WorldWideScience

Sample records for mildew resistant pearl

  1. Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew

    Institute of Scientific and Technical Information of China (English)

    S. Ashok Prabhu; K. Ramachandra Kini; S. Niranjan Raj; Bruno M. Moerschbacher; H. S. Shetty

    2012-01-01

    Polygalacturonase-inhibitor protein (PGIP) is a defense protein found in plant cell walls.It prevents the degradation of pectin by modulating the endo-polygalacturonase activity.The present study has used heterologous antibean PGIP probes to investigate the role of PGIP in pearl millet [Pennisetum glaucum (L) R.Br.] resistance against downy mildew caused by oomycete pathogen Sclerospora graminicola (Sacc.) Schroet.Northern blot analysis using bean pgip2 DNA fragment as probe showed an early and marked induction of transcripts (~1.2 kb) upon pathogen-inoculation in pearl millet cultivar resistant to downy mildew,with the maximum level observed at 24 and 48 h post-inoculation (h.p.i.).Western blot analysis of pearl millet total cell wall proteins using antibodies against bean PGIP showed the presence of a major band of ~43 kDa,and several minor ones.The protein accumulation was higher in resistant seedlings than in susceptible seedlings with a differential expression observed only in the case of incompatible interaction.lmmunocytochemical localization in epidermal peelings of coleoptiles and tissue-printing showed a similar trend in the PGIP accumulation.PGIP was found to localize in the epidermal as well as in the vascular regions of tissues.Higher accumulation was observed in the stomatal guard cells of resistant cultivar inoculated with the pathogen.PGIP activity of pearl millet total protein extracts when assayed against Aspergillus niger PG displayed differential PG inhibitory activities between the resistant and suceptible cultivars with resistant sample showing the highest inhibition of 16%,post-pathogen treatment.Thus,PGIP appeared to be an important player in pearl millet-S,graminicola interaction leading to host resistance.

  2. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen

    Science.gov (United States)

    Siddaiah, Chandra Nayaka; Satyanarayana, Niranjan Raj; Mudili, Venkataramana; Kumar Gupta, Vijai; Gurunathan, Selvakumar; Rangappa, Shobith; Huntrike, Shekar Shetty; Srivastava, Rakesh Kumar

    2017-01-01

    Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen. PMID:28322224

  3. Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease

    DEFF Research Database (Denmark)

    Manjunatha, G.; Raj, S. Niranjan; Shetty, Nandini Prasad

    2008-01-01

    , a structural analog of NO donor lacking NO moiety failed to protect the pearl millet plants from downy mildew indicating a role for NO in induced host resistance. Spatio-temporal studies corroborated that the protection offered by NO donor treatment was systemic in nature and a minimum of 3-day time gap...... experiments with NO donors showed no adverse effect either on the host or pathogen. Aqueous SNP seed treatment with or without polyethylene glycol (PEG) priming was the most effective in inducing the host resistance against downy mildew both under greenhouse and field conditions. Potassium Ferrocyanide...... between the inducer treatment and subsequent pathogen inoculation was necessary for maximum resistance development. Disease protection ability of NO donors was also validated as durable in nature. Conversely, prior-treatment with NO scavenger 2-4-carboxyphenyl-4,4,5,5 tetrazoline-1-oxyl-3-oxide potassium...

  4. Resistance to Powdery Mildews

    DEFF Research Database (Denmark)

    Siwoszek, Agnieszka Izabela

    how the basic resistance components contribute to resistance against powdery mildews. Furthermore, I propose an alternative strategy of achieving resistance to barley powdery mildew by application of peptide aptamers. Peptide aptamers are small proteins selected to specifically target conserved Yx......C motif of barley powdery mildew effectors. I present a proof-of-concept study in Arabidopsis, where overexpression of peptide aptamers significantly reduced the susceptibility to barley powdery mildew. Moreover, I set the discovery in a bigger context by summarizing genetic engineering technologies...

  5. Exogenous Trehalose Treatment Enhances the Activities of Defense-Related Enzymes and Triggers Resistance against Downy Mildew Disease of Pearl Millet

    Science.gov (United States)

    Govind, Sharathchandra R.; Jogaiah, Sudisha; Abdelrahman, Mostafa; Shetty, Hunthrike S.; Tran, Lam-Son P.

    2016-01-01

    In recent years, diverse physiological functions of various sugars are the subject of investigations. Their roles in signal transduction in plant responses to adverse biotic and abiotic stress conditions have become apparent, and growing scientific evidence has indicated that disaccharides like sucrose and trehalose mediate plant defense responses in similar way as those induced by elicitors against the pathogens. Trehalose is a well-known metabolic osmoregulator, stress-protectant and non-reducing disaccharide existing in a variety of organisms, including fungi, bacteria, and plants. Commercially procured trehalose was applied to seeds of susceptible pearl millet (Pennisetum glaucum) cultivar “HB3,” and tested for its ability to reduce downy mildew disease incidence by induction of resistance. Seed treatment with trehalose at 200 mM for 9 h recorded 70.25% downy mildew disease protection, followed by those with 100 and 50 mM trehalose which offered 64.35 and 52.55% defense, respectively, under greenhouse conditions. Furthermore, under field conditions treatment with 200 mM trehalose for 9 h recorded 67.25% downy mildew disease protection, and reduced the disease severity to 32.75% when compared with untreated control which displayed 90% of disease severity. Trehalose did not affect either sporangial formation or zoospore release from sporangia, indicating that the reduction in disease incidence was not due to direct inhibition but rather through induction of resistance responses in the host. Additionally, trehalose was shown to enhance the levels of polyphenol oxidase, phenylalanine ammonia lyase, and peroxidase, which are known as markers of both biotic and abiotic stress responses. Our study shows that osmoregulators like trehalose could be used to protect plants against pathogen attacks by seed treatment, thus offering dual benefits of biotic and abiotic stress tolerance. PMID:27895647

  6. Resistance to Powdery Mildews

    DEFF Research Database (Denmark)

    Siwoszek, Agnieszka Izabela

    in majority of them. Resistance to barley powdery mildew in the field is controlled by use of resistant varieties in a combination with fungicides. Early disease management is crucial for effective control. Yet, the pathogen commonly develops fungicide resistance due to simple point mutations. Several studies...... investigated reduced fitness of plants as a cost of resistance to pathogens. In case of barley powdery mildew, most common resistance (mlo) is linked to a higher susceptibility to other pathogens and spontaneous necrosis that leads to yield reduction. Thus, there is a clear need for alternative methods of crop...... protection. In the present study, I provide an overview of the current knowledge about plant pathogens and plant disease resistance. I use Arabidopsis as a model to investigate the mechanism of non-host resistance, presumed to be the most durable and broad-spectrum form of resistance. I attempt to determine...

  7. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection

    Science.gov (United States)

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-01-01

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet. PMID:27499196

  8. Powdery Mildew Disease Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Shauna C.

    2010-08-31

    The overall goal of this project was to characterize the PMR5 protein, a member of the DUF231/TBR family, and to determine its role in plant cell wall biogenesis. Since the pmr5 mutants are also resistant to the fungal powdery mildew pathogen, we wished to determine what specific cell wall changes are associated with disease resistance and why. The graduate student working on this project made mutations in the putative active site of PMR5, assuming it is a member of the SGNH/GDSL esterase superfamily (Anantharaman and Aravind, 2010, Biology Direct 5, 1). These mutants were inactive in planta suggesting that PMR5 is a functional enzyme and not a binding protein or chaperone. In addition, she determined that cell wall preparations from the pmr5 mutant exhibited a modest reduction (13%) in total acetyl groups. To pursue characterization further, the graduate student expressed the PMR5 protein in a heterologous E. coli system. She could purify PMR5 using a two step protocol based on tags added to the N and C terminus of the protein. She was able to show the PMR5 protein bound to pectins, including homogalacturonan, but not to other cell wall components (e.g., xyloglucans, arabinans). Based on these observations, a postdoctoral fellow is currently developing an enzyme assay for PMR5 based on the idea that it may be acetylating the homogalacturonic acid pectin fraction. Our initial experiments to localize PMR5 subcellularly suggested that it occurred in the endoplasmic reticulum. However, since the various pectins are believed to be synthesized in the Golgi apparatus, we felt it necessary to repeat our results using a native promoter expression system. Within the past year, we have demonstrated conclusively that PMR5 is localized to the endoplasmic reticulum, a location that sets it apart from most cell wall biogenesis and modification enzymes. The graduate student contributed to the characterization of two suppressor mutants, which were selected as restoring powdery

  9. Interaction between powdery mildew and barley with ¤mlo5¤ mildew resistance

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Østergård, Hanne

    1998-01-01

    Powdery mildew infection of barley with the mlo5 barley powdery mildew resistance gene was examined, using near-isogenic barley lines, with and without mlo5 resistance, and two near-isogenic powdery mildew isolates, HL3/5 and GE3 with high (virulent) or low (avirulent) penetration efficiency...

  10. Genetics of resistance against lettuce downy mildew

    Science.gov (United States)

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the U.S. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carrying dominan...

  11. Molecular cloning of a coiled-coil-nucleotide-binding-site-leucine-rich repeat gene from pearl millet and its expression pattern in response to the downy mildew pathogen.

    Science.gov (United States)

    Veena, Mariswamy; Melvin, Prasad; Prabhu, Sreedhara Ashok; Shailasree, Sekhar; Shetty, Hunthrike Shekar; Kini, Kukkundoor Ramachandra

    2016-03-01

    Downy mildew caused by Sclerospora graminicola is a devastating disease of pearl millet. Based on candidate gene approach, a set of 22 resistance gene analogues were identified. The clone RGPM 301 (AY117410) containing a partial sequence shared 83% similarity to rice R-proteins. A full-length R-gene RGA RGPM 301 of 3552 bp with 2979 bp open reading frame encoding 992 amino acids was isolated by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach. It had a molecular mass of 113.96 kDa and isoelectric point (pI) of 8.71. The sequence alignment and phylogenetic analysis grouped it to a non-TIR NBS LRR group. The quantitative real-time PCR (qRT-PCR) analysis revealed higher accumulation of the transcripts following inoculation with S. graminicola in the resistant cultivar (IP18296) compared to susceptible cultivar (7042S). Further, significant induction in the transcript levels were observed when treated with abiotic elicitor β-aminobutyric acid (BABA) and biotic elicitor Pseudomonas fluorescens. Exogenous application of phytohormones jasmonic acid or salicylic acid also up-regulated the expression levels of RGA RGPM 301. The treatment of cultivar IP18296 with mitogen-activated protein kinase (MPK) inhibitors (PD98059 and U0126) suppressed the levels of RGA RGPM 301. A 3.5 kb RGA RGPM 301 which is a non-TIR NBS-LRR protein was isolated from pearl millet and its up-regulation during downy mildew interaction was demonstrated by qRT-PCR. These studies indicate a role for this RGA in pearl millet downy mildew interaction.

  12. Powdery Mildew Resistance in 268 Entries of Hordeum vulgare

    DEFF Research Database (Denmark)

    Jiang, W.M.; Jørgensen, Jørgen Helms; Torp, J

    1984-01-01

    A collection of 24 'Spontaneum' barley [H. vulgare ssp. spontaneum] entries and one comprising 244 Ethiopian barleys [H. vulgare ssp. vulgare] were tested for resistance to 4 powdery mildew [used by Erysiphe graminis f. sp. hordei] cultures that carried genes for virulence corresponding to most...... of the known powdery mildew resistance genes. The infection types and spectra of resistance were compared to those of 31 test lines with 35 known resistance genes to find possible new resistance genes and to reveal known resistance genes. The collections may possess some new and some known resistance genes...

  13. Identification of novel powdery mildew resistance sources in wheat

    Science.gov (United States)

    Powdery mildew is a globally dominating disease of wheat with a high occurrence frequency, and genetic resistance plays an important role in managing this devastating disease. The objectives of this study were to evaluate leaf rust resistance and the underlying genes of breeding lines in the USA, a...

  14. New Sources of Resistance to Cucurbit Powdery Mildew in Melon

    Science.gov (United States)

    Many physiological races of the cucurbit powdery mildew pathogen (CPM) Podosphaera xanthii (Castagne) Braun & Shishkoff have been reported on melon (Cucumis melo L.). Melon accession PI 313970 is the only reported source of host plant resistance to race S, which first appeared in Imperial Valley, CA...

  15. Resistance Against Basil Downy Mildew in Ocimum Species.

    Science.gov (United States)

    Ben-Naim, Yariv; Falach, Lidan; Cohen, Yigal

    2015-06-01

    Downy mildew, caused by the oomycete Peronospora belbahrii, is a devastating disease of sweet basil. In this study, 113 accessions of Ocimum species (83 Plant Introduction entries and 30 commercial entries) were tested for resistance against downy mildew at the seedling stage in growth chambers, and during three seasons, in the field. Most entries belonging to O. basilicum were highly susceptible whereas most entries belonging to O. americanum, O. kilimanadascharicum, O. gratissimum, O. campechianum, or O. tenuiflorum were highly resistant at both the seedling stage and the field. Twenty-seven highly resistant individual plants were each crossed with the susceptible sweet basil 'Peri', and the F1 progeny plants were examined for disease resistance. The F1 plants of two crosses were highly resistant, F1 plants of 24 crosses were moderately resistant, and F1 plants of one cross were susceptible, suggesting full, partial, or no dominance of the resistance gene(s), respectively. These data confirm the feasibility of producing downy mildew-resistant cultivars of sweet basil by crossing with wild Ocimum species.

  16. Mutants of downy mildew resistance in Lactuca sativa (lettuce).

    Science.gov (United States)

    Okubara, P A; Anderson, P A; Ochoa, O E; Michelmore, R W

    1994-07-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm 1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from gamma- or fast neutron-irradiated seed. In two separate Dm 1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.

  17. The relationship between powdrey mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus) studied in single seed descent lines

    NARCIS (Netherlands)

    Zijlstra, S.; Jansen, R.C.; Groot, S.P.C.

    1995-01-01

    The genetic relation between powdery mildew resistance and sensitivity for leaf chlorosis of glasshouse cucumber was investigated. The powdery mildew resistant, leaf chlorosis sensitive hybrid variety 'Profito' was crossed with the powdery mildew susceptible, non chlorosis sensitive hybrid variety '

  18. The relationship between powdery mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus) studied in single seed descent lines

    NARCIS (Netherlands)

    Zijlstra, S.; Jansen, R.C.; Groot, S.P.C.

    1995-01-01

    The genetic relation between powdery mildew resistance and sensitivity for leaf chlorosis of glasshouse cucumber was investigated. The powdery mildew resistant, leaf chlorosis sensitive hybrid variety 'Profito' was crossed with the powdery mildew susceptible, non chlorosis sensitive hybrid variety '

  19. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up

    NARCIS (Netherlands)

    Boer, den E.; Pelgrom, K.T.B.; Zhang, N.; Visser, R.G.F.; Niks, R.E.; Jeuken, M.J.W.

    2014-01-01

    Key message In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions. Abstract Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild le

  20. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L)

    Science.gov (United States)

    Powdery mildew is a serious fungal disease of cucumber and other cucurbot crops in the US and many other parts of the world. Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of powdery mildew resistance in cucumber are not well understood. In a three-y...

  1. QTL identification in an interspecific grapevine cross segregating for resistance to Powdery Mildew, Downy Mildew, Black Rot, and Phylloxera

    Science.gov (United States)

    Grapevine is a highly heterozygous plant with a complex genetic background. Here, we report the use of an F1 family (N = 125) from a cross of MN1264 × MN1246 made in 2010. The cross contains at least six Vitis species in its ancestry and segregates for resistance to powdery mildew (Erysiphe necator)...

  2. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm

    OpenAIRE

    Riaz, Summaira; Boursiquot, Jean-Michel; Dangl, Gerald; Lacombe, Thierry; Laucou, Valerie; Tenscher, Alan C; Walker, M. Andrew

    2013-01-01

    Abstract Background Cultivated grapevines, Vitis vinifera subsp. sativa, evolved from their wild relative, V. vinifera subsp. sylvestris. They were domesticated in Central Asia in the absence of the powdery mildew fungus, Erysiphe necator, which is thought to have originated in North America. However, powdery mildew resistance has previously been discovered in two Central Asian cultivars and in Chinese Vitis species. ...

  3. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    Science.gov (United States)

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  4. Characterization of resistance to powdery mildew in the Hop cultivars Newport and Comet

    Science.gov (United States)

    Hop powdery mildew, caused by Podosphaera macularis, is an important disease in the Northwestern U.S. Outbreaks of powdery mildew on cultivars previously resistant to the disease have been reported increasingly with the emergence of virulent pathogen strains capable of overcoming a commonly deployed...

  5. Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass

    DEFF Research Database (Denmark)

    Schejbel, B; Jensen, L B; Asp, T;

    2008-01-01

    The objective of this study was to map resistance gene analogues (RGA) and quantitative trait loci (QTL) for powdery mildew resistance in perennial ryegrass (Lolium perenne L.). The mapping population consisted of 184 F2 genotypes produced from a cross between one genotype of a synthetic perennial...

  6. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  7. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  8. Antisporulant Activity of Watery Extracts of Plants against Sclerospora graminicola Causing Downy Mildew Disease of Pearl Millet

    Directory of Open Access Journals (Sweden)

    S. A. Deepak

    2007-01-01

    Full Text Available Watery extracts of forty plant species commonly growing in across India have been screened for antisporulant activity against Sclerospora graminicola (Sacc. Schroet., the causative agent of pearl millet downy mildew. The collection represented 38 genera of 30 families. The extracts of thirteen species did not show any effect, whereas the activity of extracts of Allium sativum, Clematis gouriana, Evolvulus alsinoides, Mimusops elengi, Parthenium hysterophorus, Piper nigrum and Tagetes erecta were commensurable to that of marketed botanical fungicides and Mikal 70 wp. The crude extracts of 12 species (Agave americana, Aloe vera, Artemisia parviflora, Citrus limon, Citrus sinensis, Eucalyptus globosus, Euphorbia hirta, Leucas aspera, Murraya koenigi, Ocimum sanctum, Santalum album and Zingiber offinale completely inhibited the zoosprorangium formation while in the case of remaining 8 plants the crude extracts reduced only partially the sporulation. The antisporulant activity of commercialised Azadirachta preparation (Nutri-Neem was more pronounced than that of Reynutria based one (Milsana and Sabadilla (veratrin, however, these botanical preparations held off synthetic fungicides and the most active watery extracts.

  9. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L.

    Science.gov (United States)

    Chhuneja, Parveen; Kumar, Krishan; Stirnweis, Daniel; Hurni, Severine; Keller, Beat; Dhaliwal, Harcharan S; Singh, Kuldeep

    2012-04-01

    Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (A(b)A(b)) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.

  10. Transcriptome sequencing in a Tibetan barley landrace with high resistance to powdery mildew.

    Science.gov (United States)

    Zeng, Xing-Quan; Luo, Xiao-Mei; Wang, Yu-Lin; Xu, Qi-Jun; Bai, Li-Jun; Yuan, Hong-Jun; Tashi, Nyima

    2014-01-01

    Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either "cell," "cell part," and "extracellular region" in the cellular component category or "binding" and "catalytic" in the category of molecular function as well as "metabolic process" and "cellular process" in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of powdery mildew infection.

  11. Inheritance of downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) resistance in grapevines.

    Science.gov (United States)

    Poolsawat, O; Mahanil, S; Laosuwan, P; Wongkaew, S; Tharapreuksapong, A; Reisch, B I; Tantasawat, P A

    2013-12-13

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two of the major diseases of most grapevine (Vitis vinifera L.) cultivars grown in Thailand. Therefore, breeding grapevines for improved downy mildew and anthracnose resistance is crucial. Factorial crosses were made between three downy mildew and/or anthracnose resistant lines ('NY88.0517.01', 'NY65.0550.04', and 'NY65.0551.05'; male parents) and two or three susceptible cultivars of V. vinifera ('Black Queen', 'Carolina Black Rose', and/or 'Italia'; female parents). F1 hybrid seedlings were evaluated for downy mildew and anthracnose resistance using a detached/excised leaf assay. For both diseases, the general combining ability (GCA) variance among male parents was significant, while the variance of GCA among females and the specific combining ability (SCA) variance were not significant, indicating the prevalence of additive over non-additive gene actions. The estimated narrow sense heritabilities of downy mildew and anthracnose resistance were 55.6 and 79.2%, respectively, suggesting that downy mildew/anthracnose resistance gene(s) were highly heritable. The 'Carolina Black Rose x NY65.0550.04' cross combination is recommended for future use.

  12. Field assessment of partial resistance to powdery mildew in spring barley

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. Chr.; Dalsgaard, H. H.; Jørgensen, Jørgen Helms

    1986-01-01

    Partial resistance to powdery mildew in spring barley was evaluated in three plot types: large isolation plots, in 1.4 m2 plots in chessboard design with guard plots of spring wheat and in single rows. Percentage leaf area covered by powdery mildew was scored four to six times during the season....... The relationship between single scores of amount of powdery mildew on the upper four leaves and the area under the disease progress curve was high in all plot designs during the first two to three weeks after heading, allowing selection for the trait by one or two scorings. Differential ranking of varieties...

  13. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions.

    Science.gov (United States)

    Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F

    2015-09-16

    Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.

  14. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Cao, Aizhong; Xing, Liping; Wang, Xiaoyun; Yang, Xueming; Wang, Wei; Sun, Yulei; Qian, Chen; Ni, Jinlong; Chen, Yaping; Liu, Dajun; Wang, Xiue; Chen, Peidu

    2011-05-10

    Powdery mildew resistance gene Pm21, located on the chromosome 6V short arm of Haynaldia villosa and transferred to wheat as a 6VS·6AL translocation (T6VS·6AL), confers durable and broad-spectrum resistance to wheat powdery mildew. Pm21 has become a key gene resource for powdery mildew resistance breeding all over the world. In China, 12 wheat varieties containing Pm21 have been planted on more than 3.4 million hectares since 2002. Pm21 has been intractable to molecular genetic mapping because the 6VS does not pair and recombine with the 6AS. Moreover, all known accessions of H. villosa are immune to powdery mildew fungus. Pm21 is still defined by cytogenetics as a locus. In the present study, a putative serine and threonine protein kinase gene Stpk-V was cloned and characterized with an integrative strategy of molecular and cytogenetic techniques. Stpk-V is located on the Pm21 locus. The results of a single cell transient expression assay showed that Stpk-V could decrease the haustorium index dramatically. After the Stpk-V was transformed into a susceptible wheat variety Yangmai158, the characterized transgenic plants showed high and broad-spectrum powdery mildew resistance similar to T6VS·6AL. Silencing of the Stpk-V by virus-induced gene silencing in both T6VS·6AL and H. villosa resulted in their increased susceptibility. Stpk-V could be induced by Bgt and exogenous H(2)O(2), but it also mediated the increase of endogenous H(2)O(2), leading to cell death and plant resistance when the plant was attacked by Bgt.

  15. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1

    NARCIS (Netherlands)

    Humphry, M.; Reinstädler, A.; Ivanov, S.; Bisseling, T.; Panstruga, R.

    2011-01-01

    Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects,

  16. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.

    Science.gov (United States)

    Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A

    2012-07-02

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.

  17. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa.

    Science.gov (United States)

    Jiwan, Derick; Roalson, Eric H; Main, Dorrie; Dhingra, Amit

    2013-12-01

    Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae.

  18. IDENTIFICATION OF RAPD MARKER LINKED TO POWDERY MILDEW RESISTANCE GENE Pm 12 IN WHEAT

    Institute of Scientific and Technical Information of China (English)

    GU Feng; ZHANG Qing-li; GUO Xiao-chun; LI Tao; WANG Hong-gang

    2004-01-01

    Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,which confers resistance to the powdery mildew in wheat. 200 decamer primers were screened and one RAPD marker (S1071900) was identified to be linked to Pm 12 in coupling phase, and their genetic distance is 11.98 ±4.00cM. This marker can be used for marker - assisted selection in wheat breeding for the identification or pyramiding of Pm12 with other resistance genes.Key Words: Wheat, RAPD, Powdery mildew, resistance genes.

  19. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety

    Directory of Open Access Journals (Sweden)

    Bellin Diana

    2010-07-01

    Full Text Available Abstract Background Natural disease resistance is a cost-effective and environmentally friendly way of controlling plant disease. Breeding programmes need to make sure that the resistance deployed is effective and durable. Grapevine downy mildew, caused by the Oomycete Plasmopara viticola, affects viticulture and it is controlled with pesticides. Downy mildew resistant grapevine varieties are a promising strategy to control the disease, but their use is currently restricted to very limited acreages. The arising of resistance-breaking isolates under such restricted deployment of resistant varieties would provide valuable information to design breeding strategies for the deployment of resistance genes over large acreages whilst reducing the risks of the resistance being defeated. The observation of heavy downy mildew symptoms on a plant of the resistant variety Bianca, whose resistance is conferred by a major gene, provided us with a putative example of emergence of a resistance-breaking isolate in the interaction between grapevine and P. viticola. Results In this paper we describe the emergence of a P. viticola isolate (isolate SL that specifically overcomes Rpv3, the major resistance gene carried by Bianca at chromosome 18. We show that isolate SL has the same behaviour as two P. viticola isolates avirulent on Bianca (isolates SC and SU when inoculated on susceptible plants or on resistant plants carrying resistances derived from other sources, suggesting there is no fitness cost associated to the virulence. Molecular analysis shows that all three isolates are genetically closely related. Conclusions Our results are the first description of a resistance-breaking isolate in the grapevine/P. viticola interaction, and show that, despite the reduced genetic variability of P. viticola in Europe compared to its basin of origin and the restricted use of natural resistance in European viticulture, resistance-breaking isolates overcoming monogenic

  20. Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages

    NARCIS (Netherlands)

    Zhang, N.; Lindhout, P.; Niks, R.E.; Jeuken, M.J.W.

    2009-01-01

    This study used the pathosystem of lettuce (Lactuca spp.) and downy mildew (Bremia lactucae) as a model to investigate the inheritance of nonhost resistance, and focused on the contribution of quantitative trait loci (QTLs) to nonhost resistance at various developmental stages in the lettuce life cy

  1. Strategies for durable resistance to the grapevine powdery mildew fungus, Erysiphe necator

    Science.gov (United States)

    Nearly all cultivars of Vitis vinifera are highly susceptible to the grapevine powdery mildew fungus, Erysiphe necator. Grape breeders around the world are working to introgress resistance from wild Vitis. Of the widely-used introgressions, most involve dominant, race-specific resistance phenotype...

  2. Adaptation to partial resistance to powdery mildew in the hop cultivar Cascade by Podosphaera macularis

    Science.gov (United States)

    The hop cultivar Cascade has been grown in the Pacific Northwestern U.S. with minimal input for management of powdery mildew (Podosphaera macularis) for nearly 20 years due to the putatively quantitative resistance in this cultivar. While partial resistance is generally thought to be more durable th...

  3. Registration of ‘Wyandot-14’ soybean with resistance to soybean aphid and powdery mildew

    Science.gov (United States)

    ‘Wyandot-14’ soybean [Glycine max (L.) Merr.] with resistance to soybean aphid biotypes 1 and 2 and resistance to powdery mildew was jointly released by the USDA-Agricultural Research Service and The Ohio Agricultural Research and Development Center (OARDC) as a late maturity group (MG) II (2.9) foo...

  4. QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli

    Institute of Scientific and Technical Information of China (English)

    Asad Muhammad Azeem; BAI Bin; LAN Cai-xia; YAN Jun; XIA Xian-chun; ZHANG Yong; HE Zhong-hu

    2013-01-01

    The Italian wheat cv. Strampelli displays high resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. The objective of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 249 F2:3 lines from Strampelli/Huixianhong. Adult plant powdery mildew tests were conducted over 2 yr in Beijing and 1 yr in Anyang and simple sequence repeat (SSR) markers were used for genotyping. QTLs Qpm.caas-3BS, Qpm.caas-5BL.1, and Qpm.caas-7DS were consistent across environments whereas, Qpm.caas-2BS.1 found in two environments, explained 0.4-1.6, 5.5-6.9, 27.1-34.5, and 1.0-3.5%of the phenotypic variation respectively. Qpm.caas-7DS corresponded to the genomic location of Pm38/Lr34/Yr18. Qpm.caas-4BL was identified in Anyang 2010 and Beijing 2011, accounting for 1.9-3.5%of phenotypic variation. Qpm.caas-2BS.1 and Qpm.caas-5BL.1 contributed by Strampelli and Qpm.caas-3BS by Huixianhong, seem to be new QTL for powdery mildew resistance. Qpm.caas-4BL, Qpm.caas-5BL.3, and Qpm.caas-7DS contributed by Strampelli appeared to be in the same genomic regions as those mapped previously for stripe rust resistance in the same population, indicating that these loci conferred resistance to both stripe rust and powdery mildew. Strampelli could be a valuable genetic resource for improving durable resistance to both powdery mildew and stripe rust in wheat.

  5. Localization of powdery mildew resistance gene Ml-ra on barley chromosome 5

    DEFF Research Database (Denmark)

    Doll, Hans; Jensen, Hans Peter

    1986-01-01

    Evidence is presented that the powdery mildew resistance gene called Ml-(41/145) represents a unique, unnamed locus, which we suggest to be designated Ml-ra with reference to variety 'Ragusa b' [Hordeum vulgare]. Ml-ra is located on the short arm of chormosome 5 near powdery mildew resistance locus...... Ml-a and the seed storage protein loci Hor1 and Hor2. The most likely order of the loci is Hor1, Ml-a, Ml-ra, and Hor2....

  6. Genetic investigation of the nonhost resistance of wild lettuce, Lactuca saligna, to lettuce downy mildew, Bremia lactucae

    NARCIS (Netherlands)

    Boer, den E.

    2014-01-01

    Abstract Downy mildew (Bremia lactucae) in lettuce (Lactuca sativa) is a devastating foliar disease causing high losses in lettuce cultivation. The wild lettuce and nonhost species, Lactuca saligna, is absolute resistant to downy mildew and cross-fertile with L. sativa, albeit with

  7. Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea.

    Science.gov (United States)

    Mohapatra, Chinmayee; Chand, Ramesh; Navathe, Sudhir; Sharma, Sandeep

    2016-09-01

    Powdery mildew caused by Erysiphe pisi is one of the important diseases responsible for heavy yield losses in pea crop worldwide. The most effective method of controlling the disease is the use of resistant varieties. The resistance to powdery mildew in pea is recessive and governed by a single gene er1. The objective of present study is to investigate if er1 mediated powdery mildew resistance is associated with changes in the redox status of the pea plant. 16 pea genotypes were screened for powdery mildew resistance in field condition for two years and, also, analyzed for the presence/absence of er1 gene. Histochemical analysis with DAB and NBT staining indicates accumulation of reactive oxygen species (ROS) in surrounding area of powdery mildew infection which was higher in susceptible genotypes as compared to resistant genotypes. A biochemical study revealed that the activity of superoxide dismutase (SOD) and catalase, enzymes involved in scavenging ROS, was increased in, both, resistant and susceptible genotypes after powdery mildew infection. However, both enzymes level was always higher in resistant than susceptible genotypes throughout time course of infection. Moreover, irrespective of any treatment, the total phenol (TP) and malondialdehyde (MDA) content was significantly high and low in resistant genotypes, respectively. The powdery mildew infection elevated the MDA content but decreased the total phenol in pea genotypes. Statistical analysis showed a strong positive correlation between AUDPC and MDA; however, a negative correlation was observed between AUDPC and SOD, CAT and TP. Heritability of antioxidant was also high. The study identified few novel genotypes resistant to powdery mildew infection that carried the er1 gene and provided further clue that er1 mediated defense response utilizes antioxidant machinery to confer powdery mildew resistance in pea.

  8. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L.

    Science.gov (United States)

    Li, Yinghui; Song, Na; Zhao, Chuanzhi; Li, Feng; Geng, Miaomiao; Wang, Yuhui; Liu, Wanhui; Xie, Chaojie; Sun, Qixin

    2016-01-01

    Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related (PR) genes (TaPR-1, TaPR-2, TaPR-3, TaPR-4, and TaPR-5), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly (p powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.

  9. Quantitative Analysis of the Early Powdery Mildew Infection Stages on Resistant Barley Genotypes

    DEFF Research Database (Denmark)

    Andersen, J. B.; Torp, J.

    1986-01-01

    A classification system was developed, that allowed quantification of the leaf surface development of the barley powdery mildew fungus on barley. An experiment with Manchuria and Pallas as susceptible controls and 4 resistance gene each represented by three lines with different gene backgrounds s...

  10. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce

    Science.gov (United States)

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in 18th and 19th century, respectively, have high levels of quantitative resistance to downy milde...

  11. Genetic characterization of quantitative resistance to Bremia lactucae, the causal organism of lettuce downy mildew

    Science.gov (United States)

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the United States. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carryi...

  12. Genetic dissection of nonhost resistance of wild lettuce, Lactuca saligna, to downy mildew

    NARCIS (Netherlands)

    Zhang, N.

    2008-01-01

    Lettuce downy mildew is the most destructive disease in lettuce (Lactuca spp.) cultivation and is caused by Bremia lactucae. The successful cross between its host L. sativa and the nonhost, L. saligna, and offers a rare chance to study the genetics of the nonhost resistance. From a set of 29 Backcro

  13. Powdery mildew resistant cucurbit rootstocks confer tolerance to grafted susceptible watermelon scions

    Science.gov (United States)

    Cucurbit powdery mildew (PM) caused by Podosphaera xanthii can impact seedling growth and cause serious losses in greenhouse and open fields. We have developed watermelon and bottle gourd germplasm lines with high levels of resistance to PM. A PM susceptible watermelon cultivar Mickey Lee (ML) was g...

  14. Tolerance to powdery mildew conferred in susceptible watermelon scion by grafting on resistant rootstocks

    Science.gov (United States)

    Cucurbit powdery mildew (PM) caused by Podosphaera xanthii, can impact seedling growth and cause serious losses in greenhouse and open field production. We have developed several watermelon and bottle gourd germplasm lines with high levels of resistance to PM. A PM susceptible cultivar Mickey Lee ...

  15. Quantitative trait loci associated with resistance to powdery mildew in cornus florida

    Science.gov (United States)

    Powdery mildew of flowering dogwood (Cornus florida) caused by Erysiphe pulchra is one of the most destructive diseases in nursery production of flowering dogwood throughout the southeastern U.S. Since the mid-1990s, efforts to breed for resistance to the disease have been undertaken, but to-date on...

  16. Confirming resistance in bottle gourd germplasm by quantifying powdery mildew conidia using a cellometer

    Science.gov (United States)

    Powdery mildew (PM) caused by Podosphaera xanthii, an important foliar disease affecting cucurbit crops grown in the United States, commonly occurs on foliage, petioles, and stems. We have developed two highly resistant bottle gourd (Lagenaria siceraria) germplasm (USVL351 and USVL482) for use in o...

  17. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis.

    Science.gov (United States)

    Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C; Voigt, Christian A

    2013-03-01

    A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew.

  18. Assessment of Lipid Transfer Protein (LTP1) Gene in Wheat Powdery Mildew Resistance

    Institute of Scientific and Technical Information of China (English)

    LI Ai-li; MENG Cheng-sheng; ZHOU Rong-hua; MA Zhi-ying; JIA Ji-zeng

    2006-01-01

    This study is to investigate the role of lipid transfer protein (LTP1) gene of wheat (Triticum aestivum L.) in powdery mildew (Blumeria graminis f. sp. tritici, Bgt) resistance. A pair of primers based on the full length cDNA of wheat LTP1was used for amplifying the coding regions of LTP in hexaploid (AABBDD) wheat and its diploid donors T. urartu (AA),Ae. speltoides ssp speltoide (SS) and Ae. tauchii ssp strangulate (DD). LTP1 and LTP2 of wheat were isolated from the tested two hexaploid (ABD) materials: powdery mildew resistance near isogenic line (NIL) Mardler/7 x B ainong 3217 and its susceptible parent Bainong 3217 at the same time, while only one kind of LTP gene was found in the tested three diploid materials respectively by using the above PCR primer pairs. Two peaks of the expression of LTP1 and LTP2 induced by powdery mildew were observed [one occurred at 3 h after inoculation (hai); the other occurred at 10 hai] in resistant NIL Mardler/7 x Bainong3217 in comparison with a steady transcript level of LTP1 and LTP2 in susceptible Bainong3217.Transient over-expression result showed that LTP1 reduced the penetration efficiency (PE) of powdery mildew in susceptible cultivar by about 28.3%. This result indicated an obvious effectiveness of LTP1 in powdery mildew resistance. Expression analysis also showed that LTP1 and LTP2 of wheat are generally involved in salt/drought, but not in low temperature stress early responses.

  19. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells

    DEFF Research Database (Denmark)

    Gjetting, T.; Carver, Timothy L. W.; Skøt, Leif

    2004-01-01

    Resistance and susceptibility in barley to the powdery mildew fungus (Blumeria graminis f. sp. hordei) is determined at the single-cell level. Even in genetically compatible interactions, attacked plant epidermal cells defend themselves against attempted fungal penetration by localized responses...... leading to papilla deposition and reinforcement of their cell wall. This conveys a race-nonspecific form of resistance. However, this defense is not complete, and a proportion of penetration attempts succeed in infection. The resultant mixture of infected and uninfected leaf cells makes it impossible...... to relate powdery mildew-induced gene expression in whole leaves or even dissected epidermal tissues to resistance or susceptibility. A method for generating transcript profiles from individual barley epidermal cells was established and proven useful for analyzing resistant and successfully infected cells...

  20. Genetic dissection of nonhost resistance of wild lettuce, Lactuca saligna, to downy mildew

    OpenAIRE

    Zhang, N.

    2008-01-01

    Lettuce downy mildew is the most destructive disease in lettuce (Lactuca spp.) cultivation and is caused by Bremia lactucae. The successful cross between its host L. sativa and the nonhost, L. saligna, and offers a rare chance to study the genetics of the nonhost resistance. From a set of 29 Backcross Inbred Lines (BILs) representing in total 96% of the L. saligna genome, 15 introgressions were identified to contribute to this resistance at one to four tested lettuce developmental stages and ...

  1. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes

    Directory of Open Access Journals (Sweden)

    Perazzolli Michele

    2012-11-01

    Full Text Available Abstract Background Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39 can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. Results More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. Conclusions The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers

  2. Inheritance of resistance to powdery mildew in pea and pathogenesis-related aspects

    Directory of Open Access Journals (Sweden)

    Ricardo Lima dos Santos

    2012-06-01

    Full Text Available The inheritance of resistance to powdery mildew in the pea cultivar MK-10 and some histological aspects of infection were assessed. For the inheritance study, F1, F2, backcrosses and F3 generations of MK-10 crossed with two susceptible populations were evaluated. Histological evaluations included percentage of germinated conidia, percentage of conidia that formed appresoria, percentage of conidia that established colonies, and number of haustoria per colony. Segregation ratios obtained in the resistance inheritance study were compared by Chi-square (ײ test and the histological data were analyzed by Tukey's test at 5% probability. It was concluded that resistance of MK-10 to powdery mildew is due to a pair of recessive alleles since it is expressed in the pre-penetration stage and completed by post-penetration localized cellular death, characteristic of the presence of the pair of recessive alleles er1er1.

  3. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii

    Science.gov (United States)

    Wheat is one of the most important staple grain crops in the world. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant losses in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located on the short ...

  4. Breeding and molecular cytogenetic identification of wheat-Thinopyrum intermedium addition lines resistant to powdery mildew

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wheat-related species Th. intermedium was used to cross with common wheat Yannong 15. In the self progenies of the hybrid, two addition lines, Ⅱ-1-7-1 and Ⅱ-3-3-2, stable in cytology, were developed by cytology and powdery mildew resistance identification. Their chromosome number were 2n = 44 and formed 22 bivalents at PMC MI. In F1 of the two addition lines crossing with Yannong 15, there appeared about one univalent at PMC MI, respectively. Resistance identification in greenhouse and field using the No. 15 and mixed strains of E. gramnis f. sp. tritici showed that they were immune to powdery mildew. Chromosome number and resistance identification using the F2 single plants of the addition line crossing with Yannong 15 indicated that the resistant gene was located on the alien chromosomes. In situ hybridization using St and E genomic DNA as probe showed that the added chromosome in the two addition lines probably came from the E genome of Th. intermedium, which indicated that a pair of E genome chromosomes carried a new resistant gene to powdery mildew.

  5. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map.

    Science.gov (United States)

    Barba, Paola; Cadle-Davidson, Lance; Harriman, James; Glaubitz, Jeffrey C; Brooks, Siraprapa; Hyma, Katie; Reisch, Bruce

    2014-01-01

    Improved efficacy and durability of powdery mildew resistance can be enhanced via knowledge of the genetics of resistance and susceptibility coupled with the development of high-resolution maps to facilitate the stacking of multiple resistance genes and other desirable traits. We studied the inheritance of powdery mildew (Erysiphe necator) resistance and susceptibility of wild Vitis rupestris B38 and cultivated V. vinifera 'Chardonnay', finding evidence for quantitative variation. Molecular markers were identified using genotyping-by-sequencing, resulting in 16,833 single nucleotide polymorphisms (SNPs) based on alignment to the V. vinifera 'PN40024' reference genome sequence. With an average density of 36 SNPs/Mbp and uniform coverage of the genome, this 17K set was used to identify 11 SNPs on chromosome 7 associated with a resistance locus from V. rupestris B38 and ten SNPs on chromosome 9 associated with a locus for susceptibility from 'Chardonnay' using single marker association and linkage disequilibrium analysis. Linkage maps for V. rupestris B38 (1,146 SNPs) and 'Chardonnay' (1,215 SNPs) were constructed and used to corroborate the 'Chardonnay' locus named Sen1 (Susceptibility to Erysiphe necator 1), providing the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. The identification of markers associated with a susceptibility locus in a V. vinifera background can be used for negative selection among breeding progenies. This work improves our understanding of the nature of powdery mildew resistance in V. rupestris B38 and 'Chardonnay', while applying next-generation sequencing tools to advance grapevine genomics and breeding.

  6. Phenotypic characterization of papaya genotypes to determine powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Marcelo Vivas

    2017-06-01

    Full Text Available In support of breeding of papaya (Carica papaya, the disease incidence and severity of powdery mildew (Ovulariopsis caricicola were evaluated in papaya genotypes. Two experiments in complete randomized blocks were carried out, one in the field and the other in a greenhouse. In field experiments, the lowest mean disease incidence was observed on the genotypes ‘Costa Rica’ and ‘Baixinho Super’, and the lowest mean disease severity on ‘Caliman M5’, ‘GTF’, ‘SH 11-08’, and ‘JS 11’. In the greenhouse experiment, the genotypes ‘Caliman M5’, ‘Golden’, ‘Kapoho Solo’, ‘Waimanalo’, ‘Mamão Bené’, ‘SH 12-07’, ‘JS 12’, and ‘GTF’ had the lowest mean incidence in at least one evaluation. On the other hand, for severity, the genotypes ‘Diva’, ‘Sunrise Solo 72/12’, ‘Kapoho Solo PA’, ‘Waimanalo’, ‘Maradol’, ‘Maradol GL’, ‘SH 15-04’, ‘FMV, ‘JS 12-4’, ‘SH 12-07’ and ‘Sekati FLM’ had the lowest means. These results indicate these genotypes for a possible use in breeding for reduction of powdery mildew intensity

  7. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants. PMID:27493652

  8. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  9. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  10. Inheritance of Powdery Mildew Resistance in Cucumber (Cucumis sativus L.) and Development of an AFLP Marker for Resistance Detection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-1-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross Ⅰ. In cross Ⅱ, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross Ⅲ were similar to those in cross Ⅱ. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated,which indicated that it was unique to the cucumber genome.

  11. The value of powdery mildew resistance in grapes: Evidence from California

    Directory of Open Access Journals (Sweden)

    Kate Binzen Fuller

    2014-12-01

    Full Text Available Powdery mildew (PM is a fungal disease that damages many crops, including grapes. In California, wine, raisin, and table grapes contributed over $3.9 billion to the value of farm production in 2011. Grape varieties with resistance to powdery mildew are currently being developed, using either conventional or transgenic approaches, each of which has associated advantages and disadvantages. PM-resistant varieties of grapes could yield large economic benefits to California grape growers—potentially allowing cost savings as high as $48 million per year in the subset of the industry covered by our analysis (Crimson Seedless table grapes, all raisin grapes, and Central Coast Chardonnay wine grapes, but benefits range widely across the different grape production systems.

  12. Arabidopsis phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi

    DEFF Research Database (Denmark)

    Pinosa, Francesco; Buhot, Nathalie; Kwaaitaal, Mark Adrianus Cornelis J

    2013-01-01

    Plants have evolved a complex array of defensive responses against pathogenic microorganisms. Recognition of microbes initiates signaling cascades that activate plant defenses. The membrane lipid phosphatidic acid, produced by phospholipase D (PLD), has been shown to take part in both abiotic...... and biotic stress signaling. In this study, the involvement of PLD in the interaction between Arabidopsis (Arabidopsis thaliana) and the barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was investigated. This nonadapted pathogen is normally resisted by a cell wall-based defense, which stops....... In conclusion, we propose that PLD is involved in defense signaling in nonhost resistance against powdery mildew fungi and put PLDδ forward as the main isoform participating in this process....

  13. A Japanese powdery mildew isolate with exceptionally large infection efficience on Mlo-resistant barley

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Jensen, H.P.; Østergård, Hanne

    1995-01-01

    A Japanese field isolate (Race I) of Erysiphe graminis f,sp. hordei was tested on 17 barley lines carrying the mlo powdery mildew resistance gene. Race I produced many successful infections with infection type larger than or equal to 2 on six lines (M66, MC20, SR1, SR7, Atem and Totem). On the re......A Japanese field isolate (Race I) of Erysiphe graminis f,sp. hordei was tested on 17 barley lines carrying the mlo powdery mildew resistance gene. Race I produced many successful infections with infection type larger than or equal to 2 on six lines (M66, MC20, SR1, SR7, Atem and Totem...

  14. Correlations between the contents of phytic acid and inorganic phosphorous and downy mildew resistance of corn inbred lines

    OpenAIRE

    Pantipa Na Chiangmai*; Phrutiya Nilprapruck; Warapon Bunkoed; Phakatip Yodmingkhwan; Chokechai Aekatasanawan; Mana Kanjanamaneesathian

    2015-01-01

    Seeds of corn inbred lines collected at the National Corn and Sorghum Research Center (NCSRC), Kasetsart University, were analyzed to determine the contents of phytic acid (PA) and inorganic phosphorous (InP). These 28 and 29 inbred lines were cultivated at the NCSRC (in the 2008 late rainy season and 2009 early rainy season) to evaluate their resistance to corn downy mildew caused by Peronosclerospora sorghi. Results showed that the values of the PA, InP contents and downy mildew...

  15. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.

    Science.gov (United States)

    Wang, Yanpeng; Cheng, Xi; Shan, Qiwei; Zhang, Yi; Liu, Jinxing; Gao, Caixia; Qiu, Jin-Long

    2014-09-01

    Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops.

  16. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  17. The enhanced callose deposition in barley with ml-o powdery mildew resistance genes

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1985-01-01

    Carborundum treatment of barley leaves induced a callose deposition which was detected as diffuse blotches in the epidermal cells of susceptible barleys and as deeply stained tracks along the scratches in barleys with the ml-o powdery mildew resistance gene. Subsequent inoculation with powdery...... mildew resulted in appositions that enlarged inversely to their size in the respective varieties when inoculated without carborundum treatment. Aphids sucking the leaves resulted in rows of callose containing spots along the anticlinal cell walls. The spots were larger in the ml-o mutant than...... in the mother variety. Callose was deposited in connection with the pleiotropic necrotic spotting in barleys with the ml-o gene. Modification of the necrotic spotting by crossing the ml-o gene into other gene backgrounds did not result in any change in the size of appositions upon inoculation with powdery...

  18. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew.

    Science.gov (United States)

    Li, Yunlong; Gu, Yilin; Li, Juan; Xu, Mingzhu; Wei, Qing; Wang, Yuanhong

    2015-01-01

    Powdery mildew is a fungal disease found in a wide range of plants and can significantly reduce crop yields. Bacterial strain LJ02 is a biocontrol agent (BCA) isolated from a greenhouse in Tianjin, China. In combination of morphological, physiological, biochemical and phylogenetic analyses, strain LJ02 was classified as a new member of Bacillus amyloliquefaciens. Greenhouse trials showed that LJ02 fermentation broth (LJ02FB) can effectively diminish the occurrence of cucurbits powdery mildew. When treated with LJ02FB, cucumber seedlings produced significantly elevated production of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase as compared to that of the control. We further confirmed that the production of free salicylic acid (SA) and expression of one pathogenesis-related (PR) gene PR-1 in cucumber leaves were markedly elevated after treating with LJ02FB, suggesting that SA-mediated defense response was stimulated. Moreover, LJ02FB-treated cucumber leaves could secrete resistance-related substances into rhizosphere that inhibit the germination of fungi spores and the growth of pathogens. Finally, we separated bacterium and its fermented substances to test their respective effects and found that both components have SA-inducing activity and bacterium plays major roles. Altogether, we identified a BCA against powdery mildew and its mode of action by inducing systemic resistance such as SA signaling pathway.

  19. Transcriptome and Small RNAome Dynamics during a Resistant and Susceptible Interaction between Cucumber and Downy Mildew

    Directory of Open Access Journals (Sweden)

    Alyssa Burkhardt

    2016-03-01

    Full Text Available Cucumber ( L. downy mildew, caused by the obligate oomycete pathogen (Berk. and Curt. Rostov., is the primary factor limiting cucumber production. Although sources of resistance have been identified, such as plant introduction line PI 197088, the genes and processes involved in mediating resistance are still unknown. In the current study, we conducted a comprehensive transcriptome and small RNAome analysis of a resistant (PI 197088 and susceptible (‘Vlaspik’ cucumber during a time course of infection using Illumina sequencing. We identified significantly differentially expressed (DE genes within and between resistant and susceptible cucumber leaves over a time course of infection. Weighted gene correlation network analyses (WGCNA created coexpression modules containing genes with unique expression patterns between Vlaspik and PI 197088. Recurring data trends indicated that resistance to cucumber downy mildew is associated with earlier response to the pathogen, hormone signaling, and regulation of nutrient supply. Candidate resistance genes were identified from multiple transcriptome analyses and literature support. Additionally, parallel sequencing of small RNAs (sRNAs from cucumber and during the infection time course was used to identify and quantify novel and existing microRNA (miRNA in both species. Predicted miRNA targets of cucumber transcripts suggest a complex interconnectedness of gene expression regulation in this plant–pathogen system. This work bioinformatically uncovered gene expression patterns involved in the mediation of or response to resistance. Herein, we provide the foundation for future work to validate candidate resistance genes and miRNA-based regulation proposed in this study.

  20. Molecular Cytogenetic Identification of a Wheat-Thinopyron intermedium (Host) Barkworth & DR Dewey Partial Amphiploid Resistant to Powdery Mildew

    Institute of Scientific and Technical Information of China (English)

    Shu-Bing LIU; Hong-Gang WANG; Xue-Yong ZHANG; Xing-Feng LI; Da-Yong LI; Xia-Yu DUAN; Yi-Lin ZHOU

    2005-01-01

    Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium (Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattem was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat-Th. intermedium partial amphiploids Zhong 1-5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E.

  1. Characterization of resistance mechanisms to powdery mildew (Erysiphe betae) in beet (Beta vulgaris).

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Prats, Elena; Emeran, Amero A; Rubiales, Diego

    2009-04-01

    Beet powdery mildew incited by Erysiphe betae is a serious foliar fungal disease of worldwide distribution causing losses of up to 30%. In the present work, we searched for resistance in a germplasm collection of 184 genotypes of Beta vulgaris including fodder (51 genotypes), garden (60 genotypes), leaf (51 genotypes), and sugar (22 genotypes) beet types. Resistant genotypes were identified in the four beet types under study. In addition, mechanisms underlying resistance were dissected through histological studies. These revealed different resistance mechanisms acting at different fungal developmental stages, i.e., penetration resistance, early and late cell death, or posthaustorial resistance. Most genotypes were able to hamper fungal development at several stages. The later are interesting for breeding aiming to resistance durability. Furthermore, characterization of defense mechanisms will be useful for further cellular and molecular studies to unravel the bases of resistance in this species.

  2. Distribution and characterization of Podosphaera macularis virulent on hop cultivars possessing R6-based resistance to powdery mildew

    Science.gov (United States)

    In 2012, an epidemic of powdery mildew occurred in Washington and Idaho on previously resistant cultivars whose resistance was putatively based on the gene designated R6. In 2013, isolates capable of causing severe disease on cultivars with R6-based resistance were confirmed in Oregon and became wid...

  3. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Buchmann, Gabriele; Herren, Gerhard; Jordan, Tina; Krukowski, Patricia; Wicker, Thomas; Yahiaoui, Nabila; Mago, Rohit; Keller, Beat

    2013-12-01

    The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology-based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single-cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3- and Pm8-like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co-evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.

  4. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stilbene, a kind of phytoalexin, plays an important role in resistance to fungal and bacterial infection in plants. It strongly inhibits the growth of fungi and sprout of spore. Stilbene synthase gene (Vst1) obtained from grapevine has been transferred into common spring wheat Jinghong 5 by using the biolistic transformation method. Five transgenic plants (T0) were obtained from the bombarded 2014 immature embryos. One immune plantlet and 3 plantlets with mid-resistance to powdery mildew were identified from the transgenic plants of T3 generation which came from 2 T0 transgenic plants.

  5. Powdery mildew outbreaks caused by Podosphaera macularis on Hop cultivars possessing the resistance gene R6 in the Pacific Northwestern United States

    Science.gov (United States)

    Resistant cultivars of hop (Humulus lupulus) have been grown, with the aim of helping to manage powdery mildew in the Pacific Northwest since the first report of the disease in the field in 1997 (4). A major objective of many breeding programs is development of resistance to powdery mildew, and thi...

  6. Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS

    Science.gov (United States)

    Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease affecting the production of wheat (Triticum aestivum). Powdery mildew resistance was putatively transferred from Thinopyrum intermedium to the common wheat line L962, which conferred resistance to multiple Ch...

  7. Development of partial ontogenic resistance to powdery mildew in hop cones and its management implications.

    Science.gov (United States)

    Twomey, Megan C; Wolfenbarger, Sierra N; Woods, Joanna L; Gent, David H

    2015-01-01

    Knowledge of processes leading to crop damage is central to devising rational approaches to disease management. Multiple experiments established that infection of hop cones by Podosphaera macularis was most severe if inoculation occurred within 15 to 21 days after bloom. This period of infection was associated with the most pronounced reductions in alpha acids, cone color, and accelerated maturation of cones. Susceptibility of cones to powdery mildew decreased progressively after the transition from bloom to cone development, although complete immunity to the disease failed to develop. Maturation of cone tissues was associated with multiple significant affects on the pathogen manifested as reduced germination of conidia, diminished frequency of penetration of bracts, lengthening of the latent period, and decreased sporulation. Cones challenged with P. macularis in juvenile developmental stages also led to greater frequency of colonization by a complex of saprophytic, secondary fungi. Since no developmental stage of cones was immune to powdery mildew, the incidence of powdery mildew continued to increase over time and exceeded 86% by late summer. In field experiments with a moderately susceptible cultivar, the incidence of cones with powdery mildew was statistically similar when fungicide applications were made season-long or targeted only to the juvenile stages of cone development. These studies establish that partial ontogenic resistance develops in hop cones and may influence multiple phases of the infection process and pathogen reproduction. The results further reinforce the concept that the efficacy of a fungicide program may depend largely on timing of a small number of sprays during a relatively brief period of cone development. However in practice, targeting fungicide and other management tactics to periods of enhanced juvenile susceptibility may be complicated by a high degree of asynchrony in cone development and other factors that are situation-dependent.

  8. Development of partial ontogenic resistance to powdery mildew in hop cones and its management implications.

    Directory of Open Access Journals (Sweden)

    Megan C Twomey

    Full Text Available Knowledge of processes leading to crop damage is central to devising rational approaches to disease management. Multiple experiments established that infection of hop cones by Podosphaera macularis was most severe if inoculation occurred within 15 to 21 days after bloom. This period of infection was associated with the most pronounced reductions in alpha acids, cone color, and accelerated maturation of cones. Susceptibility of cones to powdery mildew decreased progressively after the transition from bloom to cone development, although complete immunity to the disease failed to develop. Maturation of cone tissues was associated with multiple significant affects on the pathogen manifested as reduced germination of conidia, diminished frequency of penetration of bracts, lengthening of the latent period, and decreased sporulation. Cones challenged with P. macularis in juvenile developmental stages also led to greater frequency of colonization by a complex of saprophytic, secondary fungi. Since no developmental stage of cones was immune to powdery mildew, the incidence of powdery mildew continued to increase over time and exceeded 86% by late summer. In field experiments with a moderately susceptible cultivar, the incidence of cones with powdery mildew was statistically similar when fungicide applications were made season-long or targeted only to the juvenile stages of cone development. These studies establish that partial ontogenic resistance develops in hop cones and may influence multiple phases of the infection process and pathogen reproduction. The results further reinforce the concept that the efficacy of a fungicide program may depend largely on timing of a small number of sprays during a relatively brief period of cone development. However in practice, targeting fungicide and other management tactics to periods of enhanced juvenile susceptibility may be complicated by a high degree of asynchrony in cone development and other factors that are

  9. Development of Random Amplified Polymorphism DNA Markers Linked to Powdery Mildew Resistance Gene in Melon

    Directory of Open Access Journals (Sweden)

    Budi Setiadi Daryono

    2015-11-01

    Full Text Available A random amplified polymorphic DNA (RAPD marker linked to powdery mildew resistance gene (Pm-I in melon PI 371795 was reported. However, the RAPD marker has problem in scoring. To detect powdery mildew resistance gene (Pm-I in melon accurately, the RAPD marker was cloned and sequenced to design sequence characterized amplified region (SCAR markers. SCAPMAR5 marker derived from pUBC411 primer yielded a single DNA band at 1061 bp. Segregation of SCAPMAR5 marker in bulk of F2 plants demonstrated that the marker was co-segregated with RAPD marker from which the SCAR marker was originated. Moreover, results of SCAR analysis in diverse melons showed SCAPMAR5 primers obtained a single 1061 bp linked to Pm-I in resistant melon PI 371795 and PMAR5. On the other hand, SCAPMAR5 failed to detect Pm-I in susceptible melons. Results of this study revealed that SCAR analysis not only confirmed melons that had been clearly scored for resistance to Pm-I evaluated by RAPD markers, but also clarified the ambiguous resistance results obtained by the RAPD markers.   Key words: Cucumis melo L., Pm-I, RAPD, SCAPMAR5

  10. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce.

    Science.gov (United States)

    Simko, Ivan; Atallah, Amy J; Ochoa, Oswaldo E; Antonise, Rudie; Galeano, Carlos H; Truco, Maria Jose; Michelmore, Richard W

    2013-10-07

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in the 18th and 19th centuries, respectively, have high levels of quantitative resistance to downy mildew. We developed a population of recombinant inbred lines (RILs) originating from a cross between these two legacy cultivars, constructed a linkage map, and identified two QTLs for resistance on linkage groups 2 (qDM2.1) and 5 (qDM5.1) that determined resistance under field conditions in California and the Netherlands. The same QTLs determined delayed sporulation at the seedling stage in laboratory experiments. Alleles conferring elevated resistance at both QTLs originate from cultivar Iceberg. An additional QTL on linkage group 9 (qDM9.1) was detected through simultaneous analysis of all experiments with mixed-model approach. Alleles for elevated resistance at this locus originate from cultivar Grand Rapids.

  11. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum x Triticum militinae hybrid line.

    Science.gov (United States)

    Jakobson, Irena; Peusha, Hilma; Timofejeva, Ljudmilla; Järve, Kadri

    2006-02-01

    In the progeny of a cross between the common wheat cultivar Tähti and Triticum militinae, a member of the timopheevii group of tetraploid wheats, several hybrid lines were selected that are characterized by improved seedling and adult plant resistance (APR) to powdery mildew. An F2 single-seed descendant mapping population segregating for seedling resistance and APR to powdery mildew was analysed for the identification of quantitative trait loci (QTL). The main QTL responsible for APR was detected on the long arm of chromosome 4A tightly linked to the Xgwm160 locus on a T. militinae translocation explaining up to 54% of phenotypic variance. The same translocation influenced seedling resistance to powdery mildew upon inoculation of plants with a synthetic population of Blumeria graminis DC. f. sp. tritici, and explained 28-33% of the phenotypic variance.

  12. Field susceptibility of 13 scab-resistant apple cultivars to apple powdery mildew [Podosphaera leucotricha (Ell. et Ev. Salmon

    Directory of Open Access Journals (Sweden)

    Zbigniew Borecki

    2013-12-01

    Full Text Available Field susceptibility of 13 scab-resistant apple cultivars to apple powdery mildew was evaluated in 1983-1986. Four groups of susceptibility were distinguished. None of the 13 tested scab-resistant apple trees exhibited complete field immunity to apple powdery mildew. Two cultivars, 'Prima' and 'Primula', were practically resistant. 'Liberty' and two numbered selections, NY-140-9 and NY-158-2, belonged to the group of lower susceptibility. Moderate susceptibility was shown by: 'Novamac', 'Freedom', 'Gavin', 'Prima' and 'Florina'. The group of apple trees most susceptible to Podosphaera leucotricha included: 'Macfree', 'Priscilla' and 'Nova Easygro'. It is not necessary to use chemical sprays to control powdery mildew on 'Prima' and 'Primula'. A reduced spraying program may be recommended only under high disease pressure on less susceptible apple cultivars. A regular spray schedule is needed on moderately susceptible apple trees, but improved chemical control is necessary on the most susceptible ones.

  13. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus.

    Science.gov (United States)

    Pavan, Stefano; Schiavulli, Adalgisa; Appiano, Michela; Marcotrigiano, Angelo R; Cillo, Fabrizio; Visser, Richard G F; Bai, Yuling; Lotti, Concetta; Ricciardi, Luigi

    2011-12-01

    The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew resistance source. Genetic and phytopathological features of er1 resistance are similar to those of barley, Arabidopsis, and tomato mlo powdery mildew resistance, which is caused by the loss of function of specific members of the MLO gene family. Here, we describe the obtainment of a novel er1 resistant line by experimental mutagenesis with the alkylating agent diethyl sulfate. This line was found to carry a single nucleotide polymorphism in the PsMLO1 gene sequence, predicted to result in premature termination of translation and a non-functional protein. A cleaved amplified polymorphic sequence (CAPS) marker was developed on the mutation site and shown to be fully co-segregating with resistance in F(2) individuals. Sequencing of PsMLO1 from three powdery mildew resistant cultivars also revealed the presence of loss-of-function mutations. Taken together, results reported in this study strongly indicate the identity between er1 and mlo resistances and are expected to be of great breeding importance for the development of resistant cultivars via marker-assisted selection.

  14. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.).

    Science.gov (United States)

    He, Xiaoming; Li, Yuhong; Pandey, Sudhakar; Yandell, Brain S; Pathak, Mamta; Weng, Yiqun

    2013-08-01

    Powdery mildew (PM) is a very important disease of cucumber (Cucumis sativus L.). Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resistant) and True Lemon (susceptible). A genetic map covering 610.4 cM in seven linkage groups was developed with 240 SSR marker loci. Multiple QTL mapping analysis of molecular marker data and disease index of the hypocotyl, cotyledon and true leaf for responses to PM inoculation identified six genomic regions in four chromosomes harboring QTL for PM resistance in WI 2757. Among the six QTL, pm1.1 and pm1.2 in chromosome 1 conferred leaf resistance. Minor QTL pm3.1 (chromosome 3) and pm4.1 (chromosome 4) contributed to disease susceptibility. The two major QTL, pm5.1 and pm5.2 were located in an interval of ~40 cM in chromosome 5 with each explaining 21.0-74.5 % phenotypic variations. Data presented herein support two recessively inherited, linked major QTL in chromosome 5 plus minor QTL in other chromosomes that control the PM resistance in WI 2757. The QTL pm5.2 for hypocotyl resistance plays the most important role in host resistance. Multiple observations in the same year revealed the importance of scoring time in the detection of PM resistance QTL. Results of this study provided new insights into phenotypic and genetic mechanisms of powdery mildew resistance in cucumber.

  15. Cloning and Expression Analysis of Downy Mildew Resistance-Related cDNA Sequences in Melon

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Melon downy mildew caused by Pseudoperonospora cubensis leads to significant losses in melon yields worldwide.Reverse-transcription Polymerase Chain Reaction (RT-PCR) was performed using cDNAs as templates from melonHuangdanzi induced with fungus Pseudoperonospora cubensis, and degenerate primers designed based on the conserved amino acid sequences of known plant disease-resistance genes. A polymorphic cDNA fragment which we named mp-19was cloned and sequenced. The Open Reading Frame (ORF) of this product comprised of 510 base pairs which encodes DNA or RNA-binding protein with 170 amino acids. The putative amino acid sequence of mp-19 appeared highly homologous with those of NBS-type resistant-genes isolated from other plants. Southern blot indicated that the melon genome contained more than 3 copies of mp-19. The obvious expression differences detected by semi-quantitative RTPCR could be observed between resistant-line Huangdanzi and susceptible-line Jiashi after Pseudoperonospora cubensis infection, which implied that mp-19 gene may be related to the resistance of downy mildew in melon.

  16. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  17. RFLP Tagging of a Gene Pm12 for Powdery Mildew Resistance in Wheat (Triticum aestivum L. )

    Institute of Scientific and Technical Information of China (English)

    贾继增; T.E.Miller; S.M.Reader; M.D.Gale

    1994-01-01

    A dominant gene, Pml2, conferring the resistance to powdery mildew (Erysiphe graminis) has been transferred to wheat from Aegilops speltoides. Sixteen RFLP probes were used to test Line 31 and its parents, showing that Line 31 is a 6B/6S translocation lines. The linkage analysis by five probes indicates that Pm12 is located on the chromosome 6B/6S, and tightly flanked by an RFLP marker α-Amy-1 (1.1 cM), identified by RFLP and isozyme analysis. This approach is equally applicable to the identification of other transferred alien genes and the segments of alien chromosome introgressed into wheat.

  18. Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China

    Institute of Scientific and Technical Information of China (English)

    Suli Sun; Yuhua He; Cheng Dai; Canxing Duan; Zhendong Zhu

    2016-01-01

    Powdery mildew, caused by Erysiphe pisi D.C., is an important disease of pea (Pisum sativum L.). The use of cultivars carrying powdery mildew resistance alleles at the er1 locus is the most effective and economical means of controlling this disease. The objectives of this study were to screen Chinese elite pea cultivars for resistance to E. pisi and to identify the responsible gene at the er1 locus. Among the 37 pea cultivars tested, three (Yunwan 8, Yunwan 21, and Yunwan 23) were immune to E. pisi infection in phenotypic evaluations. The full-length cDNA sequences of the er1 candidate gene, PsMLO1, from the three resistant cultivars and control plants were analyzed. Comparison of the cDNA sequences of 10 clones revealed differences among the powdery mildew-resistant cultivars, susceptible controls, and wild-type cultivar Sprinter. The observed resistance in Yunwan 8 plants resulted from a point mutation (C→G) at position 680 of PsMLO1 that introduced a stop codon, leading to premature termination of protein synthesis. The responsible resistance allele was identified as er1–1. Powdery mildew resistance in Yunwan 21 and Yunwan 23 plants was caused by identical insertions or deletions in PsMLO1. Three distinct PsMLO1 transcripts were observed in Yunwan 21 and Yunwan 23 plants. These transcripts were characterized by a 129-bp deletion and 155-and 220-bp insertions, respectively. The responsible resistance allele was identified as er1–2. We have characterized two important er1 alleles in three E. pisi-resistant pea cultivars bred in Yunnan Province, China. These cultivars represent important genetic resources for the breeding of powdery mildew-resistant pea cultivars.

  19. Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Suli Sun

    2016-10-01

    Full Text Available Powdery mildew, caused by Erysiphe pisi D.C., is an important disease of pea (Pisum sativum L.. The use of cultivars carrying powdery mildew resistance alleles at the er1 locus is the most effective and economical means of controlling this disease. The objectives of this study were to screen Chinese elite pea cultivars for resistance to E. pisi and to identify the responsible gene at the er1 locus. Among the 37 pea cultivars tested, three (Yunwan 8, Yunwan 21, and Yunwan 23 were immune to E. pisi infection in phenotypic evaluations. The full-length cDNA sequences of the er1 candidate gene, PsMLO1, from the three resistant cultivars and control plants were analyzed. Comparison of the cDNA sequences of 10 clones revealed differences among the powdery mildew-resistant cultivars, susceptible controls, and wild-type cultivar Sprinter. The observed resistance in Yunwan 8 plants resulted from a point mutation (C → G at position 680 of PsMLO1 that introduced a stop codon, leading to premature termination of protein synthesis. The responsible resistance allele was identified as er1–1. Powdery mildew resistance in Yunwan 21 and Yunwan 23 plants was caused by identical insertions or deletions in PsMLO1. Three distinct PsMLO1 transcripts were observed in Yunwan 21 and Yunwan 23 plants. These transcripts were characterized by a 129-bp deletion and 155- and 220-bp insertions, respectively. The responsible resistance allele was identified as er1–2. We have characterized two important er1 alleles in three E. pisi-resistant pea cultivars bred in Yunnan Province, China. These cultivars represent important genetic resources for the breeding of powdery mildew-resistant pea cultivars.

  20. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines.

    Science.gov (United States)

    Naumann, Marcel; Somerville, Shauna; Voigt, Christian

    2013-06-01

    The deposition of callose, a (1,3)-β-glucan cell wall polymer, can play an essential role in the defense response to invading pathogens. We could recently show that Arabidopsis thaliana lines with an overexpression of the callose synthase gene PMR4 gained complete penetration resistance to the adapted powdery mildew Golovinomyces cichoracearum and the non-adapted powdery mildew Blumeria graminis f. sp hordei. The penetration resistance is based on the transport of the callose synthase PMR4 to the site of attempted fungal penetration and the subsequent formation of enlarged callose deposits. The deposits differed in their total diameter comparing both types of powdery mildew infection. In this study, further characterization of these callose deposits revealed that size differences were especially pronounced in the core region of the deposits. This suggests that specific, pathogen-dependent factors exist, which might regulate callose synthase transport to the core region of forming deposits.

  1. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer(Triticum dicoccoides)

    Science.gov (United States)

    Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7A...

  2. Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Sunflower downy mildew is considered to be the most destructive foliar disease that has spread to every major sunflower-growing country of the world, except Australia. A new dominant downy mildew resistance gene (Pl18) transferred from wild Helianthus argophyllus (PI 494573) into cultivated sunflowe...

  3. Identification of molecular markers linked to the mildew resistance gene Pl-d in apple.

    Science.gov (United States)

    James, C M; Clarke, J B; Evans, K M

    2004-12-01

    Powdery mildew poses a serious problem for apple growers, and resistance to the disease is a major objective in breeding programmes for cultivar improvement. As selective pressure allows pathogens to overcome previously reliable resistances, there is a need for the introduction of novel resistance genes into new breeding lines. This investigation is concerned with the identification of the first set of molecular markers linked to the gene for mildew resistance, Pl-d, from the accession 'D12'. As no prior information on the map position or markers for Pl-d were available, a bulked-segregant approach was used to test 49 microsatellite primers, 176 amplified fragment length polymorphism (AFLP) primers and 80 random amplified polymorphic DNA (RAPD) primers in a progeny segregating for Pl-d resistance, 'Fiesta' (susceptible) x A871-14 ('Worcester Pearmain' x 'D12'). The segregations of the markers identified in the resistant and susceptible bulks were scored in the progeny, then the recombination fractions between Pl-d and the most tightly linked markers were calculated and a map prepared. Three AFLP, one RAPD and two microsatellite markers were identified. One AFLP was developed into a sequence-characterised amplified region marker, while the microsatellites CH03C02 and CH01D03 were flanking markers, 7 and 11 recombination units, respectively, from Pl-d. Two more distant microsatellites on the same linkage group, CH01D09 and CH01G12, confirmed the orientation of the markers on the linkage group. These microsatellites place Pl-d on the bottom of linkage group 12 in published apple maps, a region where a number of other disease resistance genes have been identified.

  4. GENETIC DIVERSITY OF S3 MAIZE GENOTYPES RESISTANT TO DOWNY MILDEW BASED ON SSR MARKERS

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-02-01

    Full Text Available The compulsory requirement for releasing new high yielding maize varieties is resistance to downy mildew. The study aimed to determine the level of homozygosity, genetic diversity, and  genetic distance of 30 S3 genotypes of maize. Number of primers to be used were 30 polymorphic SSR loci which are distributed over the entire maize genomes. The S3 genotypes used were resistant to downy mildew with homozygosity level of >80%, genetic distance between the test and tester strains >0.7, and anthesis silking interval (ASI between inbred lines and tester lines was maximum 3 days. The results showed that 30 SSR primers used were spread evenly across the maize genomes which were manifested in the representation of SSR loci on each chromosome of a total of 10 chromosomes. The levels of polymorphism ranged from 0.13 to 0.78, an average of 0.51, and the number of alleles ranged from 2 to 8 alleles per SSR locus, an average of 4 alleles per SSR locus. The size of nucleotides in each locus also varied from 70 to 553 bp. Cophenetic correlation value (r at 0.67 indicated that the Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA was less reliable for differentiating genotypes in five groups. Of the total of 30 genotypes analyzed, 17 genotypes had homozygosity level of >80% so it can be included in the hybrid assembly program.

  5. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L.

    Science.gov (United States)

    Dai, Lingmin; Wang, Dan; Xie, Xiaoqing; Zhang, Chaohong; Wang, Xiping; Xu, Yan; Wang, Yuejin; Zhang, Jianxia

    2016-01-01

    Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.

  6. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    Science.gov (United States)

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  7. Correlations between the contents of phytic acid and inorganic phosphorous and downy mildew resistance of corn inbred lines

    Directory of Open Access Journals (Sweden)

    Pantipa Na Chiangmai

    2015-10-01

    Full Text Available Seeds of corn inbred lines collected at the National Corn and Sorghum Research Center (NCSRC, Kasetsart University, were analyzed to determine the contents of phytic acid (PA and inorganic phosphorous (InP. These 28 and 29 inbred lines were cultivated at the NCSRC (in the 2008 late rainy season and 2009 early rainy season to evaluate their resistance to corn downy mildew caused by Peronosclerospora sorghi. Results showed that the values of the PA, InP contents and downy mildew infection were statistically different among these inbred lines in both seasons. However, there were no correlations between the contents of either PA or InP and downy mildew infection.

  8. Resistance to downy mildew in lettuce ‘La Brillante’ is conferred by dm50 gene and multiple QTL

    Science.gov (United States)

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar La Brillante has a high level of field resistance to the disease in California. Testing of a mapping popu...

  9. A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat.

    Science.gov (United States)

    Faheem, Muhammad; Li, Yingbo; Arshad, Muhammad; Jiangyue, Cheng; Jia, Zhao; Wang, Zongkuan; Xiao, Jin; Wang, Haiyan; Cao, Aizhong; Xing, Liping; Yu, Feifei; Zhang, Ruiqi; Xie, Qi; Wang, Xiue

    2016-04-13

    In this study, we report the contribution of a PDI-like gene from wheat wild relative Haynaldia villosa in combating powdery mildew. PDI-V protein contains two conserved thioredoxin (TRX) active domains (a and a') and an inactive domain (b). PDI-V interacted with E3 ligase CMPG1-V protein, which is a positive regulator of powdery mildew response. PDI-V was mono-ubiquitinated by CMPG1-V without degradation being detected. PDI-V was located on H. villosa chromosome 5V and encoded for a protein located in the endoplasmic reticulum. Bgt infection in leaves of H. villosa induced PDI-V expression. Virus induced gene silencing of PDIs in a T. durum-H. villosa amphiploid compromised the resistance. Single cell transient over-expression of PDI-V or a truncated version containing the active TXR domain a decreased the haustorial index in moderately susceptible wheat cultivar Yangmai 158. Stable transgenic lines over-expressing PDI-V in Yangmai 158 displayed improved powdery mildew resistance at both the seedling and adult stages. By contrast over-expression of point-mutated PDI-V(C57A) did not increase the level of resistance in Yangmai 158. The above results indicate a pivotal role of PDI-V in powdery mildew resistance and showed that conserved TRX domain a is critical for its function.

  10. Map - vs. homology - based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew

    NARCIS (Netherlands)

    Pavan, S.N.C.; Zheng, Z.; Borisova, M.; Berg, van den P.M.M.M.; Lotti, C.; Giovanni, de C.; Lindhout, P.; Jong, de J.H.; Ricciardi, L.; Visser, R.G.F.; Bai, Y.

    2008-01-01

    The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one

  11. Mapping of novel powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat

    Science.gov (United States)

    Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f.sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally benign. Identification of new resi...

  12. Genetic mapping of MlUM15: an Aegilops neglecta-derived powdery mildew resistance gene in common wheat

    Science.gov (United States)

    Powdery mildew, caused by Blumeria graminis DC f. sp. tritici, is a major fungal disease of wheat (Triticum aestivum L.) in cool and humid climates. Race-specific host plant resistance is a reliable, economical, and environmentally benign form of disease prevention. The identification of molecular m...

  13. Pl17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Downy mildew (DM), caused by Plasmopara halstedii (Farl.) Berl. et de Toni, is one of the serious sunflower diseases in the world due to its high virulence and the variability of the pathogen. DM resistance in the USDA inbred line, HA 458, has been shown to be effective against all virulent races of...

  14. Inheritance of Resistance to Powdery Mildew Race 1W in Watermelon.

    Science.gov (United States)

    Ben-Naim, Yariv; Cohen, Yigal

    2015-11-01

    Powdery mildew caused by Podosphaera xanthii is a major disease of watermelon in Israel. In this study, 291 accessions of Citrullus spp. were evaluated for resistance against P. xanthii race 1W. Only eight accessions exhibited high level of resistance. Inheritance of resistance against P. xanthii race 1W was studied by crossing three resistant accession of Citrullus lanatus var. citroides BIU 119, PI 189225, or PI 482312 with the susceptible cultivar 'Malali' or 'Sugar Baby'. Parents, F1, F2, and back cross progenies were evaluated for resistance in growth chambers at the cotyledon stage and the 4-leaf stage and in the field, at the 15-leaf stage. Resistance at the cotyledon stage was controlled by a single, partially dominant gene, whereas at the 4-leaf stage or the 15-leaf stage resistance was controlled by three complimentary, partially dominant genes. Crosses made among these resistant accessions revealed that BIU 119 and PI 189225 carry the same genes for resistance, whereas PI 482312 shares two out of three genes with both BIU 119 and PI 189225. A breeding line with high resistance level and good fruit qualities was developed from BIU 119 × HA5500.

  15. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties.

  16. Application of Osthol Induces a Resistance Response Against Powdery Mildew in Pumpkin Leave

    Directory of Open Access Journals (Sweden)

    Yong Jian Fan

    2007-09-01

    Full Text Available Plants can defend themselves against fungal infection by natural means inducedby biotic and abiotic elicitors. Osthol is a natural compound extracted from dried fruits ofCnidii Monnieri Fructus. In this study, it has been shown to not only be a fungicide withacceptable curative properties (control efficacy of 68.72, but it also showed a significantprophylactic effect (with control efficacy of 77.36 against pumpkin powdery mildew at aconcentration of 100 μg·mL-1. In pumpkin leaves with/or without inoculation ofSphaerotheca fuliginea, osthol treatment induced the accumulation of chitinase andperoxidase and enhanced the transcription of chitinase gene in non-inoculated leaves. Thepotentiation of phenylalanine amonia-lyase activity in leaves by osthol application andfollowing inoculation was absent in that with inoculation or osthol treatment, indicatingthat induced PAL in osthol-pretreated plants was inoculation-mediated. In conclusion, thisnatural compound could induce resistance response in the plant against powdery mildew.

  17. Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50

    Institute of Scientific and Technical Information of China (English)

    Muhammad; Azeem; Asad; Bin; Bai; Caixia; Lan; Jun; Yan; Xianchun; Xia; Yong; Zhang; Zhonghu; He

    2014-01-01

    Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the major wheat diseases worldwide. The Chinese wheat landrace Pingyuan 50 has shown adult-plant resistance(APR)to powdery mildew in the field for over 60 years. To dissect the genetic basis of APR to powdery mildew in this cultivar, a mapping population of 137 double haploid(DH) lines derived from Pingyuan 50/Mingxian 169 was evaluated in replicated field trials for two years in Beijing(2009–2010 and 2010–2011) and one year in Anyang(2009–2010). A total of 540 polymorphic SSR markers were genotyped on the entire population for construction of a linkage map and QTL analysis. Three QTL were mapped on chromosomes 2BS(QPm.caas-2BS.2), 3BS(QPm.caas-3BS),and 5AL(QPm.caas-5AL) with the resistance alleles contributed by Pingyuan 50 explaining 5.3%,10.2%, and 9.1% of the phenotypic variances, respectively, and one QTL on chromosome 3BL(QPm.caas-3BL) derived from Mingxian 169 accounting for 18.1% of the phenotypic variance.QPm.caas-3BS, QPm.caas-3BL, and QPm.caas-5AL appear to be new powdery mildew APR loci.QPm.caas-2BS.2 and QPm.caas-5AL are possibly pleiotropic or closely linked resistance loci to stripe rust resistance QTL. Pingyuan 50 could be a potential genetic resource to facilitate breeding for improved APR to both powdery mildew and stripe rust.

  18. Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50

    Directory of Open Access Journals (Sweden)

    Muhammad Azeem Asad

    2014-10-01

    Full Text Available Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the major wheat diseases worldwide. The Chinese wheat landrace Pingyuan 50 has shown adult-plant resistance (APR to powdery mildew in the field for over 60 years. To dissect the genetic basis of APR to powdery mildew in this cultivar, a mapping population of 137 double haploid (DH lines derived from Pingyuan 50/Mingxian 169 was evaluated in replicated field trials for two years in Beijing (2009–2010 and 2010–2011 and one year in Anyang (2009–2010. A total of 540 polymorphic SSR markers were genotyped on the entire population for construction of a linkage map and QTL analysis. Three QTL were mapped on chromosomes 2BS (QPm.caas-2BS.2, 3BS (QPm.caas-3BS, and 5AL (QPm.caas-5AL with the resistance alleles contributed by Pingyuan 50 explaining 5.3%, 10.2%, and 9.1% of the phenotypic variances, respectively, and one QTL on chromosome 3BL (QPm.caas-3BL derived from Mingxian 169 accounting for 18.1% of the phenotypic variance. QPm.caas-3BS, QPm.caas-3BL, and QPm.caas-5AL appear to be new powdery mildew APR loci. QPm.caas-2BS.2 and QPm.caas-5AL are possibly pleiotropic or closely linked resistance loci to stripe rust resistance QTL. Pingyuan 50 could be a potential genetic resource to facilitate breeding for improved APR to both powdery mildew and stripe rust.

  19. Impact of major gene resistance management for sunflower on fitness of Plasmopara halstedii (downy mildew populations

    Directory of Open Access Journals (Sweden)

    Tourvieille de Labrouhe Denis

    2010-01-01

    Full Text Available Changes in virulence of Plasmopara halstedii populations under different major gene (Pl management strategies were studied over 5 years continuous cropping of one sunflower hybrid under netting cages. Strategies were monoculture of forms of the hybrid with 1 gene or with combinations of 2 genes, alternation of different genes, and mixtures of several different forms of the hybrid. Monoculture with single resistance genes led to loss of efficient resistance after 3 years, with high levels of disease and increased variability of the pathogen, whatever the Pl gene used. Combinations of genes, alternation and mixtures gave longer term control of downy mildew. In particular, combinations of resistance genes coming from both female and male parents of the hybrid (such that even impurities had a resistance gene gave the best control and least variation in pathogen virulence. Results are discussed with the object of durable control of downy mildew by all methods available.

  20. Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Pérez-Vega, Elena; Trabanco, Noemí; Campa, Ana; Ferreira, Juan José

    2013-06-01

    Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding

  1. Map - vs. homology - based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew

    OpenAIRE

    Pavan, S.N.C.; Zheng, Z.; Borisova, M.; Berg, van den, G.J.; Lotti, C.; Giovanni, , da Bergamo; Lindhout, P.; de Jong; Ricciardi, L.; Visser, R.G.F.; Bai, Y.

    2008-01-01

    The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one cleaved amplified polymorphic sequence (CAPS) marker which are linked to the resistance locus and co-dominantly inherited. Aiming to provide a base for ol-2 positional cloning, we used a large segregatin...

  2. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine.

    Science.gov (United States)

    Marguerit, Elisa; Boury, Christophe; Manicki, Aurélie; Donnart, Martine; Butterlin, Gisèle; Némorin, Alice; Wiedemann-Merdinoglu, Sabine; Merdinoglu, Didier; Ollat, Nathalie; Decroocq, Stéphane

    2009-05-01

    A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon x Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0-34.4 and 28.9-31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14-70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.

  3. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection

    Science.gov (United States)

    Dreiseitl, Antonin

    2017-01-01

    The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems.

  4. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  5. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    Science.gov (United States)

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  6. Powdery Mildew Resistance in Wheat Cultivar Mv Hombár is Conferred by a New Gene, PmHo.

    Science.gov (United States)

    Komáromi, Judit; Jankovics, Tünde; Fábián, Attila; Puskás, Katalin; Zhang, Zengyan; Zhang, Miao; Li, Hongjie; Jäger, Katalin; Láng, László; Vida, Gyula

    2016-11-01

    A new powdery mildew resistance gene designated as PmHo was identified in 'Mv Hombár' winter wheat, bred in Martonvásár, Hungary. It has exhibited a high level of resistance over the last two decades. Genetic mapping of recombinant inbred lines derived from the cross 'Ukrainka'/Mv Hombár located this gene on chromosome 2AL. The segregation ratio and consistent effect in all environments indicated that PmHo is a major dominant powdery mildew resistance gene. The race-specific nature of resistance in Mv Hombár was shown by the emergence of a single virulent pathotype designated as 51-Ho. This pathotype was, to some extent, able to infect Mv Hombár, developing visible symptoms with sporulating colonies. Microscopic studies revealed that, in incompatible interactions, posthaustorial hypersensitivity reaction was the most prevalent but not exclusive plant defense response in Mv Hombár, and fungal growth was mostly arrested during haustorium formation or in the early stages of colony development. The delayed fungal development of the virulent pathotype 51-Ho may be explained by additional effects of other loci that were also involved in the powdery mildew resistance of Mv Hombár.

  7. Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Simu eLiu

    2016-03-01

    Full Text Available Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1, which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  8. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    Science.gov (United States)

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  9. QTL molecular marker location of powdery mildew resistance in cucumber (Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cucumber lines, S94 (Northern China open-field type, powdery mildew (PM) susceptible) and S06 (European greenhouse type, PM resistant), and their F6:7 populations were used to investigate PM re-sistance under seedling spray inoculation in 2005/Autumn and 2006/Spring. QTL analysis was under-taken based on a constructed molecular linkage map of the corresponding F6 population using com-posite interval mapping. A total of four QTLs (pm1.1, pm2.1, pm4.1 and pm6.1) for PM resistance were identified and located on LG 1, 2, 4 and 6, respectively, explaining 5.2%-21.0% of the phenotypic variation. Three consistent QTLs (pm1.1, pm2.1 and pm4.1) were detected under the two test conditions. The QTL pm6.1 was only identified in 2005/Autumn. The total phenotypic variation explained by the QTLs was 52.0% and 42.0% in 2005/Autumn and 2006/Spring, respectively. Anchor markers tightly linked to those loci (<5 cM) could lay a basis for both molecular marker-assisted breeding and map-based gene cloning of the PM-resistance gene in cucumber.

  10. Characterization of a hydroxyproline-rich glycoprotein in pearl millet and its differential expression in response to the downy mildew pathogen Sclerospora graminicola

    NARCIS (Netherlands)

    Sujeeth, Neerakkal; Kini, Ramachandra K.; Shailasree, Sekhar; Wallaart, Eelco; Shetty, Shekar H.; Hille, Jacques; Barna, B.

    2012-01-01

    A monoclonal antibody, JIM 20, derived against an extensin type of hydroxyproline-rich glycoprotein (HRGP) from pea, showed high affinity for HRGP in pearl millet [Pennisetum glaucum (L.) R. Br.]. Electrophoretic separation of Tris-SDS extracted proteins from suspension cells of pearl millet reveale

  11. Gene expression profiling related to powdery mildew resistance in wheat with the method of suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    "Bainong 3217×Mardler" BC5F4 wheat line at the initial stage of inoculation with powdery mildew pathogen (Erysiphe graminis DC) was used to construct a suppression subtractive hybridization (SSH) cDNA library. Totally 760 ESTs were obtained through sequencing. Similarity analysis of ESTs based on BLASTn and BLASTx with the sequences in GenBank, in combination with macroarray differential screening, revealed that 199 ESTs of 65 kinds were known to be functionally disease resistance related. Based on the gene expression profiling in the present study, it is postulated that salicylic acid (SA) and MAP-related signal transduction pathways were involved in powdery mildew resistance in wheat. System acquired resistance genes were predominant in terms of kinds and quantity. With the initiation of cell defense reaction, the genes conferring anti-oxida- tion substances were largely expressed and thus cell protection mechanism was activated. Much evidence revealed that phenylpropanes metabolic pathway was involved in phytoalexin synthesis in wheat powdery mildew resistance. Genes conferring some enzymes of structural modification of cell walls and proteinase inhibitors inhibiting pathogen growth were also detected. The genes controlling a few proteinases (mainly cysteine proteinase) had a considerable redundancy of expression.

  12. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo).

    Science.gov (United States)

    Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K

    2012-05-01

    Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.

  13. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps.

    Science.gov (United States)

    Teh, Soon Li; Fresnedo-Ramírez, Jonathan; Clark, Matthew D; Gadoury, David M; Sun, Qi; Cadle-Davidson, Lance; Luby, James J

    2017-01-01

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F1 families, namely GE0711/1009 (MN1264 × MN1214; N = 147) and GE1025 (MN1264 × MN1246; N = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.

  14. Molecular cytogenetic identification of a wheat– Thinopyrum ponticum translocation line resistant to powdery mildew

    Indian Academy of Sciences (India)

    FANG HE; YINGUANG BAO; XIAOLEI QI; YINGXUE MA; XINGFENG LI; HONGGANG WANG

    2017-03-01

    Thinopyrum ponticum (2n = 70) serves as a valuable gene pool for wheat improvement. Line SN0224, derived from crosses between Th. ponticum and the common wheat cultivar Yannong15, was identified in the present study. Cytogenetic observations showed that SN0224 contains 42 chromosomes in the root-tip cells and 21 bivalents in the pollen mother cells, therebydemonstrating its cytogenetic stability. Genomic in situ hybridization, probed with the total genomic DNA of Th. ponticum, produced hybridization signals in the distal region of two wheat chromosome arms. After inoculation with the Blumeriagraminis f. sp. tritici (Bgt) isolates, SN0224 exhibited immunity. Segregation in F1s and F2s from the cross SN0224/cv. Huixianhong indicated that SN0224 carries a single dominant gene for powdery mildew (Pm) resistance, which was temporarily designated PmSn0224. Three markers Barc212, Xwmc522 and Xbarc1138 were detected to be linked with PmSn0224. Based on the locations of the markers, PmSn0224 was located on the chromosome 2A. None of the three markers above is linked with the previously reported PM resistance genes on chromosome 2A, and none of the previously reported PM resistance genes on chromosome 2A is related to Th. ponticum. Therefore, PmSn0224 is likely a novel gene putatively from Th. ponticum.

  15. Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace.

    Science.gov (United States)

    Ge, Xintian; Deng, Weiwei; Lee, Zheng Zhou; Lopez-Ruiz, Francisco J; Schweizer, Patrick; Ellwood, Simon R

    2016-07-12

    Recessive mutations in the Mlo gene confer broad spectrum resistance in barley (Hordeum vulgare) to powdery mildew (Blumeria graminis f. sp. hordei), a widespread and damaging disease. However, all alleles discovered to date also display deleterious pleiotropic effects, including the naturally occurring mlo-11 mutant which is widely deployed in Europe. Recessive resistance was discovered in Eth295, an Ethiopian landrace, which was developmentally controlled and quantitative without spontaneous cell wall appositions or extensive necrosis and loss of photosynthetic tissue. This resistance is determined by two copies of the mlo-11 repeat units, that occur upstream to the wild-type Mlo gene, compared to 11-12 in commonly grown cultivars and was designated mlo-11 (cnv2). mlo-11 repeat unit copy number-dependent DNA methylation corresponded with cytological and macroscopic phenotypic differences between copy number variants. Sequence data indicated mlo-11 (cnv2) formed via recombination between progenitor mlo-11 repeat units and the 3' end of an adjacent stowaway MITE containing region. mlo-11 (cnv2) is the only example of a moderated mlo variant discovered to date and may have arisen by natural selection against the deleterious effects of the progenitor mlo-11 repeat unit configuration.

  16. Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line

    Directory of Open Access Journals (Sweden)

    Liyuan Hou

    2015-07-01

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt, is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68–0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.

  17. Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line.

    Science.gov (United States)

    Hou, Liyuan; Zhang, Xiaojun; Li, Xin; Jia, Juqing; Yang, Huizhen; Zhan, Haixian; Qiao, Linyi; Guo, Huijuan; Chang, Zhijian

    2015-07-28

    Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68-0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.

  18. Lessons from a Phenotyping Center Revealed by the Genome-Guided Mapping of Powdery Mildew Resistance Loci.

    Science.gov (United States)

    Cadle-Davidson, Lance; Gadoury, David; Fresnedo-Ramírez, Jonathan; Yang, Shanshan; Barba, Paola; Sun, Qi; Demmings, Elizabeth M; Seem, Robert; Schaub, Michelle; Nowogrodzki, Anna; Kasinathan, Hema; Ledbetter, Craig; Reisch, Bruce I

    2016-10-01

    The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F1 family. We applied these methodologies to F1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.

  19. Identification of powdery mildew resistance genes in Polish common oat (Avena sativa L. cultivars using host-pathogen tests

    Directory of Open Access Journals (Sweden)

    Sylwia Okoń

    2012-10-01

    Full Text Available The aim of the present study was to characterize and identify powdery mildew resistance genes in Polish common oat cultivars using host-pathogen tests. A differential set of six Blumeria graminis f.sp. avenae isolates virulent or avirulent to four cultivars and one line that has known resistance to powdery mildew were used. Among the investigated cultivars, only four of them (13.3% had resistance patterns similar to genotypes belonging to the differential set. The resistance of OMR group 1 was found in the cultivar ‘Dragon’, while that of OMR2 in the cultivar ‘Skrzat’. The cultivars ‘Deresz’ and ‘Hetman’ showed a resistance pattern that corresponded with OMR group 3. The resistance corresponding to OMR4 was not found, which suggests that until now this gene has not been used in Polish oat breeding programmes. The cultivar ‘Canyon’ had a different pat- tern of resistance than the genotypes that have already known OMR genes, which indicates that the resistance of this cultivar is determined by a new gene or a combination of known genes.

  20. Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack).

    Science.gov (United States)

    Kwiatek, M; Belter, J; Majka, M; Wiśniewska, H

    2016-03-01

    It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection.

  1. Identification and Mapping of Two New Genes Conferring Resistance to Powdery Mildew from Aegilops tauschii (Coss.) Schmal

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Sun; Di Liu; Hai-Quan Zhang; Na-Xin Huo; Rong-Hua Zhou; Ji-Zeng Jia

    2006-01-01

    Two powdery mildew resistance genes were Identified from Aegilops tauschii accessions Y201 and Y212and mapped using two different F2 populations derived from the crosses between susceptible accession Y2272 and Y201, and susceptible accession Y2263 and Y212. Genetic analysis of resistance to powdery mildew indicated that the resistance of Y201 was controlled by a single dominant gene, whereas the resistance of Y212 was controlled by a single recessive gene. We have temporarily designated these genes as PmY201 and PmY212, respectively. By bulk segregation analysis, six microsatellite markers including Xgwm174, cfd26, cfd57, cfd102, Xgwm583 and Xgwm639 were found to be linked to PmY201 with genetic distances of 5.2, 7.7, 9.6, 12.5, 20.2 and 22.1 cM, respectively. Five SSR markers, including cfd57, Xgwm182,cfd7, cfd102, and cfd12, were found to be linked to PmY212 with distances of 5.6, 7.2, 11.5, 14.7, and 18.5 cM,respectively. According to the locations of the linked markers, the two resistance genes were located in the 5DL region. Based on the chromosomal locations and the resistance patterns of the two genes, we propose that PmY201 and PmY212 are two novel powdery mildew resistance genes, and are suitable for marker-assisted selection.

  2. Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato

    NARCIS (Netherlands)

    Huang, C.C.; Cui, Y.Y.; Weng, C.R.; Zabel, P.; Lindhout, P.

    2000-01-01

    Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and

  3. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Energy Technology Data Exchange (ETDEWEB)

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  4. Cultivar-Based Introgression Mapping Reveals Wild Species-Derived Pm-0, the Major Powdery Mildew Resistance Locus in Squash.

    Science.gov (United States)

    Holdsworth, William L; LaPlant, Kyle E; Bell, Duane C; Jahn, Molly M; Mazourek, Michael

    2016-01-01

    Powdery mildew is a major fungal disease on squash and pumpkin (Cucurbita spp.) in the US and throughout the world. Genetic resistance to the disease is not known to occur naturally within Cucurbita pepo and only infrequently in Cucurbita moschata, but has been achieved in both species through the introgression of a major resistance gene from the wild species Cucurbita okeechobeensis subsp. martinezii. At present, this gene, Pm-0, is used extensively in breeding, and is found in nearly all powdery mildew-resistant C. pepo and C. moschata commercial cultivars. In this study, we mapped C. okeechobeensis subsp. martinezii-derived single nucleotide polymorphism (SNP) alleles in a set of taxonomically and morphologically diverse and resistant C. pepo and C. moschata cultivars bred at Cornell University that, by common possession of Pm-0, form a shared-trait introgression panel. High marker density was achieved using genotyping-by-sequencing, which yielded over 50,000 de novo SNP markers in each of the three Cucurbita species genotyped. A single 516.4 kb wild-derived introgression was present in all of the resistant cultivars and absent in a diverse set of heirlooms that predated the Pm-0 introgression. The contribution of this interval to powdery mildew resistance was confirmed by association mapping in a C. pepo cultivar panel that included the Cornell lines, heirlooms, and 68 additional C. pepo cultivars and with an independent F2 population derived from C. okeechobeensis subsp. martinezii x C. moschata. The interval was refined to a final candidate interval of 76.4 kb and CAPS markers were developed inside this interval to facilitate marker-assisted selection.

  5. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    Science.gov (United States)

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  6. An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat

    Directory of Open Access Journals (Sweden)

    Jeyaraman Rajaraman

    2016-12-01

    Full Text Available Pattern recognition receptors (PRRs belonging to the multigene family of receptor-like kinases (RLKs are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for required for nonhost resistance 8 encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates nonhost resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus Blumeria graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating nonhost resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  7. Genetic control of common bean (Phaseolus vulgaris resistance to powdery mildew (Erysiphe polygoni

    Directory of Open Access Journals (Sweden)

    Rezende Viviane Ferreira

    1999-01-01

    Full Text Available Genetic control of common bean (Phaseolus vulgaris resistance to powdery mildew (Erysiphe polygoni was studied using segregating populations from the bean variety crosses Jalo x ESAL 686 and ESAL 550 x ESAL 686. F2 plants, together with the parents, were inoculated and evaluated using a scale of values from one (plant without symptoms to nine (completely infected plant. F2 plants were harvested individually, and F2:3 families were obtained. These families were evaluated in an 11 x 11 and 12 x 12 simple lattice statistical design for the Jalo x ESAL 686 and ESAL 550 x ESAL 686 crosses, respectively, using the same value scale as the F2 generation. The segregation observed in F2 plants and F2:3 families indicated that two genes are involved in genetic control, due to a double recessive epistasis. The high linear regression coefficient (b between F2 plants and their F2:3 family, 0.66 for ESAL 550 x ESAL 686 cross, and 0.71 for Jalo x ESAL 686 cross, showed that the trait is highly heritable.

  8. Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers

    DEFF Research Database (Denmark)

    Giese, H.; Holm-Jensen, A.G.; Jensen, H.P.;

    1993-01-01

    The powdery mildew disease resistance gene Ml(La) was found to belong to a locus on barely chromosome 2. We suggest that this locus be designated MlLa. Linkage analysis was carried out on 72 chromosome-doubled, spring-type progeny lines from a cross between the winter var 'Vogelsanger Gold' and t......' and the spring var 'Alf'. A map of chromosome 2 spanning 119 cM and flanked by two peroxidase gene loci was constructed. In addition to the Laevigatum resistance locus the map includes nine RFLP markers, the two peroxidase gene loci and the six-row locus in barley....

  9. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    Science.gov (United States)

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  10. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    Directory of Open Access Journals (Sweden)

    Andrea eNesler

    2015-09-01

    Full Text Available Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB, against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  11. Molecular Cytogenetic Identification of a New Wheat-Rye 6R Chromosome Disomic Addition Line with Powdery Mildew Resistance.

    Directory of Open Access Journals (Sweden)

    Diaoguo An

    Full Text Available Rye (Secale cereale L. possesses many valuable genes that can be used for improving disease resistance, yield and environment adaptation of wheat (Triticum aestivum L.. However, the documented resistance stocks derived from rye is faced severe challenge due to the variation of virulent isolates in the pathogen populations. Therefore, it is necessary to develop desirable germplasm and search for novel resistance gene sources against constantly accumulated variation of the virulent isolates. In the present study, a new wheat-rye line designated as WR49-1 was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. Using sequential GISH (genomic in situ hybridization, mc-FISH (multicolor fluorescence in situ hybridization, mc-GISH (multicolor GISH and EST (expressed sequence tag-based marker analysis, WR49-1 was proved to be a new wheat-rye 6R disomic addition line. As expected, WR49-1 showed high levels of resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt pathogens prevalent in China at the adult growth stage and 19 of 23 Bgt isolates tested at the seedling stage. According to its reaction pattern to different Bgt isolates, WR49-1 may possess new resistance gene(s for powdery mildew, which differed from the documented powdery mildew gene, including Pm20 on chromosome arm 6RL of rye. Additionally, WR49-1 was cytologically stable, had improved agronomic characteristics and therefore could serve as an important bridge for wheat breeding and chromosome engineering.

  12. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1.

    Science.gov (United States)

    Ma, Pengtao; Xu, Hongxng; Li, Lihui; Zhang, Hongxia; Han, Guohao; Xu, Yunfeng; Fu, Xiaoyi; Zhang, Xiaotian; An, Diaoguo

    2016-01-01

    Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits.

  13. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant

    Directory of Open Access Journals (Sweden)

    Hannah Kuhn

    2017-06-01

    Full Text Available Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.

  14. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes.

    Science.gov (United States)

    Hsam, Sai L K; Mohler, Volker; Zeller, Friedrich J

    2014-05-01

    The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar 'Bruno' carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar 'Jumbo' possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar 'Rollo', in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.

  15. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding.

  16. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538.

    Science.gov (United States)

    Zhong, Shengfu; Ma, Lixia; Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs.

  17. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538

    Science.gov (United States)

    Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs. PMID:27755575

  18. Screening exotic sorghum germplasm, hybrids and elite lines for resistance to a new virulent pathotype (P6) of Peronsclerospora sorghi causing downy mildew

    Science.gov (United States)

    A recent outbreak of sorghum downy mildew (SDM) in Texas has led to the discovery of both metalaxyl fungicide resistance and a new pathotype, P6, in the causal organism Peronsclerospora sorghi. New and alternate sources of the host plant resistance are needed for successful management of SDM. To i...

  19. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12.

    Science.gov (United States)

    Alkooranee, Jawadayn Talib; Yin, Yongtai; Aledan, Tamarah Raad; Jiang, Yingfen; Lu, Guangyuan; Wu, Jiangsheng; Li, Maoteng

    2015-01-01

    Trichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B. napus and R. alboglabra infected with E. cruciferarum. The histological study showed the resistance of R. alboglabra to powdery mildew disease. The growth of fungal colonies was not observed on R. alboglabra leaves at 1, 2, 4, 6, 8, and 10 days post-inoculation (dpi), whereas this was clearly observed on B. napus leaves after 6 dpi. In addition, the gene expression of six plant defense-related genes, namely, PR-1, PR-2 (a marker for SA signaling), PR-3, PDF 1.2 (a marker for JA/ET signaling), CHI620, and CHI570, for both genotypes were analyzed in the leaves of B. napus and R. alboglabra after treatment with TH12 or CF and compared with the non-treated ones. The qRT-PCR results showed that the PR-1 and PR-2 expression levels increased in E. cruciferarum-infected leaves, but decreased in the TH12-treated leaves compared with leaves treated with CF. The expression levels of PR-3 and PDF1.2 decreased in plants infected by E. cruciferarum. However, expression levels increased when the leaves were treated with TH12. For the first time, we disclosed the nature of gene expression in B. napus and R. alboglabra to explore the resistance pathways in the leaves of both genotypes infected and non-infected by powdery mildew and inoculated or non-inoculated with elicitor factors. Results suggested that R. alboglabra exhibited resistance to powdery mildew disease, and the application of T. harzianum and its CF are a useful tool to facilitate new protection methods for resist or susceptible plants.

  20. Molecular cytogenetic identification of a wheat-rye 1R addition line with multiple spikelets and resistance to powdery mildew.

    Science.gov (United States)

    Yang, Wujuan; Wang, Changyou; Chen, Chunhuan; Wang, Yajuan; Zhang, Hong; Liu, Xinlun; Ji, Wanquan

    2016-04-01

    Alien addition lines are important for transferring useful genes from alien species into common wheat. Rye is an important and valuable gene resource for improving wheat disease resistance, yield, and environment adaptation. A new wheat-rye addition line, N9436B, was developed from the progeny of the cross of common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) cultivar Shaanmai 611 and rye (Secale cereal L., 2n = 2x = 14, RR) accession Austrian rye. We characterized this new line by cytology, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), molecular markers, and disease resistance screening. N9436B was stable in morphology and cytology, with a chromosome composition of 2n = 42 + 2t = 22II. GISH investigations showed that this line contained two rye chromosomes. GISH, FISH, and molecular maker identification suggested that the introduced R chromosome and the missing wheat chromosome arms were 1R chromosome and 2DL chromosome arm, respectively. N9436B exhibited 30-37 spikelets per spike and a high level of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) isolate E09 at the seedling stage. N9436B was cytologically stable, had the trait of multiple spikelets, and was resistant to powdery mildew; this line should thus be useful in wheat improvement.

  1. Towards positional isolation of three quantitative trait loci conferring resistance to powdery mildew in two Spanish barley landraces.

    Directory of Open Access Journals (Sweden)

    Cristina Silvar

    Full Text Available Three quantitative trait loci (QTL conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family.

  2. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding.

    Science.gov (United States)

    Riaz, S; Tenscher, A C; Ramming, D W; Walker, M A

    2011-04-01

    A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia 'Magnolia'. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in 'Magnolia' from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The 'Magnolia' resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia 'Trayshed'. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the 'Magnolia'-based populations, but the allele sizes of the flanking markers were different. 'Trayshed' and 'Magnolia' shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus

  3. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis

    Directory of Open Access Journals (Sweden)

    Wan Hongjian

    2010-08-01

    Full Text Available Abstract Background Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L., an introgression line (IL5211S was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S. Results Degenerate primers that were designed based on the conserved motifs in the NBS domain of resistance (R proteins were used to isolate NBS-type sequences from IL5211S. A total of 28 sequences were identified and named as cucumber (C. sativus = CS resistance gene analogs as CSRGAs. Polygenetic analyses separated these sequences into four different classes. Quantitative real-time polymerase chain reaction (qRT-PCR analysis showed that these CSRGAs expressed at different levels in leaves, roots, and stems. In addition, introgression from C. hystrix induced expression of the partial CSRGAs in cultivated cucumber, especially CSRGA23, increased four-fold when compared to the backcross parent CC3. Furthermore, the expression of CSRGA23 under P. cubensis infection and abiotic stresses was also analyzed at different time points. Results showed that the P. cubensis treatment and four tested abiotic stimuli, MeJA, SA, ABA, and H2O2, triggered a significant induction of CSRGA23 within 72 h of inoculation. The results indicate that CSRGA23 may play a critical role in protecting cucumber against P. cubensis through a signaling the pathway triggered by these molecules. Conclusions Four classes of NBS-type RGAs were

  4. Gene Location and Molecular Markers of Powdery Mildew Resistance in Wheat%小麦抗白粉病基因定位与分子标记

    Institute of Scientific and Technical Information of China (English)

    胡英考; 辛志勇

    2000-01-01

    Genetic location and molecular markers of powdery mildew resistance genes in wheat were reviewed. The inheritance of powdery mildew resistance was also introduced. The research perspective was discussed in this paper%对小麦抗白粉病基因的遗传定位与分子标记进行了综述,介绍了小麦抗白粉病的遗传,并对今后的研究方向进行了讨论。

  5. Mapping of Mungbean Yellow Mosaic India Virus (MYMIV and powdery mildew resistant gene in black gram [Vigna mungo(L. Hepper

    Directory of Open Access Journals (Sweden)

    Tuba Anjum,K. Sanjeev Gupta and Subhojit Datta

    2010-07-01

    Full Text Available Black gram, one of the important species of Asian Vigna group of grain legumes, is widely grown in South Asia and is animportant source of dietary protein. The two main biological constraints particularly Mungbean Yellow Mosaic IndiaVirus(MYMIV and powdery mildew pose a major threat to black gram production in India. Several reports on mappingmungbean yellow mosaic virus disease and powdery mildew resistant genes on black gram using parental lines suitable forcountries viz. Australia and Japan are available. However, to achieve precision in plant breeding, it is important that mappingof traits are done using parental lines which are best suited for the target area/country. Microsatellite markers facilitateeffective screening of mapping population and marker assisted selection for target traits such as disease resistance in manycrops. Linkage mapping for identification of genes conferring resistance to these target traits in the crop is underway. Theparents selected for MYMIV mapping population are DPU 88-31 as resistant source and AKU 9904 as susceptible one. Forestablishment of powdery mildew mapping population RBU 38 was used as resistant and DPU 88-31 as the susceptible one.Parental polymorphism was assessed using 363 SSR and 24 RGH markers. Efforts are being made to identify the markerstightly linked to the genes responsible for resistance which will be useful for marker assisted breeding for developingMYMIV and powdery mildew resistant cultivars in black gram.

  6. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  7. 亚麻种质对白粉病的抗性评价%Resistance Evaluation of Flax Varieties to Powdery Mildew

    Institute of Scientific and Technical Information of China (English)

    乔红霞; 陈娟

    2012-01-01

    The resistance evaluation of 53 flax varieties to powdery mildew in Qingyang region were conducted, the results showed that there were nearly no flax varieties with immune to powdery mildew, except for Xiji variety. There are very short of flax germplasm resources which are resistance to powdery mildew in Qingyang region.%对收集的53个亚麻种质进行了白粉病田间抗性评价,结果表明所调查的亚麻种质均无免疫(M)植株,仅西吉胡麻为抗(R)病品种,庆阳市抗白粉病亚麻资源材料较为匮乏.

  8. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    Science.gov (United States)

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  9. Quinoa from Valley (Chenopodium quinoa Willd.: Valuable source of genetic resistance to powdery mildew(Peronospora farinosa Willd.

    Directory of Open Access Journals (Sweden)

    Gabriel Julio

    2013-02-01

    Full Text Available In order to identify quinoa resistant cultivars to powdery mildew (Peronospora farinosa of high yield and large grain size, 36 cultivars were evaluated under two different fungicide applications and a control in the Valle Bajo from Cochabamba. We determined the realtive Area under Develop Progress Curve of Peronosporafarinosa (AUDPCPF relative, the yield and another eleven quantitative variables. The results showed that cultivars 01Tardía, 08Tardía, 12Tardía, 04Tardía, 11Tardía 10Tardía, 19Tardía y 18Tardía were susceptible and the cultivars H172, A26, A03, A16, A22, A14 and H171 were resistant. The cultivars A40, H177, A26, H172, A25, A1 y H176 showed yields from 3.4 to 6.34 t ha-1. The cultivars 15 Tardía, 03 Tardía, 14 Tardía, H173, H171, A25, H176 and H172 with chemical control strategy and the tricobalreacted favorably against powdery mildew, which was associated with levels of resistance in each cultivar. Finally, there was a high significant negative correlation between the variables AUDPCPF relative and physiological maturity, plant length, panicle length, stem diameter, panicle diameter and weight of 100 seeds. This showed that when the attack of mildewis severe, also affects the grains yield.

  10. Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves.

    Science.gov (United States)

    Gao, Yu-Rong; Han, Yong-Tao; Zhao, Feng-Li; Li, Ya-Juan; Cheng, Yuan; Ding, Qin; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew caused by the biotrophic fungal pathogen Erysiphe necator. To integrate effective genetic resistance into cultivated grapevines, numerous disease resistance screens of diverse Vitis germplasm, including wild species, have been conducted to identify powdery mildew resistance, but the results have been inconsistent. Here, a new powdery mildew isolate that is infectious on grapevines, designated Erysiphe necator NAFU1 (En. NAFU1), was identified and characterized by phylogeny inferred from the internal transcribed spacer (ITS) of pathogen ribosomal DNA sequences. Three classical methods were compared for the maintenance of En. NAFU1, and the most convenient method was maintenance on detached leaves and propagation by contact with infected leaves. Furthermore, controlled inoculations of En. NAFU1 were performed using detached leaves from 57 wild Chinese grapevine accessions to quickly evaluate powdery mildew resistance based on trypan blue staining of leaf sections. The results were compared with previous natural epidemics in the field. Among the screened accessions inoculated with En. NAFU1, 22.8% were resistant, 33.3% were moderately resistant, and 43.9% were susceptible. None of the accessions assessed herein were immune from infection. These results support previous findings documenting the presence of race-specific resistance to E. necator in wild Chinese grapevine. The resistance of wild Chinese grapevine to En. NAFU1 could be due to programmed cell death. The present results suggest that En. NAFU1 isolate could be used for future large-scale screens of resistance to powdery mildew in diverse Vitis germplasms and investigations of the interaction between grapevines and pathogens.

  11. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance.

    Science.gov (United States)

    Fu, Shulan; Ren, Zhenglong; Chen, Xiaoming; Yan, Benju; Tan, Feiquan; Fu, Tihua; Tang, Zongxiang

    2014-11-01

    Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2 n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2 n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4 RL) and 6R (6 RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4 RL and 6 RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4 RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5 DS) on which rye chromosome 4R was fused through the short arm 4 RS (designated 5 DS-4 RS · 4 RL; 4 RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4 RS) that was attached to the short arm of wheat chromosome 5D (5 DS) (designated 4 RS-5 DS · 5 DL; 5 DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5 DS-4 RS · 4 RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.

  12. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes PlArg and Pl8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Downy mildew, which is caused by fungus Plasmopara halstedii (Farl.) Berlese & de Toni, is one of the most important diseases that affect sunflower production globally. Two downy mildew resistance genes, PlArg and Pl8, were discovered in the late 1980s. Over two decades, PlArg is still effective aga...

  13. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1

    Institute of Scientific and Technical Information of China (English)

    Suli Sun; Zhongyi Wang; Haining Fu; Canxing Duan; Xiaoming Wang; Zhendong Zhu

    2015-01-01

    Powdery mildew, caused by Erysiphe pisi D.C., is a major constraint to pea production worldwide. The pea cultivar Xucai 1 has shown high resistance to E. pisi under greenhouse and field conditions. The objectives of this study were to identify and characterize genes conferring resistance to powdery mildew in Xucai 1. Three crosses, Qizhen 76 × Xucai 1,Bawan 6 × Xucai 1, and Xucai 1 × Bawan 6, were made to generate populations for genetic analysis. The resistance to E. pisi and segregation ratios in the F1, F2, and F2:3populations suggested a single recessive gene conferring the resistance of Xucai 1. Bulked segregant analysis was used to map the resistance gene using two F2 populations. The resistance gene was close to markers AD60 and c5 DNAmet on linkage group VI with genetic distances of9.9 c M and 15.4 c M in the Xucai 1 × Bawan 6 F2 population and 8.7 c M and 8.1 c M in the Qizhen 76 × Xucai 1 F2 population, respectively, suggesting that the resistance gene was an er1 allele. This hypothesis was confirmed by comparison of the c DNA sequences of the Ps MLO1 gene between the parents and the Ps MLO1 wild type. Three distinct types of transcripts in Xucai 1, characterized by a 129-bp deletion and 155- and 220-bp insertions,were detected, consistent with the structure of the er1-2 allele. We concluded that resistance in Xucai 1 was conferred by er1-2 and that its linked markers will be useful in pea breeding programs.

  14. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.

    Directory of Open Access Journals (Sweden)

    Silvia Venuti

    Full Text Available The Amur grape (Vitis amurensis Rupr. thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.. A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3 only by phenotypic selection. Rpv12(+ has an additive effect with Rpv3(+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+ plants.

  15. Identification of breeding signatures in grapevine hybrids, donors of resistances against downy and powdery mildew

    NARCIS (Netherlands)

    Vezzulli, S.; Peressotti, E.; Banchi, E.; Dolzani, C.; Micheli, S.; Stefanini, M.; Salamini, F.; Velasco, R.; Riaz, S.; Walker, M.A.; Reisch, B.I.; De Weg, Van W.E.; Bink, M.C.

    2015-01-01

    Grapevine (Vitis vinifera L.) is one of the most valuable crops in the world, but has been often plagued by encountering new parasites that still represent a major constraint, such as downy (DM) and powdery (PM) mildew. Nowadays, growers are still obliged to recur to a massive use of pesticides t

  16. Identification of breeding signatures in grapevine hybrids, donors of resistances against downy and powdery mildew

    NARCIS (Netherlands)

    Vezzulli, S.; Peressotti, E.; Banchi, E.; Dolzani, C.; Micheli, S.; Stefanini, M.; Salamini, F.; Velasco, R.; Riaz, S.; Walker, M.A.; Reisch, B.I.; De Weg, Van W.E.; Bink, M.C.

    2015-01-01

    Grapevine (Vitis vinifera L.) is one of the most valuable crops in the world, but has been often plagued by encountering new parasites that still represent a major constraint, such as downy (DM) and powdery (PM) mildew. Nowadays, growers are still obliged to recur to a massive use of pesticides

  17. Susceptibility pays off: insights into the mlo-based powdery mildew resistance

    NARCIS (Netherlands)

    Appiano, Michela

    2016-01-01

    Powdery mildew (PM) is a worldwide-occurring plant disease caused by ascomycete fungi of the order Erysiphales. A conspicuous number of plant species are susceptible to this disease, the occurrence of which is increasing due to the influence of climate change. Symptoms are easy to recognize by the p

  18. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew.

  19. Introgression of Resistance to Powdery Mildew Conferred by Chromosome 2R by Crossing Wheat Nullisomic 2D with Rye

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using the nullisomic back-cross procedure, four wheat-rye chromosome substitution 2R (2D) lines with different agronomic performance, designated WR02-145-1, WR01-145-2, WR02-145-3, and WR02-145-4, were produced from a cross between 2D nullisomic wheat (Triticum aestivum L. cv. "Xiaoyan 6") and rye (Secale cereale L. cv. "German White"). The chromosomal constitution of 2n=42=21 in WR02-145 lines was confirmed by cytological and molecular cytogenetic methods. Using genomic in situ hybridization on root tip chromosome preparations, a pair of intact rye chromosomes was detected in the WR02-145 lines. PCR using chromosome-specific primers confirmed the presence of 2R chromosomes of rye in these wheat-rye lines, indicating that WR02-145 lines are disomic chromosome substitution lines 2R (2D). The WR02-145 lines are resistant to the powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates prevalent in northern China and may possess gene(s) for resistance to powdery mildew, which differ from the previously identified Pm7 gene located on chromosome 2RL. The newly developed "Xiaoyan 6"- "German White"2R (2D) chromosome substitution lines are genetically stable, show desirable agronomic traits, and are expected to be useful in wheat improvement.

  20. How Specific is Non-Hypersensitive Host and Nonhost Resistance of Barley to Rust and Mildew Fungi?

    Institute of Scientific and Technical Information of China (English)

    Niks R. E.

    2014-01-01

    Full nonhost resistance can be deifned as immunity, displayed by an entire plant species against all genotypes of a plant pathogen. Interesting biological questions are, whether the genes responsible for the nonhost status of a plant species have a general or a specific effectiveness to heterologous (“nonhost”) pathogens? Is the nonhost resistance to pathogens of plant species that are related to the nonhost based onR-genes or on other types of genes?We study this question in barley (Hordeum vulgareL.), which is a near-nonhost to several rusts (Puccinia) of cereals and grasses. By crosses and selection we accumulated susceptibility and developed an experimental line, SusPtrit, with high susceptibility to at least nine different heterologous rust taxa such as the wheat andAgropyron leaf rusts (P. triticina andP. persistens, respectively). At the microscopic level there is also some variation among barley accessions in the degree that the heterologous wheat powdery mildew (Blumeria graminisf.sp.tritici) is able to form haustoria in epidermal cells. So, also the genetics of the variation in level of nonhost resistance to heterologous mildew fungi can be studied in barley. Our data obtained on mapping populations involving three regular nonhost-immune accessions (Vada, Cebada Capa and Golden Promise) suggest that nonhost resistance is the joined effect of multiple, quantitative genes (QTLs) and very occasionally a major gene (R-gene?) is involved. Most QTLs have effect to only one or two heterologous rusts, but some have a wider spectrum. This was conifrmed in a set of QTL-NILs. Those QTL-NILs are used to ifne-map the effective genes. In some cases, a QTL region with effectiveness to several heterologous rusts might be a cluster of genes with a more narrow spectrum of effectiveness. Our evidence suggests that nonhost resistance in barley to rust and powdery mildew fungi of related Gramineae is not due toR-genes, but to pathogen species-speciifc quantitative

  1. Research Progress of Induced Resistance to Cucumber Downy Mildew%黄瓜霜霉病诱导抗性的研究进展

    Institute of Scientific and Technical Information of China (English)

    侯丽琴; 李长松; 徐作珽; 李林; 齐军山; 张博; 杨革

    2012-01-01

    Cucumber downy mildew is a worldwide disease, and also an destructive disease in protected cucumber production. The disease spreads fast and has a great threat to cucumber production. In this paper, the research progress of inducer types to cucumber downy mildew, induced mechanism and relevant genes on downy mildew resistance were reviewed and summarized, and then the developing trend was prospected.%黄瓜霜霉病是一种世界性病害,也是保护地黄瓜生产上的一种毁灭性病害.本文概述了黄瓜霜霉病诱抗剂种类、诱抗机制、抗霜霉病相关基因等方面的研究进展,并对未来发展趋势提出了展望.

  2. The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Lingmin eDai

    2016-05-01

    Full Text Available Pathogenesis-related proteins (PRs can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. The PR-4 gene was overexpressed in regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and also repressed the growth of powdery mildew. The PR gene responds differently to different stresses in the PR-4 transformants. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.

  3. Further isolation of AFLP and LMS markers for the mapping of the Ol-2 locus related to powdery mildew (Oidium neolycopersici) resistance in tomato (Solanum lycopersicum L.)

    NARCIS (Netherlands)

    Ricciardi, L.; Lotti, C.; Pavan, S.N.C.; Bai, Y.; Lindhout, P.; Giovanni, de C.

    2007-01-01

    Tomato powdery mildew (Oidium neolycopersici) is a new plant disease that in recent years has frequently occurred in open field and protected environments to cause serious damage to tomato crops. Currently, the development of resistant cultivars appear to be the best eco-compatible solution to contr

  4. Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTL's for resistance

    NARCIS (Netherlands)

    Jeuken, M.J.W.; Lindhout, P.

    2002-01-01

    Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is

  5. The Lr46 gene conditions partial adult-plant resistance to yellow rust, stem rust, and powdery mildew in Thatcher wheat

    Science.gov (United States)

    Disease resistance is a critical goal for many wheat improvement programs. Wheat cultivars are often attacked by multiple diseases, including the rusts and powdery mildew. F6 recombinant inbred lines (RILs) derived from the cross of Thatcher*3/CI13227 that had been previously characterized as having...

  6. Selection of New Wheat Germplam with Resistance to Powdery Mildew from Haynalddia villosa%簇毛麦抗白粉病新种质的选育

    Institute of Scientific and Technical Information of China (English)

    刘润堂

    2011-01-01

    Wheat powdery mildew is one of wheat main diseases. We used Haynaldia villosa as antigens, gene resistance to powdery mildew from Haynaldia villosa was introduced to wheat through crossing radiation and young embryo culture. By disease resistant identification, systematic selection and cell analysis, we have selected high yield varieties and new germplasm with good agronomic characters and resistance to powdery mildew. By DNA analysis, gene resistant to powdery mildew from Haynaldia villosa has been joined to wheat varieties.%小麦白粉病是小麦的主要病害之一.以簇毛麦为抗源,采用杂交与辐射、组织培养相结合的方法,将簇毛麦的抗白粉病基因导入小麦.经抗病鉴定、系统选育和细胞学分析,选育出农艺性状较好、抗白粉病的小麦新种质.经DNA分析,证明簇毛麦抗白粉病基因(或染色体片断)已被导入小麦品种.

  7. Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis.

    Science.gov (United States)

    Zhang, Qiong; Berkey, Robert; Pan, Zhiyong; Wang, Wenming; Zhang, Yi; Ma, Xianfeng; King, Harlan; Xiao, Shunyuan

    2015-01-01

    Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi.

  8. Identification of Co-Segregating RAPD Marker Linked to Powdery Mildew Resistance Gene Pm 18 in Wheat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-li; GU Feng; LI Tao; GAO Ju-rong; WANG Hong-gang

    2004-01-01

    The Pm18 gene of wheat confers resistance to the powdery mildew which is oneof the most serious diseases in many regions of the world. In this study, bulked segregant analysis (BSA) was used to develop randomly amplified polymorphic DNA (RAPD) markers linked to Pml8 gene. Three hundred and twenty decamer primers were screened and one of them was identified as RAPD marker (S411600) linked to Pml8. Using the F2 mapping population from the cross Pml8 × Chancellor, the marker S411600 was shown to co-segregate with the gene Pml8. This marker can be conveniently used for marker-assisted selection in wheat breeding programs for the identification or pyramiding of Pml8 with other resistance genes.

  9. Chromosome substitutions in progeny of hybrids Triticum aestivum x Triticum timopheevii resistant to brown rust and powdery mildew

    Energy Technology Data Exchange (ETDEWEB)

    Badaeva, E.D. [Engelhardt Institute of Molecular Biology, Moscow (Russian Federation); Badaev, N.S. [Bioengineering Center, Moscow (Russian Federation); Enno, T.M.; Peusha, H.O. [Institute of Experimental Biology, Moscow (Russian Federation); Zeller, F.J. [Institut fuer Pflanzenbau und Pflanzenzuechtung, Muenchen (Germany)

    1995-01-01

    By the C-banding technique, chromosome analysis of introgressive wheat lines derived from the tetraploid species T. timopheevii and T. militinae, with complex immunity to pathogens, was performed. It is shown that all hybrid lines possess genetic material of T. timopheevii and are stable in chromosome number (2n = 6x = 42) and composition. In the lines studied, the number of substitutions per genome varied from one to three; variation in the spectrum of chromosome substitutions was observed. Karyotypes of lines 146-155-T, SMT 30, SMT 34, SMT 37, and SMT 45, resistant to brown rust and powdery mildew, had one common chromosome substitution 6B(6G). It is suggested that the resistance to pathogens of these lines is determined by chromosome 6G of T. timopheevii.

  10. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line.

    Science.gov (United States)

    Zhan, Haixian; Li, Guangrong; Zhang, Xiaojun; Li, Xin; Guo, Huijuan; Gong, Wenping; Jia, Juqing; Qiao, Linyi; Ren, Yongkang; Yang, Zujun; Chang, Zhijian

    2014-01-01

    Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum. Genomic in situ hybridization and molecular characterization of the alien introgression failed to identify alien chromatin. To study the genetics of resistance, CH7086 was crossed with susceptible genotypes. Segregation in F2 populations and F2:3 lines tested with Chinese Bgt race E09 under controlled conditions indicated that CH7086 carries a single dominant gene for powdery mildew resistance. Fourteen SSR and EST-PCR markers linked with the locus were identified. The genetic distances between the locus and the two flanking markers were 1.5 and 3.2 cM, respectively. Based on the locations of the markers by nullisomic-tetrasomic and deletion lines of 'Chinese Spring', the resistance gene was located in deletion bin 2BL-0.89-1.00. Conserved orthologous marker analysis indicated that the genomic region flanking the resistance gene has a high level of collinearity to that of rice chromosome 4 and Brachypodium chromosome 5. Both resistance specificities and tests of allelism suggested the resistance gene in CH7086 was different from previously reported powdery mildew resistance genes on 2BL, and the gene was provisionally designated PmCH86. Molecular analysis of PmCH86 compared with other genes for resistance to Bgt in the 2BL-0.89-1.00 region suggested that PmCH86 may be a new PM resistance gene, and it was therefore designated as Pm51. The closely linked flanking markers could be useful in exploiting this putative wheat-Thinopyrum translocation line for rapid transfer of Pm51 to wheat breeding programs.

  11. Identification of downy mildew resistance gene candidates by positional cloning in maize (Zea mays subsp. mays; Poaceae)1

    Science.gov (United States)

    Kim, Jae Yoon; Moon, Jun-Cheol; Kim, Hyo Chul; Shin, Seungho; Song, Kitae; Kim, Kyung-Hee; Lee, Byung-Moo

    2017-01-01

    Premise of the study: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. Methods and Results: Downy mildew (DM)–resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. Conclusions: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases. PMID:28224059

  12. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides.

    Directory of Open Access Journals (Sweden)

    Shuhong Ouyang

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90 via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.

  13. Development and Identification of Wheat Haynaldia villosa 6DL/6VS Translocation Lines with Powdery Mildew Resistance

    Institute of Scientific and Technical Information of China (English)

    Li Hui; Chen Xiao; Xin Zhiyong; Ma Youzhi; Xu Huijun

    2000-01-01

    Wheat-H. villosa 6DL/6VS translocation lines, Pm97033, Pm97034 and Pm97035 developed by(TH3/4 ×Wan7107)F1 young embryo and anther culture, were evaluated by powdery mildew resistance test, cytogenetic analysis, biochemical analysis, and in situ hybridization respectively. Pm97033 and its hybrids crossing with susceptible cultivar Wan7107, 6D/6V substitution line and double ditelocentric lines (DDT) of Chinese Spring(C S)6A, 6B and 6D were all immune to powdery mildew through the growing period. It was with the somatic chromosome number of 42 and twenty-one bivalents at M I in pollen mother cells (PMCs M I ). The configurations at pMCs M I in hybrids F1 of Pm97033 with either susceptible cultivar or 6D/6V substitution line were 21 biva lents. In hybrids F1 between Pm97033 and C S 6A, 6B DDT, twenty bivalents and one allo-trivalent (t I t)composing of one univalent and two telocentric chromosomes were observed at PMCs M I . The configuration between Pm97033 and C S 6D DDT was twenty bivalents, one allo-bivalent (I t)and one telocentric chromosome. The results of cytogenetic analysis showed that Pm97033 was a translocation line , and the translocation was related to chromosome 6D. The results of in situ hybridization between probe labeled with biotin of H. villosa total DNA and the chromosomes showed that the three lines were all Robertsonian translocation lines. Glutamate oxaloacetate transaminase (GOT)isozyrme analyses showed that the translocation lines expressed the same pattern with C S,and without the specific band of 6VL of H. villas compared with substitution line and addition line. In α-zone of gliadin-2 pattern, all lines resistant to powdery mildew expressed an identical specific band encoded by the gene located on 6VS of H. villosa. All the cytogenetic and biochemical analysis confirmed that Pm97033, etc. were 6DL/6VS translocation lines with the substitution of 6VS for 6DS.

  14. Increased callose deposition in plants lacking DYNAMIN-RELATED PROTEIN 2B is dependent upon POWDERY MILDEW RESISTANT 4.

    Science.gov (United States)

    Leslie, Michelle E; Rogers, Sean W; Heese, Antje

    2016-11-01

    Callose deposition within the cell wall is a well-documented plant immune response to pathogenic organisms as well as to pathogen-/microbe- associated molecular patterns (P/MAMPs). However, the molecular mechanisms that modulate pathogen-induced callose deposition are less understood. We reported previously that Arabidopsis plants lacking the vesicle trafficking component DYNAMIN-RELATED PROTEIN 2B (DRP2B) display increased callose deposition in response to the PAMP flg22. Here, we show that increased number of flg22-induced callose deposits in drp2b leaves is fully dependent on the callose synthase POWDERY MILDEW RESISTANT 4 (PMR4). We propose that in addition to functioning in flg22-induced endocytosis of the plant receptor, FLAGELLIN SENSING 2, DRP2B may regulate the trafficking of proteins involved in callose synthesis, such as PMR4, and/or callose degradation.

  15. InDel Markers for Identification of Cucumber Powdery Mildew Resistance%用于黄瓜白粉病抗性鉴定的InDel标记

    Institute of Scientific and Technical Information of China (English)

    聂京涛; 李晓丹; 姚永康; 潘俊松; 何欢乐; 刘士辉; 蔡润

    2015-01-01

    The co-dominant InDel markers were successfully explored based on the insertion-deletion (InDel)mutation in the major gene/QTL conferring powdery mildew resistance in cucumber(Cucumis sativus L.). The InDel marker InDel-MLO1 was co-segregated with the major gene for powdery mildew resistance through linkage analysis. Known of powdery mildew resistance phenotype,24 cucumber lines originated from various geographical regions of the world were tested by the InDel marker. The results showed that the genotypes of InDel-MLO1 were consistent with their resistance phenotypes in 21 cucumber lines,which indicated that this causal InDel mutation for powdery mildew resistance occurred frequently during the evolution and domestication of cucumber. Therefore,our finding confirmed that the InDel marker is very useful for identification of cucumber powdery mildew resistance and molecular marker-assisted breeding for most of the cucumber lines,and thus,the process of powdery mildew resistance breeding in cucumber will be accelerated.%根据黄瓜白粉病抗性主效基因/QTL的插入/缺失突变,将其设计成共显性的InDel分子标记。通过群体连锁分析,发现InDel-MLO1标记与黄瓜白粉病抗性主效基因共分离。应用该标记对24份来自世界各地且白粉病抗性已知的黄瓜材料进行抗性验证,21份材料的抗性表型与标记的带型一致,说明在黄瓜进化和驯化过程中,造成抗病表型的该插入/缺失突变发生普遍。因此,该InDel标记适合于大多数黄瓜材料的白粉病抗性鉴定和分子标记辅助育种,从而加快黄瓜白粉病抗病育种的进程。

  16. A Cluster of Nucleotide-Binding Site-Leucine-Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL.

    Science.gov (United States)

    Cantalapiedra, Carlos P; Contreras-Moreira, Bruno; Silvar, Cristina; Perovic, Dragan; Ordon, Frank; Gracia, María Pilar; Igartua, Ernesto; Casas, Ana M

    2016-07-01

    Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus) conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site-leucine-rich repeat containing protein) genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation) in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing) tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.

  17. A Cluster of Nucleotide-Binding Site–Leucine-Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL

    Directory of Open Access Journals (Sweden)

    Carlos P. Cantalapiedra

    2016-07-01

    Full Text Available Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site–leucine-rich repeat containing protein genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.

  18. Lactuca saligna, a non-host for lettuce downy mildew ( Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance.

    Science.gov (United States)

    Jeuken, M.; Lindhout, P.

    2002-08-01

    Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F(2) population based on a resistant L. saligna x susceptible L. sativa cross. This F(2) population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F(2) population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene ( R39) involved in the race-specific resistance and three QTLs ( RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F(2) population. The perspectives for breeding for durable resistance are discussed.

  19. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhu, Yanfei; Li, Yingbo; Fei, Fei; Wang, Zongkuan; Wang, Wei; Cao, Aizhong; Liu, Yuan; Han, Shuang; Xing, Liping; Wang, Haiyan; Chen, Wei; Tang, Sanyuan; Huang, Xiahe; Shen, Qianhua; Xie, Qi; Wang, Xiue

    2015-10-01

    Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance.

  20. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus

    NARCIS (Netherlands)

    Pavan, S.N.C.; Schiavulli, A.; Appiano, M.; Visser, R.G.F.; Bai, Y.

    2011-01-01

    The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew

  1. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.).

    Science.gov (United States)

    Yuste-Lisbona, Fernando J; Capel, Carmen; Gómez-Guillamón, María L; Capel, Juan; López-Sesé, Ana I; Lozano, Rafael

    2011-03-01

    Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession 'WMR-29' proving their usefulness as genotyping tools in melon breeding programmes.

  2. Ethylene and Abscisic Acid Signaling Pathways Differentially Influence Tomato Resistance to Combined Powdery Mildew and Salt Stress

    Science.gov (United States)

    Kissoudis, Christos; Seifi, Alireza; Yan, Zhe; Islam, A. T. M. Tanjimul; van der Schoot, Hanneke; van de Wiel, Clemens C. M.; Visser, Richard G. F.; van der Linden, C. G.; Bai, Yuling

    2017-01-01

    There is currently limited knowledge on the role of hormones in plants responses to combinations of abiotic and pathogen stress factors. This study focused on the response of tomato near-isogenic lines (NILs) that carry the Ol-1, ol-2, and Ol-4 loci, conferring resistance to tomato powdery mildew (PM) caused by Oidium neolycopersici, to combined PM and salt stress. These NILs were crossed with the notabilis (ABA-deficient), defenceless1 (JA-deficient), and epinastic (ET overproducer) tomato mutants to investigate possible roles of hormone signaling in response to combined stresses. In the NILs, marker genes for hormonal pathways showed differential expression patterns upon PM infection. The epinastic mutation resulted in breakdown of resistance in NIL-Ol-1 and NIL-ol-2. This was accompanied by reduced callose deposition, and was more pronounced under combined salt stress. The notabilis mutation resulted in H2O2 overproduction and reduced susceptibility to PM in NIL-Ol-1 under combined stress, but lead to higher plant growth reduction under salinity and combined stress. Resistance in NIL-ol-2 was compromised by the notabilis mutation, which was potentially caused by reduction of callose deposition. Under combined stress the compromised resistance in NIL-ol-2 was restored. PM resistance in NIL-Ol-4 remained robust across all mutant and treatment combinations. Hormone signaling is critical to the response to combined stress and PM, in terms of resistance and plant fitness. ABA appears to be at the crossroads of disease susceptibility/senescence and plant performance under combined stress These gained insights can aid in narrowing down targets for improving crop performance under stress combinations. PMID:28119708

  3. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L. Landraces.

    Directory of Open Access Journals (Sweden)

    Suli Sun

    Full Text Available Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L. landraces resistant to E. pisi, and to characterize the resistance gene(s at the er1 locus in the resistant landraces, and to develop functional marker(s specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%, 4 (1.24% and 17 (5.28% landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  4. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces.

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  5. QTL Analysis and Nested Association Mapping for Adult Plant Resistance to Powdery Mildew in Two Bread Wheat Populations

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2017-07-01

    Full Text Available CIMMYT wheat (Triticum aestivum L. lines Francolin#1 and Quaiu#3 displayed effective and stable adult plant resistance (APR to Chinese Blumeria graminis f. sp. tritici isolates in the field. To elucidate their genetic basis of resistance, two recombinant inbred line (RIL populations of their crosses with Avocet, the susceptible parent, were phenotyped in Zhengzhou and Shangqiu in the 2014–2015 and 2015–2016 cropping seasons. These populations were also genotyped with SSR (simple sequence repeat markers and DArT (diversity arrays technology markers. Two common significant quantitative trait loci (QTL on wheat chromosomes 1BL and 4BL were detected in both populations by joint and individual inclusive composite interval mapping, explaining 20.3–28.7% and 9.6–15.9% of the phenotypic variance in Avocet × Francolin#1 and 4.8–11.5% and 10.8–18.9% in Avocet × Quaiu#3, respectively. Additional QTL were mapped on chromosomes 1DL and 5BL in Avocet × Francolin#1 and on 2DL and 6BS in Avocet × Quaiu#3. Among these, QPm.heau-1DL is probably a novel APR gene contributing 6.1–8.5% of total phenotypic variance. The QTL on 1BL corresponds to the pleiotropic multi-pathogen resistance gene Yr29/Lr46/Pm39, whereas the QTL on 2DL maps to a similar region where stripe rust resistance gene Yr54 is located. The QTL identified can potentially be used for the improvement of powdery mildew and rust resistance in wheat breeding.

  6. Capacidade combinatória em mamoeiro para resistência a oídio Combining ability for resistance to powdery-mildew in papaya

    Directory of Open Access Journals (Sweden)

    Marcelo Vivas

    2012-01-01

    Full Text Available A resistência genética constitui alternativa sustentável para o controle do oídio. Objetivando indicar possíveis combinações híbridas que contribuam para a redução da severidade de oídio em folha de mamoeiro, foi realizado um cruzamento dialélico envolvendo oito genótipos, sendo quatro do grupo 'Solo' e quatro do grupo 'Formosa'. Os 56 híbridos (F1's e recíprocos juntamente com seus genitores foram avaliados em blocos casualizados com quatro repetições. A severidade do oídio na folha foi quantificada em março e maio de 2010, respectivamente, aos 11 e 13 meses após o plantio. Com a média de cada tratamento foram estimadas as capacidades geral e específica de combinação. Assim, considerando as estimativas da capacidade combinatória obtidas com base na média das duas avaliações, as melhores combinações para os genitores avaliados quanto à severidade do oídio foram 'Maradol x Waimanalo', 'Maradol x Sunrise Solo 72/12', 'JS 12-4 x São Mateus', 'Sekati x Waimanalo', 'Sekati x Golden', 'Sekati x Sunrise Solo 72/12', 'Sekati x São Mateus', 'Waimanalo x São Mateus' e 'Golden x São Mateus'. Os resultados evidenciam ainda a possibilidade de obtenção de híbridos com potencial para redução da severidade do oídio provenientes de cruzamentos entre genótipos dos grupos 'Solo' e 'Formosa' e também em cruzamentos dentro do grupo 'Solo'.Genetic resistance represents a sustainable alternative to control powdery-mildew in papaya crop. Diallelic crosses were performed among eight papaya genotypes, belonging to 'Solo' and 'Formosa' heterotic groups, four from each one with aiming to indicate possible hybrid combinations that contribute to reducing the severity of powdery-mildew on leaf. The 56 hybrid combinations (F1's and reciprocals along with their parents were evaluated in a randomized complete block design with four replications. Powdery-mildew severity on leaves was measured in March and May 2010, respectively, at 11

  7. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines.

    Science.gov (United States)

    Rehmany, Anne P; Gordon, Anna; Rose, Laura E; Allen, Rebecca L; Armstrong, Miles R; Whisson, Stephen C; Kamoun, Sophien; Tyler, Brett M; Birch, Paul R J; Beynon, Jim L

    2005-06-01

    The perception of downy mildew avirulence (Arabidopsis thaliana Recognized [ATR]) gene products by matching Arabidopsis thaliana resistance (Recognition of Peronospora parasitica [RPP]) gene products triggers localized cell death (a hypersensitive response) in the host plant, and this inhibits pathogen development. The oomycete pathogen, therefore, is under selection pressure to alter the form of these gene products to prevent detection. That the pathogen maintains these genes indicates that they play a positive role in pathogen survival. Despite significant progress in cloning plant RPP genes and characterizing essential plant components of resistance signaling pathways, little progress has been made in identifying the oomycete molecules that trigger them. Concluding a map-based cloning effort, we have identified an avirulence gene, ATR1NdWsB, that is detected by RPP1 from the Arabidopsis accession Niederzenz in the cytoplasm of host plant cells. We report the cloning of six highly divergent alleles of ATR1NdWsB from eight downy mildew isolates and demonstrate that the ATR1NdWsB alleles are differentially recognized by RPP1 genes from two Arabidopsis accessions (Niederzenz and Wassilewskija). RPP1-Nd recognizes a single allele of ATR1NdWsB; RPP1-WsB also detects this allele plus three additional alleles with divergent sequences. The Emco5 isolate expresses an allele of ATR1NdWsB that is recognized by RPP1-WsB, but the isolate evades detection in planta. Although the Cala2 isolate is recognized by RPP1-WsA, the ATR1NdWsB allele from Cala2 is not, demonstrating that RPP1-WsA detects a novel ATR gene product. Cloning of ATR1NdWsB has highlighted the presence of a highly conserved novel amino acid motif in avirulence proteins from three different oomycetes. The presence of the motif in additional secreted proteins from plant pathogenic oomycetes and its similarity to a host-targeting signal from malaria parasites suggest a conserved role in pathogenicity.

  8. Identification and introgression of QTLs implicated in resistance to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C. G. Shaw) in maize through marker-assisted selection

    Indian Academy of Sciences (India)

    H. C. Lohithaswa; K. Jyothi; K. R. Sunil Kumar; Puttaramanaik; Shailaja Hittalmani

    2015-12-01

    Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.

  9. A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance.

    Science.gov (United States)

    Okubara, P A; Arroyo-Garcia, R; Shen, K A; Mazier, M; Meyers, B C; Ochoa, O E; Kim, S; Yang, C H; Michelmore, R W

    1997-11-01

    One hundred and ninety-two independent primary transformants of lettuce cv. Diana were obtained by co-cultivation with Agrobacterium tumefaciens carrying constructs containing maize Ac transposase and Ds. R2 families were screened for mutations at four genes (Dm) for resistance to downy mildew. One family, designated dm3t524, had lost resistance to an isolate of Bremia lactucae expressing the avirulence gene Avr3. Loss of resistance segregated as a single recessive allele of Dm3. The mutation was not due to a large deletion as all molecular markers flanking Dm3 were present. Loss of Dm3 activity co-segregated with a T-DNA from which Ds had excised. Genomic DNA flanking the right border of this T-DNA was isolated by inverse polymerase chain reaction. This genomic sequence was present in four to five copies in wild-type cv. Diana. One copy was missing in all eight deletion mutants of Dm3 and altered in dm3t524, indicating tight physical linkage to Dm3. Three open reading frames (ORFs) occurred in a 6.6-kb region flanking the insertion site; however, expression of these ORFs was not detected. No similarities were detected between these ORFs and resistance genes cloned from other species. Transgenic complementation with 11-to 27-kb genomic fragments of Diana spanning the insertion site failed to restore Dm3 function to two ethyl methanesulfonate (EMS)-induced mutants of Dm3 or to cv. Cobham Green, which naturally lacks Dm3 activity. Therefore, either the T-DNA inserted extremely close to, but not within, Dm3 and the mutation may have been caused by secondary movement of Ds, or Dm3 activity is encoded by a gene extending beyond the fragments used for complementation.

  10. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator).

    Science.gov (United States)

    Agurto, Mario; Schlechter, Rudolf O; Armijo, Grace; Solano, Esteban; Serrano, Carolina; Contreras, Rodrigo A; Zúñiga, Gustavo E; Arce-Johnson, Patricio

    2017-01-01

    Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera 'Dzhandzhal Kara,' respectively, with the susceptible commercial table grape cv. 'Crimson Seedless.' We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases.

  11. Elemental micro-PIXE mapping of hypersensitive lesions in Lagenaria sphaerica (Cucurbitaceae) resistant to Sphaerotheca fuliginea (powdery mildew)

    Science.gov (United States)

    Weiersbye-Witkowski, I. M.; Przybylowicz, W. J.; Straker, C. J.; Mesjasz-Przybylowicz, J.

    1997-07-01

    Genotypes of the Southern African cucurbit, Lagenaria sphaerica, that are resistant to powdery-mildew ( Sphaerotheca fuliginea) exhibit foliar hypersensitive (HS) lesions on inoculation with this fungal pathogen. Elemental distributions across radially symmetrical HS lesions, surrounding unlesioned leaf tissue and uninoculated leaf tissue, were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3 MeV protons were complemented by simultaneous PIXE and BS point analyses. The composition of cellulose (C 6H 10O 5) was used as constant matrix composition for scans, and the sample thickness was found from BS spectra. Si and elements heavier than Ca contributed to matrix composition within HS lesions and the locally elevated Ca raised the limits of detection for some trace metals of interest. In comparison to uninoculated tissue, inoculated tissue was characterised by higher overall concentrations of all measured elements except Cu. Fully developed, 6 day-old HS lesions and the surrounding tissue could be divided into five zones, centred on the fungal infection site. Each zone was characterized by distinct local elemental distributions (either depletion, or accumulation to potentially phytotoxic levels).

  12. Cloning of a novel phosphateserine aminotransferase gene from a Triticum aestivum-Elytrigia elongatum alien substitution line with resistance to powdery mildew

    Institute of Scientific and Technical Information of China (English)

    HE Daoyi; WANG Honggang

    2005-01-01

    Shannong 551, a T. aestivum-E. elongatum alien substitution line with resistance to powdery mildew, was inoculated with pathogenic spores of powdery mildew. The leaf samples were prepared 48 h after inoculation for scanning electron microscopy. The result showed that germination of spores and growth of young mycelia on leaves of Shannong 551 were suppressed at the early stage of infection. At the same time, RNAs were prepared from the leaves for the cloning of WRP1 and RPW2 by cDNA RDA and RACE technology. BLAST analysis of the sequences indicated that both WRP1 and RPW2 were novel genes. WRP1 contains no complete ORF. RPW2 contains the conserved structure domain of aminotransferase, and its DNA sequence shares high homology with genes of phosphateserine aminotransferase in many organisms. Therefore, it is speculated as a novel phosphateserine aminotransferase gene. The results of Northern blot suggested that expression of RPW2 occurred at the early stage of infection by powdery mildew. Southern blot using the probe of RPW2, in which there was strong hybridizing signals in both genome of Shannong 551 and E. elongatum, but not in those of Jinan 13 and Lumai No.5, indicated that RPW2 derived from the genome of E. elongatum.

  13. Triticale powdery mildew: population characterization and wheat gene efficiency.

    Science.gov (United States)

    Bouguennec, Annaig; Trottet, Maxime; du Cheyron, Philippe; Lonnet, Philippe

    2014-01-01

    Powdery mildew has emerged on triticale in the early 2000s in many locations, probably due to a host range expansion of the wheat formae speciales, Blumeria graminis f.sp. tritici. Many triticale cultivars are highly susceptible to powdery mildew, mainly in seedling stage, revealing a probably narrow genetic basis for powdery mildew resistance genes (Pm). Moreover, as Blumeria graminis is an obligate biotrophic fungus, it is very time consuming and difficult to maintain powdery mildew isolates for a non-specialized laboratory and populations can evolve. In order to identify wheat Pm genes efficient against natural populations of powdery mildew, wheat differential hosts and triticale seedlings were inoculated below susceptible triticale crop naturally contaminated by mildew, in several locations and several years. Symptoms on seedlings were measured after approximately two weeks of incubation in favorable fungus growth conditions. According to these data, we classified the Pm genes presents in our wheat differential hosts set in 3 classes: Pm already overcame by triticale powdery mildew, Pm having variable effects and Pm still efficient against triticale mildew. Data on triticale seedlings allowed us to identify some few triticale cultivars resistant to Blumeria graminis in seedling stage. We will try to identify Pm genes present in those cultivars next year by testing them with the characterized isolates of powdery mildew from Gent University. Nevertheless, interspecific crossing of wheat, resistant to powdery mildew in seedling stage, and rye have been initiated to introduce potentially interesting genes for resistance in triticale.

  14. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Hongtao; Guan, Haiying; Li, Jingting; Zhu, Jie; Xie, Chaojie; Zhou, Yilin; Duan, Xiayu; Yang, Tsomin; Sun, Qixin; Liu, Zhiyong

    2010-11-01

    Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F(2) segregating population and F(3) families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59-0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST-STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.

  15. SSR Inheritance Analysis and Screening for Linked Marker of Powdery Mildew Resistance in Cucumber(Cucumis sativus L.)%黄瓜白粉病抗性遗传分析与连锁标记筛选

    Institute of Scientific and Technical Information of China (English)

    聂京涛; 潘俊松; 何欢乐; 司龙亭; 蔡润

    2011-01-01

    In order to accelerate molecular marker assisted breeding process of powdery mildew resistance in cucumber ( Cucumis sativus L.) , in this paper, high susceptible cucumber inbred line M 12,abd high resistant inbred line M3 to powdery mildew were taken as parent and their hybrid, F2 populations and BC1 populations were used as experimental materials.We identified the seedlings inoculated with powdery mildew fungus and probed into the genetic regulation of powdery mildew resistance in cucumber.Combing with BSA method and SSR technology, SSR markers linked to the major resistant gene of powdery mildew in cucumber was obtained.The results showed that the resistance to powdery mildew was mainly controlled by a single recessive gene.By analyzing F2 single plant with SSR technique, a marker SSR15592 linked to the resistant gene was identified.The genetic distance between this marker and resistant gene was 7.62 cM.%以黄瓜高感、高抗白粉病自交系M12、M3为亲本组合得到的F2群体和BC1群体为试材,采用苗期接种鉴定,探讨了黄瓜白粉病抗性的遗传规律;结合BSA法和SSR技术,获得了与黄瓜白粉病抗性主效基因连锁的SSR标记.结果表明,供试亲本间白粉病抗性主要受一隐性单基因控制.对F2单株进行SSR分析,鉴定出1个与黄瓜白粉病抗性基因连锁的标记SSR15592,该标记与抗性基因间的遗传距离为7.62 cM.

  16. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Haozhen Nie; Yingying Wu; Chunpeng Yao; Dingzhong Tang

    2011-01-01

    EDR2 is a negative regulator of the defense response and cell death in Arabidopsis. Loss-of-function of EDR2 leads to enhanced resistance to powdery mildew. To identify new components in the EDR2 signal transduction pathway, mutations that suppress edr2 resistant phenotypes were screened. Three mutants, edts5-1, edts5-2 and edts5-3 (edr (t)wo (s)uppressor 5), were identified. The EDTS5 gene was identified by map-based cloning and previously was shown to encode an aminotransferase (ALD1). Therefore we renamed these three alleles ald1-10, ald1-11 and ald1-12, respectively. Mutations in ALD1 suppressed all edr2-mediated phenotypes, including powdery mildew resistance, programmed cell death and ethylene-induced senescence. Accumulation of hydrogen peroxide in edr2 was also suppressed by ald1 mutation. The expression of defense-related genes was up-regulated in the edr2 mutant, and the up-regulation of those genes in edr2 was suppressed in the edr2/ald1 double mutant. The ald1 single mutant displayed delayed ethylene-induced senescence. In addition, ald1 mutation suppressed edr1-mediated powdery mildew resistance, but could not suppress the edr1/edr2 double-mutant phenotype. These data demonstrate that ALD1 plays important roles in edr2-mediated defense responses and senescence, and revealed a crosstalk between ethylene and salicylic acid signaling mediated by ALD1 and EDR2.

  17. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces.

    Science.gov (United States)

    Montilla-Bascón, Gracia; Rispail, Nicolas; Sánchez-Martín, Javier; Rubiales, Diego; Mur, Luis A J; Langdon, Tim; Howarth, Catherine J; Prats, Elena

    2015-01-01

    Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

  18. Linkage analysis of genes for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa).

    Science.gov (United States)

    Hulbert, S H; Michelmore, R W

    1985-08-01

    The genetics of specific resistance was studied in F2 populations which segregated for either one or two resistance genes. The resistance factors 1, 11 and 14 which had not previously been characterized genetically segregated as single dominant genes (Dm). Resistance was determined by three linkage groups; R 1/14, 2, 3, and 6 in the first, R 5/8, and 10 in the second and R 4, 7 and 11 in the third. Cultivars of lettuce commonly used in the differential series to detect virulence to R3 and R10, were demonstrated to carry two tightly linked resistance genes. Implications of this linkage arrangement to the manipulation and characterization of these resistance genes are discussed.

  19. Calcium transport in protoplasts isolated from ml-o barley isolines resistant and susceptible to powdery mildew. [Hordeum vulgare L

    Energy Technology Data Exchange (ETDEWEB)

    Wrona, A.F.; Spanswick, R.M.; Aist, J.R. (Cornell Univ., Ithaca, NY (USA))

    1988-12-01

    Free cytoplasmic calcium has been postulated to play a role in preventing powdery mildew in a series of homozygous ml-o mutants of barley, Hordeum vulgare L. Protoplasts isolated from 7-day-old plants of the ml-o resistant-susceptible (R-S) barley isolines, Riso 5678/3* {times} Carlsberg II R and S, were used to test for differences in fluxes of Ca{sup 2+} across the plasmalemma. Greater influx or lesser efflux might account for a higher free cytosolic Ca{sup 2+} postulated to exist in ml-o R mutants. Uniform patterns of uptake were maintained for 3 hours from solutions of 0.2 and 2 millimolar Ca{sup 2+}. Washout curves of {sup 45}Ca{sup 2+} from R and S protoplasts revealed three compartments - presumed to represent release from the vacuole, organelles, and the cytoplasm (which included bound as well as free Ca{sup 2+}). Uptake and washout did not differ between isolines. On the basis of recent determinations of submicromolar levels of free cytoplasmic Ca{sup 2+} and their initial rates of {sup 45}ca-labeled Ca{sup 2+} uptake, they show that measurement of the unidirectional influx of Ca{sup 2+} across the plasmalemma is not feasible because the specific activity of the pool of free cytoplasmic calcium increases almost instantaneously to a level that would result in a significant, but unknown, efflux of label. Similarly, measurement of the efflux of Ca{sup 2+} across the plasmalemma is not possible since the activity of the pool of free cytoplasmic calcium is a factor of 350 smaller than the most rapid component of the washout experiment. This pool of cytoplasmic free Ca{sup 2+} will wash out too rapidly and be too small to detect under the conditions of these experiments.

  20. Preliminary Trial of 11 New Hybrid Maize Genotype to The Resistance on Java Downy Mildew (Peronosclerospora maydis

    Directory of Open Access Journals (Sweden)

    Budi Setyawan

    2016-04-01

    Full Text Available Maize or corn (Zea mays L. belongs to the family of grasses (Poaceae.  Maize is grown globally and one of the most important cereal crop in the world.  In many countries, corn is the main agricultural crop, and are used as food, feed and industrial raw materials. Together with rice and wheat, corn included in the cereals that provide about 65% carbohydrates and 50% protein that humans need. For this purpose, many developing countries, especially in Asia and Africa are in a strong effort to increase their corn yields through the use of better seeds.  Although in Indonesia, corn is the second important food crop after rice, however, with the rapid growth of the livestock industry, corn is a major component (60% in feed ingredient.  It is estimated that more than 55% of the corn used for feed in Indonesia.  Java Downy Mildew (Peronosclerospora maydis is the main disease that is concerned by maize corn growers. This disease often resulting in substantial losses for farmers, even reach 100% in susceptible genotypes.  Therefore trial on 11 new prospective hybrids was conducted with the expectation that they can be classified in the criteria “less resistant or higher” according to the criteria of modified Reid (2005.  Of the 11 new hybrids, 3 new hybrids (27.3% classified in the criteria “very resistant”, 4 new hybrids (36.4% classified in the criteria “resistant”, 2 new hybrid (18.2% classified in the criteria “less resistant”, and 2 other new hybrids (18.2% classified in the criteria “less susceptible”.

  1. Proteome of Plasmopara viticola-infected Vitis vinifera provides insights into grapevine Rpv1/Rpv3 pyramided resistance to downy mildew.

    Science.gov (United States)

    Nascimento-Gavioli, Maria Carolina Andrade; Agapito-Tenfen, Sarah Zanon; Nodari, Rubens Onofre; Welter, Leocir José; Sanchez Mora, Fernando David; Saifert, Luciano; da Silva, Aparecido Lima; Guerra, Miguel Pedro

    2017-01-16

    Grapevine is one of the major fruit crops worldwide and requires phytochemical use due to susceptibility to numerous pests, including downy mildew. The pyramiding of previous identified QTL resistance regions allows selection of genotypes with combined resistance loci in order to build up sustainable resistance. This study investigates resistance response of pyramided plants containing Rpv1 and Rpv3 loci to Plasmopara viticola infection process. Phenotypic characterization showed complete resistance and lack of necrotic hypersensitive response spots. Principal Component Analysis revealed infected 96hpi (hours post-inoculation) samples with the most distant proteomes of the entire dataset, followed by the proteome of infected 48hpi samples. Quantitative and qualitative protein differences observed using 2-DE gels coupled to nanoHPLC-ESI-MS/MS analysis showed a lack of transient breakdown in defense responses (biphasic modulation) accompanying the onset of disease. Forty-one proteins were identified, which were mainly included into functional categories of redox and energy metabolism. l-ascorbate degradation pathway was the major altered pathway and suggests up-regulation of anti-oxidant metabolism in response to apoplastic oxidative burst after infection. Overall, these data provide new insights into molecular basis of this incompatible interaction and suggests several targets that could potentially be exploited to develop new protection strategies against this pathogen. This study provide new insights into the molecular basis of incompatible interaction between Plasmopara viticola and pyramided Rpv1/Rpv3 grapevine and suggests several targets that could potentially be exploited to develop new protection strategies against this pathogen. This is the first proteomic characterization of resistant grapevine available in the literature and it presents contrasting proteomic profiles of that of susceptible plants. The resistance against downy mildew in grapevine has been

  2. Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley.

    Directory of Open Access Journals (Sweden)

    Ana M González

    Full Text Available BACKGROUND: Higher plants possess a large multigene family encoding secreted class III peroxidase (Prx proteins. Peroxidases appear to be associated with plant disease resistance based on observations of induction during disease challenge and the presence or absence of isozymes in resistant vs susceptible varieties. Despite these associations, there is no evidence that allelic variation of peroxidases directly determines levels of disease resistance. METHODOLOGY/PRINCIPAL FINDINGS: The current study introduces a new strategy called Prx-Profiling. We showed that with this strategy a large number of peroxidase genes can be mapped on the barley genome. In order to obtain an estimate of the total number of Prx clusters we followed a re-sampling procedure, which indicated that the barley genome contains about 40 peroxidase gene clusters. We examined the association between the Prxs mapped and the QTLs for resistance of barley to homologous and heterologous rusts, and to the barley powdery mildew fungus. We report that 61% of the QTLs for partial resistance to P. hordei, 61% of the QTLs for resistance to B. graminis and 47% of the QTLs for non-host resistance to other Puccinia species co-localize with Prx based markers. CONCLUSIONS/SIGNIFICANCE: We conclude that Prx-Profiling was effective in finding the genetic location of Prx genes on the barley genome. The finding that QTLs for basal resistance to rusts and powdery mildew fungi tend to co-locate with Prx clusters provides a base for exploring the functional role of Prx-related genes in determining natural differences in levels of basal resistance.

  3. Ontogenic resistance of leaves and fruit, and how leaf folding influences the distribution of powdery mildew on strawberry plants colonized by Podosphaera aphanis.

    Science.gov (United States)

    Asalf, Belachew; Gadoury, David M; Tronsmo, Anne Marte; Seem, Robert C; Dobson, Andrew; Peres, Natalia A; Stensvand, Arne

    2014-09-01

    Ontogenic or age-related resistance has been noted in many pathosystems but is less often quantified or expressed in a manner that allows the concept to be applied in disease management programs. Preliminary studies indicated that leaves and fruit of three strawberry cultivars rapidly acquired ontogenic resistance to the powdery mildew pathogen, Podosphaera aphanis. In the present study, we quantify the development of ontogenic resistance in controlled inoculations of 10 strawberry cultivars using diverse isolates of P. aphanis in New York and Florida, USA, and in Norway. We report the differential and organ-specific development of ontogenic resistance in the receptacle and externally borne strawberry achenes. We further report that rapid development of ontogenic resistance prior to unfolding of emergent leaves, rather than differential susceptibility of adaxial versus abaxial leaf surfaces, may explain the commonly observed predominance of powdery mildew on the lower leaf surfaces. Susceptibility of leaves and fruit declined exponentially with age. Receptacle tissue of berries inoculated at four phenological stages from bloom to ripe fruit became nearly immune to infection approximately 10 to 15 days after bloom, as fruit transitioned from the early green to the late green or early white stage of berry development, although the achenes remained susceptible for a longer period. Leaves also acquired ontogenic resistance early in their development, and they were highly resistant shortly after unfolding and before the upper surface was fully exposed. No significant difference was found in the susceptibility of the adaxial versus abaxial surfaces. The rapid acquisition of ontogenic resistance by leaves and fruit revealed a narrow window of susceptibility to which management programs might be advantageously adapted.

  4. Identification and translocation of metabolites from powdery mildew resistant rootstocks to susceptible watermelon scions using nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Watermelon (Citrullus lanatus), an important commercial crop, and nutritious fruit, is high in antioxidants, vitamins, and lycopene. Powdery mildew (PM) is a serious disease caused by Podosphaera xanthii, which significantly reduces watermelon production in the U.S. and other parts of the world. C...

  5. ‘Appalachian Joy’ is a supernumery, white-bracted cultivar of cornus florida resistant to powdery mildew

    Science.gov (United States)

    The wholesale nursery industry in Tennessee contributes more than $200 million to the annual economy of the state and are in excess of $50 million annually for flowering dogwood (Cornus florida). Two fungal diseases, dogwood anthracnose and powdery mildew (Discula destructiva and Erysiphe pulchra, r...

  6. Preliminary evaluation of resistance to powdery mildew (Podosphaera xanthii) in AVRDC collections of bitter gourd (Momordica charantia L.)

    Science.gov (United States)

    Bitter gourd (Momordica charantia L.) is an important market vegetable in Asia, where it is also used in folk medicine to manage type 2 diabetes. Powdery mildew caused by Podosphaera xanthii is a serious fungal disease of bitter gourd and yield losses of up to 50% have been reported. After observi...

  7. Potential Sources of Resistance to Cucurbit Powdery Mildew in US Plant Introductions (PI) of Lagenaria Siceraria (bottle gourd)

    Science.gov (United States)

    Powdery mildew (Podosphaera xanthii) can cause severe damage to cucurbit crops grown in open fields and greenhouses. In recent years, there has been a growing interest in the USA in grafting watermelon plants onto various cucurbit rootstocks. Bottle gourd plants (Lagenaria siceraria) are being use...

  8. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew.

    Science.gov (United States)

    Yun, Byung-Wook; Atkinson, Helen A; Gaborit, Charlotte; Greenland, Andy; Read, Nick D; Pallas, Jacqueline A; Loake, Gary J

    2003-06-01

    Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew.

  9. "Pearl Sister"

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    HE Xiuying is the general manager of the Beihai Pearl Company in a small city by the Gulf of Beibu in Guangxi Zhuang Autonomous Region. Local people like to call her "Pearl Sister," because they have seen with their own eyes how He Xiuying has been transformed from an ordinary fisherwoman into a pearl expert and entrepreneur as pearl production has developed in Beihai. Born into a poor family, He Xiuying had to help her parents support her

  10. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306.

    Science.gov (United States)

    Li, Quanquan; Niu, Zubiao; Bao, Yinguang; Tian, Qiuju; Wang, Honggang; Kong, Lingrang; Feng, Deshun

    2016-09-15

    Wheat powdery mildew, which is mainly caused by Blumeria graminis f. sp. tritici (Bgt), seriously damages wheat production. The wheat-Thinopyrum intermedium alien addition disomic line germplasm SN6306, being one of the important sources of genes for wheat resistance, is highly resistant to Bgt E09 and to many other powdery mildew physiological races. However, knowledge on the resistance mechanism of SN6306 remains limited. Our study employed high-throughput RNA sequencing based on next-generation sequencing technology (Illumina) to obtain an overview of the transcriptome characteristics of SN6306 and its parent wheat Yannong 15 (YN15) during Bgt infection. The sequencing generated 104,773 unigenes, 9909 of which showed varied expression levels. Among the 9909 unigenes, 1678 unigenes showed 0 reads in YN15. The expression levels in Bgt-inoculated SN6306 and YN15 of exactly 39 unigenes that showed 0 or considerably low reads in YN15 were validated to identify the genes involved in Bgt resistance. Among the 39 unigenes, 12 unigenes were upregulated in SN6306 by 3-45 times. These unigenes mainly encoded kinase, synthase, proteases, and signal transduction proteins, which may play an important role in the resistance against Bgt. To confirm whether the unigenes that showed 0 reads in YN15 are really unique to SN6306, 8 unigenes were cloned and sequenced. Results showed that the selected unigenes are more similar to SN6306 and Th. intermedium than to the wheat cultivar YN15. The sequencing results further confirmed that the unigenes showing 0 reads in YN15 are unique to SN6306 and are most likely derived from Th. intermedium (Host) Nevski. Thus, the genes from Th. intermedium most probably conferred the resistance of SN6306 to Bgt.

  11. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes

    Science.gov (United States)

    Powdery mildew (PM) is a severe fungal disease in cucumber, but the molecular genetic mechanisms of PM resistance in cucumber are still poorly understood. In this study, through marker-assisted backcrossing with an elite susceptible inbred line D8, we developed a single segment substitution line SSS...

  12. Mechanisms of Resistance to an Azole Fungicide in the Grapevine Powdery Mildew Fungus, Erysiphe necator.

    Science.gov (United States)

    Frenkel, Omer; Cadle-Davidson, Lance; Wilcox, Wayne F; Milgroom, Michael G

    2015-03-01

    We studied the mechanisms of azole resistance in Erysiphe necator by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern United States and 12 from Chile. From each isolate, we sequenced the gene for sterol 14α-demethylase (CYP51), and measured the expression of CYP51 and homologs of four putative efflux transporter genes, which we identified in the E. necator transcriptome. Sequence variation in CYP51 was relatively low, with sequences of 40 U.S. isolates identical to the reference sequence. Nine U.S. isolates and five from Chile carried a previously identified A to T nucleotide substitution in position 495 (A495T), which results in an amino acid substitution in codon 136 (Y136F) and correlates with high levels of azole resistance. We also found a nucleotide substitution in position 1119 (A1119C) in 15 U.S. isolates, whose mean EC50 value was equivalent to that for the Y136F isolates. Isolates carrying mutation A1119C had significantly greater CYP51 expression, even though A1119C does not affect the CYP51 amino acid sequence. Regression analysis showed no significant effects of the expression of efflux transporter genes on EC50. Both the Y136F mutation in CYP51 and increased CYP51 expression appear responsible for azole resistance in eastern U.S. populations of E. necator.

  13. Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars

    DEFF Research Database (Denmark)

    Molina-Cano, J.L.; Simiand, J.P.; Sopena, A.;

    2003-01-01

    and were shown to have two new alleles at the mlo locus; these were designated, respectively, mlo31 and mlo32. Mutant URS2, showing partial resistance, was inherited as a dominant gene, but was not an allele at the Mla locus. The mean yield of each mutant was higher than that of its parental line......, but both URS1 and URS2 showed lower malt extract than Ursula. This lower extract might be due to the smaller grain size of the mutants that could, in turn, result from necrotic lesions in the leaves, as implied by the effects on grain yield....

  14. Spatial aggregation of pathotypes of barley powdery mildew

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1997-01-01

    Aggregation in the distribution of pathotypes of Erysiphe graminis f.sp. hordei, the barley powdery mildew pathogen, was investigated in field plots of 'Golden Promise', 'Proctor' and 'Tyra'. 'Golden Promise' and 'Proctor' have no effective mildew resistance alleles, whereas 'Tyra' has Mla1, which...

  15. Revisiting "Pearl Harbor": Resistance to Reel and Real Events in an English Language Classroom

    Science.gov (United States)

    Mackie, Ardiss; Norton, Bonny

    2006-01-01

    In this article, we draw on disruptive scenes in a postsecondary classroom to examine a critical incident concerning conflicting readings of the film "Pearl Harbor" (2001). We raise crucial questions for pedagogical work with popular film: Who speaks for whom about the meaning of a given film? Under what conditions do students resist…

  16. Compromised Photosynthetic Electron Flow and H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions during Resistance against Powdery Mildew in Oats.

    Science.gov (United States)

    Sánchez-Martín, Javier; Montilla-Bascón, Gracia; Mur, Luis A J; Rubiales, Diego; Prats, Elena

    2016-01-01

    Stomatal dysfunction known as "locking" has been linked to the elicitation of a hypersensitive response (HR) following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa) and the possible involvement of hydrogen peroxide (H2O2) in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e., penetration resistance, early and late HR) to powdery mildew (Blumeria graminis f. sp. avenae, Bga) were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm) of photosystem II were compromised in most Bga-oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defense induced photosynthetic disruption.

  17. Suppression of resistance to Erysiphe graminis f.sp. hordei conferred by the mlo5 barley powdery mildew resistance gene

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Carver, T.L.W.; Zeyen, R.J.

    1997-01-01

    . Additional suppression of mlo5 penetration resistance against the avirulent E. graminis isolate was achieved by using DDG, mannose, or glucose in combination with the phenylalanine ammonia lyase inhibitor alpha-aminooxy-beta-phenylpropionic acid (AOPP). A mlo virulent isolate of E. graminis was also tested...... phenolic compound synthesis, but that phenolics are not responsible for the primary mechanism of mlo5 penetration resistance. Sequestration of phosphate ions caused by complexing with DDG or mannose may lower the energy available for penetration resistance in these barley lines, obviating both inherent...

  18. Characterization of RAPD Markers, and the RFLP Marker Linked to Powdery Mildew Resistance Gene Derived from Different Accessions of H. villosa

    Institute of Scientific and Technical Information of China (English)

    LI Hui; CHEN Xiao; SHI Ai-nong; KONG Fan-jing; S Leath; J P Murphy; JIA Xu

    2005-01-01

    The analysis was carried out on performance of the resistance gene from Haynaldia villosa accession of the former Soviet Union to different isolates of Bluemerie graminis. Polymorphisms were revealed between 6D/6V substitution line Pm930640and its pedigree parents using five RAPD markers of OPAN031700, OPAI017oo, OPAL03750, OPAD07480 and OPAG1558oscreened out from 120 random 10-mers primers. Three RAPD markers of OPAN03, OPAI01 and OPAL03 were linked with the resistance gene by analysis of F2 population of Chancellor×Pm930640. Analysis of 29 wheat lines including part of lines conferring the known genes from Pm1 to Pm20 respectively, lines conferring resistance gene from two H. villosaaccessions and the related wheat parents, were analyzed and the results showed that these markers not only linked to thegene resistant to powdery mildew from H. villosa, but also detected different genetic backgrounds. OPAL03750 can beused as the marker to distinguish the different resistant lines from two H. villosa accessions because it was only observedin the materials from H. villosa of the former Soviet Union. RFLP analysis also showed the polymorphisms between twoH. villosa accessions and their derived resistant lines.

  19. 坑道水库储水防霉消毒对比研究%Comparative Study on Mildew Resistance and Disinfection of Tunnel Reservoir Water Storage

    Institute of Scientific and Technical Information of China (English)

    张永良; 侯小平; 苏青平; 周聚中

    2011-01-01

    Objective On the basis of the fungi pollution of the tunnel reservoir water storage, the effects of mildew resistance and disinfection on the water storage between sodium dichloroisocyanurate and chlorine dioxide disinfector were compared to provide a basis for water storage health security in wartime or under some special conditions. Methods Sodium dichloroisocyanurate and chlorine dioxide as mildew resistance disinfector for tunnel reservoir water storage were chosen to conduct laboratory tests, on - site simulation experirnents and on - site reservoir water storage mildew resistance and disinfection. Results Disinfecting water storage with sodium dichloroisocyanurate containing a concentration of available chlorine 20 mg/L based on the water storage capacity, the remained chlorine was 10.9 mg/L in the 24th month after disinfection.Disinfecting water storage with 5 mg/L chlorine dioxide, the concentration of chlorine dioxide was 0.01 mg/L in the third month after disinfection. Conclusion Sodium dichloroisocyanurate which has a good stability in the tunnel environment is suitable for long- time mildew resistance and disinfection of tunnel reservoir water storage. Disinfecting water storage with chlorine dioxide which has an ideal disinfectant effect in tunnel environment in 3 months is suitable for rapid and short - term disinfection of tunnel reservoir water storage.%目的 根据坑道水库储水真菌污染状况,对比观察二氯异氰尿酸钠和二氧化氯消毒剂对储水的防霉消毒效果,为战时或特殊情况下储水卫生保障提供依据.方法 选择二氯异氰尿酸钠和二氧化氯作为坑道水库储水防霉消毒剂,进行实验室试验、现场模拟试验以及现场水库储水防霉消毒.结果 根据储水量按有效氯20 mg/L二氯异氰尿酸钠消毒储水,消毒后24个月余氯量为10.9 mg/L.按5 mg/L二氧化氯消毒储水,消毒后3个月二氧化氯浓度为0.01mg/L.结论 二氯异氰尿酸钠在坑道环境中

  20. 小麦抗白粉病分子育种的研究现状及研究进展%Research Status and Advances on Molecular Breeding about Resistance to Powdery Mildew in Wheat

    Institute of Scientific and Technical Information of China (English)

    刘国圣

    2016-01-01

    Wheat powdery mildew is the main process of wheat diseases, therefore the disease resistant variety is the most effective and economical measure in the prevention and cure of the disease. In recent years, molecular marker technology research and development has become the basis of resistance to powdery mildew in science and technology, this technology provides great convenience for white powder resistance molecular breeding. Based on this, from the status in molecular breeding of resistance to powdery mildew, this paper analyzed the three types of wheat resistance and wheat powdery mildew resistance gene cloning, and then studied on development from gene angle positioning.%小麦白粉病成为小麦种植过程中主要病害之一,在防治该病时采用抗病品种是最为有效、经济的措施。近年来,分子标记技术的研究与发展成为了抗白粉病技术中比较科学的技术,这种技术为抗白粉分子育种提供极大的便利。基于此,从抗白粉病的分子育种研究现状出发,分析小麦抗性的三种类型及小麦抗白粉病的基因克隆,然后从基因定位角度探讨研究发展。

  1. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera and a resistant (V. riparia grapevine species

    Directory of Open Access Journals (Sweden)

    Lovato Arianna

    2010-02-01

    Full Text Available Abstract Background Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt. Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood. Results Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways. Conclusions Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola.

  2. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species

    Science.gov (United States)

    2010-01-01

    Background Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood. Results Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways. Conclusions Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola. PMID:20167053

  3. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  4. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines

    Directory of Open Access Journals (Sweden)

    Morgante Michele

    2009-12-01

    Full Text Available Abstract Background Grape powdery mildew is caused by the North American native pathogen Erysiphe necator. Eurasian Vitis vinifera varieties were all believed to be susceptible. REN1 is the first resistance gene naturally found in cultivated plants of Vitis vinifera. Results REN1 is present in 'Kishmish vatkana' and 'Dzhandzhal kara', two grapevines documented in Central Asia since the 1920's. These cultivars have a second-degree relationship (half sibs, grandparent-grandchild, or avuncular, and share by descent the chromosome on which the resistance allele REN1 is located. The REN1 interval was restricted to 1.4 cM using 38 SSR markers distributed across the locus and the segregation of the resistance phenotype in two progenies of collectively 461 offspring, derived from either resistant parent. The boundary markers delimit a 1.4-Mbp sequence in the PN40024 reference genome, which contains 27 genes with known functions, 2 full-length coiled-coil NBS-LRR genes, and 9 NBS-LRR pseudogenes. In the REN1 locus of PN40024, NBS genes have proliferated through a mixture of segmental duplications, tandem gene duplications, and intragenic recombination between paralogues, indicating that the REN1 locus has been inherently prone to producing genetic variation. Three SSR markers co-segregate with REN1, the outer ones confining the 908-kb array of NBS-LRR genes. Kinship and clustering analyses based on genetic distances with susceptible cultivars representative of Central Asian Vitis vinifera indicated that 'Kishmish vatkana' and 'Dzhandzhal kara' fit well into local germplasm. 'Kishmish vatkana' also has a parent-offspring relationship with the seedless table grape 'Sultanina'. In addition, the distant genetic relatedness to rootstocks, some of which are derived from North American species resistant to powdery mildew and have been used worldwide to guard against phylloxera since the late 1800's, argues against REN1 being infused into Vitis vinifera from a

  5. Study on Indicators Related with Pea Powdery Mildew Resistance%豌豆白粉病抗性相关指标的研究

    Institute of Scientific and Technical Information of China (English)

    张丽娟; 杨晓明; 陆建英; 王昶

    2015-01-01

    It is studied the relations between pea powdery mildew resistance and physiological indicators. Selected 4 kinds of pea with different resistance to pea powdery mildew. The content of soluble sugar and chloroplast changes in activity of specific enzymes such as SOD,CAT,POD,PPO and PAL are detected. The result shows that the content of chloroplast and the activity of POD,PPO and PAL are decreased as the resistance weakened,the activity of CAT was increased as the resistance weakened,while there is no significant correlation in content of the activity of SOD.The result of variance analysis illustrated the significant difference in the content of chloroplast and the activity of PPO,PAL and CAT between different cultivars (P<0.01). So it is confirmed that the content of chloroplast and the activity of PAL and CAT could used as indicator for resistance to pea powdery mildow.%为研究豌豆白粉病抗病性与各生理指标间的关系,选取4种抗性不同的豌豆品种为试材,测定各品种间叶绿素和可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性变化。结果表明,不同抗性品种中叶绿素含量、POD、PPO活性和PAL活性随豌豆白粉病抗性减弱而降低;CAT活性随豌豆白粉病抗性减弱而升高;SOD活性与豌豆白粉病抗性没有明显变化规律。方差分析结果显示,不同抗感病品种间叶绿素含量、PPO活性、PAL活性和CAT活性差异极显著(P<0.01),因此可以用叶绿素含量、PPO活性、PAL活性和CAT活性来反映对豌豆白粉病抗性的强弱。

  6. Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; WANG Yong; CHEN Yong-xing; LIU Zhi-yong; OUYANG Shu-hong; WANG Li-li; CUI Yu; WU Qiu-hong; LIANG Yong; WANG Zhen-zhong; XIE Jing-zhong; ZHANG De-yun

    2015-01-01

    Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was control ed by a single dominant gene, temporarily designated MlWE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of MlWE4 was constructed, and MlWE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes MlWE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or al eles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of MlWE4, Pm36 and Ml3D232.

  7. Melon Powdery Mildew Resistant Genes, Pathogen Differentiation Hosts and Breeding Germplasm%甜瓜白粉病的抗病基因、鉴定寄主及种质资源

    Institute of Scientific and Technical Information of China (English)

    林德佩

    2011-01-01

    This article reviews the research of melon Powdery Mildew resistant genes, pathogen differentiation hosts,germplasm for breeding resistance to Powdery Mildew. The characteristics of 13 melon lines used for PM pathogen differentiation are described.%综合了当前有关甜瓜白粉病抗病基因、病原菌种和生理小种及其载体种质资源的研究成果,同时介绍了抗白粉病种质资源在生理小种鉴定中的应用及13份甜瓜抗病种质的性状特征、特性.

  8. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line.

    Science.gov (United States)

    Jakobson, Irena; Reis, Diana; Tiidema, Anu; Peusha, Hilma; Timofejeva, Ljudmilla; Valárik, Miroslav; Kladivová, Monika; Simková, Hana; Doležel, Jaroslav; Järve, Kadri

    2012-08-01

    Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. Tähti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants. In our previous work, only a major quantitative trait locus (QTL) on chromosome 4AL of the line 8.1 contributed significantly to resistance, whereas QTL on chromosomes 1A, 1B, 2A, 5A and 5B were detected merely on a suggestive level. To verify and characterize all QTLs in the line 8.1, a mapping population of double haploid lines was established. Testing for seedling resistance to 16 different races/mixtures of Blumeria graminis f. sp. tritici revealed four highly significant non-race-specific resistance QTL including the main QTL on chromosome 4AL, and a race-specific QTL on chromosome 5B. The major QTL on chromosome 4AL (QPm.tut-4A) as well as QTL on chromosome 5AL and a newly detected QTL on 7AL were highly effective at the adult stage. The QPm.tut-4A QTL accounts on average for 33-49 % of the variation in resistance in the double haploid population. Interactions between the main QTL QPm.tut-4A and the minor QTL were evaluated and discussed. A population of 98 F(2) plants from a cross of susceptible cv. Chinese Spring and the line 8.1 was created that allowed mapping the QPm.tut-4A locus to the proximal 2.5-cM region of the introgressed segment on chromosome 4AL. The results obtained in this work make it feasible to use QPm.tut-4A in resistance breeding and provide a solid basis for positional cloning of the major QTL.

  9. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi and related species

    Directory of Open Access Journals (Sweden)

    Odvody Gary N

    2008-11-01

    Full Text Available Abstract Background A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites to detect differences at the DNA level. Results Among the 55 primers pairs designed from clones from pathotype 3 of P. sorghi, 36 flanked microsatellite loci containing simple repeats, including 28 (55% with dinucleotide repeats and 6 (11% with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40% and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from P. sorghi, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (P. maydis & P. philippinensis, sugar cane (P. sacchari, pearl millet (Sclerospora graminicola and rose (Peronospora sparsa indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to P. philippinensis (one of the potential threats to US maize production were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34

  10. [Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary].

    Science.gov (United States)

    Liang, Xi-Mei; Nie, Xiang-Ping; Shi, Zhen

    2013-10-01

    Traditional and quantitative PCR techniques were used to determine the occurrence and quantities of ARGs, including three types of genes resistant to sulfonamide, seven for tetracycline resistance and one for quinolone resistance, as well as one integron gene in typical aquaculture of the Pearl River Estuary. The results showed that all genes except for tetW were detectable in the aquaculture environment, and sull, sul2 and int1 were the most frequently detected genes (detectable percentage, 100% ). Relative abundances of ARGs increased with the prolongation of rearing time under the same aquaculture pattern, suggesting a cumulative effect. Moreover, the occurrences of ARGs in the ponds were different with different aquaculture patterns, indicating that the aquaculture pattern might play an important role in the abundances and distributions of ARGs. Relative abundances of intl, as a horizontal mobile genetic element, were significantly correlated to the levels of sull and the total ARGs (P aquaculture substantially increased the abundances of ARGs probably owning to the induction of horizontal gene transfer of ARGs among bacteria.

  11. 优质抗白粉病网纹甜瓜新品系的选育及利用%Breeding and Using of New Muskmelon Strains Which is Good in Quality and Powdery Mildew Resistant

    Institute of Scientific and Technical Information of China (English)

    李秀秀; 段爱民; 吕敬刚; 李长缨; 焦定量; 张艳宁; 加藤正弘

    2001-01-01

    Powdery mildew resistant Hami melon type variety was used tocross with muskmelon variety,then through inbreeding successively,seperating and selecting,according to the results of powdery mildew development naturally in field and artificial inoculation in seedling stage,three muskmelon strains which is powdery mildew resistant were obtained.The characteristics of their fruits were surveyed and the hybrid combinations by them were made.Three strains all show good netted veins,sick pulp and high sugar content.This will supply parent materials for breeding of new muskmelon hybrid.%利用抗病的哈密瓜类型材料与网纹类型材料杂交,结合田间自然发病和苗期人工接种抗性鉴定,通过连续自交分离选择,获得3个稳定的抗白粉病的网纹类型品系材料。经果实性状调查和杂交组合配制,3个品系均表现出网纹形成良好、果肉厚,折光糖含量高等特点,为网纹甜瓜新品种选育提供了亲本材料。

  12. Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in KEEP ON GOING, a Regulator of Abscisic Acid Signaling1[W][OA

    Science.gov (United States)

    Wawrzynska, Anna; Christiansen, Katy M.; Lan, Yinan; Rodibaugh, Natalie L.; Innes, Roger W.

    2008-01-01

    Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling. PMID:18815384

  13. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling.

    Science.gov (United States)

    Wawrzynska, Anna; Christiansen, Katy M; Lan, Yinan; Rodibaugh, Natalie L; Innes, Roger W

    2008-11-01

    Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.

  14. Research on the Resistance Induced with Multi-factors Combination of Pepper to Powdery Mildew%多因子联合诱导辣椒对白粉病的抗病性研究

    Institute of Scientific and Technical Information of China (English)

    赵建方; 陈洪美; 徐臣善; 李东臣; 张乃琴; 金桂芳

    2013-01-01

    In order to study the new method to control powdery mildew of peppers effectively ,the different in-ductive resistance factors were selected to combin into new inductive combinations ,resistance of pepers to pow-dery mildew was determined .The results showed that the inductive effect of inductive combinations on powdery mildew of peppers was better than single factor .Both successive and repeated induction of different combina-tions further improved the inductive effect ,the control rate of powdery mildew was over 80% in field ,and the effect of combined induction was higher than conventional fungicide .%为了探索有效防治辣椒白粉病的新方法,将筛选得到的多个不同的抗病诱导因子进行配伍,组合成新的诱导组合体,研究其诱导辣椒苗对白粉病的抗病性影响。结果表明:诱导组合体的诱导效应比单一因子高;用不同的诱导组合体进行相继诱导和循环诱导,进一步提高了诱导效应,对辣椒白粉病的田间防治效果达到80%以上,高于常规杀菌剂的防治效果。

  15. 部分蔷薇属种质资源的白粉病抗性评价%Assessing the Resistance of Several Rosa Germplasms to Powdery Mildew (Podosphaera pannosa)

    Institute of Scientific and Technical Information of China (English)

    王蕴红; 王金耀; 张启翔; 罗乐; 于超; 潘会堂

    2013-01-01

    The resistance to the powdery mildew of ten wild Rosa materials and four rose cultivars were assessed. The No. 2 material of Rosa beggeriana, R. oxyacantha, the No. 3 material of R. laxa and ' Kardinal' were high resistance germ-plasms. ' Sun City' , R. iliensis and the No. 1 material of R. beggeriana were high sensitive germplasms. The process of powdery mildew pathogen infection was observed under microscope. The results showed that after inoculation the mycelium and spores of powdery mildew were successfully attached on the leave surface and the mycelium increased with the days after inoculation. The infection procedure completed in 96 h-120 h after inoculation. The development of the powdery mildew on Rosa leaves were described with latent period, disease score and rate of symptom development.%对5种10份新疆野生蔷薇种质资源和4个月季品种进行了白粉病抗性评价,结果发现了弯刺蔷薇2号、尖刺蔷薇、疏花蔷薇3号和‘红衣主教’4个高抗材料,‘太阳城’、伊犁蔷薇和弯刺蔷薇1号3个易感材料,表明野生蔷薇属资源中存在较为优良的抗白粉病种质;显微观察了月季白粉病病原菌侵染叶片的过程,发现白粉病侵染月季的过程经过96 ~ 120 h即可完成,并从白粉病的潜伏时间、病情级别、病级的发展速率3个方面描述了发病过程.

  16. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.

    Science.gov (United States)

    Vivancos, Julien; Labbé, Caroline; Menzies, James G; Bélanger, Richard R

    2015-08-01

    On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses.

  17. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.

    Science.gov (United States)

    Nielsen, Kirsten A; Hrmova, Maria; Nielsen, Janni Nyvang; Forslund, Karin; Ebert, Stefan; Olsen, Carl E; Fincher, Geoffrey B; Møller, Birger Lindberg

    2006-04-01

    Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic beta-D-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing beta-D-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic beta-D-glucosidase from sorghum. This resulted in a 35-60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-beta-D-glucan exohydrolase isozyme betaII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-beta-D-glucan exohydrolase isozyme betaII was found to hydrolyze the cyanogenic beta-D-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.

  18. Evaluation of Inbred Line about Seed-used Pumpkin Resistances to the Powdery Mildew Disease%籽用南瓜优质自交系白粉病抗性初步评价

    Institute of Scientific and Technical Information of China (English)

    赵茜; 徐丽珍

    2012-01-01

    In order to select good resistant inbred lines of seed-used pumpkin to powdery mildew disease,30 kinds inbred lines of seed-used pumpkin for resistance powdery mildew disease were identified in the natural condition.The results showed that there were no immune and high resistant types.There two resistant types,accounting for 6.7% of all appraisal inbred-lines,eleven of moderate resistant material,accounting for 36.7% and 17 susceptible types,accounting for 56.7%.The difference of seed-used pumpkin for resistance powdery mildew disease was significantly among inbred-lines.%为了筛选出优质的籽用南瓜白粉病的抗性自交系,在自然发病条件下,鉴定了30份籽用南瓜自交系白粉病的抗病性。结果表明:无免疫和高抗类型;抗病类型为2份,占所有鉴定自交系的6.7%;中抗类型为11份,占所有鉴定自交系的36.7%;其余为感病类型17份,占所有鉴定自交系的56.7%。籽用南瓜自交系对白粉病的抗性都存在显著差异。

  19. [Chromosomal structure of the hybrids between Allium cepa L. and Allium fistulosum L. with relative resistance to downy mildew based on in situ hybridization].

    Science.gov (United States)

    Budylin, M V; Kan, L Iu; Romanov, V S; Khrustaleva, L I

    2014-04-01

    Genomic in situ hybridization (GISH) was used for a chromosomal composition study of the later generations of interspecific hybrids between A. cepa L. and A. fistulosum L., which are relatively resistant to downy mildew (peronosporosis). GISH revealed that F2 hybrids, which did not produce seeds, were triploids (2n = 3x = 24) with 24 chromosomes and possessed in their compliments 16 chromosomes of A. fistulosum L. and eight chromosomes of A. cepa L. or eight chromosomes of A. fistulosum L. and 16 chromosomes of A. cepa L. The advanced F5 hybrid, which produced few seeds, was amphidiploid with 32 chromosomes. BC1F5 hybrid was triploid with eight chromosomes of A. fistulosum L. and 16 chromosomes of A. cepa L., which did not produce seeds. BC2 (BC1F5) plant was amphidiploid that possessed 4 recombinant chromosomes and produced few seeds. GISH results point to 2n-gametes formation in macro- and microsporogenesis of the hybrids. The mechanism of 2n-gametes formation and the possibility of apomixes events in the backcrossing progeny are discussed.

  20. Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance

    Science.gov (United States)

    Yu, Ting; Xu, Xuewen; Yan, Yali; Qi, Xiaohua; Chen, Xuehao

    2016-01-01

    Cucumber is an economically important vegetable crop worldwide. Powdery mildew (PM) is one of the most severe diseases that can affect cucumber crops. There have been several research efforts to isolate PM resistance genes for breeding PM-resistant cucumber. In the present study, we used a chromosome segment substitution line, SSL508-28, which carried PM resistance genes from the donor parent, JIN5-508, through twelve generations of backcrossing with a PM-susceptible inbred line, D8. We performed whole-genome resequencing of SSL508-28 and D8 to identify single nucleotide polymorphisms (SNPs), and insertions and deletions (indels). When compared against the reference genome of the inbred cucumber line 9930, a total of 468,616 SNPs and 67,259 indels were identified in SSL508-28, and 537,352 SNPs and 91,698 indels were identified in D8. Of these, 3,014 non-synonymous SNPs and 226 frameshift indels in SSL508-28, and 3,104 non-synonymous SNPs and 251 frameshift indels in D8, were identified. Bioinformatics analysis of these variations revealed a total of 15,682 SNPs and 6,262 indels between SSL508-28 and D8, among which 120 non-synonymous SNPs and 30 frameshift indels in 94 genes were detected between SSL508-28 and D8. Finally, out of these 94 genes, five resistance genes with nucleotide-binding sites and leucine-rich repeat domains were selected for qRT-PCR analysis. This revealed an upregulation of two transcripts, Csa2M435460.1 and Csa5M579560.1, in SSL508-28. Furthermore, the results of qRT-PCR analysis of these two genes in ten PM resistant and ten PM susceptible cucumber lines showed that when exposed to PM, Csa2M435460.1 and Csa5M579560.1 exhibited a higher expression level of resistant lines than susceptible lines. This indicates that Csa2M435460.1 and Csa5M579560.1 are candidate genes for PM resistance in cucumber. In addition, the non-synonymous SNPs in Csa2M435460.1 and Csa5M579560.1, identified in SSL508-28 and D8, might be the key to high PM-resistance in

  1. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    Science.gov (United States)

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  2. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea

    Science.gov (United States)

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens. PMID:28197166

  3. Liquid pearls

    CERN Document Server

    Bremond, Nicolas; Bibette, Jérôme

    2010-01-01

    This fluid dynamics video reports how to form liquid core capsules having a thin hydrogel elastic membrane named liquid pearls. These fish-egg like structures are initially made of a millimetric liquid drop, aqueous or not, coated with an aqueous liquid film containing sodium alginate that gels once the double drop enters a calcium chloride bath. The creation of such pearls with micrometer thick membrane requires to suppress mixing until gelling takes place. Here, we show that superimposing a two dimensional surfactant precipitation at the interface confers a transient rigidity that can damp the shear induced instability at impact. Based on this, pearls containing almost any type of liquids can be created. The video focuses on the dynamics of the entry of the compound drop into the gelling bath.

  4. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant.

    Science.gov (United States)

    Gao, Fei; Shu, Xiaomei; Ali, Mohammad Babar; Howard, Susanne; Li, Nan; Winterhagen, Patrick; Qiu, Wenping; Gassmann, Walter

    2010-04-01

    Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety 'Cabernet Sauvignon'. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in 'Cabernet Sauvignon', while two are constitutively upregulated in 'Norton'. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsis eds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant 'Norton' and susceptible 'Cabernet Sauvignon'.

  5. [Pearl Harbor.

    Science.gov (United States)

    Johnson, Jennifer, Ed.

    1992-01-01

    This issue of "Loblolly Magazine" was written in observance of the 50th anniversary of the U.S. entrance into World War II. The publication features interviews conducted by East Texas high school students with Clarence Otterman, one of the few survivors of the crew of the USS Arizona, which was bombed during the attack on Pearl Harbor,…

  6. Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci

    Science.gov (United States)

    The genomics era brought unprecedented tools for genetic analysis of host resistance, but careful attention is needed on obtaining accurate and reproducible phenotypes so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce var...

  7. Simple Sequence Repeat Markers Useful for Sorghum Downy Mildew (Peronosclerospora sorghi) and Related Species

    Science.gov (United States)

    A recent outbreak of sorghum downy mildew, in Texas, has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically poin...

  8. Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available Lesion mimics (LMs that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3-1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD and abnormal accumulation of reactive oxygen species (ROS. The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt infection, which was consistent with the increased expression of seven pathogenesis-related (PR and two wheat chemically induced (WCI genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine

  9. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  10. Study on the Resistance of 60 Cashew Clones to Powdery Mildew Disease in Mozambique%莫桑比克60个腰果品系对腰果白粉病的抗性研究

    Institute of Scientific and Technical Information of China (English)

    王金辉; 张中润; 梁李宏; Americo Uaciquete; 黄伟坚; 黄海杰

    2013-01-01

    为研究莫桑比克腰果品系对白粉病的抗性,筛选出对白粉病具有抗性的腰果品系.在莫桑比克楠普拉省,调查了白粉病在60个腰果品系果实上的为害状况.结果显示,同一条件下,各腰果品系坚果上的白粉病为害程度差异很大.其中,品系AC34和4.2VM受白粉病的为害程度最低,其次为AZA 17/79、B4、H1和M96-2.3VM,其余品系的坚果为害率和为害指数相对较高.根据笔者调查中腰果对白粉病抗性的评价标准,60个腰果品系中,分别有高抗品系6个、抗性品系1个、中抗品系9个、感病品系21个、高感品系23个.感病品系和高感品系共占调查总数的73.3%,说明莫桑比克推广种植的腰果品系对白粉病抗性普遍较差.%In order to study the resistance of cashew to powdery mildew disease in Mozambique, and find the cashew clones that are resistant to powdery mildew disease. In Nampula Province of Mozambique, the damage of cashew fruit of 60 cashew clones caused by powdery mildew disease was investigated. The result indicated that, under the same condition, the cashew nut damage degree of different cashew clones were different. The damage degree of AC34 and 4.2VM were the lowest. The next were AZA17/79, B4, H1 and M96-2.3VM. The damage rates and damage indexes of other clones were higher relatively. According to the resistance evaluation criteria of cashew to powdery mildew disease in this paper, there were 6 high resistant clones, 1 resistant clone, 9 medium resistant clones, 21 susceptible clones and 23 high susceptible clones in the 60 investigated cashew clones. The susceptible and high susceptible clones account for 73.3% of the total samples. The most cashew clones in Mozambique were low resistant to powdery mildew disease.

  11. Identification of Molecular Genetic Markers Tightly Linked to Downy Mildew Resistant Genes in Grape%与葡萄抗霜霉病基因紧密连锁的 分子遗传标记

    Institute of Scientific and Technical Information of China (English)

    罗素兰; 贺普超; 周鹏; 郑学勤

    2001-01-01

    Bulk segregant analysis (BSA), randomly amplified polymorphic DNA(RAPD) and sequence characterized amplified region (SCAR) methods were used to tag the downy mildew-resistant genes of grape with molecular markers. Parents and their 60 individuals of an F1 progeny resulting from a cross 88-110 between 83-4-96 (Vitis quinquangularis, downy mildew-resistant) and Muscat Rose (V. vinifera, downy mildew-susceptible), three F2 progenies resulting from three crosses of self-cross and inter-cross of 88-110 F1 seedlings, as well as another interspecific F1 hybrids of 88-84 cross [Xun-3 (V. quinquangularis, downy mildew-resistant)×Ugni Blanc (V. vinifera, downy mildew-susceptible)] and the wild grapes native to China were used for the study. Among 280 Operon primers, 160 gave distinct band patterns. One RAPD marker OPO06-1500 was tightly linked to a major gene resistant to Plasmopara viticola (RPv-1). Based on Mapmaker software analysis, the map distance between RPv-1 and OPO06-1500 was 1.7cM. Marker OPO06-1500 was cloned and sequenced. According to the sequence, two specific primers were designed to amplify all plant materials. RAPD marker was converted into SCAR marker (SCO06-1500). One distinct single band only in resistant plants was amplified, whose size was the same as that of the RAPD marker. The SCAR marker’s popularity was confirmed, and it could be used for the identification of hybrid resistant to P. viticola and will be potentially useful in the development of new resistant grape cultivars.%以种间杂交组合88-110[83-4-96(毛葡萄,抗霜霉病)×粉红玫瑰(欧洲葡萄,感霜霉病)]的F1代(60个单株)及其自交或互交所得的3个F2代为试材,应用BSA、RAPD和SCAR方法研究了葡萄抗霜霉病基因的分子标记。共筛选了280个Operon引物,其中160个引物扩增出了清晰的DNA条带,发现了RAPD标记OPO06-1500与葡萄抗霜霉病主效基因(RPv-1)紧密连锁,经Mapmarker软件连锁分析,OPO06

  12. Combining ability in sweet pepper for resistance to powdery mildew Capacidade de combinação em pimentão para resistência a oídio

    Directory of Open Access Journals (Sweden)

    Cristina B Marchesan

    2009-06-01

    Full Text Available With the increase of the production of pepper in protected environment, pathogens began to cause serious damages to producers such as Leveillula taurica (Lév. Arn., fungus that causes powdery mildew. The systemic fungicides have not shown very satisfactory results. Thus, considering that protected cropping of pepper in Brazil is significant and growing, the incorporation of genes that confer resistance to powdery mildew is important for the maintenance of this cropping system. In this research, carried out in 2007 in Campinas, São Paulo State, Brazil, the agronomic performance and resistance to powdery mildew was determined by triple hybrids of sweet pepper through general and specific combining ability of their parents. For agronomic performance of the triple hybrid, it was evaluated the weight length and width average of the fruit, length and width ratio of the fruit and wall thickness. For severity of powdery mildew a scale of scores from 1 to 5 was used. For statistical and genetic analysis, it was adopted Griffing's method two, model I, adapted for partial diallel. The experimental design was completely randomized blocks, with 17 treatments, including ten experimental hybrids and seven parents, eight replications and four plants per plot. The additive effects were greater than the non-additive effects for all agronomic characters; 'P36-R' and 'Platero' were highlighted as good combiners; 'Quantum-R x HV-12', 'Rubia x HV-12' and 'P36-R x HV-12' presented the best specific combining ability; the mean square of the specific combining ability for the severity of the disease was significant indicating the importance of genes with dominant and epistatic effect; triple hybrids obtained by crosses with 'Quantum-R' and 'Rubia-R' had negative general combining ability and the best reactions to powdery mildew.Com o aumento do cultivo protegido de pimentão, patógenos como Leveillula taurica (Lév. Arn., fungo causador do oídio, passaram a causar s

  13. 兼抗全蚀病和白粉病小麦新种质的创制与鉴定%Development and Characterization of Wheat Lines with Resistance to Take-All and Powdery Mildew Diseases

    Institute of Scientific and Technical Information of China (English)

    祝秀亮; 李钊; 杜丽璞; 徐惠君; 杨丽华; 庄洪涛; 马翎健; 张增艳

    2012-01-01

    "Take-all", primarily caused by Gaeumannomyces graminis var. Tritici (Ggt), and powdery mildew, mainly caused by Blumeria graminis f. Sp. Tritici (Bgt), are important diseases of wheat (Triticum aestivum L.) worldwide. The wheat cultivar Yangmai 18 carrying a powdery mildew resistance gene Pm21, shows broad-spectrum resistance to powdery mildew. We have isolated a lipid transfer protein gene TaLTPS from wheat. To study the role of TaLTP5 in wheat defense responses to the major pathogens of take-all, we introduced this gene into Yangmai 18 via bombarding the particle containing the TaLTPS expressing vector pA25-TaLTP5. The TaLTPS transgenic wheat plants from T0 to T3 generations were subjected to PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. We also evaluated the disease resistances of the TaLTPS transgenic plants against inoculating Ggt and Bgt. The PCR and Southern blotting results showed that the alien TaLTP5 was transferred and integrated into the genomes of three transgenic wheat lines, and inherited stably in the transgenic wheat lines. The RT-PCR and Q-RT-PCR results indicated that the introduced TaLTPS was over-expressed in transgenic wheat lines, which showed significantly-enhanced resistance to take-all, suggesting that TaLTPS gene is involved in the defense response to Ggt infection. In addition, the resistance of transgenic lines to powdery mildew was not influenced by the introduced gene TaLTPS. Thus, TaLTPS transgenic wheat Yangmai 18 exhibits resistance to both "Take-all" and powdery mildew.%TaLTP5是从小麦中分离到的一个脂质转移蛋白编码基因.利用基因枪介导法将TaLTP5表达载体pA25-TaLTP5转入抗白粉病的小麦品种扬麦18(含抗白粉病基因Pm21)中,旨在选育兼抗全蚀病和白粉病的小麦新种质.对转基因小麦T0~T3代植株中引入的TaLTP5基因进行分子检测和抗病性鉴定.PCR检测、Southern杂交分析结果表明,外源TaLTP5基因已转入、整合到3个转基因小麦株系

  14. Adaptabilidade e estabilidade de genótipos de soja avaliados para resistência ao oídio Adaptability and stability of soybean genotypes evaluated for resistance to powdery mildew

    Directory of Open Access Journals (Sweden)

    Derval Gomes Pereira

    2008-10-01

    Full Text Available O objetivo desta pesquisa foi identificar genótipos de soja com adaptabilidade e estabilidade de comportamento para resistência ao oídio em condições de campo. O trabalho foi realizado no Campo Experimental Professor Diogo Alves de Mello, do Departamento de Fitotecnia, da Universidade Federal de Viçosa (UFV, em Viçosa, Minas Gerais. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições, disposto em parcelas subdivididas, com 15 genótipos (parcelas e sete épocas de avaliação (subparcela. A avaliação da incidência e severidade do oídio nos genótipos foi realizada por meio da quantificação visual do nível de infecção (NI provocado pelo oídio, sendo avaliados o nível de infecção da área foliar infectada pelo oídio (NIAFI e o nível de infecção do folíolo mais infectado pelo oídio (NIFI. Foram realizadas a análise de variância e análise de adaptabilidade e estabilidade conforme EBERHART & RUSSELL (1966. Os resultados permitiram tirar as seguintes conclusões: os genótipos que apresentaram os melhores níveis de resistência, em geral, também foram os de melhor adaptabilidade e estabilidade, tanto para NIAFI quanto para NIFI, com destaque para: UFV 89-361826 T2, UFV 94-334268, UFV-16 e UFV-19, FT-10 RC5 (F3, FT-Abyara RC6 (F2, Doko RC, FT-Abyara RC5 (F4, enquanto que os mais suscetíveis foram os de pior previsibilidade (estabilidade de comportamento, com destaque para UFV 94-5126, FT-104, UFV 94-3500, FT-Cristalina, FT-Estrela e BR-16.The objective of this research was to identify soybean genotypes with good adaptability and stability of behavior for resistance to powdery mildew in field conditions. The work was carried out at the Professor Diogo Alves de Mello Experimental Station, Agronomy Department of the Federal University of Viçosa (UFV, Viçosa, Minas Gerais. The experiment was arranged in a randomized block design, in split-plots, with 15 genotypes (plots and seven

  15. Aegilops tauschii Accessions with Geographically Diverse Origin Show Differences in Chromosome Organization and Polymorphism of Molecular Markers Linked to Leaf Rust and Powdery Mildew Resistance Genes

    Science.gov (United States)

    Majka, Maciej; Kwiatek, Michał T.; Majka, Joanna; Wiśniewska, Halina

    2017-01-01

    Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae

  16. How Specific is Non-Hypersensitive Host and Nonhost Resistance of Barley to Rust and Mildew Fungi?

    NARCIS (Netherlands)

    Niks, R.E.

    2014-01-01

    Full nonhost resistance can be defined as immunity, displayed by an entire plant species against all genotypes of a plant pathogen. Interesting biological questions are, whether the genes responsible for the nonhost status of a plant species have a general or a specific effectiveness to heterologous

  17. STUDY ON POWDERY MILDEW RESISTANCE TRANSFER FROM S. CEREALE L.cv. WEILING RYE INTO WHEAT%威岭栽培黑麦抗白粉病特性导入小麦的研究

    Institute of Scientific and Technical Information of China (English)

    张怀渝; 任正隆

    2007-01-01

    Weiling rye (S. cereale L.cv.),a Chinese dwarf rye,confers high powdery mildew(Erysiphe gramininis f.sp.tritici) in China. My8443,a wheat cultivars infecting seriously powdery mildew disease,was used as the female parent and Weiling rye was used as the donor of powdery mildew resistance in the study. A new wheat-rye translocation line,named No.147,was developed from BC2F6 progenies of wheat cultivars My8443 and Weiling rye to transfer the resistance from Weiling rye to common wheat. The powdery mildew resistance of No.147 and its parents were investigated in seedling and adult stages by artificially inoculating the mixture of advanced pathogenic races in room and field and the single pathogenic race in room. Improved Giemsa Cbanding technique and genomic in situ hybridization (GISH,Genomic in situ hybridization) were used to identify wheat and rye chromosomes. Acid polyacylamide gel electrophoresis(APAGE) separation of endosperm gliadin and simple sequence repeat(SSR) PCR amplification of 11 SCM-Se-cale cereale markers also were employed for 1RS confirmation in the study. The results showed that No.147 was a new 1BL/1RS wheat-rye chromosome translocation with high powdery mildew resistance derived from Weiling rye. The reason on the formation of the new wheat-rye chromosome translocation was analyzed. The utilizations of resistance gene resource derived from Chinese Weiling rye and the new 1BL/1RS translocation line in wheat genetics and breeding improvement were discussed in the paper.%威岭黑麦(Weiling rye)是一个高抗白粉病(Erysiphe gramininis,f.sp.tritici)的中国矮杆栽培黑麦.以Weiling rye作为白粉病抗源,高感白粉病小麦栽培品种My8443为母本,从Weiling rye与小麦My8443远缘杂交的BC2F6后代中鉴定出一个新的小麦-黑麦易位系No.147,以实现威岭黑麦白粉病抗性向普通栽培小麦的转移.No.147及其亲本的抗白粉病特性通过苗期和成株期优势生理小种混合接种和室内单生理小

  18. Frost Resistance and Permeability of Cement Stabilized Gravel used as Filling Material for Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Hertz, Kristian Dahl

    2014-01-01

    The Pearl-Chain Bridge Technology introduces a new innovative arch bridge solution which com-bines the statical advantages of an arch bridge with a minimum of traffic disturbance. The arch-shaped substructure is stabilized by a filling material, e.g. cement stabilized gravel, which should meet...

  19. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-02-03

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  20. Inheritances of Resistance to Powdery Mildew and Stripe Rust in Cryptic Alien Introgression from Thinopyrum intermedium%小偃麦渐渗系对白粉病和条锈病抗性的遗传分析

    Institute of Scientific and Technical Information of China (English)

    詹海仙; 李光蓉; 张晓军; 李欣; 畅志坚

    2012-01-01

    CH5382 is a stable cryptic alien introgression carrying resistance genes of Thinopyrum intermedium. It was highly resistant to both powdery mildew and stripe rust disease. To determine the resistance inheritances in it, CH5382 was crossed with three susceptible cultivars (line ). The adult tests of F1 , F2 and F3 progenies from these crosses and their parents were inoculated with Egt isolate E09 in Taiyuan greenhouse and with mixed Pst isolates including CYR32 at Sichuan disease nursery Respectively. It was consistent to both powdery mildew (IT0) and stripe rust (IT 0; ) for F, plants and their resistant parent CH5382 indicating complete dominance of the two resistances in these crosses. Powdery mildew resistant and susceptible segregation ratios satisfactorily fit 3R: 1S in the F2 populations and segregation ratios for stripe rust reaction of F2 progenies from these crosses suit 3R: 1S. The F2.3 lines displayed a segregation ratio of 1 (all R): 2 segregating: 1 (all S) ,demonstrating that the powdery mildew resistance and stripe rust resistance in CH5382 were conferred by a single dominant gene separately.%CH5382是一个携带中间偃麦草抗性基因的隐形异源渐渗系,它兼抗白粉病和条锈病.为明确其抗性的遗传规律,用高感品种绵阳11、台长29和SY95-71杂交,将其F1、F2、F3家系及其亲本分别在太原温室(用白粉病E09菌系接种)和四川成都电子科技大学农场(用条锈病菌CYR32接种)进行了抗性基因的遗传分析.结果表明,F1对2种病害的抗性分别为免疫(0级),近免疫(0;级);F2分离群体中,白粉病抗感分离比例符合3R:1S;条锈病的抗感分离比例也符合3R:1S;F3家系的抗感分离比例均符合1R:2Seg:1S的理论比例.说明小偃麦渐渗系CH5382对白粉病和条锈病的抗性均受1对显性基因控制.

  1. Identification of Powdery Mildew Resistant Genes based on SCAR Markers in Common Bean (Phaseolus vulgaris L.)%普通菜豆抗白粉病基因SCAR标记鉴定

    Institute of Scientific and Technical Information of China (English)

    吴星波; 郝俊杰; 张晓艳; 万述伟; 李红卫; 邵阳; 孙吉禄

    2013-01-01

    Eight SCAR primer combinations( SAU5, SS18, SF6Em3, SF12R9, SF13R10, SF18R7, SF18R15 and SMe1Em5) of common bean powdery mildew resistant genes were used to check the genome DNA of 78 common bean accessions. The SCAR primer pairs of SF12R9, SF13R10, SF18R7, SF18R15 and SMe1Em5 did not amplified target bands at all; SAU5 marker appeared in 52 accessions, SF6Em3 marker in 66 accessions, and SS18 marker in 76 accessions. 2~3 SCAR markers appeared in 76 accessions respectively. The types of powdery mildew resistant genes in each of the 78 accessions have been identified, and the accessions with pyramiding powdery mildew resistance genes were selected.%利用8个来自于普通菜豆抗白粉病基因SCAR 标记( SAU5、SS18、SF6Em3、SF12R9、SF13R10、SF18R7、SF18R15和SMe1Em5)引物组,对78份普通菜豆资源进行抗白粉病分子标记的鉴定。结果表明:在这78份资源中, SF12R9、SF13R10、SF18R7、SF18R15和SMe1Em5均无扩增带。有52份资源含有SAU5标记,66份资源含有SF6Em3标记,76份资源含有SS18标记。76份资源含有2~3个标记。该研究明确了78份参试菜豆资源所含的抗白粉病基因类型,并筛选出抗白粉病基因聚合体的参试菜豆资源。

  2. Pearls: diplopia.

    Science.gov (United States)

    Friedman, Deborah I

    2010-02-01

    Double vision may arise from ocular, neurologic, or extraocular muscle disorders. The approach to patients with diplopia requires a systematic approach to the history and the physical examination. There are many challenges in the evaluation of diplopia, ranging from the patient's mental status to the fine points of the examination. This article provides a process for interviewing and examining these patients, explaining the rationale and differential diagnosis of various clinical presentations. Common causes of monocular and binocular diplopia are addressed by the pattern of diplopia described by the patient. The examination and the interpretation of examination findings are presented by incorporating the "upside-down-and-backwards" concept. This review offers some Pearls-perhaps even diamonds-on evaluating patients who complain of diplopia, as well as those who have eye movement abnormalities but can't articulate their symptoms.

  3. Structure and evolution of barley powdery mildew effector candidates

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Themaat, Emiel Ver Loren van; McGuffin, Liam J.;

    2012-01-01

    Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute...

  4. Structure and evolution of barley powdery mildew effector candidates

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Themaat, Emiel Ver Loren van; McGuffin, Liam J.;

    2012-01-01

    Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute...... requirement to suppress or avoid host immunity if it is to survive and cause disease....

  5. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew.

    Science.gov (United States)

    Le Henanff, Gaëlle; Farine, Sibylle; Kieffer-Mazet, Flore; Miclot, Anne-Sophie; Heitz, Thierry; Mestre, Pere; Bertsch, Christophe; Chong, Julie

    2011-08-01

    Studying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.2) with similarity to Arabidopsis thaliana NPR1 (Non-Expressor of PR genes 1), a well-characterized and key signaling element of the salicylic acid (SA) pathway, were recently isolated in Vitis vinifera. In this study, functional characterization of VvNPR1.1 and VvNPR1.2, including complementation of the Arabidopsis npr1 mutant, revealed that VvNPR1.1 is a functional ortholog of AtNPR1, whereas VvNPR1.2 likely has a different function. Ectopic overexpression of VvNPR1.1 in the Arabidopsis npr1-2 mutant restored plant growth at a high SA concentration, Pathogenesis Related 1 (PR1) gene expression after treatment with SA or bacterial inoculation, and resistance to virulent Pseudomonas syringae pv. maculicola bacteria. Moreover, stable overexpression of VvNPR1.1-GFP in V. vinifera resulted in constitutive nuclear localization of the fusion protein and enhanced PR gene expression in uninfected plants. Furthermore, grapevine plants overexpressing VvNPR1.1-GFP exhibited an enhanced resistance to powdery mildew infection. This work highlights the importance of the conserved SA/NPR1 signaling pathway for resistance to biotrophic pathogens in V. vinifera.

  6. Specific In Planta Recognition of Two GKLR Proteins of the Downy Mildew Bremia lactucae Revealed in a Large Effector Screen in Lettuce

    NARCIS (Netherlands)

    Stassen, J.H.M.; Boer, den E.; Vergeer, P.W.J.; Andel, A.; Ellendorff, U.; Pelgrom, K.T.B.; Pel, M.; Schut, J.; Zonneveld, O.; Jeuken, M.J.W.; Ackerveken, van den G.

    2013-01-01

    Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by

  7. Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race-specificity

    Science.gov (United States)

    The TIR-NB-LRR gene, Resistance to Uncinula necator 1 (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic Vitis vinifera cultivars. However, powdery mildew cleistothecia ha...

  8. Resistance of melon powdery mildew isolates to kresoxim-methyl in Guangxi and determination of its sensitivity to three fungicides%广西瓜类白粉病菌对醚菌酯的抗药性及其对3种药剂的敏感性检测

    Institute of Scientific and Technical Information of China (English)

    林珊宇; 朱桂宁; 颜梅新; 贤小勇

    2014-01-01

    [Objective]The resistance level, distribution and development of melon powdery mildew isolates to kresoxim-methyl in Guangxi were identified and effective alternative fungicides were screened to provide references for prevention and controlling of melon powdery mildew. [Method]From 2007 to 2012, bitter gourd, wax gourd, muskmelon, cucumber and bottle gourd disease samples were collected from Nanning, Guiping, and Beihai, etc. Their isolates’ resistance to kresoxim-methyl were detected by leaf disk tests. Sensitivity of high-resistant isolates to carbendazim, trifloxystrobin and propineb were also analyzed. [Result]The results showed that 83 melon powdery mildew population produced resistance to kresoxim-methyl in varying degrees. Resistant isolates were mainly distributed in bitter gourd powdery mildew and their resistant fre-quency was the highest (63.89%), while bottle gourd isolates had the lowest resistant frequency (6.67%). The resistant level of bitter gourd powdery mildew against to kresoxim-methyl increased gradually from 2007 to 2012 in Nanning City, resulting in development of high-resistance population. Fungicide screening assay results indicated that powdery mildew isolates with highly resistant to kresoxim-methyl, were highly drug-fast to carbendazim and cross-resistant to trifloxystrobin, but was sensi-tive to propineb. [Conclusion]In Guangxi, melon powdery mildew isolates were highly resistant to kresoxim-methyl and al-ternate use of propineb in the production process could be recommended.%【目的】了解广西瓜类白粉病菌对醚菌酯的抗性水平、抗性菌株的分布和发展趋势,并筛选瓜类白粉病防治药剂,为瓜类白粉病的抗性预防及防治提供参考。【方法】2007~2012年从广西南宁、桂平、北海等地采集苦瓜、冬瓜、甜瓜、黄瓜和葫芦瓜白粉病菌样品,采用叶碟保湿培养法检测供试菌株对醚菌酯的抗药性,并选取高抗菌株测定其对多菌灵、肟菌

  9. Using SSH Technology to Identify Relevant Genes Resistant to Cucumber Downy Mildew%利用SSH技术鉴定黄瓜抗霜霉病相关基因

    Institute of Scientific and Technical Information of China (English)

    刘大军; 秦智伟; 周秀艳; 辛明; 武涛

    2014-01-01

    Adopting SSH technology,this paper studied on the difference expressive genes of downy mildew resistant cucumber inbred line ‘M801-3-1’ before and after the infection of downy mildew.Disease-resistant cucumber material vaccinated downy mildew and unvaccinated cDNA library was constructed using SSH technology.Forty-eight positive clones were obtained by reverse Northern blot hybridization detection, and 14 UniESTs were obtained including 8 singletons and 6 contigs via molecular biology software.The SSH-EST genes function analysis indicated that oxidative stress resistance and chloroplast reconstruction and protection mechanisms had very important role on disease resistance.At the same time,the paper put forward that Clpb,HSP70,HSP22 and peptidyl-prolyl cis-trans isomerase might be involved in the R gene-mediated defense reaction,and smHSP might be the ‘defending target’ of R protein,responsible for monitoring intracellular exception.This study has provided a key evidence for revealing the relations between active oxygen mechanism and R gene mediate protection mechanism.%采用SSH技术对黄瓜抗霜霉病自交系M801-3-1侵染霜霉病菌前后的差异表达基因进行了研究。利用 SSH 技术构建抗病黄瓜材料接种霜霉病菌和未接种差异表达的差减cDNA文库。经反向Northern blot杂交检测,共得到48个阳性克隆。利用分子生物学软件对测序后的序列进行质量检测和聚类、拼接,共得到14个UniESTs,其中包括8个singletons和6个contigs。通过SSH-EST代表基因功能的分析,说明抗氧化胁迫能力和叶绿体的重建和保护机制对抗病品种抗病有重要作用。同时,提出SSH-EST代表的clpb、HSP70、HSP22和肽脯氨酰顺反异构酶还可能参与了R基因介导的防御反应,smHSP有可能就是R蛋白的“保卫靶”,负责监测细胞内的异常,这一发现为揭示活性氧机制和R基因介导的防卫机制之间的关系提供了关键证据。

  10. Ectopic enamel pearl

    OpenAIRE

    Vandana Rathva

    2012-01-01

    Enamel pearls are one of a number of different enamel structures that can be found on the roots of deciduous and permanent teeth. They have a distinct predilection for the furcation areas of molar, particularly the maxillary third and second molars. However, they have been found less commonly on the apical portions of the root. This report describes an unusual case of enamel pearl on apical third of mandibular molar teeth. Enamel pearl was confirmed as predisposing factor for the cause of loc...

  11. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss. to Triticum aestivum (L..

    Directory of Open Access Journals (Sweden)

    Ahmed Fawzy Abdelnaby Elkot

    Full Text Available Powdery mildew (PM, caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS, the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in

  12. Epidemiology of Basil Downy Mildew.

    Science.gov (United States)

    Cohen, Yigal; Ben Naim, Yariv; Falach, Lidan; Rubin, Avia E

    2017-06-09

    Basil downy mildew (BDM) caused by the oomycete Peronospora belbahrii is a destructive disease of sweet basil (Ocimum basilicum) worldwide. It originated in Uganda in the 1930s and recently spread to Europe, the Middle East, Americas, and the Far East. Seed transmission may be responsible for its quick global spread. The pathogen attacks leaf blades, producing chlorotic lesions with ample dark asexual spores on the lower leaf surface. Oospores may form in the mesophyll of infected leaves. The asexual spores germinate on a wet leaf surface within 2 h and penetrate into the epidermis within 4 h. Spore germination and infection occur at a wide range of temperatures from 5 to 28.5°C. Infection intensity depends on the length of dew period, leaf temperature, and inoculum dose. The duration of latent period (from infection to sporulation) extends from 5 to 10 days, depending on temperature and light regime. The shortest is 5 days at 25°C under continuous light. Sporulation requires high humidity but not free leaf wetness. Sporulation occurs at 10 to 26°C. At the optimum temperature of 18°C, the process of sporulation requires 7.5 h at relative humidity ≥ 85%, with 3 h for sporophores emergence from stomata and 4.5 h for spore formation. Sporophores can emerge under light or darkness, but spore formation occurs in the dark only. Limited data are available on spore dispersal. Spores dispersed from sporulating plants contaminate healthy plants within 2 h of exposure. Settled spores may survive on leaf surface of healthy plants for prolonged periods, depending on temperature. Seed transmission of the disease occurs in Europe, but not in Israel or the United States. P. belbahrii in Israel also attacks species belonging to Rosemarinus, Nepeta, Agastache, Micromeria, and Salvia but not Plectranthus (coleus). A Peronospora species that infects coleus does not infect sweet basil. Control of BDM includes chemical, physical, and genetic means. The fungicide mefenoxam was

  13. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.

    Science.gov (United States)

    Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat

    2016-02-01

    Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture.

  14. Identification of RAPD markers linked to powdery mildew resistance gene Pm23 in wheat%小麦抗白粉病基因Pm23的RAPD标记

    Institute of Scientific and Technical Information of China (English)

    张庆利; 刘艳华; 李涛; 高居荣; 王洪刚

    2003-01-01

    The Pm23 gene of wheat confers resistance to powdery mildew,which is one of the most serious diseases in many regions of the world.In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to Pm23 gene.320 decamer primers were screened,and were one RAPD marker (OPE051100) linked in coupling phase to Pm23 .Using the F2 mapping population from a cross of Pm23×Chancellor,Pm23 was shown to be closely linked to the marker OPE051100 at a genetic distance of 10.65±3.25 cM.This marker can be conveniently used for marker-assisted selection in wheat breeding programs for the identification or pyramiding of Pm23 with other resistance genes.%小麦抗白粉病基因Pm23对世界上很多麦区流行的白粉病表现高抗或免疫.本研究以Pm23和Chancellor为抗感亲本,用集群分离分析法对抗性基因Pm23进行了RAPD分析,从320个十碱基随机引物中筛选到一个与Pm23紧密连锁的相引相标记OPE051100. 对F2分离群体进行RAPD分析表明,该标记与Pm23基因之间的连锁距离为:10.65±3.25 cM.该标记可以有效用于小麦育种分子标记辅助选择中.

  15. Ectopic enamel pearl

    Directory of Open Access Journals (Sweden)

    Vandana Rathva

    2012-04-01

    Full Text Available Enamel pearls are one of a number of different enamel structures that can be found on the roots of deciduous and permanent teeth. They have a distinct predilection for the furcation areas of molar, particularly the maxillary third and second molars. However, they have been found less commonly on the apical portions of the root. This report describes an unusual case of enamel pearl on apical third of mandibular molar teeth. Enamel pearl was confirmed as predisposing factor for the cause of localized periodontitis; it is very important to recognize their radiographic aspect to ensure proper treatment of involved teeth.

  16. Assessing the vulnerability of sorghum converted lines to anthracnose and downy mildew infection

    Science.gov (United States)

    A total of 59 converted sorghum lines and six checks were evaluated for resistance to two foliar fungal diseases, anthracnose and downy mildew (SDM) in 2008 and 2009 growing seasons at the Texas A&M AgriLife Research Farm, College Station, Texas. In 2008, 23 lines exhibited resistance (35%), 29 sus...

  17. 小麦新品系2-26中抗白粉病基因的遗传分析和RAPD标记%GENETIC ANALYSIS AND RAPD MARKERS OF POWDERY MILDEW RESISTANCE GENE IN WHEAT LINE 2-26

    Institute of Scientific and Technical Information of China (English)

    赵勤; 白罗; 傅体华

    2011-01-01

    Powdery mildew,caused by Blumeria Graminis f.sp.tritici,is one of the most important damaging diseases in many regions of the world.In present study,genetic analysis of resistance for powdery mildew in a stable wheat line 2-26,which was derived from the hybrid progeny between Triticum durum-Dasypyrum villosum amphiploid and common wheat,was carried out.The result indicated the powdery mildew resistance in line 2-26 is controlled by a single dominant gene and temporarily named Pm2-26.Molecular markers and bulked sergeant analysis were used to characterized the powdery mildew resistance gene.Two RAPD markers(SBSC2 and SBSI20) were found tightly linked to the resistance gene in line 2-26.These results provided a basis to further transfer into stable SCAR marker in future.In addition,the gene origin in line 2-26 and relationships with other resistance genes were also discussed in this paper.%由小麦白粉病菌引起的白粉病是世界上很多小麦种植区的主要病害之一。本研究对稳定抗白粉病品系2-26中的抗病基因采用常规遗传方法进行了分析。结果表明,2-26中存在一对显性抗白粉病基因,暂命名为Pm2-26。运用RAPD方法对白粉病抗感亲本和抗感池进行DNA多态性分析,获得2个紧密连锁的RAPD标记(SBSC2和SBSI20),为进一步转化为稳定可靠的SCAR标记提供了基础。

  18. 高抗白粉病小麦-山羊草新种质TA002的创制和遗传研究%Development and Genetic Analysis of a Novel Wheat-Aegilops Germplasm TA002 Resistant to Powdery Mildew

    Institute of Scientific and Technical Information of China (English)

    王玉海; 何方; 鲍印广; 明东风; 董磊; 韩庆典; 李莹莹; 王洪刚

    2016-01-01

    Objective] Powdery mildew is one of the most devastating diseases of wheat. It is widely accepted that the most economic, efficient and safest way to control powdery mildew is breeding and planting powdery mildew resistant cultivars.Aegilops ventricosa andAegilops cylindrica, which possess many favorable characters and good qualities such as resistance to diseases, tolerance to environmental stresses, are close-related relatives of wheat. The objective of this study was to develop novel powdery mildew resistant germplasm line via wide hybridization between common wheat andAegilops ventricosa and/orAegilops cylindrica for genetic improvement.[Method] Improved fuchsin squash and seed set examination were used to determine the cytogenetic stability and fertility of TA002. Acid polyacrylamide gel electrophoresis (A-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to analyze the subunit composition of gliadin, high and low molecular weight glutenin (HMW-GS and LMW-GS) respectively. Genomicin situ hybridization (GISH), multicolor genomicin situ hybridization (mc-GISH), multicolor fluorescencein situhybridization (mc-FISH) and molecular markers were employed to detect the genetic nature of TA002. Respective inoculation of powdery mildew isolates was performed to detect the reaction of TA002 to powdery mildew.[Result] TA002 (2n = 42) showed equivalent seed set to that of common wheat. Both TA002 and its hybrid F1 with common wheat Mingxian169 housed 21 bivalents in the pollen mother cells observed at metaphase I (PMCs MI) and took on chromosomal segregation of 21 to 21 in pollen mother cells examined at anaphase I (PMCs AI). Contrast to wheat parent Yannong15 highly susceptible to powdery mildew, TA002, similar to SDAU18 and its parentsAegilops ventricosa andAegilops cylindrica, was highly resistant to powdery mildew. Immunization and resistant-susceptible segregation of 3﹕1 was observed respectively in F1and F2 of the crosses

  19. 小麦种质N9820抗白粉病的特异基因表达谱分析%Expression of special genes resistant to powdery mildew ( Blumeria graminis f.sp.tritici) in wheat germplasm N9820

    Institute of Scientific and Technical Information of China (English)

    吴金华; 马峙英; 张西平; 吉万全

    2012-01-01

    Wheat germplasm N9820, developed by our research group, is a resistant material to powdery mildew. In order to understand the resistant mechanism of wheat germplasm N9820 to powdery mildew infection, a suppression subtraction hybridization (SSH) cDNA library was constructed with cDNA from N9820 leaf inoculated with Blumeria graminis as the tester and cDNA from N9820 healthy leaf as the driver. A total of 122 positive clones were randomly chosen from the SSH-cDNA library. After screening of repeated and redundant sequences, 61 ESTs were acquired. Nucleic acid and protein homology search were performed using the BLAST (Basic Local Alignment Search Tool) program with the default settings at NCBI website (http:// www. ncbi. nlm. nih. gov). BlastX results in nr-protein database revealed that 35 ESTs were highly homologous with known proteins involved in signal transduction, metabolism, cell structure, energy metabolism, transport, protein synthesis and processing, and disease resistance. BlastNr results showed that 47 ESTs had high identities with known ESTs, and 14 ESTs matched none in the nr-database. Compared with BlastX and BlastNr analysis, 19 ESTs were both in the nucleic acid and protein databases including 5 for energy metabolism, 2 for transport, 3 for protein synthesis and processing, and 2 for disease resistance. The most frequent sequence was ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit.

  20. Pearl Harbor Biological Survey

    Science.gov (United States)

    1974-08-30

    Distribution of Porifera (Wet Weight in Grams) Collected in Piling Samples from Pearl Harbor, Oahu 2.4-26 2.4-7. Syllidae 2.4-28 2.4-8. Cirratulidae...COLLECTED FROM PEARL HARBOR m .-. Sped es/Group Porifera Demospongiae Cnidaria Hydrozoa Hydrdda Anthozoa Actlnarla Stolchactlnldae Radianthus...and abundance data for 113 taxa (species, genera and higher taxa) are provided in Table 2.4-4. Wet weights are listed for all sponges ( porifera ). The

  1. Selection pressure exerted by host resistance genes shapes the population genetic structure of the lettuce downy mildew, Bremia lactucae, in France

    OpenAIRE

    Valade, Romain; Ducasse, Aurélie; Maisonneuve, Brigitte; Neema, Claire,

    2012-01-01

    Most pathogens are submitted to high selection pressure which can be induced by several variables (climatic, biotic, anthropogenicoe) according to their life traits. In the case of plant pathogens, host resistance may be considered as the main driving force of pathogen evolution, with pathogens evolving to overcome host resistance. In the interaction between Bremia lactucae and Lactuca sativa, several specific resistance genes are used to counter this pathogen in crops. In turn, pathogens sho...

  2. Effects of the Epichloёgansuensis endophyte on the disease resistance of drunken horse grass to powdery mildew%内生真菌对醉马草白粉病抗性的影响

    Institute of Scientific and Technical Information of China (English)

    柳莉; 郭长辉; 吕卉; 古丽君; 李春杰

    2015-01-01

    Previous studies have shown that endophytes can increase the resistance of drunken horse grass (Ach-natherum inebrians )to many stresses,such as insects,diseases,waterlogging,drought,salt,and heavy met-als.The aim of this study was to compare the resistance of endophyte-infected (E+ )and endophyte-free (E- ) drunken horse grass to powdery mildew (Blumeria graminis ).Forty pots of drunken horse grass (20 E+plants and 20 E- plants)were grown in a greenhouse.After 2 months,the natural infection rates,the percent-age of diseased leaves,and the disease indexes of powdery mildew in both E+ and E- plants were estimated and recorded.At the same time,the E+ and E- drunken horse grass plants were scored as healthy,slightly dis-eased,or severely diseased based on a disease index.Then,four replicates of E+ and E- plants were randomly selected to measure several physiological indexes;chlorophyll content,activities of superoxide dismutase (SOD)and peroxidase (POD),and the contents of malondialdehyde (MDA)and proline (Pro).Chlorophyll content was measured by acetone extraction,SOD and POD activities were evaluated using nitroblue tetrazoli-um and guaiacol assays,respectively,and MDA and Pro contents were determined using the sulfosalicylic acid and glucosinolate barbituric acid methods,respectively.The disease infection rate,the percentage of diseased leaves,and disease indexes of E- plants were 97%,86%,and 82.49,respectively,significantly higher (P <0.05)than their respective values in E+ plants (48%,60%,and 50.76).The chlorophyll and proline contents and SOD and POD activities were higher in E+ plants than in E- plants,regardless of whether the plants were slightly or severely infected.The MDA content was significantly (P <0.05 )lower in E+ plants than in E-plants.These results provide evidence that endophyte infection can increase the resistance of drunken horse grass to powdery mildew disease.%为研究内生真菌对醉马草白粉病抗性的影响,在温室条件下,

  3. Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley

    NARCIS (Netherlands)

    Gonzalez, A.M.; Marcel, T.C.; Kohutova, Z.; Stam, P.; Linden, van der C.G.; Niks, R.E.

    2010-01-01

    Background - Higher plants possess a large multigene family encoding secreted class III peroxidase (Prx) proteins. Peroxidases appear to be associated with plant disease resistance based on observations of induction during disease challenge and the presence or absence of isozymes in resistant vs sus

  4. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation.

    Science.gov (United States)

    McDowell, J M; Cuzick, A; Can, C; Beynon, J; Dangl, J L; Holub, E B

    2000-06-01

    To better understand the genetic requirements for R gene-dependent defense activation in Arabidopsis, we tested the effect of several defense response mutants on resistance specified by eight RPP genes (for resistance to Peronospora parasitica) expressed in the Col-0 background. In most cases, resistance was not suppressed by a mutation in the SAR regulatory gene NPR1 or by expression of the NahG transgene. Thus, salicylic acid accumulation and NPR1 function are not necessary for resistance mediated by these RPP genes. In addition, resistance conferred by two of these genes, RPP7 and RPP8, was not significantly suppressed by mutations in either EDS1 or NDR1. RPP7 resistance was also not compromised by mutations in EIN2, JAR1 or COI1 which affect ethylene or jasmonic acid signaling. Double mutants were therefore tested. RPP7 and RPP8 were weakly suppressed in an eds1-2/ndr1-1 background, suggesting that these RPP genes operate additively through EDS1, NDR1 and as-yet-undefined signaling components. RPP7 was not compromised in coi1/npr1 or coi1/NahG backgrounds. These observations suggest that RPP7 initiates resistance through a novel signaling pathway that functions independently of salicylic acid accumulation or jasmonic acid response components.

  5. Genetic Analysis and Gene Deduction of Powdery Mildew Resistance in T. durum-Ae. squarrosa Amphidiploids%硬粒小麦-粗山羊双二倍体白粉病抗性的遗传分析与基因推导

    Institute of Scientific and Technical Information of China (English)

    胡英考; 辛志勇; 陈孝; 张增艳; 段霞瑜

    2001-01-01

    对99份硬粒小麦-粗山羊双二倍体用北京地区流行的5号白粉菌生理小种进行了白粉病抗性鉴定,筛选出11个苗期抗病的双二倍体材料和2个全生育期抗病的材料M53和M81。对M53和M81及其硬粒小麦和粗山羊草亲本进行的抗白粉病鉴定结果表明,其抗性来源于粗山羊草。与M53和M81具有相同硬粒小麦亲本、不同粗山羊草亲本双二倍体的抗性结果也表明抗性基因来源于粗山羊草。对M53和M81的抗性遗传分析表明,它们均携带1个单显性抗病基因。用14个白粉菌生理小种对已知抗病基因品系与M53和M81两份待测材料进行接种鉴定,结果表明,M53和M81与已知基因的抗菌谱均不相同,M53与M81的抗菌谱也不相同,说明M53和M81各自分别携带1个新的显性抗白粉病基因。%Eleven seedlings with resistance and two amphidiploids with disease resistanceatalldevelopmental stagewerescreened by using No.15 isolate of E. graminis f. sp. tritici to inoculate 99 T. durum-Ae. squarrosa amphidiploids. The two amphidiploids with disease resistance at all developmental stage, M53 and M81, and their Ae. squarrosa parents were resistant to No.15 isolate of powdery mildew payhogen, but their T. durum parents were susceptible. Therefore, the powdery mildewresistance of M53 and M81 were derived from Ae. squarrosa. Amphidiploid M74, which had the same durum parent as M53 but different Ae. squrrosa parent, was susceptible to No.15 isolate in adult stage. M29 and M35, which had the same durum parent as M81 but different Ae. squarrosa parent were susceptible in all stage. These results were also proved that the powdery mildew resistance genes were derived from Ae. sqarrosa. Genetic analysis showed that powdery mildew resistance gene in M53 or M81 was a single dominant gene. A series of lines with known powdery mildew resistance genes and two unknown lines were used to test response patterns with 14 differential isolates of

  6. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  7. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  8. Host cell entry of powdery mildew is correlated with endosomal transport of antagonistically acting VvPEN1 and VvMLO to the papilla.

    Science.gov (United States)

    Feechan, A; Jermakow, A M; Ivancevic, A; Godfrey, D; Pak, H; Panstruga, R; Dry, I B

    2013-10-01

    Challenge by a nonadapted powdery mildew fungal pathogen leads to the formation of a local cell-wall apposition (papilla) beneath the point of attempted penetration. Several plasma membrane (PM) proteins with opposing roles in powdery mildew infection, including Arabidopsis thaliana PENETRATION1 (PEN1) and barley (Hordeum vulgare) MILDEW RESISTANCE LOCUS O (MLO), are localized to the site of powdery mildew attack. PEN1 contributes to penetration resistance to nonadapted powdery mildews, whereas MLO is a susceptibility factor required by adapted powdery mildew pathogens for host cell entry. Our previous studies have demonstrated that the vesicle and endosomal trafficking inhibitors, brefeldin A and wortmannin, have opposite effects on the penetration rates of adapted and nonadapted powdery mildews on grapevine. These findings prompted us to study the pathogen-induced intracellular trafficking of grapevine variants of MLO and PEN1. We first identified grapevine (Vitis vinifera) VvPEN1 and VvMLO orthologs that rescue Arabidopsis Atpen1 and Atmlo2 mlo6 mlo12 null mutants, respectively. By using endomembrane trafficking inhibitors in combination with fluorescence microscopy, we demonstrate that VvMLO3/VvMLO4 and VvPEN1 are co-trafficked together from the PM to the site of powdery mildew challenge. This focal accumulation of VvMLO3/VvMLO4 and VvPEN1 to the site of attack seems to be required for their opposing functions during powdery mildew attack, because their subcellular localization is correlated with the outcome of attempted powdery mildew penetration.

  9. The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid.

    Science.gov (United States)

    Bittner-Eddy, P D; Beynon, J L

    2001-03-01

    RPP13-Nd-mediated resistance prevents parasitism by five isolates of Peronospora parasitica (At) in a transgenic Arabidopsis. Columbia background. We tested the effect of a number of known disease resistance mutations on the RPP13-Nd function and found that resistance remained unaltered in plants carrying mutations in either EDS1 or NDR1 and in double ndr1-1/eds1-2 mutant lines. Furthermore, we found that pbs2, pad4-1, npr1-1, and rps5-1, which compromise resistance to a number of P. parasitica (At) isolates, had no affect on RPP13-Nd function. In addition, RPP13-Nd-mediated resistance remained unchanged in a background of salicylic acid depletion (nahG). We conclude that RPP13-Nd is the first Arabidopsis R gene product reported to act via a novel signaling pathway that is independent of salicylic acid-mediated responses and is completely independent of NDR1 and EDS1.

  10. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    Science.gov (United States)

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  11. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c

    DEFF Research Database (Denmark)

    Zhang, Wen-Jing; Pedersen, Carsten; Kwaaitaal, Mark Adrianus Cornelis J

    2012-01-01

    A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector...... candidate, CSEP0055, contributes to the aggressiveness of the fungus. This result suggests that CSEP0055 is involved in the suppression of plant defence. A yeast two-hybrid screen indicated that CSEP0055 interacts with members of the barley pathogenesis-related protein families, PR1 and PR17. Interaction...... with PR17c was confirmed by bimolecular fluorescence complementation analyses. Down-regulation and over-expression of PR17c in epidermal cells of barley confirmed that this protein is important for penetration resistance against the powdery mildew fungus. In line with this, PR17c was found...

  12. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine

    NARCIS (Netherlands)

    Pessina, Stefano; Lenzi, Luisa; Perazzolli, Michele; Campa, Manuela; Costa, Dalla Lorenza; Urso, Simona; Valè, Giampiero; Salamini, Francesco; Velasco, Riccardo; Malnoy, Mickael

    2016-01-01

    Erysiphe necator is the causal agent of powdery mildew (PM), one of the most destructive diseases of grapevine. PM is controlled by sulfur-based and synthetic fungicides, which every year are dispersed into the environment. This is why PM-resistant varieties should become a priority for sustainable

  13. Meta-analysis reveals a critical period for management of powdery mildew on Hop cones

    Science.gov (United States)

    Results of 28 field trials conducted over a 12-year period investigating management of hop powdery mildew caused by Podosphaera macularis were quantitatively summarized by meta-analysis to compare product efficacy and use patterns by mode of action as defined by Fungicide Resistance Action Committe...

  14. Identification of genes affecting the response of tomato and Arabidopsis upon powdery mildew infection

    NARCIS (Netherlands)

    Gao, D.

    2014-01-01

      Many plant species are hosts of powdery mildew fungi, including Arabidopsis and economically important crops such as wheat, barley and tomato. Resistance has been explored using induced mutagenesis and natural variation in the plant species. The isolated genes encompass loss-of-function susc

  15. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew.

    Science.gov (United States)

    Molitor, Alexandra; Zajic, Doreen; Voll, Lars M; Pons-K Hnemann, Jorn; Samans, Birgit; Kogel, Karl-Heinz; Waller, Frank

    2011-12-01

    Colonization of barley roots with the basidiomycete fungus Piriformospora indica (Sebacinales) induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis f. sp. hordei (B. graminis). To identify genes involved in this mycorrhiza-induced systemic resistance, we compared the leaf transcriptome of P. indica-colonized and noncolonized barley plants 12, 24, and 96 h after challenge with a virulent race of B. graminis. The leaf pathogen induced specific gene sets (e.g., LRR receptor kinases and WRKY transcription factors) at 12 h postinoculation (hpi) (prepenetration phase) and vesicle-localized gene products 24 hpi (haustorium establishment). Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis. Both B. graminis and P. indica increased glutamine and alanine contents, whereas substrates for starch and nitrogen assimilation (adenosinediphosphate- glucose and oxoglutarate) decreased. In plants that were more B. graminis resistant due to P. indica root colonization, 22 transcripts, including those of pathogenesis-related genes and genes encoding heat-shock proteins, were differentially expressed ?twofold in leaves after B. graminis inoculation compared with non-mycorrhized plants. Detailed expression analysis revealed a faster induction after B. graminis inoculation between 8 and 16 hpi, suggesting that priming of these genes is an important mechanism of P. indica-induced systemic disease resistance.

  16. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus

    Science.gov (United States)

    Barley Mla (Mildew resistance locus a) confers allele-specific interactions with natural variants of the ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of powdery mildew disease. Significant reprogramming of host gene expression occurs upon infection by this obligate biotrop...

  17. Powdery Mildew Control and Yield Response of Inodorus Melon

    Directory of Open Access Journals (Sweden)

    Ippolito Camele

    Full Text Available The research was carried out on melon (Cucumis melo L. var. inodorus Naud. in 2006 and 2007 at “Pantanello” Experimental Farm (40° 24’N; 16° 48’E; 10 m a.s.l.; Metaponto, southern Italy to evaluate the efficacy of a low environmental impact control strategy against powdery mildew of cucurbits. Winter melon was treated with a new anti-oidium formulation, called Stifénia, obtained from fenugreek seeds and stimulating the plant self-defence. The adopted experimental design included two control strategies (1. biological, using Stifénia and 2. conventional, using penconazole, myclobutanil and sulphur and an untreated control (treated with water alone applied to two cultivars of inodorus melon (cv ‘Amarillo’ and HF1 ‘Cocorito’, the latter a genotype resistant to powdery mildew. Stifénia applications were not effective against the disease; in fact, there were no differences in percentage of attacked plant surface between treated plots and untreated ones. The melon marketable yield was significantly higher with the conventional strategy respect to Stifénia and control. Repeated applications of Stifénia resulted in a significant decrease of marketable yield even in comparison with the untreated control. The cultivars significantly affected powdery mildew development, since the resistant one (‘Cocorito’ was attacked later and damaged always lower than the non-resistant genotype (‘Amarillo’. Laboratory analyses carried out on infected leaves always confirmed that Golovinomyces cichoracearum D.C. was responsible of the disease.

  18. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew

    DEFF Research Database (Denmark)

    Chen, Yan-Jun; Perera, Venura; Wagner, Michael

    2013-01-01

    a transgenic approach to constitutively silence HvNAC6 expression, using RNA interference (RNAi), to investigate the in vivo functions of HvNAC6 in basal resistance responses in barley in relation to the phytohormone ABA. The HvNAC6 RNAi plants displayed reduced HvNAC6 transcript levels and were more...... susceptible to Bgh than wild-type plants. Application of exogenous ABA increased basal resistance against Bgh in wild-type plants, but not in HvNAC6 RNAi plants, suggesting that ABA is a positive regulator of basal resistance which depends on HvNAC6. Silencing of HvNAC6 expression altered the light....../dark rhythm of ABA levels which were, however, not influenced by Bgh inoculation. The expression of the two ABA biosynthetic genes HvNCED1 and HvNCED2 was compromised, and transcript levels of the ABA conjugating HvBG7 enzyme were elevated in the HvNAC6 RNAi lines, but this effect was not clearly associated...

  19. 氯化胆碱诱导黄瓜抗白粉病机理研究%Studies on Cucumber Resistance Mechanism to Powdery Mildew Induced by Choline Chloride

    Institute of Scientific and Technical Information of China (English)

    陈夕军; 沈世炜; 陈银凤; 张青; 张家豪; 张孝然; 黄奔立

    2013-01-01

    Choline chloride is a new growth regulator. When the cucumber seedlings were treated with 10 mmol·L-1 choline chloride,their plant height,root length,dry weight,fresh weight,and chlorophyll content were remarkably improved.Studies on induce resistance mechanism showed that the content or activity of β-1,3-glucanase,chitinase,hydroxyproline rich glycoproteins(HRGP)and malondialdehyde(MAD)of cucumber seedlings were significantly increased after being treated with choline chloride.The conidiospores of Sphaerotheca fuliginea were inoculated on the cucumber leaves treated with choline chloride.The results showed that the germination rate of conidiospores was decline. The length of germ tubes was shorter and the number of new conidia strings was less than the contrast. Choline chloride treatment on cucumber plants can delay and alleviate the occurrence of powdery mildew.%氯化胆碱是一种新型广效的生长调节剂,以10 mmol·L-1氯化胆碱处理黄瓜幼苗可明显提高植株的株高、根长、鲜质量、干质量和叶绿素含量。诱导抗性机理研究表明:氯化胆碱处理后,黄瓜幼苗体内β-1,3-葡聚糖酶、几丁质酶活性及富含羟脯氨酸糖蛋白、丙二醛含量均明显上升。以白粉病菌分生孢子接种经氯化胆碱处理过的黄瓜叶片,结果显示分生孢子萌发率较低,芽管较短,且新产生的分生孢子串数量较少。用氯化胆碱处理黄瓜植株,可延迟和减轻黄瓜白粉病的发生。

  20. Growing Water Pearls

    Science.gov (United States)

    Milner-Bolotin, Marina

    2012-01-01

    Science teachers can find lesson ideas almost anywhere. For example, during a recent visit to a local dollar store, the author stumbled upon a flower vase filled with water pearls, also known as water beads and jelly beans. She bought several of the bags (search the web to find numerous online sources), and soon began experimenting. Water pearls…

  1. The Pearl of Dream

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Since Fanghua opened it first store in the Grand Hyatt Hotel near Beijing’s Wangfujing Street in January 2005, the pearl brand has gone from strength to strength.In August 2007,two new stores were opened, both standing in Beijing’s prime locations -the Shangri-La Hotel and the China

  2. Anatomical structure of leaf sectors with different resistance to powdery mildew (Erisiphe cruciferarum Opiz ex. L. Junell in winter rapeseed chimera

    Directory of Open Access Journals (Sweden)

    J. Cebrat

    2014-02-01

    Full Text Available The subject of the study was a sectorial chimera of dihaploid winter rapeseed, obtained with the help of gamma ray treatment (30 Gy during shoot cloning in vitro. One sector of the plant was infected by Erisiphe cruciferarum Opiz ex. L. Junell and the other one was resistant. The anatomical structure of a leaf, divided into the two sectors along the midrib, was studied. The infected part of the leaf blade was thinner and built of a smaller number of palisade and spongy mesophyll cell layers. The size of cells in this sector, both in the epidermis and in the mesophyll, as well as the size of nuclei, chloroplasts and intercellular spaces were bigger than those in the resistant portion. On the other hand, the stomata in the infected segment were smaller but their number was higher than that in the healthy part. The study made it possible to analyse the relation between the anatomical structure of the host plant and the pathogen.

  3. Screening for SSR markers linked to wheat powdery mildew resistance gene Pm2%小麦抗白粉病基因Pm2的SSR标记筛选

    Institute of Scientific and Technical Information of China (English)

    王黎明; 朱玉丽; 李兴锋; 王洪刚

    2011-01-01

    为筛选与小麦抗白粉病基因Pm2紧密连锁的分子标记,将感病品种Chancellor与Pm2的近等基因系杂交,获得F1、F2分离群体,采用分离群体分组法对Pm2进行了微卫星(microsatellite,又称simple sequence repeats,SSR)标记分析.结果表明,定位于小麦5D染色体上的71对SSR引物中有12对引物能在Pm2的近等基因系、Chancellor间稳定地揭示出多态性差异,7对引物Xcfd189、Xcfd29、Xcfd8、Xcfd102、Xcfd7、Xcfd57和Xgwm190分别能在抗病、感病池间和F2分离群体的抗病、感病单株间稳定地扩增出特异性产物.7对引物所扩增的特异谱带分别为:Xcfd189360、Xcfd29190、Xcfd8160、Xcfd102250、Xcfd7200、Xcfd57245和Xgwm190210,它们与Pm2基因间的遗传距离分别为0、1.5、2.3、5.4、10.2、31.5和54.3 cM,其中标记Xcfd189360与Pm2共分离,标记Xcfd29190、Xcfd8160和Xcfd102250与Pm2紧密连锁,可用于Pm2的标记辅助选择.%To detect molecular markers linked to wheat powdery mildew resistance gene Pni2, microsatel-lite (simple sequence repeats, SSR) markers and bulked segregant analysis (BSA) method were used in the F2 segregation population derived from the F, of between common wheat susceptible cultivar Chancellor and Pm2 near-isogonics line ( NIL). The polymorphisms were revealed by 12 from 71 pairs SSR primers originally assigned to chromosome 5D of wheat between NIL of Pm2 and Chancellor. The polymorphic bands were found by 7 of these 12 SSR primers between the resistant and susceptible DNA pools, and the resistant and susceptible plants of the F2 population, respectively. These specific DNA bands were designated as Xcfd 189360, Xcfd29190, Xcfd8160, XcfdlO22JO, Xcfd, Xcfd57245 and Xgwml90210, respectively. The genetic distance between these marks and Pm2 was 0, 1.5, 2. 3, 5.4, 10. 2, 31.5 and 54. 3 cM, respectively. On the genetic linkage map of Pm2, Xcfdl89360 was shown to co-segregate with the Pm2 gene, and markers Xcfd29190, Xcfd8l60 and Xcfdl02j50

  4. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew.

    Science.gov (United States)

    Tayeh, Christine; Randoux, Béatrice; Bourdon, Natacha; Reignault, Philippe

    2013-12-15

    Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.

  5. Exogenous trehalose induces defenses in wheat before and during a biotic stress caused by powdery mildew.

    Science.gov (United States)

    Tayeh, Christine; Randoux, Béatrice; Vincent, Dorothée; Bourdon, Natacha; Reignault, Philippe

    2014-03-01

    Powdery mildew would be one of the most damaging wheat diseases without the extensive use of conventional fungicides. Some of the alternative control strategies currently emerging are based on the use of resistance inducers. The disacharride trehalose (TR) is classically described as an inducer of defenses in plants to abiotic stress. In this work, the elicitor or priming effect of TR was investigated in wheat both before and during a compatible wheat-powdery mildew interaction through molecular, biochemical, and cytological approaches. In noninoculated conditions, TR elicited the expression of genes encoding chitinase (chi, chi1, and chi4 precursor), pathogenesis-related protein 1, as well as oxalate oxidase (oxo). Moreover, lipid metabolism was shown to be altered by TR spraying via the upregulation of lipoxygenase (lox) and lipid-transfer protein (ltp)-encoding gene expression. On the other hand, the protection conferred by TR to wheat against powdery mildew is associated with the induction of two specific defense markers. Indeed, in infectious conditions following TR spraying, upregulations of chi4 precursor and lox gene expression as well as an induction of the LOX activity were observed. These results are also discussed with regard to the impact of TR on the fungal infectious process, which was shown to be stopped at the appressorial germ tube stage. Our findings strongly suggest that TR is a true inducer of wheat defense and resistance, at least toward powdery mildew.

  6. Antibiotic-Resistant Extended Spectrum ß-Lactamase- and Plasmid-Mediated AmpC-Producing Enterobacteriaceae Isolated from Retail Food Products and the Pearl River in Guangzhou, China

    Science.gov (United States)

    Ye, Qinghua; Wu, Qingping; Zhang, Shuhong; Zhang, Jumei; Yang, Guangzhu; Wang, Huixian; Huang, Jiahui; Chen, Mongtong; Xue, Liang; Wang, Juan

    2017-01-01

    We conducted a survey in 2015 to evaluate the presence of extended spectrum β-lactamase (ESBL)- and plasmid-mediated AmpC-producing Enterobacteriaceae in retail food and water of the Pearl River in Guangzhou, China, as well as their antibiotic resistance profiles. Samples (88 fresh food samples and 43 water samples) from eight different districts were analyzed by direct plating and after enrichment. Multidrug-resistant strains were found in 41.7 and 43.4% of food and water samples, respectively. ESBLs were found in 3.4 and 11.6% of food and water samples, respectively, and AmpC producers were found in 13.6 and 16.3% of food and water samples, respectively. Molecular characterization revealed the domination of blaCTX−Mgenes; plasmidic AmpC was of the type DHA-1 both in food and water samples. Thirteen of Fifty one β-lactamase-producing positive isolates were detected to be transconjugants, which readily received the β-lactamase genes conferring resistance to β-lactam antibiotics as well as some non-β-lactam antibiotics. These findings provide evidence that retail food and the river water may be considered as reservoirs for the dissemination of β-lactam antibiotics, and these resistance genes could readily be transmitted to humans through the food chain and water. PMID:28217112

  7. Insights into the recent emergence of powdery mildew on its 'new' host triticale: from origin to disease control.

    Science.gov (United States)

    Troch, Veronique; Audenaert, Kris; Bekaert, Boris; Höfte, Monica; Haesaert, Geert

    2014-01-01

    The development of new crop species and their associated agro-ecosystems led simultaneously to the emergence of new pathogens (Stukenbrock and McDonald, 2008). This research focused on the recent emergence of powdery mildew (Blumeria graminis) on triticale (x Triticosecale Wittmack). In a first part, we aimed to gain insights into the evolutionary origin of this pathogen on its new host. A secondary aim was to investigate the presence of powdery mildew resistance in current commercial triticale cultivars, including its cellular basis of resistance. To address these research goals, we have pursued a molecular, pathological and cytological approach. This discussion will reflect on the experimental findings described in this research and their impact for future management of powdery mildew on triticale and other cereals.

  8. Management of Powdery Mildew in Squash by Plant and Alga Extract Biopesticides.

    Science.gov (United States)

    Zhang, Shouan; Mersha, Zelalem; Vallad, Gary E; Huang, Cheng-Hua

    2016-12-01

    Although many fungicides are registered for use to control powdery mildew on cucurbits, management of resistance to fungicides in pathogen populations still remains a major challenge. Two biopesticides Regalia SC and HMO 736 were evaluated in the greenhouse and field for their efficacy against powdery mildew in squash. In greenhouses, Regalia SC alone significantly (P powdery mildew compared to the nontreated control, and was as effective as the chemical standard Procure 480SC (triflumizole). In alternation with Procure 480SC, Regalia SC demonstrated greater or equivalent effects on reducing the disease. HMO 736 alone showed varying levels of disease control, but alternating with Procure 480SC significantly improved control efficacy. In addition, application of Regalia SC or HMO 736 each in alternation with Procure 480SC significantly increased the chlorophyll content in leaves and the total fresh weight of squash plants, when compared with the water control, Regalia SC and HMO 736 alone. In field trials, application of Regalia SC and HMO 736 each alone significantly reduced disease severity in one of two field trials during the early stage of disease development, but not during later stages when disease pressure became high. Both Regalia SC and HMO 736 each applied in alternation with Procure 480SC significantly improved the control efficacy compared to Procure 480SC alone. Results from this study demonstrated that an integrated management program can be developed for powdery mildew in squash by integrating the biopesticides Regalia SC, HMO 736 with the chemical fungicide Procure 480SC.

  9. Water Pearls Optics Challenges for Everybody

    Science.gov (United States)

    Milner-Bolotin, Marina

    2012-01-01

    Water pearls are superabsorbent polyacrylate beads that can expand about 200 times when submerged in water and are often used for decorative purposes in flower vases. A bag of pearls costs about a dollar. The pearls are very useful for teaching science, especially optics. Since water pearls are mainly made of water, their index of refraction…

  10. Water Pearls Optics Challenges for Everybody

    Science.gov (United States)

    Milner-Bolotin, Marina

    2012-01-01

    Water pearls are superabsorbent polyacrylate beads that can expand about 200 times when submerged in water and are often used for decorative purposes in flower vases. A bag of pearls costs about a dollar. The pearls are very useful for teaching science, especially optics. Since water pearls are mainly made of water, their index of refraction…

  11. rDNA-ITS sequence analysis of pathogens of cucumber downy mildew and cucumber powdery mildew

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Yajun MA; Cuiyun YANG; Guanghui DAI; Zhezhi WANG

    2008-01-01

    To determine the pathogens of cucumber downy mildew and cucumber powdery mildew by molecular marker,we amplified and sequenced the rDNA-ITS region of the pathogens of cucumber downy mildew and cucumber powdery mildew collected from the Shanghai region.The intra-/interspecific sequence difference was analyzed by rDNA-ITS sequence.The results show that the length of rDNA-ITS1 and rDNA-ITS2 of cucumber downy mildew's pathogen was 141 bp and 406 bp,respectively,with GC contents of 41.13% in ITS1 and 46.8% (Minhang and Jinshan District,sml and sm2) or 46.55% (Pudong District,sm3) in ITS2.The rDNA-ITS sequence was intraspecific conservation.The interspecific difference was related with their kin relationship.The pathogen of cucumber downy mildew was identified as Pseudoperonospora cubensis by molecular marker.The length of rDNA-ITS1 and rDNA-ITS2 of cucumber powdery mildew's pathogen was 136 bp and 89 bp,respectively,with GC contents being 59.56% and 66.29%,and rDNA-ITS sequence being highly conservative in this study that was the same as Sphaerotheca cucurbitae.But the sequence difference between the strains in the Shanghai region in this study with S.fuliginea was 4.5%,which was identified by morphology.It is suggested that the pathogen of cucumber powdery mildew should be further clarified and determined.

  12. Genomic identification, phylogeny, and expression analysis of MLO genes involved in susceptibility to powdery mildew in Fragaria vesca.

    Science.gov (United States)

    Miao, L X; Jiang, M; Zhang, Y C; Yang, X F; Zhang, H Q; Zhang, Z F; Wang, Y Z; Jiang, G H

    2016-08-05

    The MLO (powdery mildew locus O) gene family is important in resistance to powdery mildew (PM). In this study, all of the members of the MLO family were identified and analyzed in the strawberry (Fragaria vesca) genome. The strawberry contains at least 20 members of the MLO family, and the protein sequence contained between 171 and 1485 amino acids, with 0-34 introns. Chromosomal localization showed that the MLOs were unevenly distributed on each of the chromosomes, except for chromosome 4. The greatest number of MLOs (seven) was found on chromosome 3. A phylogenetic tree showed that the MLOs were divided into seven groups (I-VII), four of which consisted of MLOs from strawberry, Arabidopsis thaliana, rice, and maize, suggesting that these genes may have evolved after the divergence of monocots and dicots. Multiple sequence alignment showed that strawberry MLO candidates related to powdery mildew resistance possessed seven highly conserved transmembrane domains, a calmodulin-binding domain, and two conserved regions, all of which are important domains for powdery mildew resistance genes. Expressed sequence tag analysis revealed that the MLOs were induced by multiple abiotic stressors, including low and high temperature, drought, and high salinity. These findings will contribute to the functional characterization of MLOs related to PM susceptibility, and will assist in the development of disease resistance in strawberries.

  13. The Hibernation of the oak Mildew

    NARCIS (Netherlands)

    Kerling, L.C.P.

    1966-01-01

    The oak mildew invaded Western Europa in the years 1908 and 1909. Since then this parasite, Microsphaera alphitoides Griff. & Maubl. (syn. M. quercina (Schw.) Burr.) has occurred regularly in the Netherlands on oak seedlings and oak coppice, mainly Quercus pedunculata Ehr. (syn. Q. robur L. ). After

  14. Forecasting and management of hop downy mildew

    Science.gov (United States)

    Downy mildew of hop, caused by Pseudoperonospora humuli, is managed in the Pacific Northwestern U.S. by regular application of fungicides. A degree-day model that forecasts the first emergence of shoots systemically infection with P. humuli (termed basal spikes) and a risk index for secondary sprea...

  15. Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display.

    Science.gov (United States)

    Li, Xiang; Bi, Zhenghong; Di, Rong; Liang, Peng; He, Qiguang; Liu, Wenbo; Miao, Weiguo; Zheng, Fucong

    2016-01-29

    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant-pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew.

  16. Pearls are self-organized natural ratchets.

    Science.gov (United States)

    Cartwright, Julyan H E; Checa, Antonio G; Rousseau, Marthe

    2013-07-02

    Pearls, the most flawless and highly prized of them, are perhaps the most perfectly spherical macroscopic bodies in the biological world. How are they so round? Why are other pearls solids of revolution (off-round, drop, ringed pearl), and yet others have no symmetry (baroque pearls)? We observe that with a spherical pearl the growth fronts of nacre are spirals and target patterns distributed across its surface, and that this is true for a baroque pearl, too, but that in pearls with rotational symmetry spirals and target patterns are found only in the vicinity of the poles; elsewhere the growth fronts are arrayed in ratchet fashion around the equator. We argue that pearl rotation is a self-organized phenomenon caused and sustained by physical forces from the growth fronts, and that rotating pearls are an example--perhaps unique--of a natural ratchet.

  17. Hot pepper (Capsicum chinense, Jacq. inheritance of reaction to powdery mildew

    Directory of Open Access Journals (Sweden)

    Blat Sally Ferreira

    2006-01-01

    Full Text Available The pepper species C. chinense has been considered one of the most important resistance sources to powdery mildew Capsicum spp. However, the inheritance in this species was unknown. The purpose of this work was to study its reaction inheritance. Two powdery mildew resistant parents, 'Pimenta Cheiro' 1 and PI 152225 and two moderately susceptible ones, 'Pimenta Doce' IH-1761 and 'Pimenta Índio', were used to obtain three F1 and their respective F2 generations: 'Pimenta Doce' IH-1761 'Pimenta Cheiro' 1, 'Pimenta Índio' PI 152225 and 'Pimenta Doce' IH-1761 PI 152225. The powdery mildew epidemy was natural using inoculum from a highly-sporulating susceptible pepper host. Powdery mildew host reaction evaluations were carried out during the fruiting stage using a rating system based on disease severity scales varying from 1 (resistant to 5 (highly susceptible. The experimental design was completely randomized. The following genetic parameters were estimated: gene action, heritability coefficient and expected selection gain in the F3 generation. The transgressive segregation in F2 indicated oligogenic inheritance. Results show the presence of additive, dominant, and epistatic gene action. The dominant and epistatic effects detected in crosses presented negative values, tending towards susceptibility. The heritability and selection gain estimates were moderate, with values of 35.5% and 1.7% for 'Pimenta Doce' IH 1761 'Pimenta Cheiro' 1, from 50.4% to 3.5% for 'Pimenta Índio' PI 152225, and 49% and 2.7% for the 'Pimenta Doce' IH 1761 PI 152225 crosses, respectively. These gene action results are favorable for breeding programs and exploration of hybrids.

  18. An association of external and internal enamel pearls.

    OpenAIRE

    Mahajan S; Charan C

    2005-01-01

    We report a rare case of an association of external enamel pearl with internal enamel pearl on the root of a molar. To the best of our knowledge, association of external and internal enamel pearls has not been previously reported. We discussed the histogenesis of enamel pearls and proposed that internal enamel pearl formation may be a continuation of formation of external enamel pearl.

  19. Daytime Solar Heating Controls Downy Mildew Peronospora belbahrii in Sweet Basil.

    Directory of Open Access Journals (Sweden)

    Yigal Cohen

    Full Text Available The biotrophic oomycete Peronospora belbahrii causes a devastating downy mildew disease in sweet basil. Due to the lack of resistant cultivars current control measures rely heavily on fungicides. However, resistance to fungicides and strict regulation on their deployment greatly restrict their use. Here we report on a 'green' method to control this disease. Growth chamber studies showed that P. belbahrii could hardly withstand exposure to high temperatures; exposure of spores, infected leaves, or infected plants to 35-45 °C for 6-9 hours suppressed its survival. Therefore, daytime solar heating was employed in the field to control the downy mildew disease it causes in basil. Covering growth houses of sweet basil already infected with downy mildew with transparent infra-red-impermeable, transparent polyethylene sheets raised the daily maximal temperature during sunny hours by 11-22 °C reaching 40-58 °C (greenhouse effect. Such coverage, applied for a few hours during 1-3 consecutive days, had a detrimental effect on the survival of P. belbahrii: killing the pathogen and/or suppressing disease progress while enhancing growth of the host basil plants.

  20. Daytime Solar Heating Controls Downy Mildew Peronospora belbahrii in Sweet Basil.

    Science.gov (United States)

    Cohen, Yigal; Rubin, Avia E

    2015-01-01

    The biotrophic oomycete Peronospora belbahrii causes a devastating downy mildew disease in sweet basil. Due to the lack of resistant cultivars current control measures rely heavily on fungicides. However, resistance to fungicides and strict regulation on their deployment greatly restrict their use. Here we report on a 'green' method to control this disease. Growth chamber studies showed that P. belbahrii could hardly withstand exposure to high temperatures; exposure of spores, infected leaves, or infected plants to 35-45 °C for 6-9 hours suppressed its survival. Therefore, daytime solar heating was employed in the field to control the downy mildew disease it causes in basil. Covering growth houses of sweet basil already infected with downy mildew with transparent infra-red-impermeable, transparent polyethylene sheets raised the daily maximal temperature during sunny hours by 11-22 °C reaching 40-58 °C (greenhouse effect). Such coverage, applied for a few hours during 1-3 consecutive days, had a detrimental effect on the survival of P. belbahrii: killing the pathogen and/or suppressing disease progress while enhancing growth of the host basil plants.

  1. Symbols of Pearl in The Scarlet letter

    Institute of Scientific and Technical Information of China (English)

    Li Aiqing

    2002-01-01

    This article evaluates The Scatet Letter with the help of analyzing the symbolic meanings of Pearl. In this article, the author attempts to propose the symbols of Pearl from four aspects: the function of the letter, the symbol of Hester's distillation of instinct;the symbol of freedom; the symbol of consummation. From the interpretation of the symbols of Pearl, it has been proved that Pearl becomes Hawthorne' s best vehicle to convey his attitudes toward Puritanism.

  2. Mildew-omics: How global analyses aid the understanding of life and evolution of powdery mildews

    Directory of Open Access Journals (Sweden)

    Laurence Veronique Bindschedler

    2016-02-01

    Full Text Available The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale (-omics approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various –omics technologies.

  3. MECHANISMS INVOLVED IN MYCORRHIZAL WHEAT PROTECTION AGAINST POWDERY MILDEW.

    Science.gov (United States)

    Mustafa, G; Tisserant, B; Randoux, B; Fontaine, J; Sahraoui, A Lounes-Hadj; Reignault, Ph

    2014-01-01

    In France, the Ecophyto 2018 national action plan will set out to reduce the use of pesticides by 50% by 2018, if possible. To achieve this goal, the use of arbuscular mycorrhizal (AM) fungi could be a potential alternative method allowing the control of crop diseases. The inoculation by AM fungi has been demonstrated to protect plants against soil-borne pathogens, but little is known about their effectiveness against aerial pathogens, such as the biotrophic fungus Blumeria graminis f.sp. tritici (Bgt) causing wheat (Triticum aestivum) powdery mildew. In the present study, wheat plants were grown in pots, under controlled conditions. Using various phosphorus (P) concentrations, the effectiveness of three AM inocula (Rhizophagus irregularis (Ri), Funneliformis mosseae (Fm)) and Solrize, a mixture of Ri and Fm) in Orvantis wheat cultivar, were tested. After 42 days of culture, mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were infected by Bgt. A satisfactory mycorrhizal rate was obtained with the phosphorus concentration P/5 (P corresponding to the dose used in wheat fields in = 62 mg/L). Our work shows, for the first time, (i) a protective effect of AM inoculation against wheat powdery mildew, reaching up to 73% with Fm inocula, and (ii) its ability to induce a systemic resistance in wheat. Thereafter, we investigated mechanisms involved in this protection. Control plants, M plants, infected plants by Bgt, and M-infected plants were compared at: (i) cytological level, our results revealed that papillae and whole-fluorescent cells presence was induced, conversely fungal haustorium formation in epidermal cells was reduced within M plants leaves (ii) enzymatic level-by assessing defense enzyme activities (lipoxygenase, peroxidase) known as defense markers were measured 24, 48, 72 and 96 hours after infection (hai). The importance of these activities in the defense pathways induced in wheat by AM fungi will be discussed.

  4. Epidemiology and control of spinach downy mildew in coastal California

    Science.gov (United States)

    The most serious threat to global fresh market spinach production is spinach downy mildew, caused by the obligate biotrophic pathogen, Peronospora effusa. Downy mildew causes yellow chlorotic lesions on spinach leaf tissue, often accompanied by abundant sporulation on the undersides of leaves. Very ...

  5. Laser hair removal pearls.

    Science.gov (United States)

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  6. The effectivity of Tilletiopsis albescens in biocontrol of powdery mildew

    DEFF Research Database (Denmark)

    Knudsen, I.M.B.; Skou, J.P.

    1993-01-01

    Tilletiopsis albescens grows well on powdery mildew fungi inoculated on barley or cucumber leaves and causes collapse of the colonies. Application of ballistospores or cut mycelium was equally effective for biocontrol, and the effectiveness tended to increase exponentially with the concentration...... of germinating units (conidia and cut mycelium) applied. Seventy percent relative humidity or more is required for effective biocontrol. Two applications of T. albescens in the period from 3 days before to 3 days after inoculation with powdery mildew were more effective than one. Applications before inoculation...... or 7 days after inoculation with powdery mildew had little effect. T. albescens followed the powdery mildew as it was disseminated to uninoculated leaves, but this did not result in an effective biocontrol. The potential for using T. albescens for biocontrol of powdery mildews is discussed....

  7. Pretreatment HIV Drug Resistance and HIV-1 Subtype C Are Independently Associated With Virologic Failure: Results From the Multinational PEARLS (ACTG A5175) Clinical Trial

    Science.gov (United States)

    Kantor, Rami; Smeaton, Laura; Vardhanabhuti, Saran; Hudelson, Sarah E.; Wallis, Carol L.; Tripathy, Srikanth; Morgado, Mariza G.; Saravanan, Shanmugham; Balakrishnan, Pachamuthu; Reitsma, Marissa; Hart, Stephen; Mellors, John W.; Halvas, Elias; Grinsztejn, Beatriz; Hosseinipour, Mina C.; Kumwenda, Johnstone; La Rosa, Alberto; Lalloo, Umesh G.; Lama, Javier R.; Rassool, Mohammed; Santos, Breno R.; Supparatpinyo, Khuanchai; Hakim, James; Flanigan, Timothy; Kumarasamy, Nagalingeswaran; Campbell, Thomas B.; Eshleman, Susan H.

    2015-01-01

    Background. Evaluation of pretreatment HIV genotyping is needed globally to guide treatment programs. We examined the association of pretreatment (baseline) drug resistance and subtype with virologic failure in a multinational, randomized clinical trial that evaluated 3 antiretroviral treatment (ART) regimens and included resource-limited setting sites. Methods. Pol genotyping was performed in a nested case-cohort study including 270 randomly sampled participants (subcohort), and 218 additional participants failing ART (case group). Failure was defined as confirmed viral load (VL) >1000 copies/mL. Cox proportional hazards models estimated resistance–failure association. Results. In the representative subcohort (261/270 participants with genotypes; 44% women; median age, 35 years; median CD4 cell count, 151 cells/µL; median VL, 5.0 log10 copies/mL; 58% non-B subtypes), baseline resistance occurred in 4.2%, evenly distributed among treatment arms and subtypes. In the subcohort and case groups combined (466/488 participants with genotypes), used to examine the association between resistance and treatment failure, baseline resistance occurred in 7.1% (9.4% with failure, 4.3% without). Baseline resistance was significantly associated with shorter time to virologic failure (hazard ratio [HR], 2.03; P = .035), and after adjusting for sex, treatment arm, sex–treatment arm interaction, pretreatment CD4 cell count, baseline VL, and subtype, was still independently associated (HR, 2.1; P = .05). Compared with subtype B, subtype C infection was associated with higher failure risk (HR, 1.57; 95% confidence interval [CI], 1.04–2.35), whereas non-B/C subtype infection was associated with longer time to failure (HR, 0.47; 95% CI, .22–.98). Conclusions. In this global clinical trial, pretreatment resistance and HIV-1 subtype were independently associated with virologic failure. Pretreatment genotyping should be considered whenever feasible. Clinical Trials

  8. Management of Powdery Mildew in Squash by Plant and Alga Extract Biopesticides

    Directory of Open Access Journals (Sweden)

    Shouan Zhang

    2016-12-01

    Full Text Available Although many fungicides are registered for use to control powdery mildew on cucurbits, management of resistance to fungicides in pathogen populations still remains a major challenge. Two biopesticides Regalia SC and HMO 736 were evaluated in the greenhouse and field for their efficacy against powdery mildew in squash. In greenhouses, Regalia SC alone significantly (P < 0.05 reduced powdery mildew compared to the nontreated control, and was as effective as the chemical standard Procure 480SC (triflumizole. In alternation with Procure 480SC, Regalia SC demonstrated greater or equivalent effects on reducing the disease. HMO 736 alone showed varying levels of disease control, but alternating with Procure 480SC significantly improved control efficacy. In addition, application of Regalia SC or HMO 736 each in alternation with Procure 480SC significantly increased the chlorophyll content in leaves and the total fresh weight of squash plants, when compared with the water control, Regalia SC and HMO 736 alone. In field trials, application of Regalia SC and HMO 736 each alone significantly reduced disease severity in one of two field trials during the early stage of disease development, but not during later stages when disease pressure became high. Both Regalia SC and HMO 736 each applied in alternation with Procure 480SC significantly improved the control efficacy compared to Procure 480SC alone. Results from this study demonstrated that an integrated management program can be developed for powdery mildew in squash by integrating the biopesticides Regalia SC, HMO 736 with the chemical fungicide Procure 480SC.

  9. Chemical Composition of Ground Pearl (Eurhizococcus colombianus Cysts

    Directory of Open Access Journals (Sweden)

    Fernando Echeverri

    2008-01-01

    Full Text Available Ground pearl (Eurhizococcus colombianus is a crop pest in Colombia, withspecial impact on fig, grass, rubus and tomato plants. The insect is resistant to externalinsecticide application because it produces a thick waxy shell that isolates it from theenvironment. The composition of this shell was determined by NMR and MS as atriglyceride, whose fatty acid is transformed into other products with the metamorphosis ofthe insect. Additionally, several enzymatic inhibitors were assayed to control the insectwith negative results.

  10. Identification of Wheat-Aegilops Ovata Derivatives Using SSR Markers and Evaluation of Their Powdery Mildew Resistance%小麦-卵穗山羊草衍生后代的SSR分子标记鉴定和白粉病抗性评价

    Institute of Scientific and Technical Information of China (English)

    吴红坡; 王亚娟; 王长有; 吉万全

    2012-01-01

    Aegilops species carrying the U or/and M genomes represent a prominent source of useful genes for wheat breeding. We generated 19 wheat-Aegilops ovata derivatives through hybridization between common wheat and Aegilops ovata. Four hundred SSR (simple sequence repeat) markers were used to investigate the polymorphisms among parental lines, Chinese Spring, Shaanyou 225 and Aegilopsovata, of which 341 markers (85.25%) could amplify bands in Aegilopsovata, and 20 of them (5%) showed specific bands in Aegilopsovata, and were applied to investigate germplasm in- heritance of Aegilops ovata in wheat-Aegilops ovata derivatives. The results showed that 10 markers could amplify specific bands in the 19 derivatives, indicating that all these 19 derivatives inherited germplasms from Aegilops ovata and these 10 SSR markers could be used in further identification of next generations. We also conducted powdery mildew resistance evaluation on the 19 derivatives, and 16 of them are immune to powdery mildew like Aegilops ovata, one of their parents, but not like the other two parental lines, Chinese Spring and Shaanyou 225, which are highly susceptible to powdery mildew, indicating that the powdery mildew resistance in the 16 derivatives were explicitly inherited from Aegilops ovata.%山羊草属植物是普通小麦改良过程中重要的有益基因来源,小麦的许多抗病虫、抗逆基因都来源于山羊草属植物。本研究利用杂交和回交的方法,成功获得了19株小麦-卵穗山羊草衍生后代,实验选取均匀分布于小麦各条染色体的SSR标记400个,对三个亲本(中国春、卵穗山羊草和陕优225)以及19株衍生后代进行分子标记特异性分析,结果表明,341个标记可以在卵穗山羊草中扩增出条带,说明SSR标记在山羊草中位点丰富;20个标记可以在卵穗山羊草中扩增出特异条带,说明在卵穗山羊草中有不同于另外两个亲本的特异SSR位点;将20个在卵穗山羊

  11. Response of sorghum accessions from Chad and Uganda to natural infection by the downy mildew pathogen, Peronosclerospora sorghi in Mexico and the USA

    Science.gov (United States)

    In this study, 78 accessions from Chad, West Africa and 20 photoperiod insensitive accessions from Uganda, East Africa were evaluated for downy mildew resistance in Ocotlan, Mexico in 2004 and 2005. Ninety-four of these accessions were also evaluated at two locations in Wharton County, Texas, USA, ...

  12. Control of powdery mildew on glasshouse-grown roses and tomatoes in the Netherlands using anhydrous milk fat and soybean oil emulsions

    NARCIS (Netherlands)

    Wurms, K.V.; Hofland-Zijlstra, Jantineke

    2015-01-01

    Powdery mildew (PM) is a very serious disease affecting glasshouse-grown roses and tomatoes in the Netherlands. Control is limited because of resistance to existing fungicides. Anhydrous milk fat (AMF) and soybean oil (SBO) emulsions were evaluated for control of PM in roses and tomatoes. Both AM

  13. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica.

    Directory of Open Access Journals (Sweden)

    Zheng Zheng

    Full Text Available Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum, a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded.

  14. Single-cell transcript profiling of barley attacked by the powdery mildew fungus

    DEFF Research Database (Denmark)

    Gjetting, Torben; Hagedorn, Peter; Schweizer, Patrick

    2007-01-01

    attacked at the same time may resist fungal penetration. To date, the mixed cellular responses seen even in susceptible host leaves have made it difficult to relate induced changes in gene expression to resistance or susceptibility in bulk leaf samples. By microextraction of cell-specific m......RNA and subsequent cDNA array analysis, we have successfully obtained separate gene expression profiles for specific mildew-resistant and -infected barley cells. Thus, for the first time, it is possible to identify genes that are specifically regulated in infected cells and, presumably, involved in fungal...... establishment. Further, although much is understood about the genetic basis of effective papilla resistance associated with mutant mlo barley, we provide here the first evidence for gene regulation associated with effective papilla-based nonspecific resistance expressed in nominally "susceptible" wild...

  15. Macro- and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew

    OpenAIRE

    Boso Alonso, Susana; Alonso-Villaverde Iglesias, Virginia; Santiago Blanco, José Luis; Gago Montaña, Pilar; Dürrenberger, M.; Düggelin, M.; Kassemeyer, H. H.; Martínez Rodríguez, María del Carmen

    2010-01-01

    This work reports the leaf morphology of six grapevine genotypes, five belonging to Vitis vinifera and one to Vitis riparia. Earlier studies on these genotypes showed different levels of susceptibility to grapevine downy mildew (Plasmopara viticola). The aim of this work was to detect differences between the leaf morphology of these cultivars at the macro- and microscopic levels, and to characterize morphological traits which could be associated with susceptibility and resistance to downy ...

  16. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  17. 壳聚糖与水杨酸复配对小白菜霜霉病与盐胁迫复合逆境的诱抗作用%Role of chitosan and salicylic acid application in induction of Brassica chinensis resistance to dual stress of downy mildew and salt stress

    Institute of Scientific and Technical Information of China (English)

    徐芬芬; 李坚; 罗晓燕

    2011-01-01

    为探明壳聚糖(CTS)和水杨酸(SA)复配处理对小白菜(Brassica chinensis L.)复合逆境的诱抗作用和效果,采用根际施用结合叶面喷洒的方法,研究了CTS与SA复配对小白菜盐和霜霉病胁迫复合逆境的诱抗作用.结果表明:SA、CTS单一与复配施用均能显著降低复合逆境下小白菜的盐害指数和病情指数,提高复合逆境下小白菜的株高、展开叶数、最大叶片面积和单株干质量等形态指标,促进小白菜在复合逆境下的正常生长,降低小白菜叶片的丙二醛(MDA)含量,增强过氧化物酶(POD)、多酚氧化酶(PPO)等保护酶的活性.在复合逆境下,SA、CTS复配施用对小白菜的诱导抗病和抗盐效果显著,盐害指数和病情指数均低于SA、CTS单一处理,且抗病和抗盐的共效系数均分别为-14.76和1.72,均表现为相加作用.%The role of chitosan (CTS) and salicylic acid (SA) compound application in induction of pakchoi (Bras-sica chinensis L. ) resistance to dual stress of downy mildew and salt stress was studied by the method of rhizosphere application with foliar spray. The results showed that both separate and joint application of SA and CTS significantly reduced salt injury index and disease index of pakchoi under the dual stress, increased the plant height, the number of expanding leaves, maximum leaf area, plant dry weight and other morphological indicators, and promoted the normal growth of pakchoi under dual stress, reduced malondialdehyde (MDA) content of leaves, and enhanced peroxidase (POD) and polyphenol oxidase (PPO) activities. The effects of CTS and SA joint application on the induction of resistance against downy mildew or salt stress in pakchoi were significant under the dual stress, with the salt injury index and disease index lower than those of single CTS or SA application. In the treatment of CTS and SA joint application, the coefficients of disease resistance and salt tolerance were -14.76 and 1

  18. Detecção e variabilidade de Plasmopara halstedii no Brasil e avaliação da resistência de genótipos de girassol ao míldio Detection and variability of Plasmopara halstedii in Brazil and resistance of sunflower genotypes to downy mildew

    Directory of Open Access Journals (Sweden)

    Regina Maria Villas Bôas de Campos Leite

    2007-12-01

    Full Text Available Este trabalho foi conduzido com o objetivo de identificar a raça fisiológica de Plasmopara halstedii que ocorreu em plantas de girassol coletadas no campo experimental da Embrapa Soja, Londrina, PR, em 1998, 2001 e 2002 e avaliar a reação de genótipos de girassol ao míldio. Plântulas de girassol das diferenciadoras de raças e das cultivares foram inoculadas com suspensão de zoosporângios do patógeno e foram plantadas em caixas contendo areia autoclavada. As plântulas foram mantidas em câmara climatizada, com temperatura controlada em 21ºC, por 11 dias. Em seguida, as plantas foram aspergidas intensamente com água destilada, cobertas com saco plástico e mantidas no escuro, a 18ºC. No dia seguinte, foi observada a presença de esporulação nos cotilédones. As plantas que apresentaram esporulação foram consideradas suscetíveis e as sem esporulação foram resistentes. O resultado indicou tratar-se da raça 330 (antiga raça 7 americana, nas três ocasiões. Os genótipos de girassol Embrapa 122, BRS 191 e as cultivares de girassol ornamental BRS Capri M, BRS Encanto M, BRS Oásis, BRS Paixão M, BRS Pesqueiro M, BRS Refúgio M, BRS Saudade M e BRS Saudade U e seus respectivos parentais foram suscetíveis a P. halstedii raça 330. Os genótipos AGROBEL 910, AGROBEL 920, AGROBEL 960, AGROBEL 965, C11, EXP38, M734, M742 e RUMBOSOL 91 foram resistentes à raça 330 do patógeno e podem ser indicados aos agricultores para uso em regiões de risco de ocorrência da doença.This research was carried out for identifying the physiological race of Plasmopara halstedii occurring in sunflower at the experimental field of Embrapa Soybean, Londrina, PR, Brazil, in 1998, 2001 and 2002 by evaluating the reaction of sunflower genotypes inoculated with downy mildew pathogen. Sunflower seedlings of the differentials set to identify races and of the cultivars were inoculated by immersion in zoosporangia suspension and were grown in autoclaved

  19. Immigration of the barley mildew pathogen into field plots of barley

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1996-01-01

    Immigration of the barley powdery mildew pathogen (Erysiphe graminis f.sp. hordei) into field plots of the spring barley variety Tyra (carrying the resistance allele Mla1) was investigated. Spores were trapped from the top of the plot canopies, as well as from control plots of wheat with no barley...... nearby. Comparison of the frequencies of virulent and avirulent single-colony isolates showed that the amount of immigration, relative to the amount of inoculum being produced within the plot, reduced very rapidly, until it could not be detected in the middle of the growing season (mid-June)....

  20. Pearl A Probabilistic Chart Parser

    CERN Document Server

    Magerman, D M; Magerman, David M.; Marcus, Mitchell P.

    1994-01-01

    This paper describes a natural language parsing algorithm for unrestricted text which uses a probability-based scoring function to select the "best" parse of a sentence. The parser, Pearl, is a time-asynchronous bottom-up chart parser with Earley-type top-down prediction which pursues the highest-scoring theory in the chart, where the score of a theory represents the extent to which the context of the sentence predicts that interpretation. This parser differs from previous attempts at stochastic parsers in that it uses a richer form of conditional probabilities based on context to predict likelihood. Pearl also provides a framework for incorporating the results of previous work in part-of-speech assignment, unknown word models, and other probabilistic models of linguistic features into one parsing tool, interleaving these techniques instead of using the traditional pipeline architecture. In preliminary tests, Pearl has been successful at resolving part-of-speech and word (in speech processing) ambiguity, dete...

  1. The Podosphaera fusca TUB2 gene, a molecular "Swiss Army knife" with multiple applications in powdery mildew research.

    Science.gov (United States)

    Vela-Corcía, David; Bellón-Gómez, Davinia; López-Ruiz, Francisco; Torés, Juan Antonio; Pérez-García, Alejandro

    2014-02-01

    The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii) is the main causal agent of cucurbit powdery mildew and one of the most important limiting factors for cucurbit production worldwide. Despite the fungus' economic importance, very little is known about the physiological and molecular processes involved in P. fusca biology and pathogenesis. In this study, we isolated and characterised the β-tubulin-encoding gene of P. fusca (PfTUB2) to develop molecular tools with different applications in powdery mildew research. PfTUB2 is predicted to encode a protein of 447 amino acid residues. The coding region is interrupted by six introns that occur at approximately the same positions as the introns present in other fungal TUB2-like genes. Once cloned, the PfTUB2 sequence information was used in different applications. Our results showed that the TUB2 gene is a good marker for molecular phylogenetics in powdery mildew fungi but it is unsuitable for the analysis of intraspecific diversity in P. fusca. The expression of PfTUB2 was proven to be stable in different temperature conditions, supporting its use as a reference gene in quantitative gene expression studies. Furthermore, an allele-specific PCR assay for the detection of resistance to methyl-2-benzimidazole carbamate (MBC) fungicides in P. fusca was developed based on the correlation between the single amino acid change E198A in β-tubulin and the MBC resistance phenotype. Lastly, PfTUB2 was used as a target gene in the development of a high-throughput method to quantify fungal growth in plant tissues.

  2. Mechanisms of quantitative resistance to Erysiphe necator in Vitis rupestris B38

    Science.gov (United States)

    Vitis rupestris B38 is a North American grapevine resistant to the powdery mildew pathogen, Erysiphe necator. The segregation of foliar powdery mildew severity in a F1 family derived from a cross of V. rupestris B38 x V. vinifera ‘Chardonnay’ was observed in the field over three growing seasons and ...

  3. Strategies for RUN1 Deployment Using RUN2 and REN2 to Manage Grapevine Powdery Mildew Informed by Studies of Race Specificity.

    Science.gov (United States)

    Feechan, Angela; Kocsis, Marianna; Riaz, Summaira; Zhang, Wei; Gadoury, David M; Walker, M Andrew; Dry, Ian B; Reisch, Bruce; Cadle-Davidson, Lance

    2015-08-01

    The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify

  4. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    Science.gov (United States)

    Tabata, Jun; De Moraes, Consuelo M; Mescher, Mark C

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  5. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    Directory of Open Access Journals (Sweden)

    Jun Tabata

    Full Text Available Powdery mildews (Erysiphales are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata infected by powdery mildew (Podosphaera sp. and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  6. Qingdao - Pearl onthe Shandong coast

    Institute of Scientific and Technical Information of China (English)

    BRUCE CONNOLLY

    2004-01-01

    <正> Qingdao, its name is synonymous with beer. Tsingtao Beer, one of the country’s finest, has put the city firmly onto the international scene. However, there is so much more to this pearl on the coast of Shandong Province. As China goes forward to the 2008 Olympics the city will become even better known for it has been chosen as the venue for the ocean sailing events.Qingdao occupies a peninsula jutting into the Yellow Sea. It is hilly, with a coastline of rocky headlands connected by fine curving sandy beaches. Its natural

  7. Taxonomic revision and phylogenetic analyses of rubber powdery mildew fungi.

    Science.gov (United States)

    Liyanage, K K; Khan, Sehroon; Brooks, Siraprapa; Mortimer, Peter E; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D

    2017-02-09

    Powdery mildew is a fungal disease that infects a wide range of plants, including rubber trees, which results in a reduction of latex yields of up to 45%. The causal agent of powdery mildew of rubber was first described as Oidium heveae, but later morpho-molecular research suggested that in the past, O. heveae has been confused with Erysiphe quercicola. However, it is still under debate whether the causal agent should be classified as a species of the genus Erysiphe emend. or Golovinomyces and Podosphaera, respectively. Therefore, the aim of this study was to undertake the morpho-molecular characterization of powdery mildew species associated with rubber trees, thus resolving these taxonomic issues. Morphological observation under light and scanning electron microscopes (SEM) clearly identified two morphotypes of the rubber powdery mildew. With the support of morphological and phylogenetic data, one of the two morphotypes was identified as the asexual morph of E. quercicola, while the second morphotype is still insufficiently known and according to the morphological results obtained we assume that it might belong to the genus Golovinomyces. More collections and additional molecular data are required for final conclusions regarding the exact taxonomic position of the second morphotype of rubber powdery mildew and its relation to the name O. heveae. The haplotype analysis identified eight haplotype groups of E. quercicola indicating the high genetic diversity of the species.

  8. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

    Directory of Open Access Journals (Sweden)

    Sathishkumar Natarajan

    Full Text Available Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L. and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs, 1.9 million InDels, and 182,398 putative structural variations (SVs. Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.

  9. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

    Science.gov (United States)

    Natarajan, Sathishkumar; Kim, Hoy-Taek; Thamilarasan, Senthil Kumar; Veerappan, Karpagam; Park, Jong-In; Nou, Ill-Sup

    2016-01-01

    Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L.) and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs), 1.9 million InDels, and 182,398 putative structural variations (SVs). Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.

  10. Kinds of nucleus for effective pearl cultivation of the pearl oysters, Pinctada fucata

    Directory of Open Access Journals (Sweden)

    Kanjanachatree, K.

    2007-07-01

    Full Text Available Seeding is the most important aspect of pearl cultivation, and appropriate nucleus can determine the quality of a pearl : nacre secretion and accumulation around the nucleus. This affects harvest time, nucleus extrusion, survival rate of the pearl oysters and the production cost. In order to provide nuclei to substitute for those imported from China which are made from freshwater pearl oyster-shells, 3 kinds of the local shells of Pinctada fucata, Pteria penguin and Pinctada maxima were selected for seed production. The obtained nuclei have various diameters depend on the shell width at the hinge region. The average diameters are 5.44, 6.78, 7.54 and 6.10 mm, while their production costs are 5, 7.7, 18.5 and 7.5 baht per 1 nucleus, respectively, for Pinctada fucata, Pteria penguin, Pinctada maxima and freshwater pearl oysters (control group. After nucleus implantation into the gonad of culture pearl oysters, Pinctada fucata, and rearing in the sea, the obtained pearls using nuclei made from the shells of Pinctada fucata and Pinctada maxima (both belong to the same genus as the implanted culture pearl oysters have as good nacre formation as that from freshwater pearl oysters. In contrast, the pearl production using nuclei made from Pteria penguin-shells have significantly worse nacre formation. Survival rate of the culture oysters seeded with nuclei made from Pinctada fucata-shells is highest at 47%, nucleus extrusion 8% only, and harvest rate 31%; while with Pinctada maxima-shells, these values are 38%, 17.5% and 14%, respectively. So the nuclei made from local Pinctada fucata-shells are appropriate for pearl cultivation and are comparable to imported nuclei. Although the obtained pearls are small, the nuclei made from Pinctada fucata-shells have low cost, low nucleus extrusion and high productivity.

  11. Super-light concrete with pearl-chains

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2009-01-01

    half that of similar structures in concrete and steel. They are heat-insulating, fire-resistant and they open up the possibility for large spans and the creation of advanced shapes. Fields of application include roofs, shells, beams, columns, walls, façades, offshore structures, tunnels and structures...... the applicability and to reveal any potential hidden problems. Continuing research will aim to reduce the weight and thereby the resource consumption further. In addition, the paper introduces pearl-chain reinforcement, which is a new principle for creating compression and tension zones. A small number of simple...

  12. Transcriptomes That Confer to Plant Defense against Powdery Mildew Disease in Lagerstroemia indica

    Directory of Open Access Journals (Sweden)

    Xinwang Wang

    2015-01-01

    Full Text Available Transcriptome analysis was conducted in two popular Lagerstroemia cultivars: “Natchez” (NAT, a white flower and powdery mildew resistant interspecific hybrid and “Carolina Beauty” (CAB, a red flower and powdery mildew susceptible L. indica cultivar. RNA-seq reads were generated from Erysiphe australiana infected leaves and de novo assembled. A total of 37,035 unigenes from 224,443 assembled contigs in both genotypes were identified. Approximately 85% of these unigenes have known function. Of them, 475 KEGG genes were found significantly different between the two genotypes. Five of the top ten differentially expressed genes (DEGs involved in the biosynthesis of secondary metabolites (plant defense and four in flavonoid biosynthesis pathway (antioxidant activities or flower coloration. Furthermore, 5 of the 12 assembled unigenes in benzoxazinoid biosynthesis and 7 of 11 in flavonoid biosynthesis showed higher transcript abundance in NAT. The relative abundance of transcripts for 16 candidate DEGs (9 from CAB and 7 from NAT detected by qRT-PCR showed general agreement with the abundances of the assembled transcripts in NAT. This study provided the first transcriptome analyses in L. indica. The differential transcript abundance between two genotypes indicates that it is possible to identify candidate genes that are associated with the plant defenses or flower coloration.

  13. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus.

    Science.gov (United States)

    Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro

    2016-03-01

    Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.

  14. HARP NWHI- Pearl and Hermes Reef

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This HARP was first deployed off Pearl and Hermes Reef in 2009. It has been recovered and redeployed multiple times (see time frames for information).

  15. Effects of sea depths and sizes of winged pearl oysters (Pteria penguin on pearl culture

    Directory of Open Access Journals (Sweden)

    Inthonjaroen, N.

    2003-09-01

    Full Text Available Environmental aspects and biology of pearl oysters are the important conditions affecting pearl production. In order to obtain commercially valuable pearl from winged pearl oysters, Pteria penguin, three sizes (shell-length of the oysters: small (130-135 mm, medium (160-165 mm and large (185-200 mm were suspended at 2 m (surface, 5 m (mid-depth and 8 m (bottom below the sea surface from February to November, 2001. Using a factorial design, the data were randomly recorded by month. All sizes of the pearl oysters at the surface produced pearl of significantly greater thickness than those at the greater depths. The small-sized pearl oysters at the surface depth produced the thickest pearl (0.612 mm. which took only 7 months for harvesting, and the pearl thickness was correlated with growth response in shell length. In contrast to the growth rate in tissue weight and mortality rates which were 36.00, 26.00, 24.00% at the surface depth; 30.60, 24.60, 16.00% at mid-depth and 25.30, 19.30, 12.00% at the bottom for the small, medium and large-sized oysters, respectively. The results depended on infestation of fouling organisms on oyster shells which were much more intense at the surface than at a greater depths and slowed the growth rate in tissue weight, especially in the small-sized oysters. However, there was a greater amount of many kinds of plankton, the food resource of marine animals, at surface than at greater depths, so it retained shell-length growth and pearl production of the small-sized oysters: The other environmental factors, such as salinity, dissolved oxygen, pH and sea water temperature, at all depths did not have an impact on the pearl oyster rearing.

  16. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2015-01-01

    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post-tensioning......, and gives a large positive bending moment below the load and a smaller negative bending moment in the unloaded side. When the Pearl-Chain Bridge concept is compared to other pre-fabricated arch bridge solutions we find a number of advantages when using Pearl-Chain Bridges: Straight elements, combination...

  17. Hop powdery mildew control through alteration of spring pruning practices

    Science.gov (United States)

    Since 1997, Podosphaera macularis, the causal agent of hop powdery mildew, has become a recurrent threat to hops in the Pacific Northwest because of the potential to reduce cone yield and quality. Disease management practices often involve preventative fungicide applications, but alternative approac...

  18. Response of yellow flowering magnolia varieties to powdery mildew, 2015

    Science.gov (United States)

    Yellow flowering varieties of Magnolia spp. hybrids were planted in April 2008 in a field plot with Waynesboro loam soil at the Otis L. Floyd Nursery Research Center in McMinnville, TN. Severity of powdery mildew was determined on 14 Jul, 21 Aug and 15 Oct using a scale of 0-100% foliage affected. ...

  19. Comparison of three fungicide spray advisories for lettuce downy mildew

    NARCIS (Netherlands)

    Wu, B.M.; Subbarao, K.V.; Bruggen, van A.H.C.; Koike, S.T.

    2001-01-01

    Lettuce growers in coastal California have relied mainly on protective fungicide sprays to control downy mildew. Thus, timing of sprays before infection is critical for optimal results. A leaf-wetness-driven, infection-based advisory system, previously developed, did not always perform satisfactoril

  20. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus.

    Science.gov (United States)

    Praz, Coraline R; Bourras, Salim; Zeng, Fansong; Sánchez-Martín, Javier; Menardo, Fabrizio; Xue, Minfeng; Yang, Lijun; Roffler, Stefan; Böni, Rainer; Herren, Gerard; McNally, Kaitlin E; Ben-David, Roi; Parlange, Francis; Oberhaensli, Simone; Flückiger, Simon; Schäfer, Luisa K; Wicker, Thomas; Yu, Dazhao; Keller, Beat

    2017-02-01

    There is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B. g.) f. sp. tritici. Many confer race-specific resistance to this pathogen, but until now only the mildew avirulence gene AvrPm3(a2/f2) that is recognized by Pm3a/f was known molecularly. We performed map-based cloning and genome-wide association studies to isolate a candidate for the mildew avirulence gene AvrPm2. We then used transient expression assays in Nicotiana benthamiana to demonstrate specific and strong recognition of AvrPm2 by Pm2. The virulent AvrPm2 allele arose from a conserved 12 kb deletion, while there is no protein sequence diversity in the gene pool of avirulent B. g. tritici isolates. We found one polymorphic AvrPm2 allele in B. g. triticale and one orthologue in B. g. secalis and both are recognized by Pm2. AvrPm2 belongs to a small gene family encoding structurally conserved RNase-like effectors, including Avra13 from B. g. hordei, the cognate Avr of the barley resistance gene Mla13. These results demonstrate the conservation of functional avirulence genes in two cereal powdery mildews specialized on different hosts, thus providing a possible explanation for successful introgression of resistance genes from rye or other grass relatives to wheat.

  1. Functional characterization of the powdery mildew susceptibility gene SmMLO1 in eggplant (Solanum melongena L.).

    Science.gov (United States)

    Bracuto, Valentina; Appiano, Michela; Ricciardi, Luigi; Göl, Deniz; Visser, Richard G F; Bai, Yuling; Pavan, Stefano

    2017-01-09

    Eggplant (Solanum melongena L.) is one of the most important vegetables among the Solanaceae and can be a host to fungal species causing powdery mildew (PM) disease. Specific homologs of the plant Mildew Locus O (MLO) gene family are PM susceptibility factors, as their loss of function results in a recessive form of resistance known as mlo resistance. In a previous work, we isolated the eggplant MLO homolog SmMLO1. SmMLO1 is closely related to MLO susceptibility genes characterized in other plant species. However, it displays a peculiar non-synonymous substitution that leads to a T → M amino acid change at protein position 422, in correspondence of the MLO calmodulin-binding domain. In this study, we performed the functional characterization of SmMLO1. Transgenic overexpression of SmMLO1 in a tomato mlo mutant compromised resistance to the tomato PM pathogen Oidium neolycopersici, thus indicating that SmMLO1 is a PM susceptibility factor in eggplant. PM susceptibility was also restored by the transgenic expression of a synthetic gene, named s-SmMLO1, encoding a protein identical to SmMLO1, except for the presence of T at position 422. This indicates that the T → M polymorphism does not affect the protein role as PM susceptibility factor. Overall, the results of this work are of interest for the functional characterization of MLO proteins and the introduction of PM resistance in eggplant using reverse genetics.

  2. Assessing pearl quality using reflectance UV-Vis spectroscopy: does the same donor produce consistent pearl quality?

    Science.gov (United States)

    Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C

    2010-09-20

    Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV

  3. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    Directory of Open Access Journals (Sweden)

    Paul C. Southgate

    2010-09-01

    Full Text Available Two groups of commercial quality (“acceptable” pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected

  4. Effect of malting conditions on pearl millet malt quality

    CSIR Research Space (South Africa)

    Pelembe, LAM

    2002-01-01

    Full Text Available and moderate malting loss. These malting conditions and the subsequent malt quality of pearl millet are similar to those reported for sorghum. Pearl millet malt can therefore be used for the production of sorghum type beers....

  5. Mestica calappa, the Coconut pearl, trick or true?

    NARCIS (Netherlands)

    Veldkamp, J.F.

    2002-01-01

    A bibliographic study is made of Mestica calappa, the Coconut pearl. It is concluded that if pearls do grow in coconuts, they are exceedingly rare, and the ones analyzed on structure and chemical composition were fake ones.

  6. Genome-Wide Study of the Tomato SlMLO Gene Family and Its Functional Characterization in Response to the Powdery Mildew Fungus Oidium neolycopersici.

    Science.gov (United States)

    Zheng, Zheng; Appiano, Michela; Pavan, Stefano; Bracuto, Valentina; Ricciardi, Luigi; Visser, Richard G F; Wolters, Anne-Marie A; Bai, Yuling

    2016-01-01

    The MLO (Mildew Locus O) gene family encodes plant-specific proteins containing seven transmembrane domains and likely acting in signal transduction in a calcium and calmodulin dependent manner. Some members of the MLO family are susceptibility factors toward fungi causing the powdery mildew disease. In tomato, for example, the loss-of-function of the MLO gene SlMLO1 leads to a particular form of powdery mildew resistance, called ol-2, which arrests almost completely fungal penetration. This type of penetration resistance is characterized by the apposition of papillae at the sites of plant-pathogen interaction. Other MLO homologs in Arabidopsis regulate root response to mechanical stimuli (AtMLO4 and AtMLO11) and pollen tube reception by the female gametophyte (AtMLO7). However, the role of most MLO genes remains unknown. In this work, we provide a genome-wide study of the tomato SlMLO gene family. Besides SlMLO1, other 15 SlMLO homologs were identified and characterized with respect to their structure, genomic organization, phylogenetic relationship, and expression profile. In addition, by analysis of transgenic plants, we demonstrated that simultaneous silencing of SlMLO1 and two of its closely related homologs, SlMLO5 and SlMLO8, confer higher level of resistance than the one associated with the ol-2 mutation. The outcome of this study provides evidence for functional redundancy among tomato homolog genes involved in powdery mildew susceptibility. Moreover, we developed a series of transgenic lines silenced for individual SlMLO homologs, which lay the foundation for further investigations aimed at assigning new biological functions to the MLO gene family.

  7. Resource potential and status of pearl oyster fishery in India

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Parulekar, A.H.

    Many cultivable species of pearl oysters are known to occur in the Indo-Australian Archipelago which is an important region in the world distribution of pearl oysters. An account of the development of Indian pearl fisheries that took place over...

  8. Pearls of Publishing: Advice for Increasing Your Acceptance Odds.

    Science.gov (United States)

    Brand, Jefferson C; Rossi, Michael J; Provencher, Matthew T; Lubowitz, James H

    2016-07-01

    Pearls of wisdom can be a convenient and efficient strategy to improve performance. As Editors, we employ pearls to standardize the review and editorial process, and we offer our own pearls to you to help facilitate acceptance of submitted research manuscripts with the ultimate goal of strengthening scientific conclusions that can affect patient care, and ultimately, improve outcome.

  9. 32 CFR 765.6 - Regulations for Pearl Harbor, Hawaii.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Regulations for Pearl Harbor, Hawaii. 765.6... RULES RULES APPLICABLE TO THE PUBLIC § 765.6 Regulations for Pearl Harbor, Hawaii. The Commander, U.S. Naval Base, Pearl Harbor, Hawaii, is responsible for prescribing and enforcing such rules and...

  10. 78 FR 75207 - National Pearl Harbor Remembrance Day, 2013

    Science.gov (United States)

    2013-12-10

    ... Documents#0;#0; ] Proclamation 9068 of December 5, 2013 National Pearl Harbor Remembrance Day, 2013 By the... resolve. On National Pearl Harbor Remembrance Day, we honor the men and women who selflessly sacrificed... forces of tyranny and oppression in the Second World War. In remembrance of Pearl Harbor and to...

  11. 75 FR 76613 - National Pearl Harbor Remembrance Day, 2010

    Science.gov (United States)

    2010-12-09

    ... Documents#0;#0; ] Proclamation 8614 of December 7, 2010 National Pearl Harbor Remembrance Day, 2010 By the... service members and civilians awoke on a quiet Sunday to a surprise attack on Pearl Harbor by Japanese... lives lost were forever seared into our national memory. The deadly attack on Pearl Harbor did...

  12. Teaching about Pearl Harbor. Curriculum Enhancement Series #1.

    Science.gov (United States)

    Shields, Anna Marshall

    These materials consist of sample lesson plans for teaching about the Japanese attack on Pearl Harbor on December 7, 1941, in both U.S. and world history classes. The lesson plans challenge students to examine how current attitudes toward the Japanese may be rooted in World War II and Pearl Harbor. Selected bibliographies on Pearl Harbor, World…

  13. Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example

    Science.gov (United States)

    Heitefuss, Rudolf

    2001-06-01

    Diseases of crop plants may lead to considerable yield losses. To control fungal diseases, fungicides are used extensively in present-day agricultural production. In order to reduce such external inputs, cultivars with natural resistance to important fungal pathogens are recommended in systems of integrated plant protection. Basic research, including genetics and molecular methods, is required to elucidate the mechanisms by which plants react to an attack by fungal pathogens and successfully defend themselves. This review examines our knowledge with respect to the multicomponent systems of resistance in plants, using powdery mildew on barley as an example. In addition, the question is adressed whether systemic acquired resistance and plants with transgenic resistance may be utilized in future plant protection strategies.

  14. Inactivation of mildew in rough rice and wheat by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun, E-mail: jwang@zju.edu.c [Department of Biosystems Engineering, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029 (China); Yu Yong [Department of Biosystems Engineering, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029 (China)

    2010-06-15

    Rough rice and wheat were irradiated by gamma ray ({sup 60}Co) with different doses and the mildew inactivation efficacy was investigated after 0, 6 and 12 month storage. Five genera of mildew in rough rice and wheat were detected, including Alternaria, Fusarium, Aspergillus, Penicillium and Rhizopus. For Aspergillus, four genera of mold were detected, including Aspergillus Kawachii, Aspergillus glaucus, Aspergillus niger, Aspergillus flavus. Detection rates of the five genera of mildew and four genera of Aspergillus were all reduced with increasing dose after 0, 6 and 12 months storage. The detection rates of the other four genera of mildew had no significant change during storage.

  15. Clinical Pearls in pediatric infections.

    Science.gov (United States)

    Singhi, Sunit; Mathew, Joseph; Jindal, Atul; Verma, Sanjay

    2011-12-01

    This series of Clinical Pearls presents four cases presenting with infection. Each of these cases had clinical clues to the correct diagnosis, which could be picked up on meticulous history, clinical examination, or basic laboratory investigations. The authors highlight the important lessons to be learnt from each case. The first is a 7 year old boy with recurrent respiratory tract infections since early life. Clinical examination revealed the presence of dextrocardia and situs inversus and bronchiectasis leading to a diagnosis of Primary Ciliary Dyskinesia. The second case is a 1.5-month-old infant who presented with meningitis and increasing head size since birth. CSF examination and CT scanning led to the correct diagnosis of congenital Toxoplasmosis. The next case is an infant with high grade fever and neck swelling. He had the rare Lemierre's syndrome comprising of oro-pharyngeal infection, suppurative thrompbophlebitis of the internal jugular vein and systemic dissemination of septic emboli. The fourth case is a 2-year-old infant with recurrent respiratory tract infections and discharging neck swellings from early life. Repeated testing for tuberculosis was negative. The diagnosis was Chronic granulomatous disease. The authors describe the clinical approach and investigations in these cases; along with an outline of the management.

  16. Partners in Leadership for Pearl River

    Science.gov (United States)

    2007-01-01

    Members of the 2007 class of Partners in Leadership toured NASA Stennis Space Center in Hancock County, Miss., on Jan. 11. They visited the center's B Test Stand, part of the center's rocket engine test complex. The Partners in Leadership training program is designed to teach Pearl River County leaders about their county's government, economic development, health and human services, history and arts, environment and education during a 10-month period. The program, sponsored by the Partners for Pearl River County, helps fulfill the mission of the economic and community development agency.

  17. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora

    NARCIS (Netherlands)

    Sharma, Rahul; Xia, Xiaojuan; Cano, Liliana M; Evangelisti, Edouard; Kemen, Eric; Judelson, Howard; Oome, Stan; Sambles, Christine; van den Hoogen, D Johan; Kitner, Miloslav; Klein, Joël; Meijer, Harold J G; Spring, Otmar; Win, Joe; Zipper, Reinhard; Bode, Helge B; Govers, Francine; Kamoun, Sophien; Schornack, Sebastian; Studholme, David J; Van den Ackerveken, Guido; Thines, Marco

    2015-01-01

    BACKGROUND: Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study thei

  18. Rationalization of pesticide treatments against powdery mildew of grape.

    Science.gov (United States)

    Spera, G; La Torre, A; Gianferro, M; Bugliosi, R

    2007-01-01

    The powdery mildew represents one of the diseases which affect the grape, it is diffused in all agricultural regions with variable intensity and epidemic course in operation of many microclimatic factors. The powdery mildew of grape is caused from Uncinala necator (Schw.) Burr. (nowadays named Erysiphe necator Schwein.); it is controlled with systemic therapy and contact chemicaL products. In some vineyards located in Latium (central Italy), different field trials have been carried out purposely to rationalize the treatments against E. necator. We have studied the powdery mildew infections through monitoring a set of environmental parameters, the evaluation of cultivar sensibility, the agricultural production method and the area characteristics. We have analysed the following environmental parameters monitoring every 15 minutes: precipitation, soil temperature, solar radiation, wind direction, wind speed, atmospheric relative humidity, atmospheric temperature, leaf wetness, soil humidity to cm 20 and soil humidity to cm 40. Besides, we have used Artificial Intelligence analysis techniques to try to forecast U. necator infections. Guideline EPPO/OEPP PP 1/4 (4) has been used. The trials were conducted in conventional and organic farms. In 2 conventional farms and in organic farm we have considered 1 untreated control thesis, in order to follow the course of infection, 1 standard farm reference thesis (standard), where the treatments were carried out according to the usual farm procedures and 1 thesis where the treatments were carried out according to examining the environmental data. In another conventional vineyard, we have considered only 1 untreated control thesis and 1 standard farm reference thesis (standard) to study disease trend. The achieved results have underlined the possibility (through the knowledge of data pedoclimatic and cultural) to position the treatments against the powdery mildew so that to reduce their number. The lower number of treatments that

  19. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi.

    Science.gov (United States)

    Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth

    2013-09-01

    Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.

  20. Powdery mildew caused by Podosphaera macularis on hop (Humulus lupulus) in North Carolina

    Science.gov (United States)

    In June 2015, a grower in western North Carolina detected powdery mildew in a small hop yard. Characteristic colonies of the pathogen where observed on cultivars Cashmere, Cascade, and Chinook. Leaves with powdery mildew were collected from cultivar Cashmere for confirmation of the pathogen identi...

  1. Role of MLO genes in susceptibility to powdery mildew in apple and grapevine

    NARCIS (Netherlands)

    Pessina, Stefano

    2016-01-01

    Powdery mildew (PM) is a major fungal disease that threatens thousands of plant species. PM is caused by Podosphaera leucotricha in apple and Erysiphe necator in grapevine. Powdery mildew is controlled by frequent applications of fungicides, having negative effects on the environment, and leading to

  2. Pearls and pitfalls in the horror cinema.

    Science.gov (United States)

    Pascuzzi, R M

    1998-01-01

    Observations on the neurologic signs and symptoms of Count Dracula, Wolfman, and Frankenstein's Monster are presented as viewed by a specialist in neuromuscular disease. Key clinical features of these horror movie figures illustrate a variety of pearls in the diagnosis of a variety of neurologic disorders, including porphyria, lead poisoning, osteosclerotic myeloma, and myasthenia gravis.

  3. Inhibition of Blumeria graminis germination and germling development within colonies of oat mildew

    DEFF Research Database (Denmark)

    Carver, T.L.W.; Roberts, P.C.; Thomas, B.J.;

    2001-01-01

    established oat mildew colonies, most formed abnormal, hypha-like germ tubes. Since they did not form appressoria, and ere thus Unable to attempt penetration, it was impossible to determine whether oat mildew colonies induced accessibility of underlying oat epidermal cells. However, when superficial...... ff. spp. formed normal appressoria. This was also true When conidia germinated within established barley mildew colonies. Within barley mildew colonies, appressoria of f. sp. hordei penetrated epidermal cells formed haustoria more frequently than appressoria distant from colonies. Similarly, ff. spp...... structures of established colonies were removed, germlings of all ff. spp. formed appressoria freely,, on cells containing oat mildew colony haustoria. Furthermore, these cells showed high level induced accessibility not only to f. sp. avenae but also to the normally non-pathogenic ff, spp. This indicated...

  4. Super-light concrete with pearl-chains

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2009-01-01

    half that of similar structures in concrete and steel. They are heat-insulating, fire-resistant and they open up the possibility for large spans and the creation of advanced shapes. Fields of application include roofs, shells, beams, columns, walls, façades, offshore structures, tunnels and structures......-scale applications, such as façade elements, crash barriers and secondary structures. One special small-scale application of the principle is in frame building, where super-light frames with pearl-chain-reinforced components have some of the same advantages as timber-frame structures with regard to stability, heat...... insulation, economy and simple erection processes, but without the disadvantages of fire and rot....

  5. Nucleus Pearl Coating Process of Freshwater Mussel Anodonta woodiana (Unionidae

    Directory of Open Access Journals (Sweden)

    WASMEN MANALU

    2013-03-01

    Full Text Available The limiting factor which is a weakness of sea water pearl production are high costs, the risk of major business failures and a long coating time. From the issue of freshwater pearls appear to have prospects of alternative substitution for sea water pearl. This present study aimed to evaluate effect of loads (the number and diameter nucleus on freshwater pearl coating process and the number and size of the appropriate nucleus diameter, to produce the optimum coating thickness of half-round pearls. The research consists of experimental implantation of 2, 4, and 6 nucleus number per individual mussel was maintained by the method stocked in hapa in bottom waters. Observation method and factorial randomized block design used in the study of the influence of the load to the successfulness of pearl coating and the pearl layer thickness. The results showed that A. woodiana can be utilized as a producer of freshwater pearls. In addition, the number of optimum nucleus that can be attached to the mussel A. woodiana was 2 grains/individuals with a diameter of 10 mm. Shells implanted with the optimum nucleus diameter and number of pearls produced the highest layer thickness of 17 m after 9 months cultivation. This result was good enough compared with the layer thickness of sea water pearl production after the same cultivation time.

  6. Computer vision based nacre thickness measurement of Tahitian pearls

    Science.gov (United States)

    Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban

    2017-03-01

    The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.

  7. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action.

    Science.gov (United States)

    Gafni, Aviva; Calderon, Claudia E; Harris, Raviv; Buxdorf, Kobi; Dafa-Berger, Avis; Zeilinger-Reichert, Einat; Levy, Maggie

    2015-01-01

    Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

  8. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action

    Directory of Open Access Journals (Sweden)

    Aviva eGafni

    2015-03-01

    Full Text Available Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

  9. Specific in planta recognition of two GKLR proteins of the downy mildew Bremia lactucae revealed in a large effector screen in lettuce.

    Science.gov (United States)

    Stassen, Joost H M; den Boer, Erik; Vergeer, Pim W J; Andel, Annemiek; Ellendorff, Ursula; Pelgrom, Koen; Pel, Mathieu; Schut, Johan; Zonneveld, Olaf; Jeuken, Marieke J W; Van den Ackerveken, Guido

    2013-11-01

    Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by suppression of effector-triggered immunity. We have previously identified 34 potential RXLR(-like) effector proteins of B. lactucae that were here tested for specific recognition within a collection of 129 B. lactucae-resistant Lactuca lines. Two effectors triggered a hypersensitive response: BLG01 in 52 lines, predominantly L. saligna, and BLG03 in two L. sativa lines containing Dm2 resistance. The N-terminal sequences of BLG01 and BLG03, containing the signal peptide and GKLR variant of the RXLR translocation motif, are not required for in planta recognition but function in effector delivery. The locus responsible for BLG01 recognition maps to the bottom of lettuce chromosome 9, whereas recognition of BLG03 maps in the RGC2 cluster on chromosome 2. Lactuca lines that recognize the BLG effectors are not resistant to Bremia isolate Bl:24 that expresses both BLG genes, suggesting that Bl:24 can suppress the triggered immune responses. In contrast, lettuce segregants displaying Dm2-mediated resistance to Bremia isolate Bl:5 are responsive to BLG03, suggesting that BLG03 is a candidate Avr2 protein.

  10. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming Fan; Zhenfu Luo; Yuemin Zhao; Qingru Chen; Daniel Tao; Xiuxiang Tao; Zhenqiang Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  11. Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil.

    Science.gov (United States)

    Cohen, Yigal; Ben-Naim, Yariv

    2016-01-01

    Downy mildew is currently the most serious disease of sweet basil around the world. The oomycete causal agent Peronospora belbahrii requires ≥ 4h free leaf moisture for infection and ≥7.5h of water-saturated atmosphere (relative humidity RH≥95%) at night for sporulation. We show here that continued nocturnal fanning (wind speed of 0.4-1.5 m/s) from 8pm to 8am dramatically suppressed downy mildew development. In three experiments conducted during 2015, percent infected leaves in regular (non-fanned) net-houses reached a mean of 89.9, 94.3 and 96.0% compared to1.2, 1.7 and 0.5% in adjacent fanned net-houses, respectively. Nocturnal fanning reduced the number of hours per night with RH≥95% thus shortened the dew periods below the threshold required for infection or sporulation. In experiments A, B and C, the number of nights with ≥4h of RH≥95% was 28, 10 and 17 in the non-fanned net-houses compared to 5, 0 and 5 in the fanned net-houses, respectively. In the third experiment leaf wetness sensors were installed. Dew formation was strongly suppressed in the fanned net-house as compared to the non-fanned net-house. Healthy potted plants became infected and sporulated a week later if placed one night in the non-fanned house whereas healthy plants placed during that night in the fanned house remained healthy. Infected potted basil plants sporulated heavily after one night of incubation in the non-fanned house whereas almost no sporulation occurred in similar plants incubated that night in the fanned house. The data suggest that nocturnal fanning is highly effective in suppressing downy mildew epidemics in sweet basil. Fanning prevented the within-canopy RH from reaching saturation, reduced dew deposition on the leaves, and hence prevented both infection and sporulation of P. belbahrii.

  12. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities

    National Research Council Canada - National Science Library

    Wroblewski, T; Piskurewicz, U; Finkers-Tomczak, A.M; Ochoa, O; Michelmore, R

    2007-01-01

    ...¿leucine-rich repeat (NBS¿LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3...

  13. Remembering Pearl Harbor at 75 Years.

    Science.gov (United States)

    Liehr, Patricia; Sopcheck, Janet; Milbrath, Gwyneth

    2016-12-01

    : On December 7, 1941, the Sunday-morning quiet of the U.S. naval base in Pearl Harbor, Hawaii, was shattered by dive-bombing Japanese fighter planes. The planes came in two waves-and when it was all over, more than 2,400 were killed and more than 1,100 were injured.Nurses were stationed at U.S. Naval Hospital Pearl Harbor, Tripler General Hospital (now Tripler Army Medical Center), Hickam Field Hospital, Schofield Barracks Station Hospital, and aboard the USS Solace, and witnessed the devastation. But they also did what nurses do in emergencies-they responded and provided care to those in need. Here are the stories of a few of those nurses.

  14. Enamel Pearls Implications on Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Elton Gonçalves Zenóbio

    2015-01-01

    Full Text Available Dental anatomy is quite complex and diverse factors must be taken into account in its analysis. Teeth with anatomical variations present an increase in the rate of severity periodontal tissue destruction and therefore a higher risk of developing periodontal disease. In this context, this paper reviews the literature regarding enamel pearls and their implications in the development of severe localized periodontal disease as well as in the prognosis of periodontal therapy. Radiographic examination of a patient complaining of pain in the right side of the mandible revealed the presence of a radiopaque structure around the cervical region of lower right first premolar. Periodontal examination revealed extensive bone loss since probing depths ranged from 7.0 mm to 9.0 mm and additionally intense bleeding and suppuration. Surgical exploration detected the presence of an enamel pearl, which was removed. Assessment of the remaining supporting tissues led to the extraction of tooth 44. Local factors such as enamel pearls can lead to inadequate removal of the subgingival biofilm, thus favoring the establishment and progression of periodontal diseases.

  15. Enamel Pearls Implications on Periodontal Disease

    Science.gov (United States)

    Zenóbio, Elton Gonçalves; Vieira, Thaís Ribeiral; Bustamante, Roberta Paula Colen; Gomes, Hayder Egg; Shibli, Jamil Awad; Soares, Rodrigo Villamarin

    2015-01-01

    Dental anatomy is quite complex and diverse factors must be taken into account in its analysis. Teeth with anatomical variations present an increase in the rate of severity periodontal tissue destruction and therefore a higher risk of developing periodontal disease. In this context, this paper reviews the literature regarding enamel pearls and their implications in the development of severe localized periodontal disease as well as in the prognosis of periodontal therapy. Radiographic examination of a patient complaining of pain in the right side of the mandible revealed the presence of a radiopaque structure around the cervical region of lower right first premolar. Periodontal examination revealed extensive bone loss since probing depths ranged from 7.0 mm to 9.0 mm and additionally intense bleeding and suppuration. Surgical exploration detected the presence of an enamel pearl, which was removed. Assessment of the remaining supporting tissues led to the extraction of tooth 44. Local factors such as enamel pearls can lead to inadequate removal of the subgingival biofilm, thus favoring the establishment and progression of periodontal diseases. PMID:26491574

  16. Effects of sunlight exposure on grapevine powdery mildew development.

    Science.gov (United States)

    Austin, Craig N; Wilcox, Wayne F

    2012-09-01

    Natural and artificially induced shade increased grapevine powdery mildew (Erysiphe necator) severity in the vineyard, with foliar disease severity 49 to 75% higher relative to leaves in full sun, depending on the level of natural shading experienced and the individual experiment. Cluster disease severities increased by 20 to 40% relative to those on check vines when ultraviolet (UV) radiation was filtered from sunlight reaching vines in artificial shading experiments. Surface temperatures of leaves in full sunlight averaged 5 to 8°C higher than those in natural shade, and in one experiment, filtering 80% of all wavelengths of solar radiation, including longer wavelengths responsible for heating irradiated tissues, increased disease more than filtering UV alone. In controlled environment experiments, UV-B radiation reduced germination of E. necator conidia and inhibited both colony establishment (hyphal formation and elongation) and maturity (latent period). Inhibitory effects of UV-B radiation were significantly greater at 30°C than at 20 or 25°C. Thus, sunlight appears to inhibit powdery mildew development through at least two mechanisms, i.e., (i) UV radiation's damaging effects on exposed conidia and thalli of the pathogen; and (ii) elevating temperatures of irradiated tissues to a level supraoptimal or inhibitory for pathogen development. Furthermore, these effects are synergistic at temperatures near the upper threshold for disease development.

  17. Selection procedures for durable resistance in wheat.

    NARCIS (Netherlands)

    Beek, M.A.

    1988-01-01

    A wheat breeding programme for durable resistance to all locally important pathogens: leaf rust, stem rust, powdery mildew, Septoria nodorum, Septoria tritici, Cochliobolus sativus, Fusarium graminearum, Common Root Rot, Barley Yellow Dwarf Virus and Soil Borne Mosaic Virus was conducted in Brazil.

  18. Manual of FOCUS PEARL version 1.1.1

    NARCIS (Netherlands)

    Titak A; Berg F van den; Boesten JJTI; Kraalingen D van; Leistra M; Linden AMA van der; Alterra Green World Research; LBG

    2001-01-01

    The PEARL model is used to evaluate the leaching of pesticide to the groundwater in support to the Dutch and European pesticide registration procedures. PEARL is an acronym for Pesticide Emission Assessment at Regional and Local scales. The model is a joint product of Alterra Green World research an

  19. Manual of FOCUS PEARL version 1.1.1

    NARCIS (Netherlands)

    Titak A; Berg F van den; Boesten JJTI; Kraalingen D van; Leistra M; Linden AMA van der; Alterra Green World Research; LBG

    2001-01-01

    The PEARL model is used to evaluate the leaching of pesticide to the groundwater in support to the Dutch and European pesticide registration procedures. PEARL is an acronym for Pesticide Emission Assessment at Regional and Local scales. The model is a joint product of Alterra Green World research an

  20. 32 CFR 705.31 - USS Arizona Memorial, Pearl Harbor.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false USS Arizona Memorial, Pearl Harbor. 705.31... NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.31 USS Arizona Memorial, Pearl Harbor. (a) Limited space and the desirability of keeping the Memorial simple and dignified require...

  1. Host‐induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce

    National Research Council Canada - National Science Library

    Govindarajulu, Manjula; Epstein, Lynn; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-01-01

    .... As a proof‐of‐concept, we generated stable transgenic lettuce plants expressing si RNA s targeting potentially vital genes of Bremia lactucae , a biotrophic oomycete that causes downy mildew, the most important...

  2. Durability of Materials in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller

    is stabilized by casting a fill material between the spandrel walls of the arch. Finally, the road surface is cast on top of the fill material. New bridges are designed for a service lifetime of at least 100 years. Hence, the specifications of the materials used in Pearl-Chain Bridges are high. This PhD study...... documents that the materials used in Pearl-Chain Bridges have the necessary strength and durability to ensure their longevity. The scope of the PhD study is limited to assessing the fill material placed on the Pearl-Chain arch, and the mortar joints and lightweight aggregate concrete used in the Pearl...... and pervious concrete were also investigated. The most suitable fill material for Pearl-Chain Bridges depends on the particular bridge design; the results obtained and presented in the present PhD study provide guidance on how to decide which fill material is most suitable regarding strength, permeability...

  3. Fingerprinting analysis and characterization of hydrocarbons in sediments of the Pearl River Delta in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Wang, Z.; Hollebone, B.; Yang, Z.; Brown, C.; Landriault, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section; Peng, X. [Chinese Academy of Sciences, Guangzhou (China). State Key Laboratory of Organic Geochemistry, Guangzhou Inst. of Geochemistry

    2009-07-01

    This paper reported on a study that used gas chromatography-mass spectrometry (GC-MS) and gas chromatography flame ionization detection (GC-FID) to investigate and characterize the contamination in southern China's Pearl River Delta, with particular reference to contamination from petroleum,n-alkanes, polycyclic aromatic hydrocarbons (PAHs), biomarkers and diamondoid compounds. Forensic analysis of sediments was necessary in order to decode the contamination history and evaluate the contamination level of the aquatic ecosystem. The contamination of the Pearl River Delta sediment was derived from various inputs, including petrogenic, biogenic and pyrogenic sources. However, in addition to identifying PAHs and biomarker terpanes and steranes, the detection of trace diamondoid compounds in the sediments demonstrated that the pollution in the river was derived partially from petroleum sources. Diamondoids are a class of saturated hydrocarbons that consist of three-dimensionally fused cyclohexane rings. They occur naturally in source rocks, crude oils, intermediate petroleum distillates, and finished petroleum products. They are more resistant to biodegradation than most other petroleum compounds such as n-alkanes. As such, they can play an important role in identifying and characterizing petroleum contamination in the environment. It was concluded that the petroleum contamination in the Pearl River Delta is attributed to the mixture of medium to heavy petroleum residues. 31 refs., 6 tabs., 4 figs.

  4. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production.

    Science.gov (United States)

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-06-11

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures.

  5. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production

    Science.gov (United States)

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-01-01

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures. PMID:26110895

  6. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production

    Directory of Open Access Journals (Sweden)

    Christelle Simon-Colin

    2015-06-01

    Full Text Available Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L with two bacterial exopolysaccharides (0.5% w/w acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures.

  7. THE USE OF ENDOPHYTIC FUNGI AS BIOPESTICIDE AGAINST DOWNY MILDEW PERONOSCLEROSPORA SPP. ON MAIZE

    OpenAIRE

    AMIN, NUR; La Daha; Nasruddin, Andi; Junaed, M; Iqbal, Andi

    2013-01-01

    Downy mildew is a major disease of maize caused by the fungus Peronosclerospora spp., widely distributed in all corn production centers in Indonesia. The disease can cause considerable losses; even total losses have been reported occurring on susceptible varieties. The purpose of the research was to determine the effectiveness of some isolates of endophytic fungi for the control of downy mildew on maize. The study consisted of four isolate treatments: Aspergillus spp., Trichoderma spp, Beauv...

  8. Biological control mechanisms of D-pinitol against powdery mildew in cucumber

    OpenAIRE

    Chen, J; Fernandez, Diana; Wang, D. D.; Chen, Y. J.; Dai, G. H.

    2014-01-01

    D-pinitol is an effective agent for controlling powdery mildew (Podosphaera xanthii) in cucumber. In this study, we determined the mechanisms of D-pinitol in controlling powdery mildew in cucumber plants. We compared P. xanthii development on cucumber leaf surface treated with D-pinitol or water (2 mg ml(-1)) at different time points after inoculation. The germinating conidia, hyphae, and conidiophores of the pathogen were severely damaged by D-pinitol at any time of application tested. The h...

  9. Tech Talk for Social Studies Teachers Lest We Forget: Remembering Pearl Harbor.

    Science.gov (United States)

    Green, Tim

    2001-01-01

    Presents an annotated bibliography that provides Web sites about Pearl Harbor (Hawaii). Includes Web sites that cover Pearl Harbor history, a live view of Pearl Harbor, stories from people who remember where they were during the attack, information on the naval station at Pearl Harbor, and a virtual tour of the USS Arizona. (CMK)

  10. 珠江口盆地低阻油层测井综合识别方法研究%The Logging Tegrated Recognition for Low Resistivity Reservoir in Pearl River Mouth Basin

    Institute of Scientific and Technical Information of China (English)

    胡向阳; 吴健; 梁玉楠; 汤翟; 杨毅

    2016-01-01

    Wenchang oil field contains a large number of low Resistivity Reservoir, it has a High content of shale content and bound water, low porosity and its rock particle is very fine, and No abnormal were observed for resistivity compared with it's wall rock, so it is difficult to identify low resistivity reservoir effectively, After formation testing , it can approve that oil do exist in 2 well area in wenchang A field, but for 1 well area which adjacent to 2 well area, there is no testing and production information, in order to determine the fluid properties, based on the log response of low Resistivity oil layer , on the one hand, The paper introduced several methods which include resistivity overlay technique、Neural Networ、fluid indicators、three-water model and so on, and refer to some useful information such as the lithology of the formation、oil-bearing and mud logging indication, in order to build the qualitative identification standard for low resistivity reservoir. On the other hand, By comparing four-property relationship of low resistivity reservoir between the 1 and 2 well area in wenchang A field, using the method of analogy, we try to prove that there is also contains low resistivity reservoir in 1 well area, the conclusion is approved by formation testing, the result shows that logging integrated interpretation is reliable.%文昌油田存在大量的低阻油层,储层泥质含量较重,物性较差,岩石颗粒细,束缚水含量高,电阻率较围岩无明显异常,导致在低阻油层识别方面遇到很大的困难;文昌A油田的2井区已经测试证实为油层,但与其相邻的1井区既无测试也无生产资料,为有效确定其流体性质,在分析低阻油层测井响应的基础上,一方面,引进了电阻率重叠法、神经网络法、流体指标法、三水模型等方法,并参考地层岩性、含油性与气测显示等信息,来建立定性识别低阻油层的判别标准;另一方面,通过对比两个井区储层

  11. Observed and predicted changes in virulence gene frequencies at 11 loci in a local barley powdery mildew population

    DEFF Research Database (Denmark)

    Hovmøller, M.S.; Munk, L.; Østergård, H.

    1993-01-01

    a survey comprising 11 virulence loc. Predictions were based on a model where selection forces were estimated through detailed mapping in the local area of host cultivars and their resistance genes, and taking into account the changes in distribution of host cultivars during the year caused by growth......The aim of the present study was to investigate observed and predicted changes in virulence gene frequencies in a local aerial powdery mildew population subject to selection by different host cultivars in a local barley area. Observed changes were based on genotypic frequencies obtained through...... with a constant distribution of host cultivars. Significant changes in gene frequencies were observed for virulence genes subject to strong direct selection as well as for genes subject mainly to indirect selection (hitchhiking). These patterns of changes were generally as predicted from the model. The influence...

  12. Occurrence and control of Wheat Downy Mildew%小麦霜霉病的发生与防治

    Institute of Scientific and Technical Information of China (English)

    秦玉芬

    2013-01-01

    小麦霜霉病是一种以土壤传染为主的真菌病害,主要在苗期阶段侵染.在防治上我们通过采取以轮作、选种抗病品种、加强肥水管理和药剂拌种等综合防治措施,使其得到了有效控制.%The wheat downy mildew is a kind of fungi diseases which are mainly infected by soil and the wheat ismainly contaminated during seeding stage.In prevention,we mainly take comprehensive preventive health measures such as rotation,choosing disease-resistant seed,the enhancement the management of fertilizer and water,medicament mixed with seed etc to extend effective control.

  13. Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances.

    Science.gov (United States)

    Kim, Young-Sook; Song, Ja-Gyeong; Lee, In-Kyoung; Yeo, Woon-Hyung; Yun, Bong-Sik

    2013-09-01

    A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

  14. Nocturnal Fanning Suppresses Downy Mildew Epidemics in Sweet Basil.

    Directory of Open Access Journals (Sweden)

    Yigal Cohen

    Full Text Available Downy mildew is currently the most serious disease of sweet basil around the world. The oomycete causal agent Peronospora belbahrii requires ≥ 4h free leaf moisture for infection and ≥7.5h of water-saturated atmosphere (relative humidity RH≥95% at night for sporulation. We show here that continued nocturnal fanning (wind speed of 0.4-1.5 m/s from 8pm to 8am dramatically suppressed downy mildew development. In three experiments conducted during 2015, percent infected leaves in regular (non-fanned net-houses reached a mean of 89.9, 94.3 and 96.0% compared to1.2, 1.7 and 0.5% in adjacent fanned net-houses, respectively. Nocturnal fanning reduced the number of hours per night with RH≥95% thus shortened the dew periods below the threshold required for infection or sporulation. In experiments A, B and C, the number of nights with ≥4h of RH≥95% was 28, 10 and 17 in the non-fanned net-houses compared to 5, 0 and 5 in the fanned net-houses, respectively. In the third experiment leaf wetness sensors were installed. Dew formation was strongly suppressed in the fanned net-house as compared to the non-fanned net-house. Healthy potted plants became infected and sporulated a week later if placed one night in the non-fanned house whereas healthy plants placed during that night in the fanned house remained healthy. Infected potted basil plants sporulated heavily after one night of incubation in the non-fanned house whereas almost no sporulation occurred in similar plants incubated that night in the fanned house. The data suggest that nocturnal fanning is highly effective in suppressing downy mildew epidemics in sweet basil. Fanning prevented the within-canopy RH from reaching saturation, reduced dew deposition on the leaves, and hence prevented both infection and sporulation of P. belbahrii.

  15. Essential oils: an alternative approach to management of powdery mildew diseases

    Directory of Open Access Journals (Sweden)

    Elena STURCHIO

    2015-01-01

    Full Text Available In recent years there has been growing interest in the application of plant-derived substances in agriculture as alternatives to the use of pesticides, in order to obtain healthy crops and more environmentally sustainable crop production systems. The properties of some essential oils as natural fungicides were evaluated, to promote their use in alternative agriculture. Potentially detrimental effects caused by essential oil residues in soil were also assessed by mutagenicity assays to avoid possible adverse effects related to the use of these materials. Trials in a controlled environment were set up, using ‘Romanesco’ zucchini treated with essential oils, either exclusively or alternated with a synthetic fungicide. The treatments were applied when natural infection by Podosphaera xanthii appeared on test plants, and powdery mildew incidence and severity were assessed after six weeks. Preliminary results indicated that the alternation of natural materials with effective synthetic fungicide maintained effective disease control, and may also assist with management of pesticide resistance in P. xanthii. No relevant mutagenic effects of essential oil residues in soil were revealed, although an appropriate formulation useful under field conditions is required for effective application.

  16. Mineralization and Osteoblast Cells Response of Nanograde Pearl Powders

    Directory of Open Access Journals (Sweden)

    Jian-Chih Chen

    2013-01-01

    Full Text Available The main objective of this study is to characterize the thermal, mineralization, and osteoblast cells response of pearl nanocrystallites. The results obtained from X-ray diffraction, FTIR spectra demonstrate that the pearl nano-crystallites can induce the formation of an HA layer on their surface in SBF, even after only short soaking periods. The in vitro cell response to nano-grade pearl powders is assessed by evaluating the cytotoxicity against a mouse embryonic fibroblast cell line and by characterizing the attachment ability and alkaline phosphatase activity of mouse bone cells (MC3T3-E1, abbreviated to E1 and bone marrow stromal precursor (D1 cells. The cytotoxicities of pearls were tested by the filtration and culture of NIH-3T3 mouse embryonic fibroblast cells. The viability of the cultured cells in media containing pearl crystallites for 24 and 72 h is greater than 90%. The bone cells seen in these micrographs are elongated and align predominately along the pearl specimen. The cells observed in these images also appeared well attached and cover the surface almost completely after 1 h. The pearl nanocrystallites had a positive effect on the osteogenic ability of ALP activity, and this promoted the osteogenic differentiation of MSCs significantly at explanations.

  17. Super-light and pearl-chain technology for support of ancient structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Schmidt, Jacob Wittrup; Goltermann, Per

    2014-01-01

    optimal and often curved paths of strong concrete assembled from smaller segments by prestressing wires, so that expensive curved moulds and supports can be avoided. Pearl-chains can provide a resistance to impact and earthquake of ancient structures. High-strength concrete and prestressed carbon fibre...... reinforcement may be applied, because the new technology solves the main problems for that, since the light aggregate concrete provides a fire protection needed for both materials and provides a stabilization of the slender cores in compression. The paper explains more about the new technology...

  18. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

    Directory of Open Access Journals (Sweden)

    Chloé Marchive

    Full Text Available Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.

  19. EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nishimura Marc

    2007-07-01

    Full Text Available Abstract Background The hypersensitive necrosis response (HR of resistant plants to avirulent pathogens is a form of programmed cell death in which the plant sacrifices a few cells under attack, restricting pathogen growth into adjacent healthy tissues. In spite of the importance of this defense response, relatively little is known about the plant components that execute the cell death program or about its regulation in response to pathogen attack. Results We isolated the edr2-6 mutant, an allele of the previously described edr2 mutants. We found that edr2-6 exhibited an exaggerated chlorosis and necrosis response to attack by three pathogens, two powdery mildew and one downy mildew species, but not in response to abiotic stresses or attack by the bacterial leaf speck pathogen. The chlorosis and necrosis did not spread beyond inoculated sites suggesting that EDR2 limits the initiation of cell death rather than its spread. The pathogen-induced chlorosis and necrosis of edr2-6 was correlated with a stimulation of the salicylic acid defense pathway and was suppressed in mutants deficient in salicylic acid signaling. EDR2 encodes a novel protein with a pleckstrin homology and a StAR transfer (START domain as well as a plant-specific domain of unknown function, DUF1336. The pleckstrin homology domain binds to phosphatidylinositol-4-phosphate in vitro and an EDR2:HA:GFP protein localizes to endoplasmic reticulum, plasma membrane and endosomes. Conclusion EDR2 acts as a negative regulator of cell death, specifically the cell death elicited by pathogen attack and mediated by the salicylic acid defense pathway. Phosphatidylinositol-4-phosphate may have a role in limiting cell death via its effect on EDR2. This role in cell death may be indirect, by helping to target EDR2 to the appropriate membrane, or it may play a more direct role.

  20. Real-time PCR and spore trap-based detection of the downy mildew pathogen, Peronospora effusa

    Science.gov (United States)

    Peronospora effusa is an obligate pathogen and the causal agent of downy mildew on spinach. The pathogen can be dispersed by splashing rain and wind, and may overwinter as oospores. Outbreaks of downy mildew on spinach are common in the cool climate of central coastal California, including the Sal...

  1. Studies on biological control of powdery mildew in cucumber (Sphaerotheca fuliginea) and rose (Sphaerotheca pannosa) by means of mycoparasites.

    NARCIS (Netherlands)

    Verhaar, M.A.

    1998-01-01

    Powdery mildew on rose ( Sphaerotheca pannosa ) and cucumber ( Sphaerotheca fuliginea ) are two serious diseases in glasshouses. Intensive control by fungicides is needed. The research presented here deals with biocontrol of powdery mildew on cucumber and rose by means of mycoparasites.The mycoparas

  2. The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica).

    Science.gov (United States)

    Pessina, Stefano; Angeli, Dario; Martens, Stefan; Visser, Richard G F; Bai, Yuling; Salamini, Francesco; Velasco, Riccardo; Schouten, Henk J; Malnoy, Mickael

    2016-10-01

    Varieties resistant to powdery mildew (PM; caused by Podosphaera leucotricha) are a major component of sustainable apple production. Resistance can be achieved by knocking-out susceptibility S-genes to be singled out among members of the MLO (Mildew Locus O) gene family. Candidates are MLO S-genes of phylogenetic clade V up-regulated upon PM inoculation, such as MdMLO11 and 19 (clade V) and MdMLO18 (clade VII). We report the knock-down through RNA interference of MdMLO11 and 19, as well as the complementation of resistance with MdMLO18 in the Arabidopsis thaliana triple mlo mutant Atmlo2/6/12. The knock-down of MdMLO19 reduced PM disease severity by 75%, whereas the knock-down of MdMLO11, alone or in combination with MdMLO19, did not result in any reduction or additional reduction of susceptibility compared with MdMLO19 alone. The test in A. thaliana excluded a role for MdMLO18 in PM susceptibility. Cell wall appositions (papillae) were present in both PM-resistant and PM-susceptible plants, but were larger in resistant lines. No obvious negative phenotype was observed in plants with mlo genes knocked down. Apparently, MdMLO19 plays the pivotal role in apple PM susceptibility and its knock-down induces a very significant level of resistance. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. EAARL Coastal Topography--Pearl River Delta 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely...

  4. EAARL Coastal Topography--Pearl River Delta 2008: Bare Earth

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed,...

  5. Pearl Harbor National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Pearl Harbor National Wildlife Refuge for the next 15 years. This plan outlines the...

  6. Electrospun composites of PHBV/pearl powder for bone repairing

    Directory of Open Access Journals (Sweden)

    Jingjing Bai

    2015-08-01

    Full Text Available Electrospun fiber has highly structural similarity with natural bone extracelluar matrix (ECM. Many researches about fabricating organic–inorganic composite materials have been carried out in order to mimic the natural composition of bone and enhance the biocompatibility of materials. In this work, pearl powder was added to the poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV and the composite nanofiber scaffold was prepared by electrospinning. Mineralization ability of the composite scaffolds can be evaluated by analyzing hydroxyapatite (HA formation on the surface of nanofiber scaffolds. The obtained composite nanofiber scaffolds showed an enhanced mineralization capacity due to incorporation of pearl powder. The HA formed amount of the composite scaffolds was raised as the increase of pearl powder in composite scaffolds. Therefore, the prepared PHBV/pearl composite nanofiber scaffolds would be a promising candidate as an osteoconductive composite material for bone repairing.

  7. Pearl River Fish Kill Post Incident Monitoring Report 2012 - 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Louisiana Department of Wildlife and Fisheries (LDWF) completed a three year fish and mussel monitoring project during the years 2012 through 2014 in the Pearl...

  8. EAARL Coastal Topography--Pearl River Delta 2008: Bare Earth

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed,...

  9. Electrospun composites of PHBV/pearl powder for bone repairing

    Institute of Scientific and Technical Information of China (English)

    Jingjing Bai; Jiamu Dai; Guang Li

    2015-01-01

    Electrospun fiber has highly structural similarity with natural bone extracelluar matrix (ECM). Many researches about fabricating organic–inorganic composite materials have been carried out in order to mimic the natural composition of bone and enhance the biocompatibility of materials. In this work, pearl powder was added to the poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and the composite nanofiber scaffold was prepared by electrospinning. Mineralization ability of the composite scaffolds can be evaluated by analyzing hydroxyapatite (HA) formation on the surface of nanofiber scaffolds. The obtained composite nanofiber scaffolds showed an enhanced mineralization capacity due to incorporation of pearl powder. The HA formed amount of the composite scaffolds was raised as the increase of pearl powder in composite scaffolds. Therefore, the prepared PHBV/pearl composite nanofiber scaffolds would be a promising candidate as an osteoconductive composite material for bone repairing.

  10. EAARL Coastal Topography--Pearl River Delta 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely...

  11. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  13. Pearl Harbor, Hawaii 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3-second Pearl Harbor Hawaii Elevation Grid provides bathymetric data in ASCII raster format of 1/3-second resolution in geographic coordinates. This grid is...

  14. Hawaii Abandoned Vessel Inventory, Pearl & Hermes Atoll, NWHI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for , Pearl & Hermes, Atoll, NWHI. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical...

  15. 2003 Pearl River County, Mississippi Lidar: Flood Plain Management Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This lidar data was collected primarily for flood plain mapping within Pearl River County, MS. The data were processed into separate Bare Earth and First Surface...

  16. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem.

    Science.gov (United States)

    Kuhn, Hannah; Kwaaitaal, Mark; Kusch, Stefan; Acevedo-Garcia, Johanna; Wu, Hongpo; Panstruga, Ralph

    2016-01-01

    It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host.

  17. Pearling instabilities of membrane tubes with anchored polymers.

    Science.gov (United States)

    Tsafrir, I; Sagi, D; Arzi, T; Guedeau-Boudeville, M A; Frette, V; Kandel, D; Stavans, J

    2001-02-05

    We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic polymers with hydrophobic side groups along the backbone. The results show that the polymer concentration is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different well-separated time scales, indicating two physical mechanisms. We present a model, which explains the observed phenomena and predicts polymer segregation according to local membrane curvature at late stages.

  18. Pearling Instabilities of Membrane Tubes with Anchored Polymers

    OpenAIRE

    Tsafrir, Ilan; Sagi, Dror; Arzi, Tamar; Guedeau-Boudeville, Marie-Alice; Frette, Vidar; kandel, Daniel; Stavans, Joel

    2000-01-01

    We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic polymers with hydrophobic side groups along the backbone. The results show that the polymer concentration is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different well-separated time scales, indicating two physical mechanisms. We present a model, which explains the observed phenomena and predicts polymer segregation according to local membrane curv...

  19. Antioxidant properties of wheat as affected by pearling.

    Science.gov (United States)

    Liyana-Pathirana, Chandrika; Dexter, Jim; Shahidi, Fereidoon

    2006-08-23

    The effects of pearling on the content of phenolics and antioxidant capacity of two Canadian wheat classes, namely, Canada Western Amber Durum; Triticum turgidum L. var. durum; CWAD) and Canada Western Red Spring; Triticum aestivum L.; CWRS) were examined. The antioxidant activity of wheat phenolics was evaluated using oxygen radical absorbance capacity (ORAC), inhibition of photochemiluminescence (PCL), Rancimat method, inhibition of oxidation of low-density lipoprotein, and DNA. The phenolic composition of wheat extracts was determined using high-performance liquid chromatography. The antioxidant capacity of both pearled grains and byproducts significantly decreased as the degree of pearling increased. Among grains, the unprocessed whole grains demonstrated the highest antioxidant capacity. The byproducts always demonstrated higher antioxidant capacity compared to the pearled grains, regardless of the wheat class. The resultant byproducts from 10-20% pearling possessed the highest antioxidant capacity. Processing of cereals may thus exert a significant effect on their antioxidant activity. The concentration of grain antioxidants is drastically reduced during the refining process. As phenolic compounds are concentrated in the outermost layers, the bran fractions resulting from pearling may be used as a natural source of antioxidants and as value-added products in the preparation of functional food ingredients or for enrichment of certain products.

  20. Initial formation stage and succedent biomineralization of pearls

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Fen [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Tian, Liangguang [Shandong Institute of Supervision and Inspection on Product Quality, Jinan 250100 (China); Xu, Xiangang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Hu, Xiaobo, E-mail: xbhu@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2014-04-01

    The initial formation stage and succedent biomineralization of pearls were studied using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and atomic force microscopy. A new initial formation phase with needle-like structure which is found to be nanocrystallites of aragonite was discovered. As a result, two possible formation modes are proposed to describe the initial formation stage of pearls. As for the succedent mineralization of “brick and mortar” structure, nanostripes were first discovered inside the “brick” (aragonite platelet), compared with the foregoing finding of nanograins. The various nanostructures of aragonite platelet allow us to reconsider the role of the inter- and intracrystalline organic material surrounding CaCO{sub 3}, and a possible biomineralization mechanism was proposed. - Highlights: • A new initial formation mineral phase was discovered in pearl. • Nanograins and nanostripes inside aragonite platelets were found in pearl. • Two possible initial formation stages were proposed for pearl. • A possible biomineralization mechanism of nacre in pearl was proposed.

  1. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses.

    Science.gov (United States)

    García-Gutiérrez, Laura; Zeriouh, Houda; Romero, Diego; Cubero, Jaime; de Vicente, Antonio; Pérez-García, Alejandro

    2013-05-01

    Biological control of plant diseases has gained acceptance in recent years. Bacillus subtilis UMAF6639 is an antagonistic strain specifically selected for the efficient control of the cucurbit powdery mildew fungus Podosphaera fusca, which is a major threat to cucurbits worldwide. The antagonistic activity relies on the production of the antifungal compounds iturin and fengycin. In a previous study, we found that UMAF6639 was able to induce systemic resistance (ISR) in melon and provide additional protection against powdery mildew. In the present work, we further investigated in detail this second mechanism of biocontrol by UMAF6639. First, we examined the signalling pathways elicited by UMAF6639 in melon plants, as well as the defence mechanisms activated in response to P. fusca. Second, we analysed the role of the lipopeptides produced by UMAF6639 as potential determinants for ISR activation. Our results demonstrated that UMAF6639 confers protection against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses, which include the production of reactive oxygen species and cell wall reinforcement. We also showed that surfactin lipopeptide is a major determinant for stimulation of the immune response. These results reinforce the biotechnological potential of UMAF6639 as a biological control agent.

  2. Study on Fungicide Screening for Un -pollutive Control of Grape Downy Mildew and Its Control Techniques%葡萄霜霉病无公害防治药剂筛选及控害技术研究

    Institute of Scientific and Technical Information of China (English)

    周步海; 李红阳; 陈志谊; 周加春; 杨华; 张俊喜

    2011-01-01

    The control effects of 6 commonly - used effective fungicide varieties (Dimethomorph, Azoxystrobin and so on) against grape downy mildew in the field were tested. The results indicated that Dimethomorph, Azoxystrobin and Propineb had better prevention and control effects on the occurrence of grape downy mildew. The other 3 kinds of fungicides could be used as the alternative fungicides in order to delay the resistance of its pathogen to the fungicides. Simultaneously, according to the occurrence characteristics of grape downy mildew, the integrated prevention and control techniques of this disease were put forward.%选取烯酰吗啉、阿米西达等6种对葡萄霜霉病有效的常用杀菌剂品种进行田间试验,结果表明:阿米西达、丙森锌2种药剂对预防和控制霜霉病的发生有较好的效果,可推荐使用;另外4种药剂可在控害过程中作为轮换药剂,与其他农药搭配使用,以延缓病原菌抗药性的产生.同时针对病害发生特点对其综合防控技术进行了研究集成.

  3. Efficacy Trial of Ethirimol and Other Fungicides against Powdery Mildew of Pumpkin%乙嘧酚等药剂防治南瓜白粉病药效试验

    Institute of Scientific and Technical Information of China (English)

    张焕春; 徐桂凤; 尹国香; 刘学卿; 夏秀波; 曹守军

    2012-01-01

      In order to solve the problem of Oidium sp. showing resistance against triazole fungicides, we carried out the trail to screen out effective fungicides against the powdery mildew of pumpkin in greenhouse. The results showed that ethirimol, kumulus and hexaconazole had better control effects against the powdery mildew of pumpkin, and ethirimol possessed the highest control efficiency of 92.82%, so it was the best fungicide using together with other fungicides to control powdery mildew of pumpkin.%  针对南瓜白粉病菌对三唑类农药产生抗药性的问题,进行了几种新药剂防治大棚南瓜白粉病的防效筛选试验.试验结果表明,乙嘧酚、硫磺、己唑醇对南瓜白粉病有较好的防治效果,其中乙嘧酚防效最高,达到92.82%,可作为首选药剂,与其他农药配合使用.

  4. Epidemiology and population biology of Pseudoperonospora cubensis: a model system for management of downy mildews.

    Science.gov (United States)

    Ojiambo, Peter S; Gent, David H; Quesada-Ocampo, Lina M; Hausbeck, Mary K; Holmes, Gerald J

    2015-01-01

    The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of Pseudoperonospora cubensis appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.

  5. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet.

    Science.gov (United States)

    Miedaner, Thomas; Geiger, Hartwig H

    2015-02-25

    Ergot is a disease of cereals and grasses caused by fungi in the genus Claviceps. Of particular concern are Claviceps purpurea in temperate regions, C. africana in sorghum (worldwide), and C. fusiformis in pearl millet (Africa, Asia). The fungi infect young, usually unfertilized ovaries, replacing the seeds by dark mycelial masses known as sclerotia. The percentage of sclerotia in marketable grain is strictly regulated in many countries. In winter rye, ergot has been known in Europe since the early Middle Ages. The alkaloids produced by the fungus severely affect the health of humans and warm-blooded animals. In sorghum and pearl millet, ergot became a problem when growers adopted hybrid technology, which increased host susceptibility. Plant traits reducing ergot infection include immediate pollination of receptive stigmas, closed flowering (cleistogamy), and physiological resistance. Genetic, nonpollen-mediated variation in ergot susceptibility could be demonstrated in all three affected cereals. Fungicides have limited efficacy and application is weather dependent. Sorting out the sclerotia from the harvest by photocells is expensive and time consuming. In conclusion, molecular-based hybrid rye breeding could improve pollen fertility by introgressing effective restorer genes thus bringing down the ergot infection level to that of conventional population cultivars. A further reduction might be feasible in the future by selecting more resistant germplasm.

  6. Towards a more sustainable agriculture: wheat mycorrhization to protect against powdery mildew.

    Science.gov (United States)

    Mustafa, G; Tisserant, B; Randoux, B; Fontaine, J; Reignault, Ph; Sahraoui, A Lounes-Hadj

    2013-01-01

    One of the means to reduce the use of pesticides, which are harmful for humans and the environment, is the development of alternative methods to control crop diseases. In this context, arbuscular mycorrhizal inoculation possesses a great potential for crop production by a more sustainable agriculture. Our work aims to (i) determine the optimal conditions for wheat mycorrhization (ii) study the impact of arbuscular mycorrhizal inoculation on a foliar disease of wheat, powdery mildew (Blumeria graminis f.sp. tritici, Bgt), (iii) evaluate the stimulation of natural defences of wheat (Triticuma estivum). Therefore, this work consisted firstly of defining the parameters, affecting the establishment of wheat mycorrhization, such as: phosphorus concentration (62, 12.5, 6.2 mg/L), culture time (4, 5, 6, 7 weeks), arbuscular mycorrhizal species used as an inoculum (Rhizophagus irregularis (Ri), Glomus masseae (Gm) and the mixture of (Ri+Gm)) and wheat cultivars (Orvantis and Lord, sensitive and moderately resistant to Bgt, respectively). Secondly, the protective effect of mycorrhizal inoculation against Bgt was estimated by comparing infection rates of wheat seedlings subjected and non-subjected to AMF. Finally, to better understand the biochemical mechanisms involved in the protection, two enzymatic activities described as defense markers [lipoxygenase (LOX) and peroxidase (POX)] were also assessed. Extensive mycorrhization (about 31%) was obtained at P/5 concentration (12.5 mg/L) when wheat plants were 6 weeks old. The highest colonization rate was obtained when wheat was inoculated with Gm compared to SZE and Ri. The higher resistance level of Lord wheat cultivar against Bgt did not affect the mycorrhizal rate compared to the more susceptible cultivar Orvantis. Our work showed a significant protection level in mycorrhizal (M) wheat plants against Bgt, estimated to about 25 and 43% with Ri and SZE respectively compared to non-mycorrhizal (NM) Orvantis plants. The

  7. PHOTOSYNTHETIC PIGMENTS IN HEVEA CLONES UNDER POWDERY MILDEW ATTACK

    Directory of Open Access Journals (Sweden)

    Gisely Cristina Gonzalez

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810561The rubber tree [Hevea brasiliensis (Willd. ex Adr. Of Juss. Muell. Arg.] can be affected by the occurrence of the fungus Oidium heveae, which causes one of the most important diseases of rubber trees, powdery mildew. This work studied meet changes in photosynthetic pigments, an indicator of oxidative stress, in seedlings of three Hevea brasiliensis clones, RRIM 600, GT1 and PR255, under infection in Oidium heveae. The experiment was conducted in an open environment under natural photoperiod conditions and at the beginning of the trial, the rubber plants would be inoculated were sprayed with an aqueous suspension containing O. heveae at a concentration of 16 x 104 conidia mL-1. On the day of inoculation and after 48, 96, 144 and 192 h leaf samples were collected for the determination of photosynthetic pigments. Degradation in photosynthetic pigments in the period of infection was observed in rubber tree clones studied; thus, there is oxidative stress in clones of rubber trees. No promising genetic material for genetic improvement work stress tolerance by Oidium heveae was identified.

  8. Micronutrient density and stability in West African pearl millet – potential for biofortification

    DEFF Research Database (Denmark)

    Bürger, Anna; Jensen, Henning Høgh; Gondah, Jadah

    2014-01-01

    Pearl millet (Cenchrus americanus (L.) Morrone) is one of the most important cereals in West and Central Africa (WCA). Human populations in WCA are strongly affected by micronutrient deficiencies. Biofortification, the development of pearl millet varieties with enhanced micronutrient levels...

  9. Economic issues and perspectives on innovation in new resistant grapevine varieties in France

    Directory of Open Access Journals (Sweden)

    Montaigne Etienne

    2016-12-01

    Full Text Available The arrival in France of new varieties resistant to downy mildew and powdery mildew calls into question the aims of this “revolution” in a sector dominated by tradition. The proposed evaluation reviews the historical experience of cross-breeding programmes from an evolutionist standpoint before analysing the responses to the new technological paradigm of resistance to disease. Taking account of the time periods, dating their implementation and describing the opportunities open to winemakers, the paper revisits the scientific controversies, the institutional blockages to be eliminated, the means of recognition and the prospects.

  10. Women in History--Pearl Buck: An Advocate for Women and Children

    Science.gov (United States)

    Watts, Lynette

    2008-01-01

    This article profiles Pearl Buck, an advocate for women's rights and minority children, an author of Chinese history, and a pioneer in many ways. Buck established the Welcome House in 1949 in order to help unadoptable children find families (Conn, 1996). In 1964, Buck founded the Pearl S. Buck Foundation, now Pearl S. Buck International, which…

  11. Women in History--Pearl Buck: An Advocate for Women and Children

    Science.gov (United States)

    Watts, Lynette

    2008-01-01

    This article profiles Pearl Buck, an advocate for women's rights and minority children, an author of Chinese history, and a pioneer in many ways. Buck established the Welcome House in 1949 in order to help unadoptable children find families (Conn, 1996). In 1964, Buck founded the Pearl S. Buck Foundation, now Pearl S. Buck International, which…

  12. 3 CFR 8463 - Proclamation 8463 of December 4, 2009. National Pearl Harbor Remembrance Day, 2009

    Science.gov (United States)

    2010-01-01

    ... Pearl Harbor Remembrance Day, 2009 8463 Proclamation 8463 Presidential Documents Proclamations Proclamation 8463 of December 4, 2009 Proc. 8463 National Pearl Harbor Remembrance Day, 2009By the President of... by the Imperial Japanese on Pearl Harbor was an attempt to break the American will and destroy...

  13. Evidence for cucurbit powdery mildew pathogen races based on watermelon differentials

    Science.gov (United States)

    Powdery mildew (PM) caused by Podosphaera xanthii occurs in open fields and greenhouses and can severely limit cucurbit production. Presently seven races of P. xanthii have been identified using melon (Cucumis melo) differentials. Physiological races of this pathogen have not been classified for ot...

  14. Cucurbit powdery mildew of melon incited by Podosphaera xanthii: global and western U.S. perspectives

    Science.gov (United States)

    Cucurbit powdery mildew (CPM) is a major problem of melon (Cucumis melo L.) production worldwide, that is mostly caused by two fungi: Podosphaera xanthii and Golovinomyces cichoracearum (DC) V.P. Heluta (formerly Erysiphe cichoracearum). The two species may co-infect in some areas of northern Europe...

  15. Suppression of cucumber powdery mildew by UV-B is affected by background light quality

    Science.gov (United States)

    Brief (5-10 min) exposure to UV-B radiation (280-300 nm) suppressed powdery mildew (Podosphaera xanthii) on Cucumis sativus. The effect was enhanced by red light (600-660 nm), but offset by blue light (420-500 nm) and UV-A (300-420 nm). Compared to untreated controls, 2 h red light from specific lig...

  16. Epidemiology and population biology of pseudoperonospora cubensis: a model system for management of downy mildews

    Science.gov (United States)

    The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of disease outbreaks. Dispersal potential of th...

  17. Cucurbit powdery mildews: Methodology for objective determination and denomination of races

    Science.gov (United States)

    Cucurbit powdery mildew (CPM), a disease on field and greenhouse cucurbit crops worldwide, is caused most frequently by two obligate erysiphaceous ectoparasites (Golovinomyces orontii s.l., Podosphaera xanthii) that are highly variable in their pathogenicity and virulence. Various, independent syste...

  18. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    Science.gov (United States)

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  19. Evaluation of watermelon varieties for tolerance to powdery mildew and Phytophthora fruit rot, 2014

    Science.gov (United States)

    This experiment was conducted at the U.S. Vegetable Laboratory farm in Charleston, SC. The soil was Yonges loamy fine sand. This study was undertaken to determine the performance of seeded and seedless commercial watermelon varieties for tolerance to powdery mildew (PM) and Phytophthora fruit rot as...

  20. Effect of soil heating, severity of powdery mildew and nitrogen fertilization on yield of winter wheat

    Energy Technology Data Exchange (ETDEWEB)

    Buschhaus, H.; Werning, L.

    1981-01-01

    Field studies were conducted to determine the effect of different levels of nitrogen and severity of powdery mildew on yield of winter wheat grown in soil heated with waste heat from power plants. Soil heating reduced yield depending on efficiency of mildew control and nitrogen level from 12 to 37%. Disease severity showed a linear increase with intensity of heating corresponding with a decrease in yield reduction. In the non-heated plot, 0.8% of the flag leaves were diseases. Increase soil temperatures by 2-3/sup 0/C caused a 2% rise in mildew severity and at 5-6/sup 0/C 3%, respectively. Control of powdery mildew increased yield on the unheated plot about 5,2 dt/ha, on the moderately heated about 8,7 dt/ha and on the plots with highest temperature about 11,1 dt/ha over that of untreated plots. Nitrogen fertilizers increased yield on non-heated plots, in heated plots with diseased plants, only. Nitrogen did not increases yield of healthy plants on heated plots.

  1. Ozone and sulphur dioxide effects on the lilac powdery mildew fungus

    Energy Technology Data Exchange (ETDEWEB)

    Hibben, C.R.; Taylor, M.P.

    1975-01-01

    Colonisation of lilac (Syringa vulgaris) by the powdery mildew fungus (Microsphaera alni) is often sparse in sites exposed to urban air pollutants. The influence of ozone(O/sub 3/) and sulphur dioxide (SO/sub 2/) on conidial germination and the establishment of infection by M. alni was studied. Although tolerant of O/sub 3/, mildew infection was reduced by acute and chronic doses of SO/sub 2/. Conidial germination and the appressorium phase were the stages most sensitive to SO/sub 2/. Infection was unimpeded on leaves previously fumigated, thus confirming that these reactions were due more to the fungicidal, rather than the phytotoxic, properties of the pollutant. There was no synergism between the two gases that lowered the threshold of toxicity to conidia. A member of the Fungi Imperfecti, Hyalodendron album, sporulated on mildew colonies on lilac leaves. It was antagonistic to the mildew by reducing both conidial germination and the formation of appressoria. Conidia of H. album were more sensitive to O/sub 3/ and SO/sub 2/ than M. alni. These results suggest that the role of nonpathogenic microbial epiphytes should be considered when assessing the full impact of air pollutants on obligate parasites, and possibly on other foliar pathogens.

  2. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...

  3. Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing

    NARCIS (Netherlands)

    Stassen, J.H.; Seidl, M.F.; Vergeer, P.W.; Nijman, I.J.; Snel, B.; Cuppen, E.; van den Ackerveken, G.

    2012-01-01

    Lettuce downy mildew (Bremia lactucae) is a rapidly adapting oomycete pathogen affecting commercial lettuce cultivation. Oomycetes are known to use a diverse arsenal of secreted proteins (effectors) to manipulate their hosts. Two classes of effector are known to be translocated by the host: the

  4. Editorial: First report of powdery mildew (Oidium sp.) on Pincushion flowers (Scabiosa columbaria) in New York

    NARCIS (Netherlands)

    Jankovics, T.; Kiss, L.; Niks, R.E.; Daughtrey, M.L.

    2009-01-01

    Scabiosa columbaria (Dipsacaceae) is a popular perennial ornamental in the United States. It is native to Europe and was introduced to North America by nursery trade only recently. In the spring of 2006, symptoms of powdery mildew infection were observed on overwintered plants of S. columbaria cv.

  5. Transcriptional, microscopic and macroscopic investigations into monogenic and polygenic interactions of tomato and powdery mildew

    NARCIS (Netherlands)

    Li Chengwei,

    2005-01-01

    Powdery mildew ( Oidium neolycopersici) is a worldwide obligate fungal disease of tomato ( Solanum lycopersicum ). Six monogenic Ol genes and three major QTLs were identified and mapped on tomato genome. In this thesis, the mechanisms of both compatible and incompatible interactions of tomato and O.

  6. Downy mildew on coleus (Plectranthus scutellarioides) caused by Peronospora belbahrii sensu lato in Tennessee

    Science.gov (United States)

    Coleus (Plectranthus scutellarioides [syn. = Solenostemon scutellarioides]) is a popular ornamental plant in the mint family (Lamiaceae), prized for its colorful and showy foliage. In August 2015, disease symptoms typical of downy mildew were observed at two sites in Nashville, Tennessee: (i) at the...

  7. Morphological and phylogenetic comparisons amongst powdery mildews on Catalpa in the UK.

    Science.gov (United States)

    Cook, Roger T A; Henricot, Béatrice; Henrici, Alick; Beales, Paul

    2006-06-01

    Three species of powdery mildew, Erysiphe elevata, E. catalpae, and Neoerysiphe galeopsidis were identified on Catalpa species in England in 2004. A new disease record, N. galeopsidis was the first Catalpa mildew to appear (in June), but it was later out-competed by E. elevata that caused the most serious damage. Both mildews also attacked C. speciosa, C. xerubescens and a new host, xChitalpa tashkentensis, a Chilopsis xCatalpa hybrid. No powdery mildew was detected on C. bungei, C. ovata, or C. fargesii. Identifications of the pathogens using morphological data were fully supported by DNA analysis yielding characteristic rDNA ITS sequences. The sequences placed E. catalpae within the E. aquilegiae clade. The sequences for E. elevata from southern England and France closely matched those from Hungary and North America, confirming the recent spread of this pathogen from the USA. It eventually overran N. galeopsidis and its sudden appearance in the UK could be due to greater aggressiveness and to the production of more ascomata especially during autumns with delayed leaf fall as in 2001. A further species, Oidium hiratae (i.e. Podosphaera sp.), though described from a 1978 UK collection on C. bignonioides, was not detected in the field.

  8. Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing

    NARCIS (Netherlands)

    Stassen, J.H.; Seidl, M.F.; Vergeer, P.W.; Nijman, I.J.; Snel, B.; Cuppen, E.; van den Ackerveken, G.

    2012-01-01

    Lettuce downy mildew (Bremia lactucae) is a rapidly adapting oomycete pathogen affecting commercial lettuce cultivation. Oomycetes are known to use a diverse arsenal of secreted proteins (effectors) to manipulate their hosts. Two classes of effector are known to be translocated by the host: the RXLR

  9. Golovinomyces spadaceus causing powdery mildew on Coreopsis hybrid 'Full Moon' (Heliantheae, Asteraceae) in Washington State

    Science.gov (United States)

    Symptoms of powdery mildew were observed on a Coreopsis cultivar in the Horticulture and Landscape Architecture Garden on the Washington State University campus, Pullman, Whitman County, Washington. White to off-white sporulating mycelial areas were ~5mm in diam to confluent and confined to adaxial...

  10. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease.

    Science.gov (United States)

    Tanaka, Keijitsu; Fukuda, Mutsumi; Amaki, Yusuke; Sakaguchi, Takatoshi; Inai, Koji; Ishihara, Atsushi; Nakajima, Hiromitsu

    2017-05-30

    Powdery mildew disease of cucurbits is caused mainly by Podosphaera fusca, which is one of the most important limiting factors in cucurbit production worldwide. Previously we reported that Bacillus amyloliquefaciens biocontrol strain SD-32 produces C17 bacillomycin D and [Ile]surfactin, and that these metabolites play important roles in SD-32's biocontrol over cucumber gray mold disease. Our further investigation demonstrated that the culture broth and its supernatant suppressed cucumber powdery mildew disease in greenhouse experiments. However, the active principle(s) remained unknown. The active compound was isolated from the culture supernatant after anti-powdery mildew disease activity-guided purification and identified as prumycin. Prumycin significantly suppressed the disease, whereas bacillomycin D and [Ile]surfactin did not. Prumycin did not induce the expression of plant defense genes (PR1a and VSP1), suggesting that it does not act via plant defense response. Light microscopic observations of prumycin-treated cucumber cotyledon suggested that prumycin inhibits the conidial germination of P. fusca. This study demonstrates that prumycin is a major factor in SD-32's suppression of cucumber powdery mildew disease. Our findings shed light for the first time on prumycin's role in biocontrol by Bacillus against this disease. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Tolerance to Cucurbit Powdery Mildew in USDA Bottle Gourd (Lagenaria siceraria) Plant Introductions (PI)

    Science.gov (United States)

    Powdery mildew (Podosphaera xanthii) can cause severe damage to cucurbit crops grown in open fields and greenhouses. Bottle gourd plants (Lagenaria siceraria) are being used throughout the world as rootstocks for grafting watermelon. In recent years, there has been a growing interest in the USA in...

  12. The mining of pearl formation genes in pearl oyster Pinctada fucata by cDNA suppression subtractive hybridization.

    Science.gov (United States)

    Wang, Ning; Kinoshita, Shigeharu; Nomura, Naoko; Riho, Chihiro; Maeyama, Kaoru; Nagai, Kiyohito; Watabe, Shugo

    2012-04-01

    Recent researches revealed the regional preference of biomineralization gene transcription in the pearl oyster Pinctada fucata: it transcribed mainly the genes responsible for nacre secretion in mantle pallial, whereas the ones regulating calcite shells expressed in mantle edge. This study took use of this character and constructed the forward and reverse suppression subtractive hybridization (SSH) cDNA libraries. A total of 669 cDNA clones were sequenced and 360 expressed sequence tags (ESTs) greater than 100 bp were generated. Functional annotation associated 95 ESTs with specific functions, and 79 among them were identified from P. fucata at the first time. In the forward SSH cDNA library, it recognized mass amount of nacre protein genes, biomineralization genes dominantly expressed in the mantle pallial, calcium-ion-binding genes, and other biomineralization-related genes important for pearl formation. Real-time PCR showed that all the examined genes were distributed in oyster mantle tissues with a consistence to the SSH design. The detection of their RNA transcripts in pearl sac confirmed that the identified genes were certainly involved in pearl formation. Therefore, the data from this work will initiate a new round of pearl formation gene study and shed new insights into molluscan biomineralization.

  13. Water pollution remote sensing for Pearl River Delta

    Science.gov (United States)

    Deng, Ruru; Xiong, Shouping; Qin, Yan

    2008-10-01

    Water pollution on the Delta of Pearl River is increasingly serious and to command the fact of pollution is the key of the control. A remote sensing model for water pollution base on single scattering is deduced in this paper. To avoid the effect by turbidity of water, by analysis the characteristics of the energy composition of multiple scattering, a factor of second scattering is deduced to build a double scattering model, and the practical arithmetic for the calculation of the model is put forwarded and then used to the pollution remote sensing over the Pearl River Delta. The precision of the result is validated by the synchronous measured data on water surface. The result of remote sensing showed that all of the North River, East River and West River are polluted in Pearl River Delta, and the most serious pollution is take place around Guang Zhou City and Dong Guan City.

  14. Prospects for exploitation of disease resistance from Hordeum chilense in cultivated cereals.

    Science.gov (United States)

    Rubiales, D; Niks, R E; Carver, T L; Ballesteros, J; Martín, A

    2001-01-01

    Hordeum chilense is a South American wild barley with high potential for cereal breeding given its high crossability with other members of the Triticeae. In the present paper we consider the resistance of H. chilense to several fungal diseases and the prospects for its transference to cultivated cereals. All H. chilense accessions studied are resistant to the barley, wheat and rye brown rusts, the powdery mildews of wheat, barley, rye and oat, to Septoria leaf blotch, common bunt and to loose smuts, which suggests that H. chilense is a non-host of these diseases. There are also lines resistant to wheat and barley yellow rust, stem rust and to Agropyron leaf rust, as well as lines giving moderate levels of resistance to Septoria glume blotch, tan spot and Fusarium head blight. Some H. chilense lines display pre-appressorial avoidance to brown rust. Lines differ in the degree of haustorium formation by rust and mildew fungi they permit, and in the degree to which a hypersensitive response occurs after haustoria are formed. Unfortunately, resistance of H. chilense to rust fungi is not expressed in tritordeum hybrids, nor in chromosome addition lines in wheat. In tritordeum, H. chilense contributes quantitative resistance to wheat powdery mildew, tan spot and loose smut. The resistance to mildew, expressed as a reduced disease severity, is not associated with macroscopically visible necrosis. Hexaploid tritordeums are immune to Septoria leaf blotch and to common bunt although resistance to both is slightly diluted in octoploid tritordeums. Studies with addition lines in wheat indicate that the resistance of H. chilense to powdery mildew, Septoria leaf blotch and common bunt is of broad genetic basis, conferred by genes present on various chromosomes.

  15. Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment.

    Science.gov (United States)

    Pugliese, M; Gullino, M L; Garibaldi, A

    2011-01-01

    Plant responses to elevated CO2 and temperature have been much studied in recent years, but effects of climate change on pathological responses are largerly unknown. The pathosystems grapevine (Vitis vinifera) - downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necatrix) were chosen as models to assess the potential impact of increased CO2 and temperature on disease incidence and severity under controlled environment. Grapevine potted plants were grown in phytotrons under 4 different simulated climatic conditions: (1) standard temperature (ranging from 18 degrees to 22 degrees C) and standard CO2 concentration (450 ppm); (2) standard temperature and elevated CO2 concentration (800 ppm); (3) elevated temperature (ranging from 22 degrees to 26 degrees C, 4 degrees C higher than standard) and standard CO2 concentration; (4) elevated temperature and CO2 concentration. Each plant was inoculated with a spore suspension containing 5x10(5) cfu/ml. Disease index and physiological parameters (chlorophyll content, fluorescence, assimilation rate) were assessed. Results showed an increase of the chlorophyll content with higher temperatures and CO2 concentration, to which consequently corresponded an higher fluorescence index. Disease incidence of downy mildew increased when both CO2 and temperatures were higher, while an increase in CO2 did not influenced powdery mildew incidence, probably due to the increased photosynthetic activity of plants under such conditions. Considering that the rising concentrations of CO2 and other greenhouse gases will lead to an increase in global temperature and longer seasons, we can assume that this will allow more time for pathogens evolution and could increase pathogen survival, indirectly affecting downy and powdery mildews of grapevine.

  16. Super-light Structures with Pearl-chain Reinforcement

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Bagger, Anne

    2010-01-01

    of prefabricated segments of a strong material, assembled by one or more prestressing wires. By means of pearl-chain reinforcement, it becomes affordable to provide structures with a wide variety of shapes. This allows a more resource-economical design, because it removes practical hindrances for application...... of compression zones with optimal curved shapes. Some benefits of SLS with pearl-chains are: considerable savings on materials, energy, and CO2, reduction of costs, no scaffolding, cheaper moulds, faster assembly on site, improved durability, good thermal insulation, good indoor-climate, user friendly operation...

  17. Pearling in cells: A clue to understanding cell shape

    CERN Document Server

    Bar-Ziv, Roy; Moses, Elisha; Safran, Samuel A; Bershadsky, Alexander

    2010-01-01

    Gradual disruption of the actin cytoskeleton induces a series of structural shape changes in cells leading to a transformation of cylindrical cell extensions into a periodic chain of "pearls". Quantitative measurements of the pearling instability give a square-root behavior for the wavelength as a function of drug concentration. We present a theory that explains these observations in terms of the interplay between rigidity of the submembranous actin shell and tension that is induced by boundary conditions set by adhesion points. The theory allows estimation of the rigidity and thickness of this supporting shell. The same theoretical considerations explain the shape of nonadherent edges in the general case of untreated cells.

  18. The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.

    Science.gov (United States)

    Agatonovic-Kustrin, Snezana; Morton, David W

    2012-07-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.

  19. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi.

    Science.gov (United States)

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-02-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (powdery mildew fungus populations infecting red clover plants in the field.

  20. Cold pearl surfactant-based blends.

    Science.gov (United States)

    Crombie, R L

    1997-10-01

    Pearlizing agents have been used for many years in cosmetic formulations to add a pearlescent effect. Cold pearl surfactant-based blends are mixtures of glycol stearates and surfactants which can be blended in the cold into a wide range of personal-care formulations to create a pearlescent lustre effect. Under controlled manufacturing conditions constant viscosities and crystalline characteristics can be obtained. The development of these blends has been driven by efforts to improve the economics of adding solid pearlizing agents directly into a hot mix formulation. This paper summarizes the history of pearlizers, describes their advantages and physical chemistry of the manufacturing process. Finally some suggestions for applications are given. Les agents nacrants sont utilises depuis de nombreuses annees dans les formulations cosmetiques pour ajouter un effet nacre. Les melanges a froid a base de tensioactif nacre sont des melanges de stearates de glycol et de tensioactifs qui peuvent etre melanges a froid dans une large gamme de formulations d'hygiene personnelle pour creer un effet de lustre nacre. On peut obtenir des viscosites et des proprietes cristallines constantes avec des conditions de fabrication maitrisees. Le developpement de ces melanges a ete porte par les efforts pour ameliorer les couts de l'ajout d'agents nacrants solides directement dans une formulation melangee de l'ajout d'agents nacrants solides directement dans une formulation melangee a chaud. Cet article resume l'histoire des agents nacrants, decrit leurs avantages et al physico-chimie du procede de fabrication. On emet a la fin cetaines suggestions d'applications.