响%Acoustoelastic effects on flexural waves in a borehole surrounded by a transversely isotropic (VTI) elastic solid

    Institute of Scientific and Technical Information of China (English)

    刘金霞; 崔志文; 李刚; 吕伟国; 王克协

    2012-01-01

    本文发展了建立在地层参考状态为各向同性介质假定下的现行井孔声弹性理论,就井外为横向各向同性面与井轴垂直的、具有9个独立三阶弹性模量的横向各向同性介质(VTI井况),水平面内受双轴应力作用下给出了一个简洁的与井内压力、应力差、应力和以及多极源偏振方位角有关的井孔弯曲波声弹公式,并且导出了平面纵、横波速度的声弹公式.数值考察了弯曲波速度之改变量的灵敏系数随频率的变化、受井外水平双轴应力作用时两种偏振的偶极弯曲波频散曲线以及对应不同方位径向偏振的横波速度.研究结果表明弯曲波声弹公式与5个二阶弹性系数以及7个独立的三阶弹性模量有关;而且由内压引起的井孔弯曲波声弹性公式中的三阶弹性模量仅与6个独立的弹性模量有关.横向各向同性介质井孔弯曲波速度的交叉现象仍是判断地应力存在的标志;一个重要的认识是受双轴应力作用的弯曲波速度变化在低频区主要与c144和c155两个三阶弹性模量有关,而且此认识与径向偏振的平面横波一致.在缺乏足够实验条件情况下,对VTI情况,以c144,c155和c123三个独立的量进行测量,然后可暂不考虑三阶弹性模量的各向异性,建立简化的应力反演公式.反之,如果已知地层的地应力信息,由简化的声弹公式可以反演三阶弹性模量c144,c155和c123.%Flexural waves in a fluid-filled pressurized borehole surrounded by a transversely isotropic elastic solid (VTI) with nine independent third-order elastic constants in the presence of biaxial stresses are studied. The acoustoelastic formulations of flexural wave and plane wave are presented. Sensitivity coefficients and velocity dispersions for flexural wave, and shear-waves of radial polarization due to the presence of stresses are numerically investigated, respectively. The acoustoelastic formulation explicitly shows that

  4. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten;

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  5. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers.......Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  6. Isotropic Single Negative Metamaterials

    Directory of Open Access Journals (Sweden)

    P. Protiva

    2008-09-01

    Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.

  7. Isotropic optical metamaterials

    DEFF Research Database (Denmark)

    Lederer, Falk; Rockstuhl, C.; Menzel, C.

    2010-01-01

    Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...

  8. Isotropic optical metamaterials

    DEFF Research Database (Denmark)

    Lederer, Falk; Rockstuhl, C.; Menzel, C.;

    2010-01-01

    Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...

  9. An Acoustic Wave Equation for Tilted Transversely Isotropic Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-15

    A finite-difference method for computing the first arrival traveltimes by solving the Eikonal equation in the celerity domain has been developed. This algorithm incorporates the head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to implement in any number of dimensions, to obtain accurate first arrival times in complex velocity models. The method, which is stable and computationally efficient, can handle instabilities due to caustics and provide head waves traveltimes. Numerical examples demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. This new method is three times accurate more than the 2nd-order fast marching method in a linear velocity model with the same spacing.

  10. An Acoustic Wave Equation for Tilted Transversely Isotropic Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-15

    A finite-difference method for computing the first arrival traveltimes by solving the Eikonal equation in the celerity domain has been developed. This algorithm incorporates the head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to implement in any number of dimensions, to obtain accurate first arrival times in complex velocity models. The method, which is stable and computationally efficient, can handle instabilities due to caustics and provide head waves traveltimes. Numerical examples demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. This new method is three times accurate more than the 2nd-order fast marching method in a linear velocity model with the same spacing.

  11. 利用高阶交错网格有限差分法数值模拟VTI 介质井孔声场%The simulation of acoustic wave propagation in the borehole surrounded by vertical transversely isotropic (VTI) media using staggered-grid high-order finite-difference method

    Institute of Scientific and Technical Information of China (English)

    岳崇旺; 王飞

    2016-01-01

    Transversely isotropic(TI) media is a common petrophysical media. It is important to study the propa-gation characteristics of the acoutic field in the well for sonic logging theory, and it can provide the basis for the sonic log interpretation. This paper derived velocity–stress staggered-grid finite-difference equations of the elas-tic wave propagation in cylindrical coordinates for vertical transversely isotropic(VTI) media. Furthermore, it numeri-cally simulated acoustic propagation in the VTI media using finite–difference technique with two orders in time and ten orders in space. It gave the snapshots of borehole acoustic wave field in the homogeneous media at different times and calculated the full wave trains with acoustic sources located at the well axis. The calculated results show that if the coefficient of anisotropy of VTI media increases, the change of shear wave propagation has little effect, but the velocity of longitudinal wave propagation has been reduced relatively in the longitudinal direction, and has little change in the radial direction. And if the coefficient of anisotropy of VTI media increases, the first wave slowness of sonic logging will increase, and the acoustic amplitude will be slightly reduced.%横向各向同性(TI)介质是岩石地球物理中常见的一种现象,研究其井孔声场传播特征对声波测井理论以及为声波测井解释提供依据具有重要意义。针对具有垂直对称轴的横向各向同性(VTI)介质,根据柱坐标系条件下的弹性波波动方程,推导了速度—应力交错有限差分公式,采用时间二阶、空间十阶的交错有限差分算法对 VTI 介质中的井孔声场进行数值模拟。给出了在均匀介质中井孔声场不同时刻的波场快照,以及不同各向异性系数的 VTI 介质中的波场快照,计算了井轴上声源激发出的声波全波列波形。结果表明,在其他条件不变的条件下,VTI 地层的各向异性系数

  12. Using the Milieu: Treatment-Environment Consistency.

    Science.gov (United States)

    Szekais, Barbara

    1985-01-01

    Describes trial use of milieu and activity-based therapy in two adult day centers to increase client involvement in physical and social environments of treatment settings. Reports results from empirical observations and recommends further investigation of this treatment modality in settings for the elderly. (Author/NRB)

  13. Milieu Therapy with the Adolescent Sociopath.

    Science.gov (United States)

    Walker, Betty A.

    1978-01-01

    This paper defines sociopathy and presents current findings on its causes and treatment. A milieu therapy program is described, including the preventive and active treatment methods used to keep the adolescent sociopath fully occupied in constructive activities and "sponsor" relationships to overcome antisocial behavior patterns. (Author/SJL)

  14. Isotropic Scale-Invariant Dissipation of Solar Wind Turbulence

    CERN Document Server

    Kiyani, K H; Khotyaintsev, Yu V; Turner, A; Hnat, B; Sahraoui, F

    2010-01-01

    The anisotropic nature of solar wind magnetic fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements spanning five decades in scales from the inertial to dissipation ranges of plasma turbulence. We find an abrupt transition at ion kinetic scales to a single isotropic stochastic process that characterizes the dissipation range on all observable scales. In contrast to the inertial range, this is accompanied by a successive scale-invariant reduction in the ratio between parallel and transverse power. We suggest a possible phase space mechanism for this, based on nonlinear wave-particle interactions, operating in this scale-invariant isotropic manner.

  15. Transverse wobbling

    CERN Document Server

    Frauendorf, S

    2013-01-01

    The wobbling motion of a triaxial rotor coupled to a high-j quasiparticle is treated semiclassically. Longitudinal and transverse coupling regimes can be distinguished depending on, respectively whether the quasiparticle a.m. is oriented parallel or perpendicular to the rotor axis with the largest MoI. Simple analytical expressions for the wobbling frequency and the electromagnetic E2 and M1 transition probabilites are derived assuming rigid alignment of the quasiparticle with one of the rotor axes and harmonic oscillations (HFA). Transverse wobbling is characterized by a decrease of the wobbling frequency with increasing a.m.. Two examples for transverse wobbling, $^{163}$Lu and $^{135}$Pr, are studied in the framework of the full triaxial particle-rotor model and the HFA. The signature of transverse wobbling, decreasing wobbling frequency and enhanced E2 inter-band transitions, is found in agreement with experiment.

  16. Transversity 2005

    Science.gov (United States)

    Barone, Vincenzo; Ratcliffe, Philip G.

    Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I

  17. Transversity 2008

    Science.gov (United States)

    Giuseppe, Ciullo; Paolo, Lenisa; Marco, Contalbrigo; Delia, Hasch

    2009-04-01

    Purpose and status of the Italian transversity project / F. Bradamante -- Transversity asymmetries / D. Boer -- The transverse angular momentum sum rule / E. Leader -- Measurement of Collins and Sivers asymmetries at HERMES / L. L. Pappalardo (for the HERMES collaboration) -- Review of SSA results on deuteron at COMPASS / A. Richter (for the COMPASS collaboration) -- Single spin asymmetries on a transversely polarized proton target at COMPASS / S. Levorato (for the COMPASS collaboration) -- New preliminary results on the transversity distribution and the Collins fragmentation functions / M. Anselmino ... [et al.] -- Sivers effect in SIDIS pion and kaon production / M. Anselmino ... [et al.] -- Spin-orbit correlations / M. Burkardt -- Correlation functions in hard and (semi)-inclusive processes / M. Schlegel, S. Mei[symbol]ner and A. Metz -- Transversity via exclusive [pie symbol]-electroproduction / G. R. Goldstein, S. Liuti and S. Ahmad -- Estimate of the Sivers asymmetry at intermediate energies with rescattering extracted from exclusive processes / A. Bianconi -- Exclusively produced p[symbol] asymmetries on the deuteron and future GPD measurements at COMPASS / C. Schill (for the COMPASS collaboration) -- Transversity and transverse-momentum-dependent distribution measurements from PHENIX and BRAHMS / C. Aidala (for the PHENIX and BRAHMS collaborations) -- Sivers and Collins effects in polarized pp scattering processes / M. Anselmino ... [et al.] -- Sivers function in constituent quark models / S. Scopetta ... [et al.] -- Sivers, Boer-Mulders and transversity in Drell-Yan processes / M. Anselmino ... [et al.] -- TMDs and Drell-Yan experiments at Fermilab and J-PARC / J.-C. Peng -- Double polarisation observables at PAX / M. Nekipelov (for the PAX collaboration) -- Future Drell-Yan measurement @ COMPASS / M. Colantoni (for the COMPASS collaboration) -- Measurements of unpolarized azimuthal asymmetries at COMPASS / W. Käfer (for the COMPASS collaboration

  18. Reynolds number scaling of velocity increments in isotropic turbulence

    Science.gov (United States)

    Iyer, Kartik P.; Sreenivasan, Katepalli R.; Yeung, P. K.

    2017-02-01

    Using the largest database of isotropic turbulence available to date, generated by the direct numerical simulation (DNS) of the Navier-Stokes equations on an 81923 periodic box, we show that the longitudinal and transverse velocity increments scale identically in the inertial range. By examining the DNS data at several Reynolds numbers, we infer that the contradictory results of the past on the inertial-range universality are artifacts of low Reynolds number and residual anisotropy. We further show that both longitudinal and transverse velocity increments scale on locally averaged dissipation rate, just as postulated by Kolmogorov's refined similarity hypothesis, and that, in isotropic turbulence, a single independent scaling adequately describes fluid turbulence in the inertial range.

  19. Modelling of the decay of isotropic turbulence by the LES

    Energy Technology Data Exchange (ETDEWEB)

    Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)

    2011-12-22

    This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.

  20. Transverse Compression of Tendons.

    Science.gov (United States)

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  1. 横向各向同性地层斜井中正交偶极子激发声场的数值模拟%Numerical simulation of acoustic fields excited by cross-dipole source in deviated wells in transversely isotropic formation

    Institute of Scientific and Technical Information of China (English)

    阎守国; 宋若龙; 吕伟国; 马俊; 王克协

    2011-01-01

    本文采用三维应力-速度有限差分(SV-FD)方法,数值模拟了横向各向同性(TI)地层对称主轴与井轴斜交情况下正交偶极子声源激发的井孔声场.主要解决了与倾斜角有关的三维空间弹性模量矩阵的推导,柱坐标系下应力-速度有限差分方程组的建立,井轴上场点奇异性与内边界处理等几个关键问题,提高了计算精度.在横向各向同性地层对称主轴与井轴平行的情况下,与实轴积分法所得结果进行了对比,验证了本文方法的正确性.计算了不同倾角情况下xx和yy两分量的弯曲波,并用频域加权相似法提取了弯曲波频散曲线,结果显示了横向各向同性介质中不同方向偏振的弯曲波传播的分裂现象,其频散曲线在低频段分裂,随频率增大而逐渐重合.弯曲波低频截止频率处速度与理论公式得到的横波速度基本符合.%The acoustic fields excited by cross-dipole acoustic source in borehole surrounded by transversely isotropic (TI) formation, whose symmetry axis is oblique, are numerically simulated by 3D stress velocity finite difference (SV-FD) method. Several key problems are resolved to improve the computational accuracy, such as derivation of modulus matrix related to oblique angle, establishment of SV-FD equations under cylindrical coordinates, and treatment of singular points on borehole axis. The method is validated by comparing numerical result with that obtained by real axis integration method, when the symmetry axis of TI formation is parallel with borehole axis. The flexural waveforms of xx and yy components of borehole acoustic fields with various dip angles are simulated, and the dispersion curves of flexural waves are obtained by weighted spectral semblance method. The results show obvious splitting of flexural wave with different polarization in TI formation. The dispersion curves of xx and yy split at low-frequency,and overlap at high-frequency. The velocities at low

  2. Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily-inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Telle...

  3. Distributed chaos and isotropic turbulence

    CERN Document Server

    Bershadskii, A

    2015-01-01

    Power spectrum of the distributed chaos can be represented by a weighted superposition of the exponential functions which is converged to a stretched exponential $\\exp-(k/k_{\\beta})^{\\beta }$. An asymptotic theory has been developed in order to estimate the value of $\\beta$ for the isotropic turbulence. This value has been found to be $\\beta =3/4$. Excellent agreement has been established between this theory and the data of direct numerical simulations not only for the velocity field but also for the passive scalar and energy dissipation fields. One can conclude that the isotropic turbulence emerges from the distributed chaos.

  4. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  5. S-curvature of isotropic Berwald metrics

    Institute of Scientific and Technical Information of China (English)

    Akbar TAYEBI; Mehdi RAFIE-RAD

    2008-01-01

    Isotropic Berwald metrics are as a generalization of Berwald metrics. Shen proved that every Berwald metric is of vanishing S-curvature. In this paper, we generalize this fact and prove that every isotropic Berwald metric is of isotropic S-curvature. Let F = α + β be a Randers metric of isotropic Berwald curvature. Then it corresponds to a conformal vector field through navigation representation.

  6. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  7. Temperature Isotropization in Solar Flare Plasmas due to the Electron Firehose Instability

    CERN Document Server

    Messmer, P

    2002-01-01

    The isotropization process of a collisionless plasma with an electron temperature anisotropy along an external magnetic field ($T_\\| ^e\\gg T_\\perp^e$, $\\|$ and $\\perp$ with respect to the background magnetic field) and isotropic protons is investigated using a particle-in-cell(PIC) code. Restricting wave growth mainly parallel to the external magnetic field, the isotropization mechanism is identified to be the Electron Firehose Instability (EFI). The free energy in the electrons is first transformed into left-hand circularly polarized transverse low-frequency waves by a non-resonant interaction. Fast electrons can then be scattered towards higher perpendicular velocities by gyroresonance, leading finally to a complete isotropization of the velocity distribution. During this phase of the instability, Langmuir waves are generated which may lead to the emission of radio waves. A large fraction of the protons is resonant with the left-hand polarized electromagnetic waves, creating a proton temperature anisotropy ...

  8. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  9. Semiflexible particles in isotropic turbulence

    Science.gov (United States)

    Ali, Aamir; Plan, Emmanuel Lance Christopher Medillo, VI; Ray, Samriddhi Sankar; Vincenzi, Dario

    2016-12-01

    The Lagrangian dynamics of semiflexible particles in homogeneous and isotropic turbulent flows is studied by means of analytically solvable stochastic models and direct numerical simulations. The stationary statistics of the bending angle shows a strong dependence on the dimension of the flow. In two-dimensional turbulence, particles are found in either a fully extended or a fully folded configuration; in three dimensions, the predominant configuration is the fully extended one. Such a sensitivity of the bending statistics on the dimensionality of the flow is peculiar to fluctuating flows and is not observed in laminar stretching flows.

  10. Scalar mixing in isotropic turbulence

    Science.gov (United States)

    Kosály, George

    1989-04-01

    Eswaran and Pope [Phys. Fluids 31, 506 (1988)] performed direct numerical simulations to study the influence of the initial scalar integral length scale on mixing in stationary, isotropic turbulence. Their data demonstrate that both the decay rate and the shape of the rms versus time curve depend on the initial value of the scalar-to-velocity integral length-scale ratio. The present paper discusses modifications of the high Reynolds number theory of Corrsin [AIChE J. 10, 870 (1964)]. The predictions mirror the behavior found in the moderate Reynolds number simulations.

  11. Interaction between transverse isotropy rock slope and supporting structure

    Institute of Scientific and Technical Information of China (English)

    段靓靓; 方理刚

    2008-01-01

    In order to study the interaction between transverse isotropy rock mass and supporting structure,the laboratory tests for rock sampled from the slope at expressway project were carried out,and the parameters of elasticity for transverse isotropic rock were determined by the uniaxial compression tests for rock sample with different strike of stratification plane.Then,based on the relationship of stress-stain for transverse isotropic rock mass,the analytical model was established for the interaction between transverse isotropic rock mass and frame beam with pre-stressed anchor cable.Furthermore,the conception of the best anchorage-angle in pre-stressed anchor cable was proposed.At last,the parameters of the interaction between transverse isotropy rock mass and frame beam with pre-stressed anchor cable were investigated by finite element method,and the best anchorage-angle in pre-stressed anchor cable was obtained.The rules of the influence of the directivity of stratification plane on supporting structure were determined.The results show that the analytical model and numerical method on the design of pre-stressed anchor cable with frame beam supporting for transverse isotropy rock slope are reasonable and reliable in practical engineering design.

  12. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  13. Isotropic stars in general relativity

    CERN Document Server

    Mak, M K

    2013-01-01

    We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior spacetime of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only $n=21$ terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essential...

  14. Macroscopic Simulation of Isotropic Permanent Magnets

    CERN Document Server

    Bruckner, Florian; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  15. Macroscopic simulation of isotropic permanent magnets

    Science.gov (United States)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  16. Controlling elastic wave with isotropic transformation materials

    CERN Document Server

    Chang, Zheng; Hu, Gengkai; Tao, Ran; Wang, Yue

    2010-01-01

    There are great demands to design functional devices with isotropic materials, however the transformation method usually leads to anisotropic material parameters difficult to be realized in practice. In this letter, we derive the isotropic transformed material parameters in case of elastodynamic under local conformal transformation, they are subsequently used to design a beam bender, a four-beam antenna and an approximate carpet cloak for elastic wave with isotropic materials, the simulation results validate the derived transformed material parameters. The obtained materials are isotropic and greatly simplify subsequent experimental implementation.

  17. Isotropic bodies and Bourgain's problem

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Milman, V. D., Pajor, A., Isotropic position and inertia ellipsoid and zonoids of the unit ball of a normed ndimensional space, Geometric aspects of functional analysis (1987-1988), Lecture Notes in Math., 1989, 1376:64-104.[2]Blaschke, W., Uber affine Geometry ⅩⅣ: eine minimum Aufgabe fur Legendres tragheits Ellipsoid, Ber. verh.sachs. Akad. d. Wiss., 1918, 70: 72-75.[3]Blaschke, W., Uber affine Geometry Ⅺ: losing der "Vierpunkproblems" von Sylvester aus der Teorie der geometrischen Wahrsdeinlichkeiten, Leipziger Berichte, 1917, 69: 436-453.[4]John, F., Polar correspondence with respect to convex regions, Duke Math. J., 1937, 3(2): 355-369.[5]Lutwak, E., Yang, D., Zhang, G., A new ellipsoid associated with convex bodes, Duke. Math. J., 2000, 104:375-390.[6]Bourgain, J., On the distribution of polynomails on high dimensional convex sets, Geometric aspects of functional analysis (1989-1990), Lecture Notes in Math., 1991, 1469: 127-137.[7]Dar, S., Remarks on Bourgain's problem on slicing of convex bodies, Geomitric aspects of functional analysis,in Oper. Theory Adv. Appl., Vol, 77, Basel: Birkhauser, 1995, 61-66.[8]Ball, K., Normed spaces with a weak-Gordon-Lewis property, in: Proc. of Funct. Anal., University of Texas and Austin (1987-1989), Lecture Notes in Math., 1991, 1470: 36-47.[9]Schneider, R., Weil, W., Zonoids and related topics, in Convexity and Its Applications (eds. Gruber, P. M., Wills,J. M.), Basel: Birkhauser, 1983, 296-317.[10]Bourgain, J., Klartag, B., Milman, V., A reduction of the slicing problem to finite volume ratio bodies, Geometry/Functional Analysis, C. R. Acad. Sci. Paris, Ser. I, 2003, 336: 331-334.[11]Ren, D. L., An Introduction to Integral Geometry (in Chinese), Shanghai: Science and Technology Press, 1988.[12]Gardner, R. J., Geometric Tomography, Cambridge: Cambridge University Press, 1995.[13]Leichtweiβ, K., Affine Geometry of Convex Bodies, Heidelberg: J. A. Barth, 1998.[14]Schneider, R., Convex Bodies: The Brunn

  18. Social allostasis: anticipatory regulation of the internal milieu

    Directory of Open Access Journals (Sweden)

    Jay eSchulkin

    2011-01-01

    Full Text Available Social regulation of the internal milieu is a fundamental behavioral adaptation. Cephalic capabilityis reflected by anticipatory behaviors to serve systemic physiological regulation. Homeostaticregulation, a dominant perspective, reflects reactive responses; allostatic regulation, thephysiology of change, emphasizes longer-term anticipatory, and feedforward systems. Steroids,such as cortisol, and peptides such as corticotrophin releasing hormone are but one exampleof such anticipatory regulatory systems. The concept of allostasis is in part to take accountof anticipatory control amidst diverse forms of adaptation underlying this regulatory adaptationthat supports social contact and internal milieu.

  19. How isotropic is the Universe?

    CERN Document Server

    Saadeh, Daniela; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-01-01

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of $(\\sigma_V/H)_0 < 4.7 \\times 10^{-11}$ (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, $(\\sigma_{T,\\rm reg}/H)_0<1.0 \\times 10^{-6}$ (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is...

  20. Constitutive modeling for isotropic materials

    Science.gov (United States)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  1. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...

  2. The thesis of the alkaline milieu in oncology: a review.

    Science.gov (United States)

    Malhotra, S L

    1993-02-01

    An alkaline milieu is a common factor in some carcinomas of the oropharynx and oesophagus, the stomach, the bronchus, the cervix and the large bowel. The hypothesis is advanced that a change to an alkaline pH enhances the mitotic activity of mucous cells and that this change can be often avoided by alterations in diet and habit.

  3. Les associations en milieu urbain dakarois: classification et ...

    African Journals Online (AJOL)

    Les associations en milieu urbain dakarois: classification et capacités développantes. ... They shift and adjust, in both their forms and objectives, to the social and ... increasingly meet individual and collective needs, which makes them appear ...

  4. Benchmark en Beleidstoets voor de Drinkwatersector. Indicatoren Waterkwaliteit en Milieu

    NARCIS (Netherlands)

    Versteegh JFM; Tangena BH; Mulschlegel JHC; IMD

    2004-01-01

    De aanleiding van de studie is het voornemen van de Minister van VROM de benchmark op te nemen in de Waterleidingwet. Deze verplichte benchmark zal bestaan uit vier onderdelen: waterkwaliteit, dienstverlening, milieu en financien. De drinkwatersector voert sinds 1999 op vrijwillige basis een bench

  5. Buckling analysis of thick isotropic plates by using exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    Sayyad A. S.

    2012-12-01

    Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.

  6. General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-06-15

    A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.

  7. Empirical isotropic chemical shift surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu

    2007-08-15

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

  8. On the Bending, Vibration and Stability of Laminated Rectangular Plates With Transversely Isotropic Layers%横观各向同性层合矩形板弯曲、振动 和稳定的三维精确分析

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 陈伟球; 徐荣桥

    2001-01-01

    针对四边简支的横观各向同性矩形板的弯曲 、 振动和稳定给出了新的状态空间分析方法从横观各向同性弹性力学的三维基本方程出发, 通过引入位移函数和应力函数, 构造了两类相互独立的状态空间方程, 不仅使原方程得到解耦而且降低了阶数,十分有利于具体问题的求解对于四边简支的矩形板, 建立了层合板上下表面状态变量间的关系式特别针 对矩形板的自由振动(稳定)问题, 发现存在两类彼此无关的形式, 一类对应板的纯面内振动(稳定), 而另一类则是一般意义上的板的弯曲振动(稳定)给出了数值结果, 并考察了相关参数的影响%A method based on newly presented state space formulations is developed for analyzing the bending, vibratio n and stability of laminated transversely isotropicrectangular plates with simp ly supported edges. By introducing two displacement functions and two stress fun ctions, two independent state equations were constructed based on the three-dime n sional elasticity equations for transverse isotropy. The original differential e quations are thus decoupled with the order reduced that will facilitate obtainin g solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were estab l ished. In particular, for the free vibration (stability) problem, it is found th at there exist two independent classes: One corresponds to the pure in-plane vib ration (stability) and the other to the general bending vibration (stability). N umerical examples are finally presented and the effects of some parameters are discussed.

  9. A Relativistic Algorithm with Isotropic Coordinates

    Directory of Open Access Journals (Sweden)

    S. A. Ngubelanga

    2013-01-01

    Full Text Available We study spherically symmetric spacetimes for matter distributions with isotropic pressures. We generate new exact solutions to the Einstein field equations which also contain isotropic pressures. We develop an algorithm that produces a new solution if a particular solution is known. The algorithm leads to a nonlinear Bernoulli equation which can be integrated in terms of arbitrary functions. We use a conformally flat metric to show that the integrals may be expressed in terms of elementary functions. It is important to note that we utilise isotropic coordinates unlike other treatments.

  10. Fluctuational shift of nematic-isotropic phase transition temperature

    Science.gov (United States)

    Kats, E. I.

    2017-02-01

    In this work we discuss a macroscopic counterpart to the microscopic mechanism of the straightening dimer mesogens conformations, proposed recently by S.M. Saliti, M.G.Tamba, S.N. Sprunt, C.Welch, G.H.Mehl, A. Jakli, J.T. Gleeson (Phys. Rev. Lett. 116, 217801 (2016)) to explain their experimental observation of the unprecedentedly large shift of the nematic-isotropic transition temperature. Our interpretation is based on singular longitudinal fluctuations of the nematic order parameter. Since these fluctuations are governed by the Goldstone director fluctuations they exist only in the nematic state. External magnetic field suppresses the singular longitudinal fluctuations of the order parameter (similarly as it is the case for the transverse director fluctuations, although with a different scaling over the magnetic field). The reduction of the fluctuations changes the equilibrium value of the modulus of the order parameter in the nematic state. Therefore it leads to additional (with respect to the mean field contribution) fluctuational shift of the nematic-isotropic transition temperature. Our mechanism works for any nematic liquid crystals, however the magnitude of the fluctuational shift increases with decrease of the Frank elastic moduli. Since some of these moduli supposed to be anomalously small for so-called bent-core or dimer nematic liquid crystals, just these liquid crystals are promising candidates for the observation of the predicted fluctuational shift of the phase transition temperature.

  11. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  12. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  13. Macroscopic Simulation of Isotropic Permanent Magnets

    OpenAIRE

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the...

  14. Tijd voor tijdschrijven : resultaten van het project Tijdschrijven milieu-openbaar ministerie, ressort Amsterdam

    NARCIS (Netherlands)

    Berg, E.A.I.M. van den

    1993-01-01

    Als doelstelling van het onderzoek in gekoppeld aan het project Tijdschrijven is geformuleerd: Het zichtbaar maken van de tijde die het milieu-OM besteedt aan de milieutaak en aan de niet-milieutaak, alsmede inzicht verschaffen in de aard van milieu-activiteiten van het milieu-OM en de verdeling van

  15. Brede inventarisatie milieu-effecten van veehouderij en landbouw = Environmental impacts of livestock systems

    NARCIS (Netherlands)

    Radersma, S.

    2010-01-01

    Inventarisatie van milieu-effecten, met informatie over de rol van de landbouw/veeteelt: Wat zijn de bronnen van het betreffende milieu-effect en hoe groot is de bijdrage door de landbouw en welke gevolgen hebben de betreffende milieu-effecten en hoe (on)herstelbaar zijn die gevolgen.Inventarization

  16. SELECTION VARIETALE ET MILIEU Sélection pour l’adaptation au milieu et prise en compte des interactions génotype/milieu

    Directory of Open Access Journals (Sweden)

    Brancourt-Hulmel Maryse

    2000-11-01

    Full Text Available L’adaptation au milieu est un objectif de sélection recherché pour un grand nombre d’espèces végétales et elle fait le plus souvent appel à l’analyse du rendement. L’améliorateur peut rechercher des génotypes présentant une « adaptation spécifique », c’est-à-dire une adaptation à des milieux spécifiques, ou au contraire une « adaptation générale » à des conditions de milieux variés *1+. L’adaptation spécifique pourra être obtenue pour des stress particuliers, observés en l’occurrence dans des milieux particuliers : citons, par exemple, l’adaptation du maïs à des froids printaniers dans les régions françaises septentrionales, l’adaptation du blé tendre d’hiver à une alimentation azotée sub-optimale, la tolérance de l’orge à la mosaïque modérée, etc. L’adaptation générale, parfois appelée adaptabilité, est conférée par une adaptation simultanée à un ensemble de contraintes du milieu, telles que le froid, la sécheresse, le manque d’eau, le manque ou l’excès d’azote, les maladies, etc. C’est en quelque sorte une somme d’adaptations spécifiques. Mais le nombre de contraintes du milieu est tel qu’il est difficile de les étudier toutes. Il faudrait, en effet, des dispositifs factoriels très lourds à mettre en place car nécessitant l’étude d’un grand nombre de facteurs à la fois, avec toutes les combinaisons entre facteurs. Les conditions naturelles sont, de surcroît, difficiles à reproduire en enceintes contrôlées. Ainsi, l’adaptation générale s’observe le plus souvent en conditions naturelles dans des réseaux d’expérimentation regroupant un ensemble de milieux sur plusieurs années, les « réseaux multilocaux et pluriannuels ». La notion d’adaptation est à replacer dans le contexte des interactions génotype/milieu car des variations d’adaptation se traduisent par des interactions génotype/milieu. Lorsque plusieurs génotypes sont

  17. Transversity and Meson Photoproduction

    CERN Document Server

    Goldstein, G R; Goldstein, Gary R.; Gamberg, Leonard

    2002-01-01

    Both meson photoproduction and semi-inclusive deep inelastic scattering can potentially probe transversity in the nucleon. We explore how that potential can be realized dynamically. The role of rescattering in both exclusive and inclusive meson production as a source for transverse polarization asymmetry is examined. We use a dynamical model to calculate the asymmetry and relate that to the transversity distribution of the nucleon.

  18. Multidimensional $C^0$ transversality

    OpenAIRE

    2014-01-01

    In 1994, Sakai introduced the property of $C^0$ transversality for two smooth curves in a two-dimensional manifold. This property was related to various shadowing properties of dynamical systems. In this short note, we generalize this property to arbitrary continuous mappings of topological spaces into topological manifolds. We prove a sufficient condition for the $C^0$ transversality of two submanifolds of a topological manifold and a necessary condition of $C^0$ transversality for mappings ...

  19. Amelioration of transference resistance: substitute therapists in milieu group psychotherapy.

    Science.gov (United States)

    Sperling, M B; Kibel, H D; Loutsch, E M

    1990-01-01

    Building upon Wolf's (1949) notion of the use of an alternate session in group psychotherapy, this paper suggests that an alternate therapist substituting for an absent regular therapist in milieu group psychotherapy can facilitate similar therapeutic benefits. The mechanism of this process of overcoming transference resistance is seen as twofold: (1) sessions with a substitute therapist allow patients to confront the infantilization often present in a milieu setting and experiment with more autonomous ego functioning. (2) Sessions with a substitute therapist create conditions which are apart from the ongoing process of the therapy group, thereby allowing for a therapeutic splitting process to develop wherein transference feelings about the regular therapist can be expressed to his or her "alter ego." Several case vignettes are presented in order to illustrate the clinical utility of a substitute therapist.

  20. The Transverse Spin

    CERN Document Server

    Artru, X

    2002-01-01

    Contents : 1. Pre-history 2. Transversity versus helicity 3. The massless limit. "Cardan" and "see-saw" transformations 4. Transversity distribution delta q(x). The diquark spectator model 5. Soffer inequality 6. Tensor charge sum rule 7. t-channel analysis 8. Selection rules for delta q(x) measurements 9. Evolution with Q squared 10. Quark polarimetry. The sheared-jet (Collins) effect 11. Single-spin asymmetries in inclusive experiments 12. Quark distribution dependent on both spin and transverse momentum 13. First evidence of quark transversity

  1. Milieu matters: Evidence that ongoing lifestyle activities influence health behaviors

    OpenAIRE

    Lowe, R; Norman, P.; Sheeran, P.

    2017-01-01

    Health behaviors occur within a milieu of lifestyle activities that could conflict with health actions. We examined whether cognitions about, and performance of, other lifestyle activities augment the prediction of health behaviors, and whether these lifestyle factors are especially influential among individuals with low health behavior engagement. Participants (N = 211) completed measures of past behavior and cognitions relating to five health behaviors (e.g., smoking, getting drunk) and 23 ...

  2. Bioinspired assembly of small molecules in cell milieu.

    Science.gov (United States)

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-03-30

    Self-assembly, the autonomous organization of components to form patterns or structures, is a prevalent process in nature at all scales. Particularly, biological systems offer remarkable examples of diverse structures (as well as building blocks) and processes resulting from self-assembly. The exploration of bioinspired assemblies not only allows for mimicking the structures of living systems, but it also leads to functions for applications in different fields that benefit humans. In the last several decades, efforts on understanding and controlling self-assembly of small molecules have produced a large library of candidates for developing the biomedical applications of assemblies of small molecules. Moreover, recent findings in biology have provided new insights on the assemblies of small molecules to modulate essential cellular processes (such as apoptosis). These observations indicate that the self-assembly of small molecules, as multifaceted entities and processes to interact with multiple proteins, can have profound biological impacts on cells. In this review, we illustrate that the generation of assemblies of small molecules in cell milieu with their interactions with multiple cellular proteins for regulating cellular processes can result in primary phenotypes, thus providing a fundamentally new molecular approach for controlling cell behavior. By discussing the correlation between molecular assemblies in nature and the assemblies of small molecules in cell milieu, illustrating the functions of the assemblies of small molecules, and summarizing some guiding principles, we hope this review will stimulate more molecular scientists to explore the bioinspired self-assembly of small molecules in cell milieu.

  3. Transverse Shear Behavior of a Nomex Core for Sandwich Panels

    Science.gov (United States)

    Nasir, M. A.; Khan, Z.; Farooqi, I.; Nauman, S.; Anas, S.; Khalil, S.; Pasha, A.; Khan, Z.; Shah, M.; Qaiser, H.; Ata, R.

    2015-01-01

    The out-of-plane transverse shear characteristics of a Nomex honeycomb core have been studied. Finite-element analyses were performed to find the equivalent transverse shear moduli of the honeycomb core by using a unit-cell-based modeling approach with account of the orthotropic nature of Nomex paper. The results obtained are compared with those of three theoretical approaches. The differences between the numerical and theoretical results are attributed to the isotropic behavior of the basic core material considered in the theoretical approaches.

  4. Isotropic Growth of Graphene toward Smoothing Stitching.

    Science.gov (United States)

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  5. TRANSVERSITY SINGLE SPIN ASYMMETRIES.

    Energy Technology Data Exchange (ETDEWEB)

    BOER,D.

    2001-04-27

    The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

  6. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    Science.gov (United States)

    Garbacz, Piotr

    2016-08-01

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.

  7. Hypersurfaces with Isotropic Para-Blaschke Tensor

    Institute of Scientific and Technical Information of China (English)

    Jian Bo FANG; Kun ZHANG

    2014-01-01

    Let Mn be an n-dimensional submanifold without umbilical points in the (n+1)-dimen-sional unit sphere Sn+1. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a1-form Φ called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0, 2) tensor D = A+μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.

  8. Derivatives on the isotropic tensor functions

    Institute of Scientific and Technical Information of China (English)

    DUI; Guansuo; WANG; Zhengdao; JIN; Ming

    2006-01-01

    The derivative of the isotropic tensor function plays an important part in continuum mechanics and computational mechanics, and also it is still an opening problem. By means of a scalar response function and solving a tensor equation, this problem is well studied. A compact explicit expression for the derivative of the isotropic tensor function is presented, which is valid for both distinct and repeated eigenvalue cases. Throughout the analysis, the formulation holds for general isotropic tensor functions without need to solve eigenvector problems or determine coefficients. On the theoretical side, a very simple solution of a tensor equation is obtained. As an application to continuum mechanics, a base-free expression for the Hill's strain rate is given, which is more compact than the existent results. Finally, with an example we compute the derivative of an exponent tensor function. And the efficiency of the present formulations is demonstrated.

  9. Static spherically symmetric wormholes with isotropic pressure

    CERN Document Server

    Cataldo, Mauricio; Rodríguez, Pablo

    2016-01-01

    In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there is no spherically symmetric traversable wormholes sustained by sources with a linear equation of state $p=\\omega \\rho$ for the isotropic pressure, independently of the form of the redshift function $\\phi(r)$. We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

  10. Preferential sampling of helicity by isotropic helicoids

    CERN Document Server

    Gustavsson, Kristian

    2016-01-01

    We present a theoretical and numerical study on the motion of isotropic helicoids in complex flows. These are particles whose motion is invariant under rotations but not under mirror reflections of the particle. This is the simplest, yet unexplored, extension of the much studied case of small spherical particles. We show that heavy isotropic helicoids, due to the coupling between translational and rotational degrees of freedom, preferentially sample different helical regions in laminar or chaotic advecting flows. This opens the way to control and engineer particles able to track complex flow structures with potential applications to microfluidics and turbulence.

  11. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  12. The local cytokine and chemokine milieu within malignant effusions.

    Science.gov (United States)

    Atanackovic, Djordje; Cao, Yanran; Kim, Ji-Won; Brandl, Stephan; Thom, Ina; Faltz, Christiane; Hildebrandt, York; Bartels, Katrin; de Weerth, Andreas; Hegewisch-Becker, Susanna; Hossfeld, Dieter Kurt; Bokemeyer, Carsten

    2008-01-01

    Malignant effusions offer a unique opportunity for the study of interactions between the human immune system and cancer. We have recently demonstrated that malignant effusions are characterized by an accumulation of T cells expressing chemokine receptors such as CCR4, which is commonly found on Th2 cells. In contrast, effector T cells expressing chemokine receptors typical for Th1 cells, such as CCR5, showed a diminished homing into malignant effusions. We analyzed concentrations of 12 different cytokines and 9 chemokines within malignant and nonmalignant effusions and investigated cytokine expression by effusion-infiltrating leukocytes. We observed that concentrations of the immunoregulatory cytokine TGF-beta(1) and of angiogenic factors VEGF and IL-8 were markedly increased within effusions caused by malignancies. However, we did not observe signs of a typical Th1 or Th2 milieu. Analyzing concentrations of 9 different chemokines, we found elevated concentrations of the chemokines MDC, eotaxin, I-TAC, and MCP-1 in malignant effusions. Interestingly, tumor-infiltrating leukocytes themselves seemed to contribute strongly to the creation of a distinct cytokine/chemokine pattern within cancer-related effusions. Additional analyses suggested that this cytokine/chemokine milieu might support an enrichment of immunosuppressive leukocytes. The local cytokine and chemokine milieu within malignant effusions seems to promote angiogenesis and to block an efficient immune-mediated antitumor response. An elimination of such tumor-promoting influences will be necessary in order to transform local immunotolerance into clinically relevant immune recognition of tumors causing malignant effusions. (c) 2008 S. Karger AG, Basel

  13. Approximating a harmonizable isotropic random field

    Directory of Open Access Journals (Sweden)

    Randall J. Swift

    2001-01-01

    Full Text Available The class of harmonizable fields is a natural extension of the class of stationary fields. This paper considers a stochastic series approximation of a harmonizable isotropic random field. This approximation is useful for numerical simulation of such a field.

  14. Analysis of Mancos shale failure in light of localization theory for transversely isotropic materials.

    Science.gov (United States)

    Ingraham, M. D.; Dewers, T. A.; Heath, J. E.

    2016-12-01

    Utilizing the localization conditions laid out in Rudnicki 2002, the failure of a series of tests performed on Mancos shale has been analyzed. Shale specimens were tested under constant mean stress conditions in an axisymmetric stress state, with specimens cored both parallel and perpendicular to bedding. Failure data indicates that for the range of pressures tested the failure surface is well represented by a Mohr- Coulomb failure surface with a friction angle of 34.4 for specimens cored parallel to bedding, and 26.5 for specimens cored perpendicular to bedding. There is no evidence of a yield cap up to 200 MPa mean stress. Comparison with the theory shows that the best agreement in terms of band angles comes from assuming normality of the plastic strain increment. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Effects of structure on deformation and strength characteristics of transversely isotropic man-made geomaterials

    Science.gov (United States)

    Usoltseva, OM; Tsoi, PA; Semenov, VN

    2017-02-01

    The laboratory tests on uniaxial and triaxial (Karman scheme) compression of bedded specimens (made of equivalent man-made geomaterial, meta-siltstone and shale) has allowed deriving relations between the strength and deformation characteristics and the bedding angle of the specimens. The elasticity and strength are assessed in accordance with the theoretical model by Salamon–Tien and the Hoek–Brown failure criterion. For the bedded geomedia (man-made geomaterial), the Salamon–Tien model yields a satisfactory estimate of the elastic characteristics (elasticity modulus, Poisson’s ratio). Based on the use of the Hoek–Brown criterion, the authors have derived a strength parameter independent of the lateral pressure.

  16. Shear wave vibrometry evaluation in transverse isotropic tissue mimicking phantoms and skeletal muscle.

    Science.gov (United States)

    Aristizabal, Sara; Amador, Carolina; Qiang, Bo; Kinnick, Randall R; Nenadic, Ivan Z; Greenleaf, James F; Urban, Matthew W

    2014-12-21

    Ultrasound radiation force-based methods can quantitatively evaluate tissue viscoelastic material properties. One of the limitations of the current methods is neglecting the inherent anisotropy nature of certain tissues. To explore the phenomenon of anisotropy in a laboratory setting, we created two phantom designs incorporating fibrous and fishing line material with preferential orientations. Four phantoms were made in a cube-shaped mold; both designs were arranged in multiple layers and embedded in porcine gelatin using two different concentrations (8%, 14%). An excised sample of pork tenderloin was also studied. Measurements were made in the phantoms and the pork muscle at different angles by rotating the phantom with respect to the transducer, where 0° and 180° were defined along the fibers, and 90° and 270° across the fibers. Shear waves were generated and measured by a Verasonics ultrasound system equipped with a linear array transducer. For the fibrous phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 3.60  ±  0.03 and 3.18  ±  0.12 m s(-1) and with 14% gelatin were 4.10  ±  0.11 and 3.90  ±  0.02 m s(-1). For the fishing line material phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 2.86  ±  0.20 and 2.44  ±  0.24 m s(-1) and with 14% gelatin were 3.40  ±  0.09 and 2.84  ±  0.14 m s(-1). For the pork muscle, the mean and standard deviations of the shear wave speeds along the fibers (0°) at two different locations were 3.83  ±  0.16 and 3.86  ±  0.12 m s(-1) and across the fibers (90°) were 2.73  ±  0.18 and 2.70  ±  0.16 m s(-1), respectively. The fibrous and fishing line gelatin-based phantoms exhibited anisotropy that resembles that observed in the pork muscle.

  17. Effets de la taille finie du milieu non-linéaire sur le bruit quantique spatial généré par un oscillateur paramétrique optique confocal

    Science.gov (United States)

    Lopez, L.; Gatti, A.; Maitre, A.; Treps, N.; Gigan, S.; Fabre, C.

    2004-11-01

    Nous nous intéressons au comportement spatial des fluctuations quantiques à la sortie d'un oscillateur paramétrique optique dégénéré en modes transverses, sous le seuil. En vue de futures expériences, nous étudions les effets de la diffraction dans le milieu paramétrique sur le bruit quantique spatial. Nous montrons que l'on voit apparaître une aire de cohérence de taille finie pour les effets quantiques transverses.

  18. ISOTROPIC TEXTURING OF POLYCRYSTALLINE SILICON WAFERS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; H. Shen; Y.F. Hu

    2005-01-01

    An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal etching conditions have been determined by etching rate calculation, scanning electron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentration which in turn leads to the dissimilarity of etching speed. Textured polycrystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special relationship between reflectivity and etching rate was studied. Reflectance measurements show that isotropic texturing is one of the suitable techniques for texturing polycrystalline silicon wafers and benefits solar cells performances.

  19. Isotropic-planar illumination for PIV experiments

    Science.gov (United States)

    Atkins, Michael D.; Kim, Tongbeum

    2015-03-01

    A new method for laser illumination in particle image velocimetry (PIV) has been introduced: internal "isotropic-planar" illumination that provides laser light to regions of the flow field that were previously cast into shadow using the conventional external (laser light sheet) illumination method. To demonstrate the effectiveness of the isotropic-planar illumination method, a comparison of the measured velocity field around five side-by-side circular cylinders that are immersed in uniform flow is made against the conventional external illumination method. The new method is effective at eliminating the shadow region, allowing the velocity field of the upstream, gap and downstream regions around the five side-by-side circular cylinders to be measured simultaneously. These PIV measurements provide new insight into the behavior of the gap flow that passes between the cylinders.

  20. Isotropization of the quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, T.; Gelis, F.

    2014-06-15

    We report here recent analytical and numerical work on the theoretical treatment of the early stages of heavy ion collisions, that amounts to solving the classical Yang–Mills equations with fluctuating initial conditions. Our numerical simulations suggest a fast isotropization of the pressure tensor of the system. This trend appears already for small values of the coupling constant α{sub s}. In addition, the system exhibits an anomalously small shear viscosity.

  1. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  2. Infinite Products of Random Isotropically Distributed Matrices

    CERN Document Server

    Il'yn, A S; Zybin, K P

    2016-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  3. Conserved quantities in isotropic loop quantum cosmology

    CERN Document Server

    Cartin, Daniel

    2012-01-01

    We develop an action principle for those models arising from isotropic loop quantum cosmology, and show that there is a natural conserved quantity $Q$ for the discrete difference equation arising from the Hamiltonian constraint. This quantity $Q$ relates the semi-classical limit of the wavefunction at large values of the spatial volume, but opposite triad orientations. Moreover, there is a similar quantity for generic difference equations of one parameter arising from a self-adjoint operator.

  4. Infinite Products of Random Isotropically Distributed Matrices

    Science.gov (United States)

    Il'yn, A. S.; Sirota, V. A.; Zybin, K. P.

    2017-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  5. Killing Forms of Isotropic Lie Algebras

    CERN Document Server

    Malagon, Audrey

    2010-01-01

    This paper presents a method for computing the Killing form of an isotropic Lie algebra defined over an arbitrary field based on the Killing form of a subalgebra containing its anisotropic kernel. This approach allows for streamlined formulas for many Lie algebras of types E6 and E7 and yields a unified formula for all Lie algebras of inner type E6, including the anisotropic ones.

  6. A New Type of Isotropic Cosmological Model

    CERN Document Server

    Naboulsi, R

    2003-01-01

    The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.

  7. Deconstructed Transverse Mass Variables

    CERN Document Server

    Ismail, Ahmed; Virzi, Joseph S; Walker, Devin G E

    2014-01-01

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. We demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton, jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. ...

  8. Representation and prediction for locally harmonizable isotropic random fields

    Directory of Open Access Journals (Sweden)

    Randall J. Swift

    1995-01-01

    Full Text Available The class of harmonizable fields is a natural extension of the class of stationary fields. This paper considers fields whose increments are harmonizable and isotropic. Spectral representations are obtained for locally harmonizable isotropic fields. A linear least squares prediction for locally harmonizable isotropic fields is considered.

  9. Negative transverse impedance

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1989-06-12

    Recently, measurements in the SPS show that the coherent tune shift in the horizontal direction has positive values whereas that in the vertical direction has negative ones. Thus the existence of negative transverse impedance gets confirmed in a real machine. This stimulates us to start a new round of systematic studies on this interesting phenomenon. The results obtained from our computer simulations are presented in this note. Our simulations demonstrate that the negative transverse impedance may appear when the rotational symmetry embedded in a discontinuity is broken, and that the geometries that we have studies may be the source of the positive horizontal tune shift measured in the SPS.

  10. Multiple Transversals Greedily

    OpenAIRE

    Naszódi, Márton; Polyanskii, Alexandr

    2016-01-01

    Lov\\'asz and Stein (independently) proved that any hypergraph satisfies $\\tau\\leq (1+\\ln \\Delta)\\tau^{\\ast}$, where $\\tau$ is the transversal number, $\\tau^{\\ast}$ is its fractional version, and $\\Delta$ denotes the maximum degree. We prove $\\tau_f\\leq 3.17\\tau^{\\ast}\\max\\{\\ln \\Delta, f\\}$ for the $f$-fold transversal number $\\tau_f$. Similarly to Lov\\'asz and Stein, we also show that this bound can be achieved non-probabilistically, using a greedy algorithm. As a combinatorial application, w...

  11. Group Milieu in systemic and psychodynamic group therapy

    DEFF Research Database (Denmark)

    Lau, Marianne Engelbrecht

    in a randomized study of systemic versus psychodynamic group therapy, that the short-term outcome for patients who received systemic group psychotherapy was significantly better than the outcome for patients who received psychodynamic group psychotherapy. The current study assessed the group milieu in both groups....... Methods: This randomized prospective study included 106 women: 52 assigned to psychodynamic group psychotherapy and 54 assigned to systemic group psychotherapy. The Group Environment Scale (GES) was filled in the mid phase of therapy and analysed in three dimensions and 10 subscales. Results: The systemic...... group was characterized by statistically significant highest scores on Relationship (ES = 1.27) and System Maintenance / Change Dimension (ES= 1.28), while the scores for Personal Growth Dimension were comparable in the two groups. Group S had statistically significant higher scores on the following...

  12. Thrombosis in the uremic milieu--emerging role of "thrombolome".

    Science.gov (United States)

    Shashar, Moshe; Francis, Jean; Chitalia, Vipul

    2015-01-01

    Chronic kidney disease (CKD) is characterized by retention of a number of toxins, which unleash cellular damage. CKD environment with these toxins and a host of metabolic abnormalities (collectively termed as uremic milieu) is highly thrombogenic. CKD represents a strong and independent risk factor for both spontaneous venous and arterial (postvascular injury) thrombosis. Emerging evidence points to a previously unrecognized role of some of the prothrombotic uremic toxins. Here, we provide an overview of thrombosis in CKD and an update on indolic uremic toxins, which robustly increase tissue factor, a potent procoagulant, in several vascular cell types enhancing thrombosis. This panel of uremic toxins, which we term "thrombolome" (thrombosis and metabolome), represents a novel risk factor for thrombosis and can be further explored as biomarker for postvascular interventional thrombosis in patients with CKD.

  13. Natuur- en milieu-educatie, tussen beleven en overleven : een cultuurpedagogisch vraagstuk

    NARCIS (Netherlands)

    Praamsma, J.M.

    1993-01-01

    Er zijn in de natuur- en milieu-educatie twee wegen te onderkennen. De eerste weg vertrekt vanuit de beleving van de natuur, de andere vanuit de wetenschappelijk-technische oplossing van milieuproblemen. In mijn bijdrage wil ik duidelijk maken dat binnen de natuur- en milieu-educatie deze beide bena

  14. Milieukwaliteitseisen: een model ter beoordeling van de kwaliteit van het milieu ten aanzien van radioactiviteit

    NARCIS (Netherlands)

    Delfini MG; Leenhouts HP

    1989-01-01

    In het modeal wordt als eis voor de kwaliteit van het milieu gesteld dat de radionuclide-concentratie in de verschillende milieucompartimenten beperkt moet blijven om het effectieve dosisequivalent voor de "reference man" die zich in dat milieu bevindt, onder een bepaald referentienive

  15. Using Milieu Training to Promote Photograph Exchange for a Young Child with Autism

    Science.gov (United States)

    Ogletree, Billy T.; Davis, Patricia; Hambrecht, Georgia; Phillips, Ellen Wooten

    2012-01-01

    A milieu teaching sequence was used to train photograph exchange as a method of requesting to a 7-year-old boy with autism. A multiple baseline design across four items (ball, puzzle, books, bubbles) was used to identify a functional relation between requesting and the milieu teaching sequence. Although performance during intervention was…

  16. Spontaneous transverse colon volvulus.

    Science.gov (United States)

    Sana, Landolsi; Ali, Gassara; Kallel, Helmi; Amine, Baklouti; Ahmed, Saadaoui; Ali, Elouer Mohamed; Wajdi, Chaeib; Saber, Mannaï

    2013-01-01

    We report a case of spontaneous transverse colon volvulus in a young healthy woman. It constitutes an unusual case since it occurred in a young healthy woman with a subacute onset and no aetiological factor has been found. Its diagnosis is still challenging. Prompt recognition with emergency intervention constitutes the key to successful outcome.

  17. Figures of transversality

    DEFF Research Database (Denmark)

    Gammeltoft, Tine

    2008-01-01

    affective and embodied aspects. Seeing the anomalous fetus as a "figure of transversality," as a critical focus for powerful imaginings and desires, I show how state–society relations in Vietnam are suffused by visceral affectivity and moral engagement. In the realm of reproduction, intense sentiments...

  18. Transverse myelitis spectrum disorders

    Directory of Open Access Journals (Sweden)

    Pandit Lekha

    2009-01-01

    Full Text Available Acute transverse myelitis (ATM is an inflammatory demyelinating disorder that affects the spinal cord focally resulting in motor sensory and autonomic dysfunction. Establishing the diagnosis of ATM is not as difficult as determining the possible etiology. There is a difference in the perception of ATM seen in the West as compared to developing countries. In the West multiple sclerosis (MS is the most common inflammatory disorder of the central nervous system. An attack of ATM may be the beginning of MS. However, this may not be the case in developing countries where MS is uncommon. Most often transverse myelitis is monophasic and at best represents a site-restricted form of acute disseminated encephalomyelitis (ADEM. Traditionally the combination of optic neuritis and ATM, occurring as a monophasic illness would have been called as neuromyelitis optica (NMO. Changing concepts in the definition of NMO and the discovery of a biomarker, neuromyelitis optica immunoglobulin (NMO_IgG, has changed the way relapsing autoimmune disorders are being perceived currently. A variety of idiopathic inflammatory disorders such as Japanese form of optic spinal MS, recurrent myelitis, and recurrent optic neuritis have been brought under the umbrella of neuromyelitis spectrum disorders because of the association with NMO-IgG. Complete transverse myelitis accompanied by longitudinally extensive transverse myelitis which is seronegative for this biomarker has also been reported from several countries including Japan, Australia, and India. Thus, ATM is a heterogeneous disorder with a varied clinical spectrum, etiology, and outcome.

  19. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  20. ON NON-ISOTROPIC JACOBI PSEUDOSPECTRAL METHOD

    Institute of Scientific and Technical Information of China (English)

    Benyu Guo; Keji Zhang

    2008-01-01

    In this paper,a non-isotropic Jacobi pseudospectral method is proposed and its applications are considered.Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson type inequalities are established,which play an important role in pseudospectral method.The pseudospectral method is applied to a twodimensional singular problem and a problem on axisymmetric domain.The convergence of proposed schemes is established.Numerical results demonstrate the efficiency of the proposed method.

  1. Linearized Holographic Isotropization at Finite Coupling

    CERN Document Server

    Atashi, Mahdi; Jafari, Ghadir

    2016-01-01

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that increasing the Gauss-Bonnet coupling leads to significant increasing of the thermalization time. By including higher order corrections, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon.

  2. Isotropic cosmological singularities other matter models

    CERN Document Server

    Tod, K P

    2003-01-01

    Isotropic cosmological singularities are singularities which can be removed by rescaling the metric. In some cases already studied (gr-qc/9903008, gr-qc/9903009, gr-qc/9903018) existence and uniqueness of cosmological models with data at the singularity has been established. These were cosmologies with, as source, either perfect fluids with linear equations of state or massless, collisionless particles. In this article we consider how to extend these results to a variety of other matter models. These are scalar fields, massive collisionless matter, the Yang-Mills plasma of Choquet-Bruhat, or matter satisfying the Einstein-Boltzmann equation.

  3. Qualitative analysis of collapsing isotropic fluid spacetimes

    CERN Document Server

    Giambò, Roberto

    2013-01-01

    The structure of the Einstein field equations describing the gravitational collapse of spherically symmetric isotropic fluids is analyzed here for general equations of state. A suitable system of coordinates is constructed which allows us, under a hypothesis of Taylor-expandability with respect to one of the coordinates, to approach the problem of the nature of the final state without knowing explicitely the metric. The method is applied to investigate the singularities of linear barotropic perfect fluids solutions and to a family of accelerating fluids.

  4. Incoherent subharmonic light scattering in isotropic media.

    Science.gov (United States)

    Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S

    2005-02-01

    Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.

  5. Droplet size distribution in homogeneous isotropic turbulence

    Science.gov (United States)

    Perlekar, Prasad; Biferale, Luca; Sbragaglia, Mauro; Srivastava, Sudhir; Toschi, Federico

    2012-06-01

    We study the physics of droplet breakup in a statistically stationary homogeneous and isotropic turbulent flow by means of high resolution numerical investigations based on the multicomponent lattice Boltzmann method. We verified the validity of the criterion proposed by Hinze [AIChE J. 1, 289 (1955)] for droplet breakup and we measured the full probability distribution function of droplets radii at different Reynolds numbers and for different volume fractions. By means of a Lagrangian tracking we could follow individual droplets along their trajectories, define a local Weber number based on the velocity gradients, and study its cross-correlation with droplet deformation.

  6. Extensibility enables locomotion under isotropic drag

    CERN Document Server

    Pak, On Shun

    2011-01-01

    Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent.

  7. Transverse polarization in ; production

    Indian Academy of Sciences (India)

    Saurabh D Rindani

    2007-11-01

    With the use of transverse polarization (TP), a CP-odd and T-odd observable can be constructed when the final-state particles are self-conjugate. In the case of production, this observable can be used to probe a certain effective four-point + - CP-violating coupling, not accessible without TP. Effective CP-violating coupling does not contribute to this observable. A similar observable in production can be used to probe + - four-point couplings.

  8. On Generalized Inverse Transversals

    Institute of Scientific and Technical Information of China (English)

    Rong Hua ZHANG; Shou Feng WANG

    2008-01-01

    Let S be a regular semigroup,S° an inverse subsemigroup of S.S° is called a generalized inverse transversal of S,if V(x) ∩N S°≠φ.In this paper,some properties of this kind of semigroups are discussed.In particular,a construction theorem is obtained which contains some recent results in the literature as its special cases.

  9. [Ettore Majoran's transversal epistemology].

    Science.gov (United States)

    Bontems, Vincent

    2013-01-01

    « Il valore delle leggi statistiche nella fisica e nelle scienze sociali » is Ettore Majorana's only work on science. It offers a critique of classical determinism, establishing an analogy between the laws of quantum mechanics and social science and arguing that both are intrinsically linked to probability. This article first studies this argument from the standpoing of metaphysics, physics, and sociology, and then assesses the significance of this transversal epistemology.

  10. The science of healthy aging: genes, milieu, and chance.

    Science.gov (United States)

    Rattan, Suresh I S

    2007-10-01

    Healthy aging and longevity depend on successful and dynamic interactions among biological, psychological, and environmental factors. Biological aging occurs mainly during the period of survival beyond the evolutionarily required essential lifespan (ELS). Natural selection processes for survival and successful reproduction have selected for a range of genetically determined ELS-assuring maintenance and repair systems (MRSs). The progressive failure of MRSs, and the consequent accumulation of molecular heterogeneity and damage, underlie the biological basis of aging, age-related diseases, and eventual death. However, the genetic processes of MRSs operate in a complex hierarchy of factors which range from intracellular molecular factors to physiological, psychological, environmental, and other stochastic factors, including chance. This view also facilitates setting up a framework for understanding, researching, and developing effective and realistic strategies for aging intervention, prevention, and therapies. Manipulating genes and the milieu in which genes and gene products operate opens up novel possibilities of aging intervention and prevention. Gene therapy, stem cells, and modulation through functional foods, nutriceuticals, cosmeceuticals and lifestyle alterations, including mild stress-induced hormesis, are examples of such strategies at various levels of development and practice.

  11. Milieu matters: Evidence that ongoing lifestyle activities influence health behaviors.

    Science.gov (United States)

    Lowe, Rob; Norman, Paul; Sheeran, Paschal

    2017-01-01

    Health behaviors occur within a milieu of lifestyle activities that could conflict with health actions. We examined whether cognitions about, and performance of, other lifestyle activities augment the prediction of health behaviors, and whether these lifestyle factors are especially influential among individuals with low health behavior engagement. Participants (N = 211) completed measures of past behavior and cognitions relating to five health behaviors (e.g., smoking, getting drunk) and 23 lifestyle activities (e.g., reading, socializing), as well as personality variables. All behaviors were measured again at two weeks. Data were analyzed using neural network and cluster analyses. The neural network accurately predicted health behaviors at follow-up (R2 = .71). As hypothesized, lifestyle cognitions and activities independently predicted health behaviors over and above behavior-specific cognitions and previous behavior. Additionally, lifestyle activities and poor self-regulatory capability were more influential among people exhibiting unhealthy behaviors. Considering ongoing lifestyle activities can enhance prediction and understanding of health behaviors and offer new targets for health behavior interventions.

  12. Milieu matters: Evidence that ongoing lifestyle activities influence health behaviors

    Science.gov (United States)

    Lowe, Rob; Norman, Paul

    2017-01-01

    Health behaviors occur within a milieu of lifestyle activities that could conflict with health actions. We examined whether cognitions about, and performance of, other lifestyle activities augment the prediction of health behaviors, and whether these lifestyle factors are especially influential among individuals with low health behavior engagement. Participants (N = 211) completed measures of past behavior and cognitions relating to five health behaviors (e.g., smoking, getting drunk) and 23 lifestyle activities (e.g., reading, socializing), as well as personality variables. All behaviors were measured again at two weeks. Data were analyzed using neural network and cluster analyses. The neural network accurately predicted health behaviors at follow-up (R2 = .71). As hypothesized, lifestyle cognitions and activities independently predicted health behaviors over and above behavior-specific cognitions and previous behavior. Additionally, lifestyle activities and poor self-regulatory capability were more influential among people exhibiting unhealthy behaviors. Considering ongoing lifestyle activities can enhance prediction and understanding of health behaviors and offer new targets for health behavior interventions. PMID:28662120

  13. Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field

    Science.gov (United States)

    Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.

    2016-08-01

    In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R=(b/{B}0)({{\\ell }}\\parallel /{{\\ell }}\\perp ) for rms magnetic fluctuation b, large-scale mean field {{\\boldsymbol{B}}}0, and coherence scales parallel ({{\\ell }}\\parallel ) and perpendicular ({{\\ell }}\\perp ) to {{\\boldsymbol{B}}}0. Here we use a nonperturbative analytic framework based on Corrsin’s hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B 0 with finite b and isotropic fluctuations with {{\\ell }}\\parallel /{{\\ell }}\\perp =1, instead of the well-studied route of varying {{\\ell }}\\parallel /{{\\ell }}\\perp for b \\ll {B}0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with b z = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B 0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with b z = 0, when different routes to R\\to ∞ are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.

  14. Vector solitons in nonlinear isotropic chiral metamaterials

    CERN Document Server

    Tsitsas, N L; Frantzeskakis, D J

    2011-01-01

    Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schr\\"{o}dinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large.We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime.

  15. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  16. Direct numerical simulation of compressible isotropic turbulence

    Institute of Scientific and Technical Information of China (English)

    LI; Xinliang(李新亮); FU; Dexun(傅德薰); MAYanwen(马延文)

    2002-01-01

    Direct numerical simulation (DNS) of decaying compressible isotropic turbulence at tur-bulence Mach numbers of Mt = 0.2-0.7 and Taylor Reynolds numbers of 72 and 153 is per-formed by using the 7th order upwind-biased difference and 8th order center difference schemes.Results show that proper upwind-biased difference schemes can release the limit of "start-up"problem to Mach numbers.Compressibility effects on the statistics of turbulent flow as well as the mechanics of shockletsin compressible turbulence are also studied, and the conclusion is drawn that high Mach numberleads to more dissipation. Scaling laws in compressible turbulence are also analyzed. Evidence isobtained that scaling laws and extended self similarity (ESS) hold in the compressible turbulentflow in spite of the presence of shocklets, and compressibility has little effect on scaling exponents.

  17. An exhaustive list of isotropic apocalyptic scenarios

    CERN Document Server

    Parnovsky, S L

    2016-01-01

    We study the possible types of future singularities in the isotropic homogeneous cosmological models for the arbitrary equation of state of the contents of the Universe. We obtain all known types of these singularities as well as two new types using a simple approach. No additional singularity types are possible. We name the new singularities type "Big Squeeze" and "Little Freeze". The "Big Squeeze" is possible only in the flat Universe after a finite time interval. The density of the matter and dark energy tends to zero and its pressure to minus infinity. This requires the dark energy with a specific equation of state that has the same asymptotical behaviour at low densities as the generalised Chaplygin gas. The "Little Freeze" involves an eternal expansion of the Universe. Some solutions can mimic the $\\Lambda$CDM model.

  18. Kinematical uniqueness of homogeneous isotropic LQC

    Science.gov (United States)

    Engle, Jonathan; Hanusch, Maximilian

    2017-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space {{{R}}\\text{Bohr}} , as well as for the Fleischhack one {R}\\sqcup {{{R}}\\text{Bohr}} . We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on {{{R}}\\text{Bohr}} is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on {R} in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  19. New Isotropic and Anisotropic Sudden Singularities

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2004-01-01

    We show the existence of an infinite family of finite-time singularities in isotropically expanding universes which obey the weak, strong, and dominant energy conditions. We show what new type of energy condition is needed to exclude them ab initio. We also determine the conditions under which finite-time future singularities can arise in a wide class of anisotropic cosmological models. New types of finite-time singularity are possible which are characterised by divergences in the time-rate of change of the anisotropic-pressure tensor. We investigate the conditions for the formation of finite-time singularities in a Bianchi type $VII_{0}$ universe with anisotropic pressures and construct specific examples of anisotropic sudden singularities in these universes.

  20. Vector solitons in nonlinear isotropic chiral metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N L [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Lakhtakia, A [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Frantzeskakis, D J, E-mail: dfrantz@phys.uoa.gr [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)

    2011-10-28

    Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schroedinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative-real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large. We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime. (paper)

  1. Kinematical uniqueness of homogeneous isotropic LQC

    CERN Document Server

    Engle, Jonathan

    2016-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space $\\mathbb{R}_{\\mathrm{Bohr}}$, as well as for the Fleischhack one $\\mathbb{R} \\sqcup \\mathbb{R}_{\\mathrm{Bohr}}$. We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on $\\mathbb{R}_{\\mathrm{Bohr}}$ is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on $\\mathbb{R}$ in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  2. Gravity theories, Transverse Doppler and Gravitational Redshifts in Galaxy Clusters

    CERN Document Server

    Zhao, Hongsheng; Li, Baojiu

    2012-01-01

    There is growing interest in testing alternative gravity theories using the subtle Gravitational Redshifts in clusters of galaxies. However, current models all neglect a Transverse Doppler redshift of similar magnitude, and some models are not self-consistent. An equilibrium model would fix the Gravitational and Transverse Doppler velocity shifts to be about 6\\sigma^2/c and 3\\sigma^2/2c in order to fit the observed velocity dispersion \\sigma self-consistently. This result is from the Virial Theorem for a spherical isotropic cluster, and is insensitive to the theory of gravity. In any case, a gravitational redshift signal cannot directly distinguish between the Einsteinian and f(R) gravity theories, because the mass of the cluster dark halo must be treated as an unknown fitting parameter, whose value must vary according to the theory adopted, otherwise the system would be in equilibrium in one gravity theory and out of equilibrium in another.

  3. Transversality, old and new

    OpenAIRE

    2015-01-01

    Resum: Estudi de la transversalitat, una eina molt útil de la topologia diferencial tant en varietats (de manera geomètrica) i els espais de jets. També es fa un breu repàs a la geometria diferencial necessària. Per últim es mostra un aplicació a l'estudi d'equacions diferencials en el tor, una varietat molt coneguda. Summary: In this TFG we study transversality, a very useful tool in Differential Topology, which is applied to manifolds (in a geometric way) and to the space of jets. A summary...

  4. Can we remove the systematic error due to isotropic inhomogeneities?

    Science.gov (United States)

    Negishi, Hiroyuki; Nakao, Ken-ichi

    2017-01-01

    Usually, we assume that there is no inhomogeneity isotropic in terms of our location in our Universe. This assumption has not been observationally confirmed yet in sufficient accuracy, and we need to consider the possibility that there are non-negligible large-scale isotropic inhomogeneities in our Universe. The existence of large-scale isotropic inhomogeneities affects the determination of cosmological parameters. In particular, from only the distance-redshift relation, we cannot distinguish the inhomogeneous isotropic universe model from the homogeneous isotropic one, because of the ambiguity in the cosmological parameters. In this paper, in order to avoid such ambiguity, we consider three observables—the distance-redshift relation, the fluctuation spectrum of the cosmic microwave background radiation, and the scale of the baryon acoustic oscillation—and compare these observables in two universe models. One is the inhomogeneous isotropic universe model with the cosmological constant, and the other is the homogeneous isotropic universe model with dark energy other than the cosmological constant. We show that these two universe models cannot predict the same observational data of all three observables but the same ones of only two of three, as long as the perturbations are adiabatic. In principle, we can distinguish the inhomogeneous isotropic universe from the homogeneous isotropic one through the appropriate three observables, if the perturbations are adiabatic.

  5. Summary of research results 2012. Foundation 'Natuur en Milieu'. Factsheet; Samenvatting onderzoeksresultaten 2012. Stichting Natuur en Milieu. Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    Vegter, F.; Van der Lelij, B.

    2012-06-08

    A summary is given of a survey among 1.246 Dutch people between 16 and 70 years old on their attitude towards the environment. The following subjects were investigated: attitude towards nature and environment, ways to solve problems, tasks of environmental organizations, sustainable solutions, green reputation of politicians, well-known Dutch people and businesses [Dutch] Een samenvatting is gegeven van een enquete onder 1.246 Nederlanders tussen 16 en 70 jaar inzake hun houding tegenover natuur en milieu. De volgende onderwerpen komen aan de orde: Houding tegenover het thema natuur en milieu; Oplossingsrichtingen; Taken van milieuorganisaties; Oplossingen op het gebied van duurzaamheid; Groen imago politici, bekende Nederlanders en bedrijven.

  6. Practical improvements on photon diffusion theory : application to isotropic scattering

    NARCIS (Netherlands)

    Graaff, R; Rinzema, K

    2001-01-01

    Based on the analysis of an isotropic point source in an infinite, isotropically scattering turbid medium, we suggest several modifications to the well-known diffusion theory. Compared with standard diffusion theory these modifications, which require very little extra mathematics, lead to a substant

  7. Isotropic-to-nematic nucleation in suspensions of colloidal rods

    NARCIS (Netherlands)

    Cuetos, A.; van Roij, R.H.H.G.; Dijkstra, M.

    2008-01-01

    Using computer simulations, we study the isotropic-to-nematic nucleation in a fluid of colloidal hard rods as well as in a mixture of colloidal rods and non-adsorbing polymer. In order to follow the transformation of the system from the isotropic to the nematic phase, we use a new cluster criterion

  8. On the decay of homogeneous isotropic turbulence

    Science.gov (United States)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  9. Classical Weyl Transverse Gravity

    CERN Document Server

    Oda, Ichiro

    2016-01-01

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...

  10. Transverse Wobbling in $^{135}$Pr

    CERN Document Server

    Matta, J T; Li, W; Frauendorf, S; Ayangeakaa, A D; Patel, D; Schlax, K W; Palit, R; Saha, S; Sethi, J; Trivedi, T; Ghugre, S S; Raut, R; Sinha, A K; Janssens, R V F; Zhu, S; Carpenter, M P; Lauritsen, T; Seweryniak, D; Chiara, C J; Kondev, F G; Hartley, D J; Petrache, C M; Mukhopadhyay, S; Lakshmi, D Vijaya; Raju, M Kumar; Rao, P V Madhusudhana; Tandel, S K; Ray, S; Dönau, F

    2015-01-01

    A pair of transverse wobbling bands has been observed in the nucleus $^{135}$Pr. The wobbling is characterized by $\\Delta I$ =1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the Tilted Axis Cranking (TAC) model and the Quasiparticle Triaxial Rotor (QTR) Model.

  11. On the algebraic structure of isotropic generalized elasticity theories

    CERN Document Server

    Auffray, Nicolas

    2013-01-01

    In this paper the algebraic structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elementary parts of higher-order strain and stress tensors. Therefore, and in certain way, nth-order isotropic elasticity have the same kind of algebraic structure as anisotropic classical elasticity. This structure is investigated in the case of 2nd-order isotropic elasticity, and moduli characterizing the behavior are provided.

  12. Transversity and dihadron fragmentation functions

    CERN Document Server

    Bacchetta, A; Bacchetta, Alessandro; Radici, Marco

    2005-01-01

    The observation of the quark transversity distribution requires another soft object sensitive to the quark's transverse spin. Dihadron fragmentation functions represent a convenient tool to analyze partonic spin, which can influence the angular distribution of the two hadrons. In particular, the so-called interference fragmentation functions can be used to probe transversity both in semi-inclusive deep inelastic scattering as well as proton-proton collisions. We discuss two single-spin asymmetries sensitive to transversity in the these two processes, at leading twist and leading order in alpha_S.

  13. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  14. Shocklet statistics in compressible isotropic turbulence

    Science.gov (United States)

    Wang, Jianchun; Gotoh, Toshiyuki; Watanabe, Takeshi

    2017-02-01

    Shocklet statistics in compressible isotropic turbulence are studied by using numerical simulations with solenoidal forcing, at the turbulent Mach number Mt ranging from 0.5 up to 1.0 and at the Taylor Reynolds number Reλ ranging from 110 to 250. A power-law region of the probability density function (PDF) of the shocklet strength Mn-1 (Mn is the normal shock Mach number) is observed. The magnitude of the power-law exponent is found to decrease with the increase of Mt. We show that the most probable shocklet strength is proportional to Mt3, and the shocklet thickness corresponding to the most probable shock Mach number is proportional to Mt-2 in our numerical simulations. The PDFs of the jumps of the velocity and thermodynamic variables across a shocklet exhibit a similar power-law scaling. The statistics of the jumps of the velocity and thermodynamic variables are further investigated by conditioned average. Nonlinear models for the conditional average of the jumps of the velocity and thermodynamic variables are developed and verified.

  15. Near isotropic behaviour of turbulent thermal convection

    CERN Document Server

    Nath, Dinesh; Kumar, Abhishek; Verma, Mahendra K

    2016-01-01

    We investigate the anisotropy in turbulent convection in a 3D box using direct numerical simulation. We compute the anisotropic parameter $A = u_\\perp^{2}/(2u_{\\parallel}^{2})$, where $u_{\\perp}$ and $u_{\\parallel}$ are the components of velocity perpendicular and parallel to the buoyancy direction, the shell and ring spectra, and shell-to-shell energy transfers. We observe that the flow is nearly isotropic for the Prandtl number $\\mathrm{Pr} \\approx 1$, but the anisotropy increases with the Prandtl number. For $\\mathrm{Pr}=\\infty$, $A \\approx 0.3$, thus anisotropy is not very significant even in extreme cases. We also observe that $u_{\\parallel}$ feeds energy to $u_{\\perp}$ via pressure. The computation of shell-to-shell energy transfers show that the energy transfer in turbulent convection is local and forward, similar to fluid turbulence. These results are consistent with the Kolmogorov's spectrum observed by Kumar et al.~[Phys. Rev. E {\\bf 90}, 023016 (2014)] for turbulent convection.

  16. Transverse momentum spectra of the produced hadrons at SPS energy and a random walk model

    Indian Academy of Sciences (India)

    Bedangadas Mohanty

    2014-05-01

    The transverse momentum spectra of the produced hadrons have been compared to a model, which is based on the assumption that a nucleus–nucleus collision is a superposition of isotropically decaying thermal sources at a given freeze-out temperature. The freeze-out temperature in nucleus–nucleus collisions is fixed from the inverse slope of the transverse momentum spectra of hadrons in nucleon–nucleon collision. The successive collisions in the nuclear reaction lead to gain in transverse momentum, as the nucleons propagate in the nucleus following a random walk pattern. The average transverse rapidity shift per collision is determined from the nucleon–nucleus collision data. Using this information, we obtain parameter-free result for the transverse momentum distribution of produced hadrons in nucleus–nucleus collisions. It is observed that such a model is able to explain the transverse mass spectra of the produced pions at SPS energies. However, it fails to satisfactorily explain the transverse mass spectra of kaons and protons. This indicates the presence of collective effect which cannot be accounted for, by the initial state collision broadening of transverse momentum of produced hadrons, the basis of random walk model.

  17. Transverse kinetics of a charged drop in an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S.; Komoshvili, K. [Ariel University (Israel)

    2016-01-22

    We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed.

  18. Transverse Spin Physics at HERMES

    CERN Document Server

    Elschenbroich, U; Seidl, R

    2004-01-01

    Single-spin asymmetries in semi-inclusive pion production are measured by the HERMES experiment for the first time, with a transversely polarised hydrogen target. Two different sine-dependencies are extracted which can be related to the quark distributions transversity h_1(x) and the Sivers function f_1T^perp(x).

  19. Quark Helicity and Transversity Distributions

    CERN Document Server

    Hwang, Dae Sung

    2016-01-01

    The quark transversity distribution inside nucleon is less understood than the quark unpolarized and helicity distributions inside nucleon. In particular, it is important to know clearly why the quark helicity and transversity distributions are different. We investigate the origin of their discrepancy.

  20. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  1. Sudden relaminarisation and lifetimes in forced isotropic turbulence

    CERN Document Server

    Linkmann, Moritz

    2015-01-01

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall-bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows share the same phase-space dynamics.

  2. Killing vector fields and a homogeneous isotropic universe

    CERN Document Server

    Katanaev, M O

    2016-01-01

    Some basic theorems on Killing vector fields are reviewed. In particular, the topic of a constant-curvature space is examined. A detailed proof is given for a theorem describing the most general form of the metric of a homogeneous isotropic space-time. Although this theorem can be considered to be commonly known, its complete proof is difficult to find in the literature. An example metric is presented such that all its spatial cross sections correspond to constant-curvature spaces, but it is not homogeneous and isotropic as a whole. An equivalent definition of a homogeneous and isotropic space-time in terms of embedded manifolds is also given.

  3. Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results.

    Science.gov (United States)

    Popkov, V; Karevski, D; Schütz, G M

    2013-12-01

    We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle θ. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady-state currents scale as 1/N^{2} for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2θ/N.

  4. Transient response of isotropic, orthotropic and anisotropic composite-sandwich shells with the superparametric element

    Science.gov (United States)

    Mallikarjuna; Kant, T.; Fafard, M.

    1992-09-01

    The first-order Reissner-Mindlin shear deformation theory is employed to investigate the transient response of isotropic, layered orthotropic and anisotropic composite and sandwich shells. The eight-noded Serendipity and nine-noded Lagrangian quadrilateral superparametric shell elements are used. Numerical convergence and stability of the elements are established using an explicit central difference technique with a special mass matrix diagonalization scheme. The effects of transverse shear modulii of stiff layers, length/thickness and radius/length ratios, time step, finite element mesh, orientation of fibers and degree of orthotropy on the transient response of shells are studied. The variety of results presented here, based on realistic material properties of more commonly used advanced laminated composite shells, should serve as references for future investigations.

  5. Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves

    CERN Document Server

    Urzhumov, Yaroslav; Smith, David R; 10.1063/1.3691242

    2012-01-01

    We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.

  6. Low-velocity impact response of a pre-stressed isotropic Uflyand-Mindlin plate

    Directory of Open Access Journals (Sweden)

    Rossikhin Yury

    2017-01-01

    Full Text Available The low-velocity impact response of a precompressed circular isotropic elastic plate is investigated in the case when the dynamic behavior of the plate is described by equations taking the rotary inertia and transverse shear deformations into account. Contact interaction between the rigid impactor and the target is modeled by a generalized Hertz contact force, since it is assumed that the viscoelastic features of the plate represent themselves only in the place of contact and are governed by the standard linear solid model with fractional derivatives due to the fact that during the impact process decrosslinking occurs within the domain of the contact of the plate with the sphere, resulting in more free displacements of molecules with respect to each other, and finally in the decrease of the plate material viscosity in the contact zone.

  7. Transverse correlation: An efficient transverse flow estimator - initial results

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Henze, Lasse; Kortbek, Jacob

    2008-01-01

    of vascular hemodynamics, the flow angle cannot easily be found as the angle is temporally and spatially variant. Additionally the precision of traditional methods is severely lowered for high flow angles, and they breakdown for a purely transverse flow. To overcome these problems we propose a new method...... for estimating the transverse velocity component. The method measures the transverse velocity component by estimating the transit time of the blood between two parallel lines beamformed in receive. The method has been investigated using simulations performed with Field II. Using 15 emissions per estimate...

  8. Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites

    Science.gov (United States)

    Sepúlveda, A. T.; Guzman de Villoria, R.; Viana, J. C.; Pontes, A. J.; Wardle, B. L.; Rocha, L. A.

    2013-05-01

    The elastic response of vertically aligned-carbon nanotube/polydimethylsiloxane (A-CNT/PDMS) nanocomposites is presented in this study and related to the underlying aligned-CNT morphology. Multiwalled carbon nanotubes (MWCNTs) at 1% Vf are embedded in a flexible substrate of PDMS to create a flexible polymer nanocomposite (PNC). The PNC properties are evaluated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and tensile mechanical tests, and the full linearly elastic constitutive relation is established for such a PNC. The results suggest that the CNTs retain the alignment after wetting and curing of PDMS. PDMS is significantly modified by the reinforcing aligned-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties all different from PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNT/PDMS over PDMS by more than 900% and 100%, in the CNT longitudinal and transverse directions, respectively. This study reports the first full constitutive relation that may be useful in modeling PNCs as composites or as elements of hierarchical nanoengineered composites, particularly PDMS-CNT PNCs are envisioned as elements in biomedical devices such as pressure transducers and energy harvesters.

  9. Renormalization of Hierarchically Interacting Isotropic Diffusions

    Science.gov (United States)

    den Hollander, F.; Swart, J. M.

    1998-10-01

    We study a renormalization transformation arising in an infinite system of interacting diffusions. The components of the system are labeled by the N-dimensional hierarchical lattice ( N≥2) and take values in the closure of a compact convex set bar D subset {R}^d (d ≥slant 1). Each component starts at some θ ∈ D and is subject to two motions: (1) an isotropic diffusion according to a local diffusion rate g: bar D to [0,infty ] chosen from an appropriate class; (2) a linear drift toward an average of the surrounding components weighted according to their hierarchical distance. In the local mean-field limit N→∞, block averages of diffusions within a hierarchical distance k, on an appropriate time scale, are expected to perform a diffusion with local diffusion rate F ( k) g, where F^{(k)} g = (F_{c_k } circ ... circ F_{c_1 } ) g is the kth iterate of renormalization transformations F c ( c>0) applied to g. Here the c k measure the strength of the interaction at hierarchical distance k. We identify F c and study its orbit ( F ( k) g) k≥0. We show that there exists a "fixed shape" g* such that lim k→∞ σk F ( k) g = g* for all g, where the σ k are normalizing constants. In terms of the infinite system, this property means that there is complete universal behavior on large space-time scales. Our results extend earlier work for d = 1 and bar D = [0,1], resp. [0, ∞). The renormalization transformation F c is defined in terms of the ergodic measure of a d-dimensional diffusion. In d = 1 this diffusion allows a Yamada-Watanabe-type coupling, its ergodic measure is reversible, and the renormalization transformation F c is given by an explicit formula. All this breaks down in d≥2, which complicates the analysis considerably and forces us to new methods. Part of our results depend on a certain martingale problem being well-posed.

  10. Constitutive modeling for isotropic materials (HOST)

    Science.gov (United States)

    Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.

    1986-01-01

    The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined

  11. The isotropic blackbody CMB as evidence for a homogeneous universe

    CERN Document Server

    Clifton, Timothy; Bull, Philip

    2011-01-01

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology, but has not yet been answered decisively. Surprisingly, neither an isotropic primary CMB nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the Cosmological Principle with observations of the CMB alone.

  12. Characterizing error propagation in quantum circuits: the Isotropic Index

    Science.gov (United States)

    Fonseca de Oliveira, André L.; Buksman, Efrain; Cohn, Ilan; García López de Lacalle, Jesús

    2017-02-01

    This paper presents a novel index in order to characterize error propagation in quantum circuits by separating the resultant mixed error state in two components: an isotropic component that quantifies the lack of information, and a disalignment component that represents the shift between the current state and the original pure quantum state. The Isotropic Triangle, a graphical representation that fits naturally with the proposed index, is also introduced. Finally, some examples with the analysis of well-known quantum algorithms degradation are given.

  13. Some exact solutions in K-essence theory isotropic cosmology

    CERN Document Server

    Pimentel, Luis O

    2016-01-01

    We use a simple form of the K-essence theory and apply it to the classic isotropic cosmological model and seek exact solutions. The particular form of the kinetic term that we choose is $K \\left(\\phi, X \\right)= K_0(\\phi)X^m +K_1$. The resulting field equations in the homogeneous and isotropic cosmology (FRW)is considered. Several exact solutions are obtained.

  14. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  15. The isotropic blackbody CMB as evidence for a homogeneous universe

    OpenAIRE

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2011-01-01

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology, but has not yet been answered decisively. Surprisingly, neither an isotropic primary CMB nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary obser...

  16. Le Secteur de Psychiatrie en Milieu Pénitentiaire : Solutions de continuité ?

    Directory of Open Access Journals (Sweden)

    Catherine Paulet

    2012-10-01

    Full Text Available Une petite mise en mots et en sigles pour commencer si vous le voulez bien. Par secteur de psychiatrie en milieu pénitentiaire (SPMP, j’entends non seulement les 26 services médico-psychologiques régionaux (SMPR à vocation régionale, mais aussi tous les dispositifs de soins psychiatriques (DSP qui sont implantés dans les prisons, services constitués parfois, ou plus souvent unités fonctionnelles de secteurs de psychiatrie.Après vingt ans ou presque de pratique de la psychiatrie en milieu p...

  17. Fostering Biliteracy in a Monolingual Milieu: Reflections on Two Counter-Hegemonic English Immersion Classes

    Science.gov (United States)

    Manyak, Patrick C.

    2006-01-01

    This article presents data from two yearlong ethnographic studies of the biliteracy instruction and development of young Latina/o children in two counter-hegemonic English immersion classes in the English-only milieu established by California's Proposition 227. The author first describes the struggle that the teachers engaged in as they sought to…

  18. Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Østergaard, Henrik; Winther, Jakob R

    2005-01-01

    The thiol-disulfide exchange reaction plays a central role in the formation of disulfide bonds in newly synthesized proteins and is involved in many aspects of cellular metabolism. Because the thiolate form of the cysteine residue is the key reactive species, its electrostatic milieu is thought...

  19. The spiritual Tolkien milieu : a study of fiction‐based religion

    NARCIS (Netherlands)

    Davidsen, Markus Altena

    2014-01-01

    This book offers a comprehensive analysis of the organisation and development of the spiritual Tolkien milieu, a largely online-situated network of individuals and groups that draw on J.R.R. Tolkien’s literary mythology for spiritual inspiration. It is the first academic treatment of Tolkien spiritu

  20. Dragons and Dinosaurs: Directing Inquiry in Biology Using the Notions of "Milieu" and "Validation"

    Science.gov (United States)

    Achiam, Marianne; Solberg, Jan; Evans, Robert

    2013-01-01

    This article describes how inquiry teaching can be directed towards specific content learning goals while allowing for student exploration and validation of hypotheses. Drawing from the Theory of Didactical Situations, the concepts of "milieu" and "validation" are illustrated through two sample biology lessons designed to engage and challenge…

  1. Impact of Milieu Teaching on Communication Skills of Young Children with Autism Spectrum Disorder

    Science.gov (United States)

    Christensen-Sandfort, Robyn J.; Whinnery, Stacie B.

    2013-01-01

    This 5-month study examined the impact of a behaviorally based naturalistic teaching strategy, milieu teaching, on the communication skills of preschool-aged children with Autism Spectrum Disorder (ASD) in an early childhood special education (ECSE) classroom. A multiple baseline across participants design was used. Communication targets were…

  2. Impact of Milieu Teaching on Communication Skills of Young Children with Autism Spectrum Disorder

    Science.gov (United States)

    Christensen-Sandfort, Robyn J.; Whinnery, Stacie B.

    2013-01-01

    This 5-month study examined the impact of a behaviorally based naturalistic teaching strategy, milieu teaching, on the communication skills of preschool-aged children with Autism Spectrum Disorder (ASD) in an early childhood special education (ECSE) classroom. A multiple baseline across participants design was used. Communication targets were…

  3. Dragons and Dinosaurs: Directing Inquiry in Biology Using the Notions of "Milieu" and "Validation"

    Science.gov (United States)

    Achiam, Marianne; Solberg, Jan; Evans, Robert

    2013-01-01

    This article describes how inquiry teaching can be directed towards specific content learning goals while allowing for student exploration and validation of hypotheses. Drawing from the Theory of Didactical Situations, the concepts of "milieu" and "validation" are illustrated through two sample biology lessons designed to engage and challenge…

  4. Parent-Implemented Enhanced Milieu Teaching with Preschool Children Who Have Intellectual Disabilities

    Science.gov (United States)

    Kaiser, Ann P.; Roberts, Megan Y.

    2013-01-01

    Purpose: The purpose of this study was to compare the effects of enhanced milieu teaching (EMT) implemented by parents and therapists versus therapists only on the language skills of preschool children with intellectual disabilities (IDs), including children with Down syndrome and children with autism spectrum disorders. Method: Seventy-seven…

  5. Longitudinal and transverse structure functions in high Reynolds-number magneto-hydrodynamic turbulence

    CERN Document Server

    Friedrich, J; Schäfer, T; Grauer, R

    2016-01-01

    We investigate the scaling behavior of longitudinal and transverse structure functions in homogeneous and isotropic magneto-hydrodynamic (MHD) turbulence by means of an exact hierarchy of structure function equations as well as by direct numerical simulations of two- and three-dimensional MHD turbulence. In particular, rescaling relations between longitudinal and transverse structure functions are derived and utilized in order to compare different scaling behavior in the inertial range. It is found that there are no substantial differences between longitudinal and transverse structure functions in MHD turbulence. This finding stands in contrast to the case of hydrodynamic turbulence which shows persistent differences even at high Reynolds numbers. We propose a physical picture that is based on an effective reduction of pressure contributions due to local regions of same magnitude and alignment of velocity and magnetic field fluctuations. Finally, our findings underline the importance of the pressure term for ...

  6. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-06-10

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  7. Experimental investigation of transverse flow estimation using transverse oscillation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2003-01-01

    Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... of the approach, this paper presents simulated and experimental results, obtained at a blood velocity angle transverse to the ultrasound beam. The Field II program is used to simulate a setup with a 128 element linear array transducer. At a depth 27 mm a virtual blood vessel of radius 2.4 mm is situated...

  8. Dihadron Fragmentation Functions and Transversity

    Directory of Open Access Journals (Sweden)

    Radici Marco

    2015-01-01

    Full Text Available We present preliminary results for an updated extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. Data for proton and deuteron targets by HERMES and COMPASS allow for a flavor separation of the valence components of transversity, while di-hadron fragmentation functions are taken from the semi-inclusive production of two pion pairs in back-to-back jets in e+e− annihilation. The latter data from Belle have been reanalyzed using the replica method and a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function has been obtained. After encoding this piece of information into the deep-inelastic scattering cross section, the transversity has been re-extracted by using the most recent and more precise COMPASS data for proton target. This picture represents the current most realistic estimate of the uncertainties on our knowledge of transversity. The preliminary results indicate that the valence up component seems smaller and with a narrower error band than in previous extraction.

  9. Sudden relaminarisation and lifetimes in forced isotropic turbulence

    Science.gov (United States)

    Linkmann, Moritz; Morozov, Alexander

    2015-11-01

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number, similar to results on relaminarisation of localised turbulence in pipe and plane Couette flow. Results from simulations subjecting the observed large-scale flow to random perturbations of variable amplitude demonstrate that it is a linearly stable simple exact solution that can be destabilised by a finite-amplitude perturbation, like the Hagen-Poiseuille profile in pipe flow. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  10. Isotropic radical CO{sub 2}{sup -} in biological apatites

    Energy Technology Data Exchange (ETDEWEB)

    Rudko, V.V. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)], E-mail: vv_rudko@yahoo.com; Ishchenko, S.S.; Vorona, I.P.; Baran, N.P. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)

    2007-10-15

    The isotropic CO{sub 2}{sup -} EPR spectrum at g{approx}2.0006 for {gamma}-irradiated powders of dental enamel annealed at different temperatures up to 320{sup 0}C is studied. The signal intensity is found to increase with the growth of annealing temperature up to 240{sup 0}C. This finding contradicts to the existing model of isotropic CO{sub 2}{sup -} radical in apatites. The possible models of the radical in biological apatite are analyzed and discussed. On the basis of the results obtained it is suggested that in tooth enamel apatite the isotropic CO{sub 2}{sup -} radical is the bulk radical localized in structural voids of hydroxyapatite lattice, which occur in the vicinity of a carbon radical in position B.

  11. Comparative analysis of isotropic diffusion weighted imaging sequences

    Science.gov (United States)

    Vellmer, Sebastian; Stirnberg, Rüdiger; Edelhoff, Daniel; Suter, Dieter; Stöcker, Tony; Maximov, Ivan I.

    2017-02-01

    Visualisation of living tissue structure and function is a challenging problem of modern imaging techniques. Diffusion MRI allows one to probe in vivo structures on a micrometer scale. However, conventional diffusion measurements are time-consuming procedures, because they require several measurements with different gradient directions. Considerable time savings are therefore possible by measurement schemes that generate an isotropic diffusion weighting in a single shot. Multiple approaches for generating isotropic diffusion weighting are known and have become very popular as useful tools in clinical research. Thus, there is a strong need for a comprehensive comparison of different isotropic weighting approaches. In the present work we introduce two new sequences based on simple (co)sine modulations and compare their performance to established q-space magic-angle spinning sequences and conventional DTI, using a diffusion phantom assembled from microcapillaries and in vivo experiments at 7 T. The advantages and disadvantages of all compared schemes are demonstrated and discussed.

  12. Scaling of Lyapunov Exponents in Homogeneous, Isotropic DNS

    Science.gov (United States)

    Fitzsimmons, Nicholas; Malaya, Nicholas; Moser, Robert

    2013-11-01

    Lyapunov exponents measure the rate of separation of initially infinitesimally close trajectories in a chaotic system. Using the exponents, we are able to probe the chaotic nature of homogeneous isotropic turbulence and study the instabilities of the chaotic field. The exponents are measured by calculating the instantaneous growth rate of a linear disturbance, evolved with the linearized Navier-Stokes equation, at each time step. In this talk, we examine these exponents in the context of homogeneous isotropic turbulence with two goals: 1) to investigate the scaling of the exponents with respect to the parameters of forced homogeneous isotropic turbulence, and 2) to characterize the instabilities that lead to chaos in turbulence. Specifically, we explore the scaling of the Lyapunov exponents with respect to the Reynolds number and with respect to the ratio of the integral length scale and the computational domain size.

  13. GENERAL EXPRESSIONS OF CONSTITUTIVE EQUATIONS FOR ISOTROPIC ELASTIC DAMAGED MATERIALS

    Institute of Scientific and Technical Information of China (English)

    唐雪松; 蒋持平; 郑健龙

    2001-01-01

    The general expressions of constitutive equations for isotropic elastic damaged materials were derived directly from the basic law of irreversible thermodynamics. The limitations of the classical damage constitutive equation based on the well-known strain equivalence hypothesis were overcome. The relationships between the two elastic isotropic damage models(i. e. single and double scalar damage models)were revealed. When a single scalar damage variable defined according to the microscopic geometry of a damaged material is used to describle the isotropic damage state, the constitutive equations contain two "damage effect functions", which describe the different influences of damage on the two independent elastic constants. The classical damage constitutive equation based on the strain equivalence hypothesis is only the first-order approximation of the general expression.It may be unduly simplified and may fail to describe satisfactorily the damage phenomena of practical materials.

  14. Transverse spin with coupled plasmons

    CERN Document Server

    Mukherjee, Samyobrata

    2016-01-01

    We study theoretically the transverse spin associated with the eigenmodes of a thin metal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short- range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more 'structured' nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  15. Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    SAMYOBRATA MUKHERJEE; A V GOPAL; S DUTTA GUPTA

    2017-08-01

    We study theoretically the transverse spin associated with the eigenmodes of a thinmetal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short-range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more ‘structured’ nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses, we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  16. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...... flow in a blood mimicking fluid and the fluid is scanned under different flow-to-beam angles. The relative standard deviation on the transverse velocity estimate is found to be less than 10% for all angles between 50 deg. and 90 deg. Furthermore the TO method is evaluated in the flowrig using pulsatile...

  17. Cosmology in Weyl transverse gravity

    Science.gov (United States)

    Oda, Ichiro

    2016-11-01

    We study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in the Weyl-transverse (WTDiff) gravity in a general spacetime dimension. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is believed to be equivalent to general relativity at least at the classical level (perhaps, even in the quantum regime). It is explicitly shown by solving the equations of motion that the FLRW metric is a classical solution in the WTDiff gravity only when the spatial metric is flat, that is, the Euclidean space, and the lapse function is a nontrivial function of the scale factor.

  18. Thermalization and isotropization in heavy-ion collisions

    Indian Academy of Sciences (India)

    Michael Strickland

    2015-05-01

    Our current understanding of the processes driving the thermalization and isotropization of the quark gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions (URHICs) is reviewed. Initially, the phenomenological evidence in favour of the creation of a thermal but momentum–space anisotropic QGP in URHICs is discussed. Further, the degree of isotropization using viscous (dissipative) hydrodynamics, weak-coupling approaches to QGP dynamics, and strong-coupling approaches to QGP dynamics are discussed. Finally, recent progress in the area of real-time non-Abelian gauge field simulations and non-Abelian Boltzmann–Vlasov-based hard-loop simulations are reported.

  19. Designing isotropic interactions for self-assembly of complex lattices.

    Science.gov (United States)

    Edlund, E; Lindgren, O; Jacobi, M Nilsson

    2011-08-19

    We present a direct method for solving the inverse problem of designing isotropic potentials that cause self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial geometric frustration in several proposed spin liquids. © 2011 American Physical Society

  20. Massive gravity: nonlinear instability of the homogeneous and isotropic universe

    CERN Document Server

    De Felice, Antonio; Mukohyama, Shinji

    2012-01-01

    We study the propagating modes for nonlinear massive gravity on a Bianchi type--I manifold. We analyze their kinetic terms and dispersion relations as the background manifold approaches the homogeneous and isotropic limit. We show that in this limit, at least one ghost always exists and that its frequency tends to vanish for large scales, meaning that it cannot be integrated out from the low energy effective theory. Since this ghost mode can be considered as a leading nonlinear perturbation around a homogeneous and isotropic background, we conclude that the universe in this theory must be either inhomogeneous or anisotropic.

  1. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    C Erdem İmrak; Ismail Gerdemeli

    2007-06-01

    The examination of the exact solution of the governing equation of the rectangular plate is important for many reasons. This report discusses in exact solution of the governing equation of an isotropic rectangular plate with four clamped edges. A numerical method for clamped isotropic rectangular plate under distributed loads and an exact solution of the governing equation in terms of trigonometric and hyperbolic function are given. Finally, an illustrative example is given and the results are compared with those reported earlier. This method is found to be easier and effective. The results show reasonable agreement with other available results, but with a simpler and practical approach.

  2. Analysis of axisymmetric and non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material

    CSIR Research Space (South Africa)

    Shatalov, MY

    2010-01-01

    Full Text Available for PZT-4 and PZT-7A piezoelectric ceramics for circumferential wave numbers m = 1, 2, and 3. It is observed that the dispersion curves are sensitive to the type of the imposed boundary conditions as well as to the measure of the electromechanical coupling...

  3. Analysis of non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material

    CSIR Research Space (South Africa)

    Shatalov, MY

    2009-01-01

    Full Text Available for PZT-4 and PZT-7A piezoelectric ceramics for circumferential wave numbers m = 1, 2, and 3. It is observed that the dispersion curves are sensitive to the type of the imposed boundary conditions as well as to the measure of the electromechanical coupling...

  4. Non-axisymmetric vibrations of a transversely isotropic piezoelectric cylinder with different types of electric boundary conditions

    CSIR Research Space (South Africa)

    Shatalov, MY

    2007-04-01

    Full Text Available and Department of Mathematics and Statistics P.B.X680, Pretoria 0001 FIN-40014 Tshwane University of Technology, South Africa e-mail: mshatlov@csir.co.za **School of Physics, University of Witwatersrand, Po Box 2050, Johannesburg, South Africa, e-mail: arthur....every@wits.ac.za ***Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing, P.O. Box 395, Pretoria 0001, CSIR, South Africa e-mail: ayenwongfai@csir.co.za Abstract: Coupled electro-mechanical non- axisymmetric vibrations are considered in a...

  5. Development and Implementation of a Transversely Isotropic Hyperelastic Constitutive Model With Two Fiber Families to Represent Anisotropic Soft Biological Tissues

    Science.gov (United States)

    2014-06-01

    region ( cervical , thoracic or lumbar), and, starting with the most superior (highest) vertebra in that region, numbered consecutively until the most...plane of the intervertebral disc have all been used by researchers to model the fibers of the annulus fibrosus (1, 18–20). CERVICAL VERTEBRAE THORACIC...typical vertebra (panel b). Vertebra are color-coded according to their location classification. Panel c is an illustration (not drawn to scale) of an

  6. Transverse stability of Kawahara solitons

    DEFF Research Database (Denmark)

    Karpman, V.I.

    1993-01-01

    The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative...

  7. Dihadron Fragmentation Functions and Transversity

    CERN Document Server

    Radici, Marco; Bacchetta, Alessandro

    2014-01-01

    We present preliminary results for an updated extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. Data for proton and deuteron targets by HERMES and COMPASS allow for a flavor separation of the valence components of transversity, while di-hadron fragmentation functions are taken from the semi-inclusive production of two pion pairs in back-to-back jets in $e^+ e^-$ annihilation. The latter data from Belle have been reanalyzed using the replica method and a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function has been obtained. After encoding this piece of information into the deep-inelastic scattering cross section, the transversity has been re-extracted by using the most recent and more precise COMPASS data for proton target. This picture represents the current most realistic estimate of the uncertainties on our knowledge of tran...

  8. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    Science.gov (United States)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  9. Switch isotropic/anisotropic wettability via dual-scale rods

    Directory of Open Access Journals (Sweden)

    Yang He

    2014-10-01

    Full Text Available It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  10. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    Science.gov (United States)

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  11. Switch isotropic/anisotropic wettability via dual-scale rods

    Science.gov (United States)

    He, Yang; Jiang, Chengyu; Wang, Shengkun; Ma, Zhibo; Yuan, Weizheng

    2014-10-01

    It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  12. Semiclassical States Associated with Isotropic Submanifolds of Phase Space

    Science.gov (United States)

    Guillemin, V.; Uribe, A.; Wang, Z.

    2016-05-01

    We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.

  13. Angular Momentum of Supersymmetric Non-isotropic Traps

    Institute of Scientific and Technical Information of China (English)

    XU Qiang

    2001-01-01

    A simple way to explain quantum behavior of supersymmetric non-isotropic traps is proposed in the framework of sermiunitary formulation of supersymmetric quantum mechanics. Using semiunitary formulation we can simultaneously supersymmetrize the complete set of observables, especially including angular moment.

  14. Coupling of Elastic Isotropic Medium Parameters in Iterative Linearized Inversion

    NARCIS (Netherlands)

    Anikiev, D.V.; Kashtan, B.M.; Mulder, W.A.; Troyan, V.N.

    2014-01-01

    An elastic isotropic medium is described with three parameters. In seismic migration the perturbation of one elastic parameter affects the images of all the three, which means that these parameters are coupled. For an effective quantitative reconstruction of the true elastic medium reflectivity one

  15. Exact isotropic scalar field cosmologies in Einstein-Cartan theory

    Energy Technology Data Exchange (ETDEWEB)

    Galiakhmetov, A M, E-mail: agal17@mail.r [Department of Physics, Donetsk National Technical University, Kirova street 51, 84646, Gorlovka (Ukraine)

    2010-03-07

    Exact general solutions to the Einstein-Cartan equations are obtained for spatially flat isotropic and homogeneous cosmologies with a nonminimally coupled scalar field. It is shown that both singular and nonsingular models are possible. Exact general solutions of an analogous problem in the torsion-less case are derived. The role of torsion in the evolution of models is elucidated.

  16. NON-ISOTROPIC JACOBI SPECTRAL METHODS FOR UNBOUNDED DOMAINS

    Institute of Scientific and Technical Information of China (English)

    王立联; 郭本瑜

    2004-01-01

    Some specific non-isotropic Jacobi approximations in multiple-dimensions are investigated, which are used for numerical solutions of differential equations on various unbounded domains. The convergence of proposed schemes are proved. Some efficient algorithms are provided. Numerical results are presented to illustrate the efficiency of this new approach.

  17. Simultaneous amplification and attenuation in isotropic chiral materials

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    The electromagnetic field phasors in an isotropic chiral material (ICM) are superpositions of two Beltrami fields of different handedness. Application of the Bruggeman homogenization formalism to two-component composite materials delivers ICMs wherein Beltrami fields of one handedness attenuate whereas Beltrami waves of the other handedness amplify. One component material is a dissipative ICM, the other an active dielectric material.

  18. Solitary plane waves in an isotropic hexagonal lattice

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

    1998-01-01

    Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same for diff...

  19. Seeing is believing : communication performance under isotropic teleconferencing conditions

    NARCIS (Netherlands)

    Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.

    2001-01-01

    The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic

  20. Bulk isotropic negative-index material design for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast with ...

  1. The implementation and evaluation of cognitive milieu therapy for dual diagnosis inpatients: A pragmatic clinical trial

    DEFF Research Database (Denmark)

    Lykke, Jørn; Oestrich, I.; Austin, Stephen

    2010-01-01

    milieu therapy (CMT) among a group of dual diagnosis inpatients. CMT is an integrated treatment for both mental illness and substance abuse based on cognitive behavioral principles and carried out within a supportive inpatient environment. A convenience sample of dual diagnosis inpatients (N = 136......Dual diagnosis is chronic psychiatric condition involving serious mental illness and substance abuse. Experts recommend the integration of treatment for concurrent substance abuse and serious psychiatric problems. The following pragmatic trial examined the implementation and outcomes of cognitive...

  2. Local Milieu in Developing China's Cultural and Creative Industry: The Case of Nanluoguxiang in Beijing

    OpenAIRE

    Jici Wang; Chun Zhang; Ching-Ning Wang; Ping Chen

    2010-01-01

    This paper examines the role of creative milieu and cultural heritages in the development of Chinese cultural industry. Through case study of Beijing’s Nanluoguxiang, where several arts institutions and theaters concentrate, it depicts the birth and growth of a creative place for free artists in the institutional changing of Chinese cultural setting. Based on field survey data from artists, managers and visitors, it shows the spouting and growth of local creativities in a transitional econo...

  3. A Social Milieu Approach to the Online Participation Divides in Germany

    Directory of Open Access Journals (Sweden)

    Christoph Lutz

    2016-01-01

    Full Text Available Research on digital divides has been helpful in advancing our understanding of the social structuration of Internet access, motivations to go online, digital skills, and Internet (non-use, including participatory uses. However, digital divide research has been criticized for oversimplifying the relationship between demographic characteristics and Internet use and for its under-theorization. A social milieu approach, inspired by Pierre Bourdieu’s sociological theory, presents an excellent set of concepts to address these criticisms and thus advance digital divide research. This article uses the social milieu approach for an empirical investigation of the participation divides in Germany. Focus groups and online communities with 96 participants from seven distinct Internet milieus serve to differentiate online participation along social lines. The results show that German citizens are strongly segregated into distinct Internet milieus that differ in their intensity, variety, understanding, and attitudes toward online participation. Each milieu displays specific participatory patterns and some of the findings challenge existing research on digital and participation divides. Implications are derived and limitations of the approach carved out.

  4. Transverse Force on Transversely Polarized Quarks in Longitudinally Polarized Nucleons

    CERN Document Server

    Abdallah, Manal

    2016-01-01

    We study the semi-classical interpretation of the $x^3$ and $x^4$ moments of twist-3 parton distribution functions (PDFs). While no semi-classical interpretation for the higher moments of $g_T(x)$ and $e(x)$ was find, the $x^3$ moment of the chirally odd spin-dependent twist-3 PDF $h_L^3(x)$ can be related to the longitudinal gradient of the transverse force on transversely polarized quarks in longitudinally polarized nucleons in a DIS experiment. We discuss how this result relates to the torque acting on a quark in the same experiment. This has further implications for comparisons between tha Jaffe-Manohar and the Ji decompositions of the nucleon spin.

  5. Microscopic damage of quasi-isotropic carbon/epoxy laminates at various temperatures; Kakuondo kankyoka ni okeru carbon/epoxy giji tohosei sekisoban no bishiteki sonsho

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. [Kyushu University, Fukuoka (Japan); Ogi, K.; Matsubara, T.; Wang, W.; Takao, Y. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-06-15

    Quasi-isotropic Carbon/Epoxy laminates under tensile loading are investigated to understand the effects of temperature on stress-strain response and damage progress including the interlaminar delamination growth behavior. The material system used is T800H/3631 and the stacking sequence is quasi-isotropic [0deg/45deg/-45deg/90deg]s. The transverse crack behavior is microscopically observed and its density is quantitatively measured by using an optical microscope under various loads at different temperatures, i.e., low (-100deg), room (25deg) and high (150deg) temperatures. The interlaminar delamination growth behavior is non-destructively examined by a scanning acoustic microscope (SAM). It is found that nonlinearity observed in the stress-strain response is caused by the large scale interlaminar delamination throughout the length of the specimen. The transverse crack propagation and interlaminar delamination growth behavior are obviously affected by the temperature environments. Characteristic transverse crack formation at the edge of -45deg layer under -100deg is pointed out and its mechanism is discussed with the use of shear coupling of an off -axis lamina. 10 refs., 16 figs., 1 tab.

  6. Mental Health and Well-Being across the Military Spectrum (Bien-etre et sante mentale dans le milieu militaire)

    Science.gov (United States)

    2011-04-01

    Apr 2011 Mental Health and Well-Being across the Military Spectrum ( Bien -être et santé mentale dans le milieu militaire) Research and Technology...Spectrum ( Bien -être et santé mentale dans le milieu militaire) Papers presented at the RTO Human Factors and Medicine Panel (HFM) Symposium held in...research be conducted to demonstrate the usability of these technologies in real world settings. ES - 2 RTO-MP-HFM-205 Bien -être et santé

  7. Transversal Lines of the Debates

    Directory of Open Access Journals (Sweden)

    Yolanda Onghena

    1998-12-01

    Full Text Available The Transversal Lines of the Debates gathers for publication the presentations of the scholars invited to the seminar. In the papers, Yolanda Onghena observes that the evolution from the cultural to the inter-cultural travels along four axes: the relations between cultureand society; the processes of change within identity-based dynamics; the representations of the Other; and, interculturality. Throughout the presentations and subsequent debates, whenever the different participants referred to aspects of the cultural identity problematic--”angst”, “obsession”, “deficit”, manipulation”, and others, these same participants in the Transversal Lines of the Debates also showed that, in certain areas, an optimistic viewpoint is not out of the question.

  8. Transverse Impedance of LHC Collimators

    CERN Document Server

    Métral, E; Assmann, Ralph Wolfgang; Boccardi, A; Bracco, C; Bohl, T; Caspers, Friedhelm; Gasior, M; Jones, O R; Kasinski, K; Kroyer, T; Redaelli, S; Robert-Demolaize, R; Roncarolo, F; Rumolo, G; Salvant, B; Steinhagen, R; Weiler, T; Zimmermann, F

    2007-01-01

    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.

  9. Transverse contractions of moving bodies

    Energy Technology Data Exchange (ETDEWEB)

    Bramanti, D.

    1978-05-11

    One of the most important theoretical consequences of the principle of relativity, i.e. the absence of transverse Lorentz-Fitzgerald contractions in moving bodies, has never been subjected to direct experimental tests. The existing indirect evidence of this absence is discussed, and a simple experiment for testing it directly and with high accuracy is proposed. Some implications of a possible nonnull result of this experiment are also pointed out.

  10. EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... The first study of transverse mixing in bends of turbulent open channel flows ... Rozovskii's transverse velocity distribution for fully developed turbulent flow ... Yotsukura et al (3) employed a simulation procedure to predict the.

  11. Le passage du milieu francophone minoritaire au milieu francophone majoritaire : étude d’une expérience d’enseignants en formation pour comprendre l’influence du milieu sur le développement professionnel

    Directory of Open Access Journals (Sweden)

    Fadila Boutouchent

    2016-06-01

    Full Text Available Résumé Le programme de formation des maîtres en français langue première et seconde de l’Université de Regina en Saskatchewan exige un niveau linguistique avancé et astreint ses étudiants à passer leur deuxième année à l’Université Laval, au Québec. Au cours de leur première année, ces étudiants vivent parfois leur premier contact entre francophiles et Fransaskois et apprennent à collaborer dans la langue minoritaire. Leurs croyances, leurs perceptions individuelles et leurs relations d’amitié sont renégociées au cours de la deuxième année, loin de leur province d’origine et de leurs réseaux habituels de contact. Durant une année, ils vivent en milieu francophone majoritaire, développent de nouvelles stratégies et de nouvelles perspectives. Dans cette recherche qualitative exploratoire, des entrevues semi-dirigées ont permis d’explorer le changement de perceptions de sept participants après leur expérience en milieu francophone majoritaire. Dès leur retour, ils étaient plus motivés à utiliser le français, déploraient le manque de ressources et d’opportunités dans leur région et pensaient apporter une contribution à leur environnement. Les participants, francophones de l’immersion ou d’origine, ont affirmé à quel point le contact avec le français « partout » avait aidé leur développement linguistique. Les résultats concordent avec ceux obtenus par d’autres recherches en milieu francophone minoritaire. Abstract The teacher education program for teaching French as a first and second language at the University of Regina in Saskatchewan demands advanced language skills, and requires students to spend their second year at Laval University in Quebec. During their first year, these students may experience their first contacts between Francophiles and Fransaskois learning the French minority language. Their beliefs, individual perceptions, and friendships are renegotiated during the second

  12. Appraisal of transverse nasal groove: A study

    Directory of Open Access Journals (Sweden)

    Belagola D Sathyanarayana

    2012-01-01

    Full Text Available Background: Transverse nasal groove is a condition of cosmetic concern which awaits due recognition and has been widely described as a shallow groove that extends transversely over the dorsum of nose. However, we observed variations in the clinical presentations of this entity, hitherto undescribed in literature. Aims: We conducted a clinicoepidemiological study of transverse nasal lesions in patients attending our outpatient department. Methods: We conducted a prospective observational study. We screened all patients attending our out-patient department for presence of transverse nasal lesions, signs of any dermatosis and associated other skin conditions. Results: One hundred patients were recruited in the study. Females (80% predominated over males. Most patients were of 15-45 years age group (70%. Majority of the transverse nasal lesions were classical transverse nasal groove (39% and others included transverse nasal line (28%, strip (28%, ridge (4% and loop (1%. Seborrhoeic diathesis was the most common condition associated with transverse nasal lesion. Conclusions: Occurrence of transverse nasal line, strip, ridge and loop, in addition to classical transverse nasal groove implies that latter is actually a subset of transverse nasal lesions. Common association of this entity with seborrheic dermatitis, seborrhea and dandruff raises a possibility of whether transverse nasal lesion is a manifestation of seborrheic diathesis.

  13. Spin-dependent boundary conditions for isotropic superconducting Green’s functions

    NARCIS (Netherlands)

    Cottet, A.; Huertas-Hernando, D.; Belzig, W.; Nazarov, Y.V.

    2009-01-01

    The quasiclassical theory of superconductivity provides the most successful description of diffusive heterostructures comprising superconducting elements, namely, the Usadel equations for isotropic Green’s functions. Since the quasiclassical and isotropic approximations break down close to interface

  14. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    Science.gov (United States)

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-08-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

  15. Systematic effects induced by a flat isotropic dielectric slab

    CERN Document Server

    Macculi, C; Cortiglioni, S; Peverini, O A; Tascone, R; Zannoni, M; Carretti, Ettore; Cortiglioni, Stefano; Macculi, Claudio; Peverini, Oscar Antonio; Tascone, Riccardo; Zannoni, Mario

    2006-01-01

    The instrumental polarization induced by a flat isotropic dielectric slab in microwave frequencies is faced. We find that, in spite of its isotropic nature, such a dielectric can produce spurious polarization either by transmitting incoming anisotropic diffuse radiation or emitting when it is thermally inhomogeneous. We present evaluations of instrumental polarization generated by materials usually adopted in Radioastronomy, by using the Mueller matrix formalism. As an application, results for different slabs in front of a 32 GHz receiver are discussed. Such results are based on measurements of their complex dielectric constant. We evaluate that a 0.33 cm thick Teflon slab introduces negligible spurious polarization ($< 2.6 \\times 10^{-5}$ in transmission and $< 6 \\times 10^{-7}$ in emission), even minimizing the leakage ($< 10^{-8}$ from $Q$ to $U$ Stokes parameters, and viceversa) and the depolarization ($\\sim 1.3 \\times 10^{-3}$).

  16. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic...... in a cage-like structure. For the magnetic response we use metallic plates forming an open cube located inside the “cage”. For this topology the plates can be thought of as capacitors in a resonant LC circuit [4]. By adjusting the resonant circuit frequency in the IR range a double negative response......). At this wavelength the refraction index is equal to -1.44. These values together with the effective cubic symmetry of the unit cell entitle us to assume the high potential of the suggested design as a constitutive block for an isotropic, relatively low-loss, metamaterial in the near IR region....

  17. Bounding Isotropic Lorentz Violation Using Synchrotron Losses at LEP

    CERN Document Server

    Altschul, Brett

    2009-01-01

    Some deviations from special relativity--especially isotropic effects--are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicates that that any isotropic deviation of the speed of light from 1 must be smaller than 1.2 x 10^(-15).

  18. Bounding isotropic Lorentz violation using synchrotron losses at LEP

    Science.gov (United States)

    Altschul, Brett

    2009-11-01

    Some deviations from special relativity—especially isotropic effects—are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |κ˜tr-(4)/(3)c00| must be smaller than 5×10-15.

  19. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  20. Poromechanical behaviour of hardened cement paste under isotropic loading

    CERN Document Server

    Ghabezloo, Siavash; Guédon, Sylvine; Martineau, Francçois; Saint-Marc, Jérémie

    2008-01-01

    The poromechanical behaviour of hardened cement paste under isotropic loading is studied on the basis of an experimental testing program of drained, undrained and unjacketed compression tests. The macroscopic behaviour of the material is described in the framework of the mechanics of porous media. The poroelastic parameters of the material are determined and the effect of stress and pore pressure on them is evaluated. Appropriate effective stress laws which control the evolution of total volume, pore volume, solid volume, porosity and drained bulk modulus are discussed. A phenomenon of degradation of elastic properties is observed in the test results. The microscopic observations showed that this degradation is caused by the microcracking of the material under isotropic loading. The good compatibility and the consistency of the obtained poromechanical parameters demonstrate that the behaviour of the hardened cement paste can be indeed described within the framework of the theory of porous media.

  1. Gravitational Landau damping for an isotropic cluster of stars

    Science.gov (United States)

    Habib, Salman; Kandrup, Henry E.; Yip, Ping F.

    1986-01-01

    The problem of ascertaining the dynamical stability and the existence of Landau damping in static, isotropic 'collisionless' star clusters is addressed. The second-order formalism of Kandrup and Sygnet (1985) is applied to a homogeneous and isotropic plasma, demonstrating formally that the unperturbed configuration will always be stable and that the modes must be purely oscillatory. The form of these modes is explicitly examined, culminating in an analytic expression for the time evolution of the density induced by an initial perturbation. It is shown how these considerations can be adapted trivially to localized, nonradial disturbances of a self-gravitating system of stars. The possible existence of gravitational Landau damping for more generic perturbations is discussed.

  2. Quasi-isotropic cascade in MHD turbulence with mean field

    CERN Document Server

    Grappin, Roland; Gürcan, Özgür

    2012-01-01

    We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].

  3. Cracking and instability of isotropic and anisotropic relativistic spheres

    CERN Document Server

    Gonzalez, Guillermo A; Nunez, Luis A

    2014-01-01

    Using the concept of cracking, we have explored the influence of density fluctuations on the stability of isotropic and anisotropic matter configurations in General Relativity with "barotropic" equations of state, $P = P(\\rho)$ and $P_{\\perp}= P_{\\perp}(\\rho)$. The concept of cracking, conceived to describe the behaviour of a fluid distribution just after its departure from equilibrium, provides an alternative and complementary approach to consider the stability of selfgravitating compact objects. We have refined the idea that density fluctuations affect other physical variables, but now including perturbation on radial pressure gradient and, the fact that perturbations must to be considered local, i.e. $\\delta \\rho = \\delta \\rho(r)$ and are represented by any function of compact support defined in a closed interval $\\Delta r \\ll 1$. It is found that not only anisotropic models could present cracking (or overturning), but also isotropic matter configurations could be affected by density fluctuation. We have a...

  4. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...... are shown in Fig.1a. The effective refractive index is retrieved accordingly to the standard algorithm [5] (see Fig.1b). After several cycles of naïve optimizations, the refractive index reaches -2.4 at 1.55μm (ca. 192.5THz). The maximum FOM in the band, where Re(n)

  5. Gravitational radiation of a free isotropic plasma. I

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.

    1985-06-01

    The gravitational radiation of a free isotropic plasma is studied on the basis of kinetic theory. It is demonstrated that gravitational-wave effects are determined by the correlation function of the energy-momentum tensors of the particles and electromagnetic field. Finally, a formula is obtained which defines the total gravitational radiation of a nonrelativistic plasma, taking into account all possible radiation mechanisms. 10 references.

  6. Plane Waves in a Transparent Isotropic Chiral Medium

    Science.gov (United States)

    Fisanov, V. V.

    2015-04-01

    A homogeneous isotropic transparent chiral medium supports two normal plane waves with left and right circular polarization and differently valued positive wave numbers. The presence or absence of forward and backward Beltrami waves and their helicity are regulated by the signs of the permittivity and permeability and the strength of the chirality. The ray refractive index is a universal parameter whose sign differentiates the forward and backward waves.

  7. Isotropic Forms of Dynamics in the Relativistic Direct Interaction Theory

    CERN Document Server

    Duviryak, A A; Tretyak, V I

    1998-01-01

    The Lagrangian relativistic direct interaction theory in the various forms of dynamics is formulated and its connections with the Fokker-type action theory and with the constrained Hamiltonian mechanics are established. The motion of classical two-particle system with relativistic direct interaction is analysed within the framework of isotropic forms of dynamics in the two- and four-dimensional space-time. Some relativistic exactly solvable quantum-mechanical models are also discussed.

  8. The universe as a black hole in isotropic coordinates

    OpenAIRE

    Poplawski, Nikodem J.

    2009-01-01

    We show that the radial geodesic motion of a particle inside a black hole in isotropic coordinates (the Einstein-Rosen bridge) is physically different from the radial motion inside a Schwarzschild black hole. A particle enters the interior region of an Einstein-Rosen black hole which is regular and physically equivalent to the asymptotically flat exterior of a white hole, and the particle's proper time extends to infinity. Because the motion across the Einstein-Rosen bridge is unidirectional,...

  9. Negative refraction in (bi)-isotropic periodic arrangements of chiral SRRs

    CERN Document Server

    Jelinek, L; Mesa, F; Baena, J D

    2007-01-01

    Bi-isotropic and isotropic negative refractive index (NRI) 3D metamaterials made from periodic arrangements of chiral split ring resonators (SRRs) are proposed and demonstrated. An analytical theory for the characterization and design of these metamaterials is provided and validated by careful full-wave electromagnetic simulations. The reported results are expected to pave the way to the design of practical 3D bi-isotropic and isotropic NRI metamaterials made from a single kind of inclusions.

  10. Isotropic Compression Behaviour of Fibre Reinforced Cemented Sand

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2013-07-01

    Full Text Available Fibre-reinforced cemented sands have many applications in improving the response of soils. In this paper, an experimental investigation for the analysis of fiber-reinforced cemented sand in the framework of isotropic compression is presented. The experimental investigations were carried out using a high pressure triaxial apparatus having the capacity of 64 MPa of confining pressure. Tests have been conducted on Portaway sand specimens reinforced with randomly oriented discrete polypropylene fibers with different percentages of fiber and cement contents. Results are presented in the form of e-logp` curves as well as SEM (Scanning Electron Microscopy micrographs. The effects of the addition of fibre in sand and cemented sand for different initial void ratios were investigated. The results demonstrate that the influence of fibre is not significant in both cemented and uncemented sand during the isotropic compression stage. Moreover, from the SEM micrographs it could be seen that there is breakage of sand particles and cement bonds. The fiber threads were seen pinched and found rarely broken in the specimen exhumed after isotropic compression.

  11. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  12. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting AGN Jets

    CERN Document Server

    Babul, Arif; Reynolds, Christopher S

    2012-01-01

    AGN jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets are inefficient at heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the SMBHs will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin discs. In general, the orientation of these accretion discs will be misaligned with the spin axis of the black holes and the ensuing torques will cause the black hole's spin axis (and therefore, the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster cen...

  13. Generation of polarization singularities in the self-focusing of an elliptically polarized laser beam in an isotropic Kerr medium

    Science.gov (United States)

    Panov, N. A.; Makarov, V. A.; Grigoriev, K. S.; Yatskevitch, M. S.; Kosareva, O. G.

    2016-10-01

    We have numerically and analytically shown that polarization singularities can emerge when a homogeneously elliptically polarized light beam undergoes self-focusing in an isotropic third-order Kerr medium without frequency and spatial dispersion (fused silica, liquids, gases etc.) In the case of axially symmetric beam the emerging C-lines have the shape of circumference with the center at the beam's axis and they are located in the separate transversal planes in the medium. If the axial symmetry of the incident beam is broken then the even number of C-points with opposite topological charges are nucleated in the medium. They exist in a certain propagation coordinate range and then they collide and annihilate each other.

  14. Transversals in Non-Discrete Groups

    Indian Academy of Sciences (India)

    Ramji Lal; R P Shukla

    2005-11-01

    The concept of `topological right transversal' is introduced to study right transversals in topological groups. Given any right quasigroup with a Tychonoff topology , it is proved that there exists a Hausdorff topological group in which can be embedded algebraically and topologically as a right transversal of a subgroup (not necessarily closeed). It is also proved that if a topological right transversal $(S, T_S, T^S, \\circ)$ is such that $T_S=T^S$ is a locally compact Hausdorff topology on , then can be embedded as a right transversal of a closed subgroup in a Hausdorff topological group which is universal in some sense.

  15. An investigation of interfacial stresses in adhesively-bonded single lap joints subject to transverse pulse loading

    Science.gov (United States)

    Nwankwo, E.; Soleiman Fallah, A.; Louca, L. A.

    2013-04-01

    Debonding in adhesively-bonded lap joints is a detrimental failure mode contingent upon the level of stresses develped in the adhesive. In this work, an analytical model is developed to estimate the peel and shear stresses in an isotropic elastic adhesive in a single lap joint subjected to transverse pulse loads. The proposed analytical model is an extension of the mathematical models developed by He and Rao (Journal of Sound and Vibration 152 (3), (1992) 405-416, 417-425) to study the coupled transverse and longitudinal vibrations of a bonded lap joint system. The adhesive, in this work, is modelled as an elastic isotropic material implemented in Abaqus 6.9-1. The interfacial stresses obtained by finite element simulations were used to validate the proposed analytical model. The maximum peel and shear stresses in the adhesive as predicted by the analytical model were found to correlate well with the maximum stresses predicted by the corresponding numerical models. The peel stresses in the adhesive were found to be higher than shear stresses, a result which is consistent with intuition for transversally loaded joints. The analytical model is able to predict the maxium stresses in the edges where debonding initiates due to the highly asymetrical stress distribution as observed in the finite element simulations and experiment. This phenomenon is consistent with observations made by Vaidya et al. (International Journal of Adhesion & Adhesives 26 (2006) 184-198). The stress distribution under uniformily distributed transverse pulse loading was observed to be similarly asymetric.

  16. Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media

    DEFF Research Database (Denmark)

    Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo;

    2015-01-01

    flow and transport results obtained for a nonstationary anisotropic log-hydraulic conductivity field to an equivalent stationary field with identical mean, variance, and two-point correlation function disregarding the nonstationarity. The nonstationary anisotropic field is affected by mean secondary......Groundwater plumes originating from continuously emitting sources are typically controlled by transverse mixing between the plume and reactants in the ambient solution. In two-dimensional domains, heterogeneity causes only weak enhancement of transverse mixing in steady-state flows. In three......-dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...

  17. Feeling “overloaded” and “shortcomings”: milieu therapists’ experiences of vulnerability in caring for severely mentally ill patients

    Science.gov (United States)

    Bachmann, Liv; Michaelsen, Ragnhild A; Vatne, Solfrid

    2016-01-01

    Background Milieu therapists’ relationships with patients with severe mental illnesses are viewed as challenging. Elucidating vulnerability from their perspective in daily face-to-face encounters with patients might contribute to extending our knowledge about milieu therapists’ vulnerability and the dynamics of the interaction between patients in mental health services and expertise in building caring and therapeutic relationships. The aim of this project was to study educated milieu therapists’ experiences of their own vulnerability in their interactions with patients in mental health services. Materials and methods The data collection method was focus-group interviews. Thirteen part-time master’s in mental health students (eight nurses, three social workers, two social educators) participated. All participants had experience with community or specialized mental health services (2–8 years). Results The milieu therapists mainly related their experiences of vulnerability to negative feelings elicited by challenging work conditions, disclosed as two main themes: 1) “overloaded”, by the possibility of being physically and mentally hurt and the burdens of long-lasting close relationships; milieu therapists were extremely vulnerable because of their difficulty in protecting themselves; and 2) “shortcomings”, connected to feelings of despair associated with not acting in concordance with their professional standards and insecurity about their skills to handle challenging situations, which was a threat to their professional integrity. There seemed to be coherence between vulnerability and professional inauthenticity. A misunderstanding that professionalism refers to altruism seems to increase milieu therapist vulnerability. Conclusion Vulnerability in health care is of interest to multiple disciplines, and is of relevance for knowledge development in higher education. Extended knowledge and understanding about milieu therapists’ vulnerability might

  18. The implementation and evaluation of cognitive milieu therapy for dual diagnosis inpatients: A pragmatic clinical trial

    DEFF Research Database (Denmark)

    Lykke, Jørn; Oestrich, Irene; Austin, Stephen;

    2010-01-01

    Dual diagnosis is chronic psychiatric condition involving serious mental illness and substance abuse. Experts recommend the integration of treatment for concurrent substance abuse and serious psychiatric problems. The following pragmatic trial examined the implementation and outcomes of cognitive...... milieu therapy (CMT) among a group of dual diagnosis inpatients. CMT is an integrated treatment for both mental illness and substance abuse based on cognitive behavioral principles and carried out within a supportive inpatient environment. A convenience sample of dual diagnosis inpatients (N = 136...... reported significant reductions in levels of anxiety and depressive symptoms (p dual diagnosis populations and warrants further...

  19. A murine model of obesity implicates the adipokine milieu in the pathogenesis of severe acute pancreatitis.

    Science.gov (United States)

    Zyromski, Nicholas J; Mathur, Abhishek; Pitt, Henry A; Lu, Debao; Gripe, John T; Walker, Julia J; Yancey, Kyle; Wade, Terence E; Swartz-Basile, Deborah A

    2008-09-01

    Obesity is clearly an independent risk factor for increased severity of acute pancreatitis (AP), although the mechanisms underlying this association are unknown. Adipokines (including leptin and adiponectin) are pleiotropic molecules produced by adipocytes that are important regulators of the inflammatory response. We hypothesized that the altered adipokine milieu observed in obesity contributes to the increased severity of pancreatitis. Lean (C57BL/6J), obese leptin-deficient (LepOb), and obese hyperleptinemic (LepDb) mice were subjected to AP by six hourly intraperitoneal injections of cerulein (50 microg/kg). Severity of AP was assessed by histology and by measuring pancreatic concentration of the proinflammatory cytokines IL-1beta and IL-6, the chemokine MCP-1, and the marker of neutrophil activation MPO. Both congenitally obese strains of mice developed significantly more severe AP than wild-type lean animals. Severity of AP was not solely related to adipose tissue volume: LepOb mice were heaviest; however, LepDb mice developed the most severe AP both histologically and biochemically. Circulating adiponectin concentrations inversely mirrored the severity of pancreatitis. These data demonstrate that congenitally obese mice develop more severe AP than lean animals when challenged by cerulein hyperstimulation and suggest that alteration of the adipokine milieu exacerbates the severity of AP in obesity.

  20. Adaptive endoplasmic reticulum stress alters cellular responses to the extracellular milieu.

    Science.gov (United States)

    Liu, Yiting; Neely, Elizabeth; Simmons, Zachary; Connor, James R

    2015-05-01

    The ability to respond to perturbations in endoplasmic reticulum (ER) function is a critical property for all cells. In the presence of chronic ER stress, the cell must adapt so that cell survival is favored or the stress may promote apoptosis. In some pathological processes, such as neurodengeneration, persistent ER stress can be tolerated for an extended period, but eventually cell death occurs. It is not known how an adaptive response converts from survival into apoptosis. To gain a better understanding of the role of adaptive ER stress in neurodegeneration, in this study, with a neuronal cell line SH-SY5Y and primary motor neuron-glia cell mixed cultures, we induced adaptive ER stress and modified the extracellular environment with physiologically relevant changes that alone did not activate ER stress. Our data demonstrate that an adaptive ER stress favored neuronal cell survival, but when cells were exposed to additional physiological insults the level of ER stress was increased, followed by activation of the caspase pathway. Our results indicate that an adaptive ER stress response could be converted to apoptosis when the external cellular milieu changed, suggesting that the conversion from prosurvival to proapoptotic pathways can be driven by the external milieu. This conversion was due at least partially to an increased level of ER stress. © 2015 Wiley Periodicals, Inc.

  1. Aphid Gel Saliva: Sheath Structure, Protein Composition and Secretory Dependence on Stylet-Tip Milieu

    Science.gov (United States)

    Will, Torsten; Steckbauer, Kathrin; Hardt, Martin; van Bel, Aart J. E.

    2012-01-01

    In order to separate and analyze saliva types secreted during stylet propagation and feeding, aphids were fed on artificial diets. Gel saliva was deposited as chains of droplets onto Parafilm membranes covering the diets into which watery saliva was secreted. Saliva compounds collected from the diet fluid were separated by SDS-PAGE, while non-soluble gel saliva deposits were processed in a novel manner prior to protein separation by SDS-PAGE. Soluble (watery saliva) and non-soluble (gel saliva) protein fractions were significantly different. To test the effect of the stylet milieu on saliva secretion, aphids were fed on various diets. Hardening of gel saliva is strongly oxygen-dependent, probably owing to formation of sulfide bridges by oxidation of sulphydryl groups. Surface texture of gel saliva deposits is less pronounced under low-oxygen conditions and disappears in dithiothreitol containing diet. Using diets mimicking sieve-element sap and cell-wall fluid respectively showed that the soluble protein fraction was almost exclusively secreted in sieve elements while non-soluble fraction was preferentially secreted at cell wall conditions. This indicates that aphids are able to adapt salivary secretion in dependence of the stylet milieu. PMID:23056521

  2. Social Milieu Oriented Routing: A New Dimension to Enhance Network Security in WSNs.

    Science.gov (United States)

    Liu, Lianggui; Chen, Li; Jia, Huiling

    2016-02-19

    In large-scale wireless sensor networks (WSNs), in order to enhance network security, it is crucial for a trustor node to perform social milieu oriented routing to a target a trustee node to carry out trust evaluation. This challenging social milieu oriented routing with more than one end-to-end Quality of Trust (QoT) constraint has proved to be NP-complete. Heuristic algorithms with polynomial and pseudo-polynomial-time complexities are often used to deal with this challenging problem. However, existing solutions cannot guarantee the efficiency of searching; that is, they can hardly avoid obtaining partial optimal solutions during a searching process. Quantum annealing (QA) uses delocalization and tunneling to avoid falling into local minima without sacrificing execution time. This has been proven a promising way to many optimization problems in recently published literatures. In this paper, for the first time, with the help of a novel approach, that is, configuration path-integral Monte Carlo (CPIMC) simulations, a QA-based optimal social trust path (QA_OSTP) selection algorithm is applied to the extraction of the optimal social trust path in large-scale WSNs. Extensive experiments have been conducted, and the experiment results demonstrate that QA_OSTP outperforms its heuristic opponents.

  3. Assessment of the modulated gradient model in decaying isotropic turbulence

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases:a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Reynolds number.The model uses an estimation of the subgrid-scale(SGS) kinetic energy to model the magnitude of the SGS stress tensor,and uses the normalized velocity gradient tensor to model the structure of the SGS stress tensor.Testing is performed for the first case through a comparison betwee...

  4. The thermoelectric magnetic field of isotropic inclusions in anisotropic metals

    Science.gov (United States)

    Faidi, W. I.; Nayfeh, A. H.

    2006-02-01

    In this paper we model the thermoelectric magnetic field around isotropic inclusions in anisotropic media. It is demonstrated that while the presence of the inclusion will be the dominant source of the thermoelectric signal, the anisotropy of the host material will affect the signal. Although such a phenomenon will occur for all shapes of inclusions, for simplicity we shall demonstrate our theoretical and numerical modeling on the more mathematically tractable case of a cylindrical inclusion aligned along an axis of symmetry of an anisotropic metal medium.

  5. New Sedov-Type Solution of Isotropic Turbulence

    Institute of Scientific and Technical Information of China (English)

    RAN Zheng

    2008-01-01

    @@ The starting point lies in the results obtained by Sedov (1944) for isotropic turbulence with a self-preserving hypothesis.A careful consideration of the mathematical structure of the Kaxman-Howaxth equation leads to an exact analysis of all cases possible and to all admissible solutions of the problem.I study this interesting problem from a new point of view.New solutions axe obtained.Based on these exact solutions, some physical significant consequences of recent advances in the theory of self-preserved homogeneous statistical solution of the Navier-Stokes equations axe presented.

  6. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  7. A fast algorithm for radiative transport in isotropic media

    CERN Document Server

    Ren, Kui; Zhong, Yimin

    2016-01-01

    We propose in this work a fast numerical algorithm for solving the equation of radiative transfer (ERT) in isotropic media. The algorithm has two steps. In the first step, we derive an integral equation for the angularly averaged ERT solution by taking advantage of the isotropy of the scattering kernel, and solve the integral equation with a fast multipole method (FMM). In the second step, we solve a scattering-free transport equation to recover the original ERT solution. Numerical simulations are presented to demonstrate the performance of the algorithm for both homogeneous and inhomogeneous media.

  8. Bending dynamics of semi-flexible macromolecules in isotropic turbulence

    CERN Document Server

    Ali, Aamir; Vincenzi, Dario

    2014-01-01

    We study the Lagrangian dynamics of semi-flexible macromolecules in laminar as well as in homogeneous and isotropic turbulent flows by means of analytically solvable stochastic models and direct numerical simulations. The statistics of the bending angle is qualitatively different in laminar and turbulent flows and exhibits a strong dependence on the topology of the velocity field. In particular, in two-dimensional turbulence, particles are either found in a fully extended or in a fully folded configuration; in three dimensions, the predominant configuration is the fully extended one.

  9. Gravitational waves in a free isotropic plasma. II

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.

    1985-07-01

    The generation of gravitational waves in an isotropic homogeneous plasma is investigated theoretically, within the frame work of a recently developed formalism. The effectiveness of different mechanisms generating gravitational waves is considered. Attention is given to thermal gravitational radiation by a two-component plasma; the transformation of longitudinal plasma waves into gravitons due to current fluctuations; and the generation of gravitational waves due to Langmuir turbulence. It is shown that collective plasma effects play a critical role in the generation of gravitational waves.

  10. RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE

    Institute of Scientific and Technical Information of China (English)

    Rajneesh Kumar; Geeta Partap

    2006-01-01

    The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit,the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.

  11. The comparative study for the isotropic and orthotropic circular plates

    Science.gov (United States)

    Popa, C.; Tomescu, G.

    2016-08-01

    The aim of study is static bending analysis of an isotropic circular plate using analytical method i.e. Classical Plate Theory, Finite Element software ANSYS and experimental methods. The diameter of circular plate, material properties, like modulus of elasticity (E), poissons ratio (µ) and intensity of loading is assumed at the initial stage of research work. In comparison with this plane plate we analyze a plate of same dimensions and charge, but having ribs, to see the advantage of the rigidify. The two plates are fixed supported subjected to uniformly distributed load.

  12. Genericness of Big Bounce in isotropic loop quantum cosmology

    OpenAIRE

    Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the universe exhibiting a Big Bounce. We show that with scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and details of scalar field dynamics. The volume of the universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cut-off for computations of den...

  13. Cluster Monte Carlo simulations of the nematic-isotropic transition

    Science.gov (United States)

    Priezjev, N. V.; Pelcovits, Robert A.

    2001-06-01

    We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.

  14. Phenomenological Theory of Isotropic-Genesis Nematic Elastomers

    Science.gov (United States)

    Lu, Bing-Sui; Ye, Fangfu; Xing, Xiangjun; Goldbart, Paul M.

    2012-06-01

    We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of network compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of random field that reflects the memory of the nematic order present at network formation and also encodes local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.

  15. Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry

    Directory of Open Access Journals (Sweden)

    Kensuke Fujinoki

    2009-01-01

    Full Text Available This paper introduces triangular wavelets, which are two-dimensional nonseparable biorthogonal wavelets defined on the regular triangular lattice. The construction that we propose is a simple nonseparable extension of one-dimensional interpolating wavelets followed by a straightforward generalization. The resulting three oriented high-pass filters are symmetrically arranged on the lattice, while low-pass filters have hexagonal symmetry, thereby allowing an isotropic image processing in the sense that three detail components are distributed uniformly. Applying the triangular filter to images, we explore applications that truly benefit from the triangular wavelets in comparison with the conventional tensor product transforms.

  16. Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry

    Directory of Open Access Journals (Sweden)

    Fujinoki Kensuke

    2009-01-01

    Full Text Available Abstract This paper introduces triangular wavelets, which are two-dimensional nonseparable biorthogonal wavelets defined on the regular triangular lattice. The construction that we propose is a simple nonseparable extension of one-dimensional interpolating wavelets followed by a straightforward generalization. The resulting three oriented high-pass filters are symmetrically arranged on the lattice, while low-pass filters have hexagonal symmetry, thereby allowing an isotropic image processing in the sense that three detail components are distributed uniformly. Applying the triangular filter to images, we explore applications that truly benefit from the triangular wavelets in comparison with the conventional tensor product transforms.

  17. Are EeV cosmic rays isotropic at intermediate scales?

    CERN Document Server

    Zotov, M Yu

    2014-01-01

    We study anisotropy of cosmic rays in the energy range 0.2-1.4 EeV at intermediate angular scales using the public data set of the Pierre Auger Observatory. At certain scales, the analysis reveals a number of deviations from the isotropic distribution with the statistical significance above three standard deviations. It also demonstrates that the anisotropy evolves with energy. If confirmed with the complete Auger or Telescope Array data sets, the result can shed new light on the structure of galactic magnetic fields and the problem of transition from galactic to extragalactic cosmic rays.

  18. Simultaneous amplification and attenuation in isotropic chiral materials

    Science.gov (United States)

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2016-05-01

    The electromagnetic field phasors in an isotropic chiral material (ICM) are superpositions of two Beltrami fields of different handedness. Application of the Bruggeman homogenization formalism to two-component composite materials delivers ICMs wherein Beltrami fields of one handedness attenuate whereas Beltrami fields of the other handedness amplify. One component material is a dissipative ICM, the other an active dielectric material. The range of the volume fraction of the active component material for which simultaneous amplification and attenuation is exhibited decreases—but does not vanish—as the ICM component becomes more dissipative and as its chirality parameter reduces in magnitude.

  19. Isotropic Stars in Higher-Order Torsion Scalar Theories

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2016-01-01

    Full Text Available Two different nondiagonal tetrad spaces reproducing spherically symmetric spacetime are applied to the field equations of higher-order torsion scalar theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar model and show that one of our solutions is capable of such construction while the other is not. Finally, we discuss the generalized Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.

  20. Isotropic stars in higher-order torsion scalar theories

    CERN Document Server

    Nashed, Gamal G L

    2016-01-01

    Two tetrad spaces reproducing spherically symmetric spacetime are applied to the equations of motion of higher-order torsion theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar model and show that one of our solution capable of such construction while the other cannot. Finally, we discuss the generalized Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.

  1. Anisotropic light emissions in luminescent solar concentrators-isotropic systems.

    Science.gov (United States)

    Verbunt, Paul P C; Sánchez-Somolinos, Carlos; Broer, Dirk J; Debije, Michael G

    2013-05-06

    In this paper we develop a model to describe the emission profile from randomly oriented dichroic dye molecules in a luminescent solar concentrator (LSC) waveguide as a function of incoming light direction. The resulting emission is non-isotropic, in contradiction to what is used in almost all previous simulations on the performance of LSCs, and helps explain the large surface losses measured in these devices. To achieve more precise LSC performance simulations we suggest that the dichroic nature of the dyes must be included in the future modeling efforts.

  2. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  3. Thermo elastic waves with thermal relaxation in isotropic micropolar plate

    Indian Academy of Sciences (India)

    Soumen Shaw; Basudeb Mukhopadhyay

    2011-04-01

    In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an infinitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic expressions in symmetric and anti-symmetric vibration for short as well as long waves are obtained in different regions of phase velocities. It is found that results agree with that of the existing results predicted by Sharma and Eringen in the context of various theories of classical as well as micropolar thermoelasticity.

  4. Rotation of slender swimmers in isotropic-drag media

    CERN Document Server

    Koens, Lyndon

    2016-01-01

    The drag anisotropy of slender filaments is a critical physical property allowing swimming in low-Reynolds number flows, and without it linear translation is impossible. Here we show that, in contrast, net rotation can occur under isotropic drag. We first demonstrate this result formally by considering the consequences of the force- and torque-free conditions on swimming bodies and we then illustrate it with two examples (a simple swimmers made of three rods and a model bacterium with two helical flagellar filaments). Our results highlight the different role of hydrodynamic forces in generating translational vs.~rotational propulsion.

  5. Isotropic Lifshitz behavior in block copolymer-homopolymer blends

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.; Lodge, T.P.

    1995-01-01

    A series of mixtures composed of a symmetric A-B diblock copolymer and a symmetric blend of A and B homopolymers was investigated by small-angle neutron scattering. Mean-field theory predicts that a line of lamellar-disorder transitions with wave-vector instability q* > 0 will meet a line...... of critical points with q* = 0 in the three-component mixture at an isotropic Lifshitz point. Mean-field Lifshitz behavior (gamma = 1 and nu = 1/4) was observed in the disordered state at the anticipated composition to within 1 K of the phase transition....

  6. Effective equations for isotropic quantum cosmology including matter

    CERN Document Server

    Bojowald, Martin; Skirzewski, Aureliano

    2007-01-01

    Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.

  7. Silicone elastomers capable of large isotropic dimensional change

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  8. Gluonic Transversity from Lattice QCD

    CERN Document Server

    Detmold, W

    2016-01-01

    We present an exploratory study of the gluonic structure of the $\\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.

  9. Transverse testicular ectopia - case report

    Directory of Open Access Journals (Sweden)

    Živanović Dragoljub

    2004-01-01

    Full Text Available Transverse testicular ectopia is an extremely rare anomaly, characterized by migration of one testis towards the opposite inguinal canal, usually associated with inguinal hernia. Spermatic cord of the ectopic testis originates from the appropriate side. In most reported cases, the accurate diagnosis has not been made before surgery. This is a case report of transverse testicular ectopia in eleven-year-old boy who had undergone an operation for the left inguinal hernia in age often months. At the time of herniorrhaphy, the right testis was absent. Ten years later, during re-operation of the left inguinal hernia, both testis were found in left inguinal canal and easily brought down sequentially through the left groin into the scrotum. The right testis was fixed in the left hemiscrotum, due to shorter funicular elements, and the left was trans-septally moved to the right hemiscrotum (a modified Ombrédanne operation. Ultrasonography and voiding cystoureterography showed no associated genitourinary anomalies and no Mülerian duct remnants. The rupture of gubernaculum and dysfunction of the genito-femoral nerve could explain the etiology of crossed testis ectopia. Although ectopic testis could be localized preoperatively by ultrasonography, CT, MRI, arteriography and venography, correct diagnosis was made intraoperatively in the majority of cases. Treatment modalities include laparoscopic and surgical procedures. Atrophie testis should be removed. If testes are fused, they have to be brought into one hemiscrotum. In cases where testes are completely separated with individual funicular elements and vas deferens, an ipsilateral or contralateral orchiopexy should be performed depending on the length of funicular elements.

  10. On the assumption of transverse isotropy of a honeycomb sandwich panel for NDT applications

    Science.gov (United States)

    Schaal, Christoph; Tai, Steffen; Mal, Ajit

    2017-04-01

    Due to their excellent strength-to-weight ratio, honeycomb sandwich panels are being increasingly used in lightweight structures, in particular in aircraft and aerospace industry. Delaminations of individual plies in the composite skins or disbonds of a layer in the multi-layer plate structures often remain undetected during visual inspection. Using guided ultrasonic waves, such hidden defects can be detected. For the successful application of ultrasonic nondestructive testing methods, however, wave propagation characteristics have to be well-understood. Recently developed semi-analytical techniques allow for the calculation of dispersion characteristics for many materials. However, the elastic material behavior is often simplified for these calculations. For example, woven composite laminates are modeled as a homogeneous, transversely isotropic plate. While these simplifications only lead to minor errors, the modeling of aluminum honeycomb core sandwich panels with homogeneous, transversely isotropic layers has yet to be validated. In this paper, an efficient numerical approach is used to determine the dispersion characteristics of a honeycomb core layer with and without simplified material behavior. A full 3D-model, including the honeycomb cells, of a small representative volume element of the material is generated using finite elements, and the resulting dispersion curves are compared to the ones obtained from simplified models. In addition to dispersion curves, the displacement fields of the waves are also analyzed.

  11. Double parton scattering for perturbative transverse momenta

    CERN Document Server

    Buffing, Maarten G A; Kasemets, Tomas

    2016-01-01

    The cross section for transverse momentum dependent double parton scattering involves transverse momentum dependent double parton distributions (DTMDs). In the region of perturbative transverse momentum the DTMDs can be matched onto collinear double parton distributions. We present the framework and results for this matching, as well as the evolution equations for DTMDs in the region of large distance between the two partons. We discuss explicit results for one-loop matching coefficients and evolution kernels.

  12. Transversality theorems for the weak topology

    OpenAIRE

    2011-01-01

    In his 1979 paper Trotman proves, using the techniques of the Thom transversality theorem, that under some conditions on the dimensions of the manifolds under consideration, openness of the set of maps transverse to a stratification in the strong (Whitney) topology implies that the stratification is $(a)$-regular. Here we first discuss the Thom transversality theorem for the weak topology and then give a similiar kind of result for the weak topology, under very weak hypotheses. Recently sever...

  13. Transverse sinus air after cranial trauma

    Energy Technology Data Exchange (ETDEWEB)

    Cihangiroglu, Mutlu E-mail: mmutlucihan@hotmail.com; Ozdemir, Huseyin; Kalender, Omer; Ozveren, Faik; Kabaalioglu, Adnan

    2003-11-01

    Air in vascular compartments has been rarely reported. We report a case in whom air within transverse sinus and sinus confluence through ruptured superior sagittal sinus (SSS) due to fractures of parietal and frontal bones was disclosed by computed tomography (CT). Although air in transverse sinus has been reported rarely this could be the first case with air in transverse sinus through the SSS after cranial trauma.

  14. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    K Bora; D K Choudhury

    2003-11-01

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon’s properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd twist-two distribution function – gluons do not couple to it. Quarks in a nucleon/hadron are relativistically bound and transversity is a measure of the relativistic nature of bound quarks in a nucleon. In this work, we review some important aspects of this less familiar distribution function which has not been measured experimentally so far.

  15. Transverse stimulated Raman scattering in KDP

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E.; Sacks, R.A.; Wonterghem, B.M. Van; Caird, J.A.; Murray, J.R.; Campbell, J.H.; Kyle, K.; Ehrlich, R.E.; Nielsen, N.D.

    1995-09-12

    Optical components of large-aperture, high irradiance and high fluence lasers can experience significant levels of stimulated scattering along their transverse dimensions. The authors have observed transverse stimulated Raman scattering in large aperture KDP crystals, and have measured the stimulated gain coefficient. With sufficiently high gain, transverse stimulated scattering can lead to energy loss from the main beam and, more importantly, optical damage in the components in which this scattering occurs. Thus transverse stimulated,scattering is of concern in large aperture fusion lasers such as Nova and Beamlet, which is a single-aperture, full-scale scientific prototype of the laser driver for the proposed National Ignition Facility.

  16. Transversity $K$ Factors for Drell-Yan

    CERN Document Server

    Ratcliffe, P G

    2004-01-01

    The question of the $K$ factor in transversely polarised Drell-Yan (DY) processes is examined. The transverse-spin case is peculiar for the absence of a reference point in deeply inelastic scattering (DIS). A DIS definition for transversity is therefore devised using a hypothetical scalar (Higgs-like) vertex, in order to study more fully the possible effects of higher-order corrections on DY asymmetries. The results show that some care may be required in interpreting experimentally extracted partonic transversity, in particular when comparing with model calculations or predictions.

  17. Charged isotropic non-Abelian dyonic black branes

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2015-05-01

    Full Text Available We construct black holes with a Ricci-flat horizon in Einstein–Yang–Mills theory with a negative cosmological constant, which approach asymptotically an AdSd spacetime background (with d≥4. These solutions are isotropic, i.e. all space directions in a hypersurface of constant radial and time coordinates are equivalent, and possess both electric and magnetic fields. We find that the basic properties of the non-Abelian solutions are similar to those of the dyonic isotropic branes in Einstein–Maxwell theory (which, however, exist in even spacetime dimensions only. These black branes possess a nonzero magnetic field strength on the flat boundary metric, which leads to a divergent mass of these solutions, as defined in the usual way. However, a different picture is found for odd spacetime dimensions, where a non-Abelian Chern–Simons term can be incorporated in the action. This allows for black brane solutions with a magnetic field which vanishes asymptotically.

  18. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  19. PDF Modeling of Evaporating Droplets in Isotropic Turbulence.

    Science.gov (United States)

    Mashayek, F.; Pandya, R. V. R.

    2000-11-01

    We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).

  20. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  1. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    Science.gov (United States)

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  2. The Isotropic Radio Background and Annihilating Dark Matter

    CERN Document Server

    Hooper, Dan; Jeltema, Tesla E; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R

    2012-01-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, sim...

  3. An Areal Isotropic Spline Filter for Surface Metrology.

    Science.gov (United States)

    Zhang, Hao; Tong, Mingsi; Chu, Wei

    2015-01-01

    This paper deals with the application of the spline filter as an areal filter for surface metrology. A profile (2D) filter is often applied in orthogonal directions to yield an areal filter for a three-dimensional (3D) measurement. Unlike the Gaussian filter, the spline filter presents an anisotropic characteristic when used as an areal filter. This disadvantage hampers the wide application of spline filters for evaluation and analysis of areal surface topography. An approximation method is proposed in this paper to overcome the problem. In this method, a profile high-order spline filter serial is constructed to approximate the filtering characteristic of the Gaussian filter. Then an areal filter with isotropic characteristic is composed by implementing the profile spline filter in the orthogonal directions. It is demonstrated that the constructed areal filter has two important features for surface metrology: an isotropic amplitude characteristic and no end effects. Some examples of applying this method on simulated and practical surfaces are analyzed.

  4. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  5. The universe as a black hole in isotropic coordinates

    CERN Document Server

    Poplawski, Nikodem J

    2009-01-01

    We show that the radial geodesic motion of a particle inside a black hole in isotropic coordinates (the Einstein-Rosen bridge) is physically different from the radial motion inside a Schwarzschild black hole. A particle enters the interior region of an Einstein-Rosen black hole which is regular and physically equivalent to the asymptotically flat exterior of a white hole, and the particle's proper time extends to infinity. Because the motion across the Einstein-Rosen bridge is unidirectional, and the surface of a black hole is the event horizon for distant observers, an Einstein-Rosen black hole is indistinguishable from a Schwarzschild black hole for such observers. Observers inside an Einstein-Rosen black hole perceive its interior as a closed universe that began when the black hole formed, with an initial radius equal to the Schwarzschild radius of the black hole $r_g$, and with an initial accelerated expansion. Therefore the model of a universe as a black hole in isotropic coordinates explains the origin ...

  6. Even harmonic generation in isotropic media of dissociating homonuclear molecules

    CERN Document Server

    Silva, R E F; Morales, F; Smirnova, O; Ivanov, M; Martín, F

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\\"odinger equation for $H$$_2$$^+$ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are pro...

  7. The mare as a model for luteinized unruptured follicle syndrome: intrafollicular endocrine milieu.

    Science.gov (United States)

    Bashir, S T; Gastal, M O; Tazawa, S P; Tarso, S G S; Hales, D B; Cuervo-Arango, J; Baerwald, A R; Gastal, E L

    2016-03-01

    Luteinized unruptured follicle (LUF) syndrome is a recurrent anovulatory dysfunction that affects up to 23% of women with normal menstrual cycles and up to 73% with endometriosis. Mechanisms underlying the development of LUF syndrome in mares were studied to provide a potential model for human anovulation. The effect of extended increase in circulating LH achieved by administration of recombinant equine LH (reLH) or a short surge of LH and decrease in progesterone induced by prostaglandin F2α (PGF2α) on LUF formation (Experiment 1), identification of an optimal dose of COX-2 inhibitor (flunixin meglumine, FM; to block the effect of prostaglandins) for inducing LUFs (Experiment 2), and evaluation of intrafollicular endocrine milieu in LUFs (Experiment 3) were investigated. In Experiment 1, mares were treated with reLH from Day 7 to Day 15 (Day 0=ovulation), PGF2α on Day 7, or in combination. In Experiment 2, FM at doses of 2.0 or 3.0 mg/kg every 12 h and human chorionic gonadotropin (hCG) (1500 IU) were administered after a follicle ≥32 mm was detected. In Experiment 3, FM at a dose of 2.0 mg/kg every 12 h plus hCG was used to induce LUFs and investigate the intrafollicular endocrine milieu. No LUFs were induced by reLH or PGF2α treatment; however, LUFs were induced in 100% of mares using FM. Intrafollicular PGF2α metabolite, PGF2α, and PGE2 were lower and the ratio of PGE2:PGF2α was higher in the induced LUF group. Higher levels of intrafollicular E2 and total primary sex steroids were observed in the induced LUF group along with a tendency for higher levels of GH, cortisol, and T; however, LH, PRL, VEGF-A, and NO did not differ between groups. In conclusion, this study reveals part of the intrafollicular endocrine milieu and the association of prostaglandins in LUF formation, and indicates that the mare might be an appropriate model for studying the poorly understood LUF syndrome.

  8. An inequality for longitudinal and transverse wave attenuation coefficients

    CERN Document Server

    Norris, Andrew N

    2016-01-01

    Total absorption, defined as the net flux of energy out of a bounded region averaged over one cycle for time harmonic motion, must be non-negative when there are no sources of energy within the region. This passivity condition is satisfied by a linearly viscoelastic material if and only if the imaginary part of the density is non-negative and the imaginary part of the elastic stiffness is negative semi-definite. For isotropic materials this implies that the imaginary parts of the bulk and shear modulus must be non-positive. Constraints are presented for the non-dimensional absorption coefficients of longitudinal and transverse waves, $\\gamma_L$, $\\gamma_T$. Typically, these are small, $\\gamma_L, \\, \\gamma_T \\ll1$, in which case the constraints imply that coefficients of attenuation per unit length, $\\alpha_L$, $\\alpha_T$, must satisfy the inequality ${\\alpha_L}/{\\alpha_T} \\ge { 4c_{T}^3} / { 3c_{L}^3}$ where $c_L$, $c_T$ are the wave speeds. This inequality, which as far as the author is aware, has not been p...

  9. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs

    Science.gov (United States)

    Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2004-05-01

    The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor , which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.

  10. Le cancer en milieu chirurgical pédiatrique au Togo

    OpenAIRE

    Gnassingbe, Komla; Guedenon, Koffi Mawuse; Kanassoua, Kokou; Adabra, Komlan; Kpabi, Kagnimtassou; Akakpo-Numado, Gamedzi Komlatse; Napo-Koura, Gado; Tekou, Hubert

    2014-01-01

    Introduction Le but de ce travail était de relever les aspects épidémiologiques des cancers de l'enfant en milieu chirurgical, décrire les problèmes posés par ces cancers et évaluer les résultats de leur prise en charge Méthodes Il s'agit d'une étude rétrospective analytique sur dossiers de patients âgés de moins de 15 ans pris en charge dans le service de chirurgie pédiatrique pour cancer solide de preuve anatomopathologique entre janvier 1987 et décembre 2010. Jusqu'en 2010, les hôpitaux pu...

  11. Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Prokudin, Alexei [JLAB; Bacchetta, Alessandro [INFN-PAVIA

    2013-07-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  12. Laparoscopic correction of right transverse colostomy prolapse.

    Science.gov (United States)

    Gundogdu, Gokhan; Topuz, Ufuk; Umutoglu, Tarik

    2013-08-01

    Colostomy prolapse is a frequently seen complication of transverse colostomy. In one child with recurrent stoma prolapse, we performed a loop-to-loop fixation and peritoneal tethering laparoscopically. No prolapse had recurred at follow-up. Laparoscopic repair of transverse colostomy prolapse seems to be a less invasive method than other techniques.

  13. Normal Orthodox Semigroups with Inverse Transversals

    Institute of Scientific and Technical Information of China (English)

    ZHUFeng-lin

    2003-01-01

    A normal orthodox semigroup is an orthodox semigroup whose idempotent elements form a normal band.We deal with congruces on a normal orthodox semigroup with an iverse transversal .A structure theorem for such semigroup is obtained.Munn(1966)gave a fundamental inverse semigroup Following Munn's idea ,we give a fundamental normal orthodox semigroup with an inverse transversal.

  14. A GENERALIZED TRANSVERSALITY IN GLOBAL ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Ma Jipu

    2004-01-01

    @@ E. Zeidler in [10] mentions that transversality is certainly one of the most important concepts of modern mathematics, which provided an answer to the question: when is the preimage of a manifold a manifold. This is the celebrated transversality theorem, which has been applied widely to differential topology and dynamic system in [1,2] and [3].

  15. Cladding For Transversely-Pumped Laser Rod

    Science.gov (United States)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  16. Peculiarities of the Super-Folder GFP Folding in a Crowded Milieu

    Directory of Open Access Journals (Sweden)

    Olesya V. Stepanenko

    2016-10-01

    Full Text Available The natural cellular milieu is crowded by large quantities of various biological macromolecules. This complex environment is characterized by a limited amount of unoccupied space, limited amounts of free water, and changed solvent properties. Obviously, such a tightly packed cellular environment is poorly mimicked by traditional physiological conditions, where low concentrations of a protein of interest are analyzed in slightly salted aqueous solutions. An alternative is given by the use of a model crowded milieu, where a protein of interest is immersed in a solution containing high concentrations of various polymers that serve as model crowding agents. An expected outcome of the presence of such macromolecular crowding agents is their ability to increase conformational stability of a globular protein due to the excluded volume effects. In line with this hypothesis, the behavior of a query protein should be affected by the hydrodynamic size and concentration of an inert crowder (i.e., an agent that does not interact with the protein, whereas the chemical nature of a macromolecular crowder should not play a role in its ability to modulate conformational properties. In this study, the effects of different crowding agents (polyethylene glycols (PEGs of various molecular masses (PEG-600, PEG-8000, and PEG-12000, Dextran-70, and Ficoll-70 on the spectral properties and unfolding–refolding processes of the super-folder green fluorescent protein (sfGFP were investigated. sfGFP is differently affected by different crowders, suggesting that, in addition to the expected excluded volume effects, there are some changes in the solvent properties.

  17. Apoptosis and hormonal milieu in ductal system of normal prostate and benign prostatic hyperplasia

    Institute of Scientific and Technical Information of China (English)

    Shu-Jie XIA; Chun-Xiao XU; Xiao-Da TANG; Wan-Zhong WANG; De-Li DU

    2001-01-01

    Aim: To study theapoptotic rate (AR) and the androgen and estrogen milieu in the proximal and distal ductal sys tems of prostate, in order to help exploring the effects of these factors on prostatic growth and the pathogenesis of be nign prostatic hypertrophy (BPH). Methods: The proximal and distal ends of the ductal system were incised from 20 normal prostate as well as the hypertrophic prostate tissue from 20 patients with BPH. The AR was determined by the DNA end-labeling method and dihydrotestosterone (DHT) and estrodiol (E2), by radioimmunoassay. Results:There was no significant difference in DHT and E2 density between the proximal and distal ends of the ductal systems in normal prostate. E2 appeared to be higher in BPH than in normal prostatic tissues, but the difference was statistically in significant. In normal prostatic tissue, the AR was significantly higher in the distal than in the proximal ends of the ductal system ( P < 0.05), while the AR of the proximal ends was significantly higher ( P < 0.01) than that in the BPH tissue. No significant correlation was noted between the DHT and E2 density and the AR both in the normal prostate and BPH tissues. Conclusion: The paper is the first time describing a difference in AR in different regions of the ductal system of normal prostate, while the hormonal milieu is similar, indicating a functional inhomogeneity of these regions. A low AR in the proximal duct, where BPH originates, and an even lower AR in the BPH tissue, sug gesting the participation of apoptosis in the BPH pathogenesis.

  18. Transverse Force on Quarks in DIS

    CERN Document Server

    Burkardt, Matthias

    2015-01-01

    Generalized Parton Distributions (GPDs) provide information on the distribution of quarks in impact paarmeter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. %The strength of that force can be related to twist-3 PDFs. This force when acting along the whole trajectory of the active quark leads to a transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark Orbital Angular Momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  19. Growth of transverse coherence in SASE FELs

    CERN Document Server

    Kumar, V

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code.

  20. Transverse and longitudinal angular momenta of light

    CERN Document Server

    Bliokh, Konstantin Y

    2015-01-01

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin...

  1. Non-targeted metabolomic evaluation of the uterine milieu during the transitional period of embryo elongation in the pig

    Science.gov (United States)

    Alterations in the signaling of critical molecular factors within the uterine milieu lead to deficiencies in embryo elongation. The objective of this study was to identify metabolites within the uterine environment that are present as porcine embryos transition between spherical, ovoid, and tubular ...

  2. Asking More than We Can Tell: Social Status, Social Milieu and Social Space in Explanations for Participation in Adult Education

    Science.gov (United States)

    Schemmann, Michael; Wittpoth, Jurgen

    2008-01-01

    This paper argues that even though there is continuous research work on participation in adult education, the current state of research is not satisfactory. It develops this assumption by discussing studies that focus on social status and social milieu as explanatory factors for adult education. The authors draw on findings from a research project…

  3. Cosmological Simulations of Isotropic Conduction in Galaxy Clusters

    CERN Document Server

    Smith, Britton D; Voit, G Mark; Ventimiglia, David; Skillman, Samuel W

    2013-01-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of ten galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, but not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the in...

  4. Shape-dependence of particle rotation in isotropic turbulence

    CERN Document Server

    Byron, M; Gustavsson, K; Voth, G; Mehlig, B; Variano, E

    2014-01-01

    We consider the rotation of neutrally buoyant axisymmetric particles suspended in isotropic turbulence. Using laboratory experiments as well as numerical and analytical calculations, we explore how particle rotation depends upon particle shape. We find that shape strongly affects orientational trajectories, but that it has negligible effect on the variance of the particle angular velocity. Previous work has shown that shape significantly affects the variance of the tumbling rate of axisymmetric particles. It follows that shape affects the spinning rate in a way that is, on average, complementary to the shape-dependence of the tumbling rate. We confirm this relationship using direct numerical simulations, showing how tumbling rate and spinning rate variances show complementary trends for rod-shaped and disk-shaped particles. We also consider a random but non-turbulent flow. This allows us to explore which of the features observed for rotation in turbulent flow are due to the effects of particle alignment in vo...

  5. A new approach to Lagrangian investigations of isotropic turbulence

    Science.gov (United States)

    Barjona, Manuel; B. da Silva, Carlos; Idmec Team

    2016-11-01

    A new numerical approach is used in conjunction with direct numerical simulations (DNS) of statistically stationary (forced) isotropic turbulence to investigate the high Reynolds number scaling properties of turbulence characteristics in a Lagrangian frame. The new method provides an alternative route to the determination of the classical Lagrangian turbulence quantities, such as the second order Lagrangian velocity structure function and two point particle separation, at a much higher Reynolds number than as obtained in previous numerical simulations, and displays excellent agreement with the classical theoretical predictions and existing numerical simulations and experimental data. The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC, computing, consulting resources that have contributed to the research results reported within this paper. URL http://www.lca.uc.pt.

  6. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    Science.gov (United States)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  7. A Spatially Homogeneous and Isotropic Einstein-Dirac Cosmology

    CERN Document Server

    Finster, Felix

    2011-01-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  8. Determination of the decay exponent in mechanically stirred isotropic turbulence

    Directory of Open Access Journals (Sweden)

    J. Blair Perot

    2011-06-01

    Full Text Available Direct numerical simulation is used to investigate the decay exponent of isotropic homogeneous turbulence over a range of Reynolds numbers sufficient to display both high and low Re number decay behavior. The initial turbulence is generated by the stirring action of the flow past many small randomly placed cubes. Stirring occurs at 1/30th of the simulation domain size so that the low-wavenumber and large scale behavior of the turbulent spectrum is generated by the fluid and is not imposed. It is shown that the decay exponent in the resulting turbulence matches the theoretical predictions for a k2 low-wavenumber spectrum at both high and low Reynolds numbers. The transition from high Reynolds number behavior to low Reynolds number behavior occurs relatively abruptly at a turbulent Reynolds number of around 250 ( Re λ≈41.

  9. Helicity statistics in homogeneous and isotropic turbulence and turbulence models

    CERN Document Server

    Sahoo, Ganapati; Biferale, Luca

    2016-01-01

    We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small-scales, i.e. chiral terms are always subleading and they are well captured by a dimensional argument plus a small anomalous correction. We confirm these findings with numerical study of helical shell models at high Reynolds numbers.

  10. From Weakly to Strongly Magnetized Isotropic MHD Turbulence

    CERN Document Server

    Alexakis, Alexandros

    2012-01-01

    High Reynolds number isotropic magneto-hydro-dynamic turbulence in the presence of large scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations the energy dissipation rate \\epsilon, follows the Kolmogorov scaling \\epsilon ~ U^3/L even when the large scale magnetic field energy is twenty times larger than the kinetic. Further increase of the magnetic energy showed a transition to the \\epsilon ~ U^2 B / L scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra showed support for the Kolmogorov spectrum k^{-5/3} while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k^{-3/2}.

  11. Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence

    CERN Document Server

    Pujara, Nimish

    2016-01-01

    The statistics of rotational motion of small, inertialess triaxial ellipsoids are computed along Lagrangian trajectories extracted from direct numerical simulations of homogeneous isotropic turbulence. The particle angular velocity and its components along the three principal axes of the particle are considered, expanding on the results presented by \\citet{ChevillardMeneveau13}. The variance of the particle angular velocity, referred to as the particle enstrophy, is found to increase for particles with elongated shapes. This trend is explained by considering the contributions of vorticity and strain-rate to particle rotation. It is found that the majority of particle enstrophy is due to fluid vorticity. Strain-rate-induced rotations, which are sensitive to shape, are mostly cancelled by strain-vorticity interactions. The remainder of the strain-rate-induced rotations are responsible for weak variations in particle enstrophy. For particles of all shapes, the majority of the enstrophy is in rotations about the ...

  12. Assessing the Structure of Isotropic and Anisotropic Turbulent Magnetic Fields

    Science.gov (United States)

    Fatuzzo, Marco; Holden, Lisa; Grayson, Lindsay; Wallace, Kirk

    2016-10-01

    Turbulent magnetic fields permeate our universe, impacting a wide range of astronomical phenomena across all cosmic scales. A clear example is the magnetic field that threads the interstellar medium (ISM), which impacts the motion of cosmic rays through that medium. Understanding the structure of magnetic turbulence within the ISM and how it relates to the physical quantities that characterize it can thus inform our analysis of particle transport within these regions. Toward that end, we probe the structure of magentic turbulence through the use of Lyapunov exponents for a suite of isotropic and nonisotropic Alfvénic turbulence profiles. Our results provide a means of calculating a “turbulence lengthscale” that can then be connected to how cosmic rays propagate through magentically turbulent environments, and we perform such an analysis for molecular cloud environments.

  13. Helicity statistics in homogeneous and isotropic turbulence and turbulence models

    Science.gov (United States)

    Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca

    2017-02-01

    We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.

  14. Sand - rubber mixtures submitted to isotropic loading: a minimal model

    Science.gov (United States)

    Platzer, Auriane; Rouhanifar, Salman; Richard, Patrick; Cazacliu, Bogdan; Ibraim, Erdin

    2017-06-01

    The volume of scrap tyres, an undesired urban waste, is increasing rapidly in every country. Mixing sand and rubber particles as a lightweight backfill is one of the possible alternatives to avoid stockpiling them in the environment. This paper presents a minimal model aiming to capture the evolution of the void ratio of sand-rubber mixtures undergoing an isotropic compression loading. It is based on the idea that, submitted to a pressure, the rubber chips deform and partially fill the porous space of the system, leading to a decrease of the void ratio with increasing pressure. Our simple approach is capable of reproducing experimental data for two types of sand (a rounded one and a sub-angular one) and up to mixtures composed of 50% of rubber.

  15. Instability induced pressure isotropization in a longitudinally expanding system

    CERN Document Server

    Dusling, Kevin; Gelis, François; Venugopalan, Raju

    2012-01-01

    In two previous works [arXiv:1009.4363,arXiv:1107.0668], we studied the time evolution of a system of real scalar fields with quartic coupling which shares important features with the Color Glass Condensate description of heavy ion collisions. Our primary objective was to understand how such a system, when initialized with a non-perturbatively large classical field configuration, reaches thermal equilibrium. An essential goal of these works was to highlight the role played by the quantum fluctuations. However, these studies considered only a system confined within a box of fixed volume. In the present paper, we extend this work to a system that expands in the longitudinal direction thereby more closely mimicking a heavy ion collision. We conclude that the microscopic processes that drive the system towards equilibrium are able to keep up with the expansion of the system; the pressure tensor becomes isotropic despite the anisotropic expansion.

  16. Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models

    CERN Document Server

    Pun, C S J; Mak, M K; Kovács, Z; Szabó, G M; Harko, T

    2008-01-01

    The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an acceleratin...

  17. Influence of stable stratification on three-dimensional isotropic turbulence

    Science.gov (United States)

    Metais, O.

    The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.

  18. Homogeneous, isotropic turbulence phenomenology, renormalization, and statistical closures

    CERN Document Server

    McComb, W David

    2014-01-01

    Fluid turbulence is often referred to as 'the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of...

  19. The modified cumulant expansion for two-dimensional isotropic turbulence

    Science.gov (United States)

    Tatsumi, T.; Yanase, S.

    1981-09-01

    The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k to the -3rd power inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969), assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time which separates the initial period and the similarity period in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit.

  20. Coherent inelastic backscattering of laser light from three isotropic atoms

    CERN Document Server

    Ketterer, Andreas; Shatokhin, Vyacheslav N

    2014-01-01

    We study the impact of double and triple scattering contributions on coherent backscattering of laser light from saturated isotropic atoms, in the helicity preserving polarization channel. Using the recently proposed diagrammatic pump-probe approach, we analytically derive single-atom spectral responses to a classical polychromatic driving field, combine them self-consistently to double and triple scattering processes, and numerically deduce the corresponding elastic and inelastic spectra, as well as the total backscattered intensities. We find that account of the triple scattering contribution leads to a faster decay of phase-coherence with increasing saturation of the atomic transition as compared to double scattering alone, and to a better agreement with the experiment on strontium atoms.

  1. Component Separation of a Isotropic Gravitational Wave Background

    CERN Document Server

    Parida, Abhishek; Jhingan, Sanjay

    2015-01-01

    A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of ~50-1000 Hz, considering one spectral shape at a time. However, one strong component can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for "component separation" of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components an...

  2. Shrinking device realized by using layered structures of homogeneous isotropic materials

    Institute of Scientific and Technical Information of China (English)

    Guo Ya-Nan; Liu Shao-Bin; Zhao Xin; Wang Shen-Yun; Chen Chen

    2012-01-01

    We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.

  3. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin–Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin–Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  4. The signature of initial production mechanisms in isotropic turbulence decay

    Science.gov (United States)

    Meldi, M.

    2016-03-01

    In the present work the quantification of the time-lasting effects of production mechanisms in homogeneous isotropic turbulence decay is addressed. The analysis is developed through the use of theoretical tools as well as numerical calculations based on the eddy damped quasinormal Markovian (EDQNM) model. In both cases a modified Lin equation is used, which accounts for production mechanisms as proposed by Meldi, Lejemble, and Sagaut ["On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence," J. Fluid Mech. 756, 816-843 (2014)]. The approaches used show that an exponential decay law can be observed if the intensity of the forcing is strong enough to drive the turbulence dynamics, before a power-law decay is eventually attained. The EDQNM numerical results indicate that the exponential regime can persist for long evolution times, longer than the observation time in grid turbulence experiments. A rigorous investigation of the self-similar behavior of the pressure spectrum has been performed by a comprehensive comparison of EDQNM data with direct numerical simulation (DNS)/experiments in the literature. While DNS and free decay EDQNM simulations suggest the need of a very high Reλ threshold in order to observe a clear -7/3 slope of the pressure inertial range, experimental data and forced EDQNM calculations indicate a significantly lower value. This observation suggests that the time-lasting effects of production mechanisms, which cannot be excluded in experiments, play a role in the lack of general agreement with classical numerical approaches. These results reinforce the urge to evolve the numerical simulation state of the art towards the prediction of realistic physical states.

  5. Forward Transverse Single Spin Asymmetries at PHENIX

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, Anselm, E-mail: avossen@indiana.edu [Indiana University, CEEM, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States)

    2011-09-16

    Recent measurements of single transverse spin asymmetries in proton-proton collisions measured by the PHENIX experiment at RHIC are presented. The focus is on the single particle left-right asymmetry A{sub N} for {pi}{sup 0} at {radical}s = 200 GeV and {radical}s = 62.4 GeV and the measurement of di-hadron correlations at {radical}s = 200 GeV which are produced by the fragmentation of a transversely polarized quark via the Interference Fragmentation Function (IFF) H{sub 1}{sup <} and thus provide a probe for the quark transversity distribution function.

  6. Transversality and Lipschitz-Fredholm maps

    OpenAIRE

    2015-01-01

    We study transversality for Lipschitz-Fredholm maps in the context of bounded Fr\\'{e}chet manifolds. We show that the set of all Lipschitz-Fredholm maps of a fixed index between Fr\\'{e}chet spaces has the transverse stability property. We give a straightforward extension of the Smale transversality theorem by using the generalized Sard's theorem for this category of manifolds. We also provide an answer to the well known problem concerning the existence of a submanifold structure on the preima...

  7. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2017-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasou...... increase in SD to 15.7%, but a maintained bias of -3.5% from 126 to 156 mm. Data for a pulsating flow has also been acquired for 15 cardiac cycles using a CompuFlow 1000 pump. The relative SD was here 7.4% for a femoral artery waveform....

  8. Locally Inverse Semigroups with Inverse Transversals

    Institute of Scientific and Technical Information of China (English)

    SHAO Yong; ZHAO Xian Zhong

    2009-01-01

    Let S be a locally inverse semigroup with an inverse transversal S°. In this paper, we construct an amenable partial order on S by an R-cone. Conversely, every amenable partial order on S can be constructed in this way. We give some properties of a locally inverse semigroup with a Clifford transversal. In particular, if S is a locally inverse semigroup with a Clifford transversal, then there is an order-preserving bijection from the set of all amenable partial orders on S to the set of all R-cones of S.

  9. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    . This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...

  10. The response of human macrophages to β-glucans depends on the inflammatory milieu.

    Directory of Open Access Journals (Sweden)

    Cristina Municio

    Full Text Available BACKGROUND: β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions. PRINCIPAL FINDINGS: Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan. CONCLUSIONS: These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii a response primed by TLR4-dependent signals, and iii

  11. The Response of Human Macrophages to β-Glucans Depends on the Inflammatory Milieu

    Science.gov (United States)

    Montero, Olimpio; Hugo, Etzel; Rodríguez, Mario; Domingo, Esther; Alonso, Sara

    2013-01-01

    Background β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions. Principal Findings Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan. Conclusions These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i) an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii) a response primed by TLR4-dependent signals, and iii) a response dependent

  12. Transversally periodic solitary gravity–capillary waves

    Science.gov (United States)

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  13. Transverse flow in thin superhydrophobic channels

    CERN Document Server

    Feuillebois, Francois; Vinogradova, Olga I

    2010-01-01

    We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro- and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geometry and orientation of the surface texture to maximize transverse flow. In the case of two aligned striped surfaces, very strong transverse flows are possible. Optimized superhydrophobic surfaces may find applications in passive microfluidic mixing and amplification of transverse electrokinetic phenomena.

  14. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given......Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... examples of rotated families to argue this. There will be discussed several open questions concerning the number of transversals that can appear for a certain degree d of a polynomial vector field, and furthermore how transversals are analyzed with respect to bifurcations around multiple equilibrium points....

  15. Fluid Model of Waveguide Transverse Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, optical fluid is firstly defined. By using the movement law of hydrodynamics, the transverse coupling of waveguides is discussed. The result fully coincides with the electromagnetic solution.

  16. Measuring transverse shape with virtual photons

    CERN Document Server

    Hoyer, Paul

    2011-01-01

    A two-dimensional Fourier transform of hadron form factors allows to determine their charge density in transverse space. We show that this method can be applied to any virtual photon induced transition, such as \\gamma *(q)+N -> \\pi N. Only Fock states that are common to the initial and final states contribute to the amplitudes, which are determined by the overlap of the corresponding light-front wave functions. Their transverse extent may be studied as a function of the final state configuration, allowing qualitatively new insight into strong interaction dynamics. Fourier transforming the cross section (rather than the amplitude) gives the distribution of the transverse distance between the virtual photon interaction vertices in the scattering amplitude and its complex conjugate. While the measurement of parton distributions in longitudinal momentum depends on the leading twist approximation (-q^2 -> \\infty limit), all q^2<0 values contribute to the Fourier transform, with the transverse resolution increas...

  17. Phase diagrams of diluted transverse Ising nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)

    2013-06-15

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.

  18. Transverse Λ polarization in inclusive processes

    NARCIS (Netherlands)

    Anselmino, M; Boer, D; D'Alesio, U; Murgia, F

    2003-01-01

    A formalism proposed to study transverse A polarization in unpolarized hadronic processes, based on a generalized pQCD factorization theorem, is extended to semi-inclusive DIS. Analytical expressions and examples of numerical estimates are given.

  19. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    Energy Technology Data Exchange (ETDEWEB)

    Macon, David James; Brannon, Rebecca Moss; Strack, Otto Eric

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the (3z(Bensemble(3y (Bhardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy

  20. GENERAL FORMULA AND RECURRENCE FORMULA FOR RADIAL MATRIX ELEMENTS OF N-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

    Institute of Scientific and Technical Information of China (English)

    CHEN CHANG-YUAN

    2000-01-01

    In this paper, the general formulas and the recurrence formulas for radial matrix elements of N-dimensional isotropic harmonic oscillator are obtained. The relevant results of 2- dimensional and 3- dimensiona] isotropic harmonic oscillators reported in the reference papers are contained in a more general equations derived in this paper as special cases.

  1. Observation of dynamical precursors of the isotropic-nematic transition by computer simulation

    NARCIS (Netherlands)

    Allen, M.P.; Frenkel, D.

    1987-01-01

    We present the results of the first molecular-dynamics simulations of a molecular liquid, namely a system of prolate hard ellipsoids of revolution, near the isotropic-nematic liquid-crystal phase transition. Collective rotational motion in the isotropic phase slows down on approach to the transition

  2. Two-dimensional isotropic damage elastoplastic model for quasi-brittle material

    OpenAIRE

    Beneš, P. (Pavel); Vavřík, D. (Daniel)

    2014-01-01

    Micro-mechanical model for isotropic damage of quasi-brittle material including frictionis presented. Damage is assumed to be isotropic and scalar damage variable is employed . Operatorsplitting method is applied. The article contains derived expressions for derivations necessary forcomputation of coefficients in two dimensions for strain and damage normality rules.

  3. Isotropic three-dimensional MRI-Fricke-infused gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nai-Yu; Chu, Woei-Chyn [Institute of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan (China); Huang, Sung-Cheng [Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095 (United States); Chung, Wen-Yuh [Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China); Guo, Wan-Yuo [Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China)

    2013-05-15

    Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation

  4. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  5. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  6. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  7. Schwarzschild solution from Weyl transverse gravity

    Science.gov (United States)

    Oda, Ichiro

    2017-01-01

    We study classical solutions in the Weyl-transverse (WTDiff) gravity. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeomorphisms (Diff) (transverse diffeomorphisms (TDiff)) and is known to be equivalent to general relativity at least at the classical level. In particular, we find that in a general spacetime dimension, the Schwarzschild metric is a classical solution in the WTDiff gravity when it is expressed in the Cartesian coordinate system.

  8. Transverse phase space and its multipole decomposition

    CERN Document Server

    Lorcé, Cédric

    2016-01-01

    Relativistic phase space distributions are very interesting objects as they allow one to gather the information extracted from various types of experiments into a single coherent picture. Focusing on the four-dimensional transverse phase space, we identified all the possible angular correlations providing at the same time a clear physical interpretation of all the leading-twist generalized and transverse-momentum dependent parton distributions. We also developed a convenient representation of this four-dimensional space.

  9. Results from the AGS Booster transverse damper

    Energy Technology Data Exchange (ETDEWEB)

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 [times] 10[sup 13] protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s[sup [minus]1] have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.

  10. Results from the AGS Booster transverse damper

    Energy Technology Data Exchange (ETDEWEB)

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-06-01

    To reach the design intensity of 1.5 {times} 10{sup 13} protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s{sup {minus}1} have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.

  11. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  12. Isotropic-Cholesteric Co-Existence and Magnetic Field-Induced Isotropic-Nematic Transition of Filamentous Bacteriophage FD in Aqueous Suspension.

    Science.gov (United States)

    Tang, Jianxin

    1995-01-01

    Isotropic to liquid crystalline phase transition for a lyotropic suspension of geometrically asymmetric macromolecules occurs to a wild class of synthetic polymers and biopolymers. Although in decades statistical mechanical theories have been developed to predict the thermodynamic conditions and the properties of such transition, quantitative comparison with theory has been compounded with complications such as charge, shape, polydispersity in size, and additional interactions with the solvent and among the macromolecules themselves. We chose the aqueous suspension of the filamentous bacteriophage fd as a model system to study the isotropic to liquid crystalline transition. The co-existence concentrations, as a function of ionic strength, were measured directly by spectrophotometry. Our data confirm quantitatively the predictions of a statistical mechanic treatment first described by Onsager, modified to include the effects of charge and flexibility of rodlike particles. We have also extended a previous study of the pretransitional angular correlations in the isotropic solutions of fd through the measurement of the magnetic-field-induced birefringence, i.e. the measurement of the Cotton-Mouton constant. At several ionic strengths the magnetic-field-induced birefringence, which is proportional to the number of particles in a correlation volume N_{rm corr}, was measured for fd concentrations spanning the entire isotropic region. From this data the limiting concentration of stability (spinodal) of the isotropic phase is obtained. A theoretical expression for the magnetic birefringence of persistent polymers was derived and agreed well with the data with the exception that N_{rm corr} at the isotropic to liquid crystal transition was smaller than predicted. In the proximity of the highest possible isotropic concentration, that is the isotropic in co-existence with anisotropic, we studied the effect of a high magnetic field. A first order field-induced isotropic

  13. Critical buckling strain in high strength steel pipes using isotropic kinematic hardening

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A.; Roger Cheng, J. J.; Adeeb, Samer [Department of Civil and Environmental Engineering, University of Alberta (Canada); Zhou, Joe [TransCanada Pipelines Ltd. (Canada)

    2010-07-01

    In the natural gas sector, the use of high strength steel pipelines (HSSP) to transport huge volumes over long distances is increasing as it yields important savings in both capital and operational expenditures. In order to design HSSP, the critical buckling strain as to be taken into consideration but the models so far developed have been for isotropic materials while important material anisotropy is observed on HSSP due to their manufacturing process. The paper presents a model to assess the critical buckling strain of HSSP. An isotropic-kinematic hardening material model was developed and isotropic and anisotropic models were used to simulate pressurized and non-pressurized HSSP and were compared to test results. Results showed that the isotropic model is not suitable for predicting the buckling strain of HSSP but that the isotropic-kinematic hardening material model is. A model to better predict the buckling strain of HSSP was developed and successfully tested herein.

  14. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  15. Race differences in obesity and its relationship to the sex hormone milieu.

    Science.gov (United States)

    Perry, Arlette C; Martin, Lorena

    2014-09-01

    A sexual dimorphism exists in which increased abdominal and visceral adipose tissue (VAT) - found in women and marked by low sex hormone binding globulin (SHBG) and high bioavailable testosterone (BT) - is related to the metabolic risk profile. In men, increased BT is related to decreased abdominal obesity and a decrease in the metabolic risk profile. In women, race differences have been found in androgenic sex steroids including SHBG and BT as well as central fat distribution, creating inherently greater metabolic risk for certain populations. Estrogen and estrogen receptor isoforms play a role in fat deposition and distribution and may influence the changes that occur during the menopausal transition. Androgenic sex steroids serve a mediating role, influencing VAT accumulation and its associated metabolic risk factors while VAT also serves a mediating role influencing the androgenic sex steroid-metabolic risk relationship in women. Furthermore, androgenic sex steroids and VAT may independently contribute to the variance in several metabolic variables associated with cardiovascular disease, type 2 diabetes, and their antecedent conditions such as the metabolic syndrome. Race has been shown to modify the relationship between androgenic sex steroids and metabolic variables associated with risk for diabetes in Black and White women. Further research is warranted to examine the mechanisms involved in race differences. Total adiposity and central fat distribution in accordance with changes in the hormone and metabolic milieu influence breast cancer risk, which varies by race and menopausal status. These findings have broader implications for the study of health promotion/disease prevention in women.

  16. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS).

    Science.gov (United States)

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  17. Increasing social interaction using prelinguistic milieu teaching with nonverbal school-age children with autism.

    Science.gov (United States)

    Franco, Jessica H; Davis, Barbara L; Davis, John L

    2013-08-01

    Children with autism display marked deficits in initiating and maintaining social interaction. Intervention using play routines can create a framework for developing and maintaining social interaction between these children and their communication partners. Six nonverbal 5- to 8-year-olds with autism were taught to engage in social interaction within salient play routines. Prelinguistic milieu teaching (PMT) techniques were used to teach the children to communicate intentionally during these routines. Intervention focused on the children's social interaction with an adult. The effects of intervention were evaluated using a multiple baseline design across participants. At study onset, the participants demonstrated few consistent interaction with others. With intervention, all of the children improved their ability to sustain social interactions, as evidenced by an increase in the number of communicative interactions during play routines. Participants also increased their overall rate of initiated intentional communication. Development of intentional prelinguistic communication within salient social routines creates opportunities for an adult to teach social and communication skills to young school-age children with autism who function at a nonverbal level.

  18. Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Abnormal Placentation and Fetal Growth1

    Science.gov (United States)

    Mainigi, Monica A.; Olalere, Devvora; Burd, Irina; Sapienza, Carmen; Bartolomei, Marisa; Coutifaris, Christos

    2013-01-01

    ABSTRACT Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes. PMID:24352558

  19. Lower implantation rates in high responders: evidence for an altered endocrine milieu during the preimplantation period.

    Science.gov (United States)

    Pellicer, A; Valbuena, D; Cano, F; Remohí, J; Simón, C

    1996-06-01

    To determine serum E2 and P levels around the time of implantation in normal and high IVF responders. In Vitro Fertilization program at the Instituto Valenciano de Infertilidad. Twenty-nine women undergoing IVF, who accepted to be studied daily, were classified according to the number of oocytes retrieved in normal (n = 16) and high responders (n = 13). Prospective study in which blood was drawn daily from the day of hCG administration (day 0) up to 7 days later (day 6). In vitro fertilization parameters (number of ampules, FSH-hMG, number of oocytes, fertilization rates, number of transferred embryos, implantation rates, and pregnancy rates); serum E2 and P levels during the 7 days of the study. Implantation rate was significantly higher in normal (18.5%) as compared with high (0%) responders. Estradiol and P levels were elevated significantly in high responders. The E2:P ratio was significantly different between normal and high responders during the preimplantation period. Pregnancy and implantation rates decreased as serum E2 levels increased on days 4 to 6 of the study. A different endocrine milieu between normal and high responders is detected by daily steroid measurements up to the preimplantation period, suggesting that this difference could be responsible for an impaired implantation in high responder patients undergoing IVF. An increase in serum E2 levels seems to be the cause of this difference.

  20. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS)

    Science.gov (United States)

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain—caves and deep rock cracks—and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat—i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  1. A Comprehensive Theory of Yielding and Failure for Isotropic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R M

    2006-08-10

    A theory of yielding and failure for homogeneous and isotropic materials is given. The theory is calibrated by two independent, measurable properties and from those it predicts possible failure for any given state of stress. It also differentiates between ductile yielding and brittle failure. The explicit ductile-brittle criterion depends not only upon the material specification through the two properties, but also and equally importantly depends upon the type of imposed stress state. The Mises criterion is a special (limiting) case of the present theory. A close examination of this case shows that the Mises material idealization does not necessarily imply ductile behavior under all conditions, only under most conditions. When the first invariant of the yield/failure stress state is sufficiently large relative to the distortional part, brittle failure will be expected to occur. For general material types, it is shown that it is possible to have a state of spreading plastic flow, but as the elastic-plastic boundary advances, the conditions for yielding on it can change over to conditions for brittle failure because of the evolving stress state. The general theory is of a three dimensional form and it applies to full density materials for which the yield/failure strength in uniaxial tension is less than or at most equal to the magnitude of that in uniaxial compression.

  2. Density functional theory predictions of isotropic hyperfine coupling constants.

    Science.gov (United States)

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  3. Simulations of (an)isotropic diffusion on curved biological surfaces.

    Science.gov (United States)

    Sbalzarini, Ivo F; Hayer, Arnold; Helenius, Ari; Koumoutsakos, Petros

    2006-02-01

    We present a computational particle method for the simulation of isotropic and anisotropic diffusion on curved biological surfaces that have been reconstructed from image data. The method is capable of handling surfaces of high curvature and complex shape, which are often encountered in biology. The method is validated on simple benchmark problems and is shown to be second-order accurate in space and time and of high parallel efficiency. It is applied to simulations of diffusion on the membrane of endoplasmic reticula (ER) in live cells. Diffusion simulations are conducted on geometries reconstructed from real ER samples and are compared to fluorescence recovery after photobleaching experiments in the same ER samples using the transmembrane protein tsO45-VSV-G, C-terminally tagged with green fluorescent protein. Such comparisons allow derivation of geometry-corrected molecular diffusion constants for membrane components from fluorescence recovery after photobleaching data. The results of the simulations indicate that the diffusion behavior of molecules in the ER membrane differs significantly from the volumetric diffusion of soluble molecules in the lumen of the same ER. The apparent speed of recovery differs by a factor of approximately 4, even when the molecular diffusion constants of the two molecules are identical. In addition, the specific shape of the membrane affects the recovery half-time, which is found to vary by a factor of approximately 2 in different ER samples.

  4. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence

    Science.gov (United States)

    De Pietro, Massimo; van Hinsberg, Michel A. T.; Biferale, Luca; Clercx, Herman J. H.; Perlekar, Prasad; Toschi, Federico

    2015-05-01

    We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η , that maximizes the clustering of the particles.

  5. Three-dimensional magnetospheric equilibrium with isotropic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal ({Psi},{alpha},{chi}) flux coordinate system, where {Psi} is the magnetic flux function, {chi} is a generalized poloidal angle, {alpha} is the toroidal angle, {alpha} = {phi} {minus} {delta}({Psi},{phi},{chi}) is the toroidal angle, {delta}({Psi},{phi},{chi}) is periodic in {phi}, and the magnetic field is represented as {rvec B} = {del}{Psi} {times} {del}{alpha}. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section.

  6. Magnetic resonance investigations of lipid motion in isotropic bicelles.

    Science.gov (United States)

    Andersson, August; Mäler, Lena

    2005-08-16

    The dynamics of DMPC in different isotropic bicelles have been investigated by NMR and EPR methods. The local dynamics were obtained by interpretation of 13C NMR relaxation measurements of DMPC in the bicelles, and these results were compared to EPR spectra of spin-labeled lipids. The overall size of the bicelles was investigated by PFG NMR translational diffusion measurements. The dynamics and relative sizes were compared among three different bicelles: [DMPC]/[DHPC] = 0.25, [DMPC]/[DHPC] = 0.5, and [DMPC]/[CHAPS] = 0.5. The local motion is found to depend much more strongly on the choice of the detergent, rather than the overall size of the bicelle. The results provide an explanation for differences in apparent dynamics for different peptides, which are bound to bicelles. This in turn determines under what conditions reasonable NMR spectra can be observed. A model is presented in which extensive local motion, in conjunction with the overall size, affects the spectral properties. An analytical expression for the size dependence of the bicelles, relating the radius of the bilayer region with physical properties of the detergent and the lipid, is also presented.

  7. DLVO interactions of carbon nanotubes with isotropic planar surfaces.

    Science.gov (United States)

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael; Zigler, Kirk J

    2013-03-26

    Knowledge of the interaction between carbon nanotubes (CNTs) and planar surfaces is essential to optimizing CNT applications as well as reducing their environmental impact. In this work, the surface element integration (SEI) technique was coupled with the DLVO theory to determine the orientation-dependent interaction energy between a single-walled carbon nanotube (SWNT) and an infinite isotropic planar surface. For the first time, an analytical formula was developed to describe accurately the interaction between not only pristine but also surface-charged CNTs and planar surfaces with arbitrary rotational angles. Compared to other methods, the new analytical formulas were either more convenient or more accurate in describing the interaction between CNTs and planar surfaces, especially with respect to arbitrary angles. The results revealed the complex dependences of both force and torque between SWNTs and planar surfaces on the separation distances and rotational angles. With minor modifications, the analytical formulas derived for SWNTs can also be applied to multiwalled carbon nanotubes (MWNTs). The new analytical expressions presented in this work can be used as a robust tool to describe the DLVO interaction between CNTs and planar surfaces under various conditions and thus to assist in the design and application of CNT-based products.

  8. The Isotropic Semicircle Law and Deformation of Wigner Matrices

    CERN Document Server

    Knowles, Antti

    2011-01-01

    We analyse the spectrum of additive finite-rank deformations of $N \\times N$ Wigner matrices $H$. The spectrum of the deformed matrix undergoes a transition, associated with the creation or annihilation of an outlier, when an eigenvalue $d_i$ of the deformation crosses a critical value $\\pm 1$. This transition happens on the scale $|d_i| - 1 \\sim N^{-1/3}$. We allow the eigenvalues $d_i$ of the deformation to depend on $N$ under the condition $|\\abs{d_i} - 1| \\geq (\\log N)^{C \\log \\log N} N^{-1/3}$. We make no assumptions on the eigenvectors of the deformation. In the limit $N \\to \\infty$, we identify the law of the outliers and prove that the non-outliers close to the spectral edge have a universal distribution coinciding with that of the extremal eigenvalues of a Gaussian matrix ensemble. A key ingredient in our proof is the \\emph{isotropic local semicircle law}, which establishes optimal high-probability bounds on the quantity $$, where $m(z)$ is the Stieltjes transform of Wigner's semicircle law and $v, w...

  9. Analysis of the Taylor dissipation surrogate in forced isotropic turbulence

    CERN Document Server

    McComb, W David; Yoffe, Samuel R

    2013-01-01

    From the energy balance in wavenumber space expressed by the Lin equation, we derive a new form for the local Karman-Howarth equation for forced isotropic turbulence in real space. This equation is then cast into a dimensionless form, from which a combined analytical and numerical study leads us to deduce a new model for the scale-independent nondimensional dissipation rate $\\Ceps$, which takes the form $\\Ceps = \\Cinf + C_L/R_L$, where the asymptotic value $\\Cinf$ can be evaluated from the third-order structure function. This is found to fit the numerical data with $\\Cinf = 0.47 \\pm 0.01$ and $C_L= 18.5 \\pm 1.3$. By considering $\\Ceps - \\Cinf$ on logarithmic scales, we show that $R_L^{-1}$ is indeed the correct Reynolds number behaviour. The model is compared to previous attempts in the literature, with encouraging agreement. The effects of the scale-dependence of the inertial and viscous terms due to finite forcing are then considered and shown to compensate one another, such that the model equation is appli...

  10. Spark ignition of aviation fuel in isotropic turbulence

    Science.gov (United States)

    Krisman, Alex; Lu, Tianfeng; Borghesi, Giulio; Chen, Jacqueline

    2016-11-01

    Turbulent spark ignition occurs in combustion engines where the spark must establish a viable flame kernel that leads to stable combustion. A competition exists between kernel growth, due to flame propagation, and kernel attenuation, due to flame stretch and turbulence. This competition can be measured by the Karlovitz number, Ka, and kernel viability decreases rapidly for Ka >> 1 . In this study, the evolution of an initially spherical flame kernel in a turbulent field is investigated at two cases: Ka- (Ka = 25) and Ka+ (Ka = 125) using direct numerical simulation (DNS). A detailed chemical mechanism for jet fuel (Jet-A) is used, which is relevant for many practical conditions, and the mechanism includes a pyrolysis sub-model which is important for the ignition of large hydrocarbon fuels. An auxiliary non-reacting DNS generates the initial field of isotropic turbulence with a turbulent Reynolds number of 500 (Ka-) and 1,500 (Ka+). The kernel is then imposed at the center of the domain and the reacting DNS is performed. The Ka- case survives and the Ka+ case is extinguished. An analysis of the turbulence chemistry interactions is performed and the process of extinction is described. Department of Energy - Office of Basic Energy Science under Award No. DE-SC0001198.

  11. Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets

    Science.gov (United States)

    Shao, S.; Pyrak-Nolte, L. J.

    2016-10-01

    Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.

  12. Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)

    2011-01-01

    In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.

  13. A multiaxial theory of viscoplasticity for isotropic materials

    Science.gov (United States)

    Robinson, D. N.; Ellis, J. R.

    1986-01-01

    Many viscoplastic constitutive models for high temperature structural alloys are based exclusively on uniaxial test data. Generalization to multiaxial states of stress is made by assuming the stress dependence to be on the second principal invariant (J sub 2) of the deviatoric stress, frequently called the effective stress. If such a J sub 2 theory, based on uniaxial testing, is called upon to predict behavior under conditions other than uniaxial, e.g., pure shear, and it does so poorly, nothing is left to adjust in the theory. For a fully isotropic material whose inelastic deformation behavior is relatively independent of hydrostatic stress, the most general stress dependence is on the two (non-zero) principal invariants of the deviatoric stress, J sub 2 and J sub 3. These invariants constitute what is known as an integrity basis for the material. A time dependent constitutive theory with stress dependence on J sub 2 and J sub 3 is presented, that reduces to a known J sub 2 theory as a special case.

  14. Calculation of Theoretical Isotropic Compton Profile for Many Particle Systems

    Science.gov (United States)

    Alzubadi, Ali A.; Albayati, Khalil H.

    Theoretical isotropic (spherically symmetric) Compton profiles (ICP) have been calculated for many particle systems' He, Li, Be and B atoms in their ground states. Our calculations were performed using Roothan-Hartree-Fock (RHF) wave function, HF wave function of Thakkar and re-optimized HF wave function of Clementi-Roetti, taking into account the impulse approximation. The theoretical analysis included a decomposition of the various intra and inter shells and their contributions in the total ICP. A high momentum region of up to 4 a.u. was investigated and a non-negligible tail was observed in all ICP curves. The existence of a high momentum tail was mainly due to the electron-electron interaction. The ICP for the He atom has been compared with the available experimental data and it is found that the ICP values agree very well with them. A few low order radial momentum expectation values and the total energy for these atomic systems have also been calculated and compared with their counterparts' wave functions.

  15. Preferential Rotation of Chiral Dipoles in Isotropic Turbulence

    Science.gov (United States)

    Kramel, Stefan; Voth, Greg A.; Tympel, Saskia; Toschi, Federico

    2016-10-01

    We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.

  16. Preferential rotation of chiral dipoles in isotropic turbulence

    CERN Document Server

    Kramel, Stefan; Toschi, Federico; Voth, Greg A

    2016-01-01

    Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...

  17. Transverse radius dependence for transverse velocity and elliptic flow in intermediate energy HIC

    Institute of Scientific and Technical Information of China (English)

    YAN Ting-Zhi; LI Shan

    2011-01-01

    The mean transverse velocity and elliptic flow of light fragments (A≤2) as a function of transverse radius are studied for 25 MeV/nucleon Cu+Cu collisions with impact parameters 3-5 fm by the isospin- dependent quantum molecular dynamics model. By comparison between the in-plane and the out-of-plane transverse velocities, the elliptic flow dependence on the transverse radius can be understood qualitatively, and variation of the direction of the resultant force on the fragments can be investigated qualitatively.

  18. Transverse Vector Vertex Function and Transverse Ward-Takahashi Relations in QED

    Institute of Scientific and Technical Information of China (English)

    HE Han-Xin

    2006-01-01

    The transverse vector vertex function in momentum space in four-dimensional QED is derived in terms of a set of transverse Ward-Takahashi relations for the vector and the axial-vector vertices in the case of massless fermion.It is demonstrated explicitly that the transverse vector vertex function derived this way to one-loop order leads to the same result as one obtained in perturbation theory. This provides a basic approach to determine the transverse part of basic vertex function from the symmetry relations of the system.

  19. Philippos Monotropos' Dioptra and its Social Milieu: Niketas Stethatos, Nikolaos III Grammatikos and the Persecution of Bogomilism

    Directory of Open Access Journals (Sweden)

    Eirini Afentoulidou-Leitgeb

    2012-11-01

    Full Text Available This article aims to investigate the social milieu of Philippos Monotropos, author of the Dioptra. Explicit evidence on Philippos is scarce, but the comparison with contemporary texts allows some conclusions. Indeed, the way that Philippos treats Bogomilism indicates connections with imperial and patriarchal circles. Moreover, numerous parallels between the Dioptra and the Poem on Fast Days written by Nikolaos III Grammatikos shows that the Patriarch knew and ap­preciated the Dioptra very soon after its composition. The hypothesis that Philip­pos belonged to an educated, urbane ecclesiastical milieu is in accordance with the assessment of the Dioptra as a simplistic epitome of Christian humanistic theology – contrary to previous views that overemphasised its ascetic element.

  20. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.