WorldWideScience

Sample records for microwave temperature profiler

  1. The Microwave Temperature Profiler (PERF)

    Science.gov (United States)

    Lim, Boon; Mahoney, Michael; Haggerty, Julie; Denning, Richard

    2013-01-01

    The JPL developed Microwave Temperature Profiler (MTP) has recently participated in GloPac, HIPPO (I to V) and TORERO, and the ongoing ATTREX campaigns. The MTP is now capable of supporting the NASA Global Hawk and a new canister version supports the NCAR G-V. The primary product from the MTP is remote measurements of the atmospheric temperature at, above and below the flight path, providing for the vertical state of the atmosphere. The NCAR-MTP has demonstrated unprecedented instrument performance and calibration with plus or minus 0.2 degrees Kelvin flight level temperature error. Derived products include curtain plots, isentropes, lapse rate, cold point height and tropopause height.

  2. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  3. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nano composites

    International Nuclear Information System (INIS)

    Li, X.; He, X.; Lv, J.; Wu, Y.; Luo, Y.; Chen, H.

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nano composites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased along the direction of microwave transmission when the unilateral microwave heating was applied, and the temperature difference along the thickness direction of wood was very significant; The temperature with wood firstly increased and then gradually decreased from the wood surface to interior when the bilateral microwave heating was applied. Compared with the unilateral microwave heating, bilateral microwave heating is a better microwave heating method for the more uniform wood microwave pretreatment.

  4. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  5. Use of the inverse temperature profile in microwave processing of advanced ceramics

    International Nuclear Information System (INIS)

    Binner, J.G.P.; Al-Dawery, I.A.; Aneziris, C.; Cross, T.E.

    1992-01-01

    Attempts are being made to exploit the inverse temperature profile which can be developed with microwave heating with respect to the processing of certain advanced ceramics. This paper discusses the results obtained to date during the microwave sintering of YBCO high-T c superconductors and the microwave reaction bonding of silicon nitride

  6. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  7. Analysis of temperature profile and electric field in natural rubber glove due to microwave heating: effects of waveguide position

    Science.gov (United States)

    Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.

    2018-01-01

    Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.

  8. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  9. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  10. Continuous vulcanization of extruded profile by microwave process

    International Nuclear Information System (INIS)

    Lim Hun Soo

    1994-01-01

    Continuous vulcanization is being increasingly used today in the manufacture of extrusion profiles. This is particularly so with the microwave/hot air continuous vulcanization process. Although this process is now quite widely used in Europe and to a lesser extent in USA, it is still not used in Malaysia. To improve the technological capability of the rubber-based industry in extrusion product, the RRIM has acquired a microwave/hot air tunnel continuous vulcanization equipment to enable development work in this area to be carried out with the aim of upgrading the rubber industry towards this more automated manufacturing process. This is particularly pertinent in view of the anticipated labour shortage, and, increasing labour and energy cost. This paper outlines the basic principles of operation of the microwave/hot air tunnel continuous vulcanization process and describes some aspects of compounding involving natural and synthetic rubbers for use in the process. As temperature increase is one of the major factors influencing the vulcanization of profile in this process, study was therefore concentrated on the heat generation aspect in the microwave tunnel

  11. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    Science.gov (United States)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  12. Control of plasma profile in microwave discharges via inverse-problem approach

    Directory of Open Access Journals (Sweden)

    Yasuyoshi Yasaka

    2013-12-01

    Full Text Available In the manufacturing process of semiconductors, plasma processing is an essential technology, and the plasma used in the process is required to be of high density, low temperature, large diameter, and high uniformity. This research focuses on the microwave-excited plasma that meets these needs, and the research target is a spatial profile control. Two novel techniques are introduced to control the uniformity; one is a segmented slot antenna that can change radial distribution of the radiated field during operation, and the other is a hyper simulator that can predict microwave power distribution necessary for a desired radial density profile. The control system including these techniques provides a method of controlling radial profiles of the microwave plasma via inverse-problem approach, and is investigated numerically and experimentally.

  13. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Directory of Open Access Journals (Sweden)

    L. Bernet

    2017-11-01

    Full Text Available Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW, all performed at the aerological station (MeteoSwiss in Payerne (Switzerland. Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  14. Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Directory of Open Access Journals (Sweden)

    F. Navas-Guzmán

    2017-11-01

    Full Text Available In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014–September 2016 from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland. In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9 in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.

  15. Analysis of microwave heating of materials with temperature-dependent properties

    International Nuclear Information System (INIS)

    Ayappa, K.G.; Davis, H.T.; Davis, E.A.; Gordon, J.

    1991-01-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model

  16. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  17. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    Science.gov (United States)

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Basic principles of thermo-acoustic energy and temporal profile detection of microwave pulses

    CERN Document Server

    Andreev, V G; Vdovin, V A

    2001-01-01

    Basic principles of a thermo-acoustic method developed for the detection of powerful microwave pulses of nanosecond duration are discussed.A proposed method is based on the registration of acoustic pulse profile originated from the thermal expansion of the volume where microwave energy was absorbed.The amplitude of excited acoustic transient is proportional to absorbed microwave energy and its temporal profile resembles one of a microwave pulse when certain conditions are satisfied.The optimal regimes of microwave pulse energy detection and sensitivity of acoustic transient registration with piezo-transducer are discussed.It was demonstrated that profile of a microwave pulse could be detected with temporal resolution of 1 - 3 nanosecond.

  19. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  20. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  1. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  2. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  3. Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations

    Directory of Open Access Journals (Sweden)

    V. Proschek

    2011-10-01

    Full Text Available Measuring greenhouse gas (GHG profiles with global coverage and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS is key for improved monitoring of GHG concentrations in the free atmosphere. In this respect a new satellite mission concept adding an infrared-laser part to the already well studied microwave occultation technique exploits the joint propagation of infrared-laser and microwave signals between Low Earth Orbit (LEO satellites. This synergetic combination, referred to as LEO-LEO microwave and infrared-laser occultation (LMIO method, enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from the microwave signals and GHG profiles from the simultaneously measured infrared-laser signals. However, due to the novelty of the LMIO method, a retrieval algorithm for GHG profiling is not yet available. Here we introduce such an algorithm for retrieving GHGs from LEO-LEO infrared-laser occultation (LIO data, applied as a second step after retrieving thermodynamic profiles from LEO-LEO microwave occultation (LMO data. We thoroughly describe the LIO retrieval algorithm and unveil the synergy with the LMO-retrieved pressure, temperature, and altitude information. We furthermore demonstrate the effective independence of the GHG retrieval results from background (a priori information in discussing demonstration results from LMIO end-to-end simulations for a representative set of GHG profiles, including carbon dioxide (CO2, water vapor (H2O, methane (CH4, and ozone (O3. The GHGs except for ozone are well retrieved throughout the UTLS, while ozone is well retrieved from about 10 km to 15 km upwards, since the ozone layer resides in the lower stratosphere. The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. The retrieved profiles also appear unbiased, which points

  4. Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.

  5. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  6. The influence of microwave irradiation on rocks for microwave-assisted underground excavation

    Directory of Open Access Journals (Sweden)

    Ferri Hassani

    2016-02-01

    Full Text Available Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of McGill University to make a real application of microwave-assisted mechanical rock breakage to full-face tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks (norite, granite, and basalt for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs (SEMs highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics® software generated temperature profiles that were in close agreement with experimental results.

  7. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  8. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  9. The impact of microwaves irradiation and temperature manipulation ...

    African Journals Online (AJOL)

    The impact of microwaves irradiation and temperature manipulation for control of stored-products insects. ... This treatment could provide an effective and friendly environmental treatment technique in integrated pest management (IPM) program. Key words: Cold storage, microwaves, saw-toothed grain beetle, cigarette ...

  10. Temperature profile retrievals with extended Kalman-Bucy filters

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1979-01-01

    The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.

  11. Microwave heating behavior and microwave absorption properties of barium titanate at high temperatures

    Directory of Open Access Journals (Sweden)

    K. Kashimura

    2016-06-01

    Full Text Available The temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated over various frequencies and temperatures of 25-1000 ∘C. First, using both the coaxial transmission line method and the cavity perturbation method by a network analyzer, the real and imaginary parts of the relative permittivity of BaTiO3 ( ε r ′ and ε r ″ , respectively were measured, in order to improve the reliability of the data obtained at 2.45 GHz. The imaginary parts of the relative permittivity as measured by the two methods were explored by their heating behaviors. Furthermore, the temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated for frequencies of 2.0-13.5 GHz and temperatures of 25-1000 ∘C using the coaxial transmission line method.

  12. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    Science.gov (United States)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  13. The relationship between brightness temperature and soil moisture. Selection of frequency range for microwave remote sensing

    International Nuclear Information System (INIS)

    Rao, K.S.; Chandra, G.; Rao, P.V.N.

    1987-01-01

    The analysis of brightness temperature data acquired from field and aircraft experiments demonstrates a linear relationship between soil moisture and brightness temperature. However, the analysis of brightness temperature data acquired by the Skylab radiometer demonstrates a non-linear relationship between soil moisture and brightness temperature. In view of the above and also because of recent theoretical developments for the calculation of the dielectric constant and brightness temperature under varying soil moisture profile conditions, an attempt is made to study the theoretical relationship between brightness temperature and soil moisture as a function of frequency. Through the above analysis, the appropriate microwave frequency range for soil moisture studies is recommended

  14. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  15. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  16. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    International Nuclear Information System (INIS)

    Sellitto, P.; Del Frate, F.

    2014-01-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320–325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet. - Highlights: • A sensitivity analysis and an inversion scheme to retrieve temperature profiles from satellite UV observations (320–325 nm). • The exploitation of the temperature dependence of the absorption cross section of ozone in the Huggins band is proposed. • First demonstration of the feasibility of temperature profiles retrieval from satellite UV observations. • RMSEs and biases comparable with more established techniques involving TIR and MW observations

  17. Temperature-specific inhibition of human red cell (Na/sup +//K/sup +/) ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz (CW) microwave radiation. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersected between 23 and 24 C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 C. Exposure of membrane suspensions to a 6 W/kg dose rate at 1 C intervals between 23 and 27 C, resulted in an activity change only for the Na+/K+ ATPase at 25 C. The activity decreased by approximately 35% compared to sham-irradiated samples. An hypothesis based on the interaction of microwave radiation with enzyme structure during a conformational rearrangement is proposed as an explanation for the effect.

  18. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  19. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    International Nuclear Information System (INIS)

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-01-01

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved

  20. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Sounding Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  1. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    Science.gov (United States)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  2. Fundamental characteristics of microwave explosion pretreatment of wood. I, Properties of temperature development

    Science.gov (United States)

    Xian-jun Li; Ke-yang Lu; Lan-ying Lin; Yong-dong Zhou; Zhi-yong Cai; Feng Fu

    2010-01-01

    In this study, the effects of microwave radiation intensity, radiation time and initial wood moisture content (MC) on the properties of temperature development in Eucalyptus urophylla wood samples during the microwave explosion pretreatment have been investigated using a new microwave pretreatment equipment. The results show that 1) with the increase of microwave...

  3. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  4. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  5. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    Science.gov (United States)

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  7. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  8. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    International Nuclear Information System (INIS)

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al 2 O 3 were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE 02 wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows

  9. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  10. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations.

    Science.gov (United States)

    Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi

    2012-01-01

    The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.

  11. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  12. Effects of low-temperature pretreatment on enhancing properties of refuse-derived fuel via microwave irradiation.

    Science.gov (United States)

    Liu, Zhen; Wang, Han-Qing; Zhou, Yue-Yun; Zhang, Xiao-Dong; Liu, Jian-Wen

    2017-07-01

    The present study focuses on pretreatment of enhancing the properties of refuse-derived fuel (RDF) via low-temperature microwave irradiation. These improved properties include lower chlorine content, a more porous surface structure and better combustion characteristics. In this study, low-temperature microwave irradiation was carried out in a modified microwave apparatus and the range of temperature was set to be 220-300℃. We found that the microwave absorbability of RDF was enhanced after being partly carbonized. Moreover, with the increasing of the final temperature, the organochlorine removal ratio was greatly increased to 80% and the content of chlorine was dramatically decreased to an extremely low level. It was also interesting to find that the chlorine of RDF was mainly released as HCl rather than organic chloride volatiles. The finding is just the same as the polyvinyl chloride pyrolysis process. In addition, pores and channels emerged during the modifying operation and the modified RDF has better combustibility and combustion stability than traditional RDF. This work revealed that low-temperature modification of RDF via microwave irradiation is significant for enhancing the quality of RDF and avoiding HCl erosion of equipment substantially.

  13. Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunqing, E-mail: cdeng@uwaterloo.ca; Otto, M.; Lupascu, A., E-mail: alupascu@uwaterloo.ca [Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-27

    We report on the characterization of microwave loss of thin aluminum oxide films at low temperatures using superconducting lumped resonators. The oxide films are fabricated using plasma oxidation of aluminum and have a thickness of 5 nm. We measure the dielectric loss versus microwave power for resonators with frequencies in the GHz range at temperatures from 54 to 303 mK. The power and temperature dependence of the loss are consistent with the tunneling two-level system theory. These results are relevant to understanding decoherence in superconducting quantum devices. The obtained oxide films are thin and robust, making them suitable for capacitors in compact microwave resonators.

  14. Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers

    International Nuclear Information System (INIS)

    Li, D.J.; Luk, K.H.; Jiang, H.B.; Chou, C.K.; Hwang, G.Z.

    1984-01-01

    The construction of a modified coaxial cable as an intracavitary microwave applicator suitable for use in some vaginal and rectal cancers is presented. Thermometry is performed for microwave frequencies of 300, 400, 650, and 915 MHz. Temperature profiles in tissue phantoms were obtained with Vitek 101 temperature probes and thermography, and the data were compared with those obtained in dogs. The temperature profiles are dependent on the frequency of the microwaves and the insertion depth of the applicator. In addition, a lucite cylindrical spacer external to the applicator also altered the heating pattern. Therefore, with proper combinations of frequency, insertion depth, and spacer, the applicator can be used for heating tumors in some clinical situations. Two patients were treated with this intracavitary microwave applicator in conjunction with interstitial radiation therapy. Tolerance to such combined therapy was satisfactory in these preliminary trial treatments

  15. Room temperature microwave-assisted recording on 500-Gbpsi-class perpendicular medium

    Science.gov (United States)

    Nozaki, Y.; Ishida, N.; Soeno, Y.; Sekiguchi, K.

    2012-10-01

    Microwave-assisted recording on a 500-Gbpsi-class perpendicular medium was experimentally demonstrated at room temperature. Magnetization reversal under a radio-frequency magnetic field was measured by an electrically shorted coplanar waveguide, which enabled us to evaluate the change in the medium's ferromagnetic resonance spectrum. A frequency-dependent reduction in the switching field was clearly observed in response to a microwave impulse 50 ns in duration. A significant reduction of up to 30% in the coercive field was achieved by applying a microwave impulse with an amplitude of 25 dBm and a frequency of 15 GHz.

  16. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  17. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    Science.gov (United States)

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  18. Design and Proof-of-Concept Use of a Circular PMMA Platform with 16-Well Sample Capacity for Microwave-Accelerated Bioassays.

    Science.gov (United States)

    Mohammed, Muzaffer; Aslan, Kadir

    2013-01-01

    We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.

  19. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  20. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  1. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  2. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  3. Non-equilibrium microwave plasma for efficient high temperature chemistry

    NARCIS (Netherlands)

    van den Bekerom, D.C.M.; den Harder, N.; Minea, T.; Palomares Linares, J.M.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.J.

    2017-01-01

    This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas

  4. The application of microwave techniques to temperature measurement in biotelemetry

    International Nuclear Information System (INIS)

    Glajchen, M.

    1984-01-01

    The use of a microwave dielectric resonator for temperature measurement in Biotelemetry offers the advantage that a passive temperature telemeter can be used. The telemeter is powered by a source remote from the host creature, thus permitting greater miniaturisation of the implant than is possible with conventional techniques. This is essential, especially for application to small animals where the telemeter size and weight become critical. The design of the telemeter which is based upon a novel microwave technique, and the associated practical considerations are discussed. Included in this work is a criticism of initially promising ideas which after an in-depth investigation had to be disregarded. Although the transponder could not be built in its final form due to the unavailability of certain key materials, the transponder operation was tested and found to be successful. A specification of the transponder and transmitter requirements for a working system are included. A theoretical and experimental appraisal of dielectric resonators as miniature microwave filters, also forms a large part of this work. Dielectric resonators offer a significant volume reduction compared to air-filled metallic cavities, and simple coupling to microstrip combined with ease of tuning permits incorporation into Microwave Integrated Circuits. A computer program which can form the basis for a dielectric resonator filter design is provided, and some unusual results of tests on dielectric resonators are presented. It is believed that this will help to popularise and increase understanding of the dielectric resonator - which is an exciting, yet still emerging technology

  5. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  6. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  7. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator.

    Science.gov (United States)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  8. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    Science.gov (United States)

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  10. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn

    Science.gov (United States)

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; hide

    2013-01-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.

  11. Water vapor profiling using microwave radiometry

    Science.gov (United States)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  12. Microwave assisted sintering of gadolinium doped barium cerate electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arumugam Senthil, E-mail: senthu.ramp@gmail.com [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Balaji, Ramamoorthy [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Jayakumar, Srinivasalu [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamilnadu (India); Pradeep, Chandran [Department of Physics, Indian Institute of Technology, Madras, 600 036, Tamilnadu (India)

    2016-10-01

    In Solid Oxide Fuel Cell (SOFC), electrolyte plays a vital role to increase the energy conversion efficiency. The main hurdle of such electrolyte in fuel cell is its higher operating temperature (1000 °C) which results in design limitation and higher fabrication cost. In order to reduce the operating temperature of SOFC, a suitable electrolyte has been prepared through co-precipitation method followed by microwave sintering of solid ceramic. The calcination temperature for the as-prepared powder was identified using Differential Scanning Calorimetry. The crystal structure of the sample was found to exhibit its orthorhombic perovskite structure. The particle size was determined using High-Resolution Transmission Electron Microscope with uniform in shape and size, match with XRD results and confirmed from structural analysis. Thus, the sample prepared via co-precipitation method and the solid ceramic sintered through microwave can be a promising electrolyte for fuel cells operated at intermediate temperature. - Highlights: • To synthesis the composite electrolyte by chemical method and sinter using microwave. • To reduce the operating temperature of electrolyte for high ionic conductivity in SOFC's. • To study the phase purity and to develop nanocomposite at reduced temperature.

  13. Low-Temperature Dynamic Nuclear Polarization at 9.4 Tesla With a 30 Milliwatt Microwave Source

    Science.gov (United States)

    Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2010-01-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 Tesla (400 MHz resonant frequency for 1H, 264 GHz for electron spins in organic radicals) in the 7–80 K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to 1H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of 1H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the 1H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80 K. PMID:20392658

  14. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Directory of Open Access Journals (Sweden)

    Xujun Han

    Full Text Available The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL; the other is observation localization (OL. Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  15. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Science.gov (United States)

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  16. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production.

    Science.gov (United States)

    Mazubert, Alex; Taylor, Cameron; Aubin, Joelle; Poux, Martine

    2014-06-01

    Microwave effects have been quantified, comparing activation energies and pre-exponential factors to those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via transesterification and esterification reactions. Several publications report an enhancement of biodiesel production using microwaves, however recent reviews highlight poor temperature measurements in microwave reactors give misleading reaction performances. Operating conditions have therefore been carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction, the activation energy is 37.1kJ/mol (20.1-54.2kJ/mol) in the microwave-heated reactor compared with 31.6kJ/mol (14.6-48.7kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the activation energy is 45.4kJ/mol (31.8-58.9kJ/mol) for the microwave-heated reactor compared with 56.1kJ/mol (55.7-56.4kJ/mol) for conventionally-heated reactor. The results confirm the absence of non-thermal microwave effects for homogenous-catalyzed reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Physicochemical and sensory profile of rice bran roasted in microwave

    Directory of Open Access Journals (Sweden)

    Marina Costa Garcia

    2012-12-01

    Full Text Available The purpose of this study was to evaluate the physical, chemical, and sensory changes in bran from three rice cultivars according to microwave roasting time. This study analyzed three rice cultivars, BRS Sertaneja (S, BRS Primavera (P, and IRGA 417 (I determining the color parameters (L*, a*, and b * at 6, 9, 12, 15, and 18 minutes of roasting time. After applying the difference from control test, the rice brans with different characteristics aroma and flavor were selected: S and P roasted for 9 and 15 minutes and IRGA 417 roasted for 9, 12, and 15 minutes. These samples were characterized by Free-Choice Profile descriptive sensory analysis, and their chemical composition was also determined. The longer the roasting process, the higher the roasted flavor intensity and aroma. The IRG 417 cultivar roasted for 12 minutes showed a sweeter flavor and aroma. After roasting, the brans remained rich in protein and lipid and presented higher fiber content and lower reducing sugar and phytic acid content. Microwave roasting for 12 minutes can be a viable option for improving the sensory functional and nutritional characteristics of the rice bran considering its use in food products.

  18. Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Peiris, T.A.; Sagu, Jagdeep S.; Hazim Yusof, Y.; Upul Wijayantha, K.G., E-mail: U.Wijayantha@lboro.ac.uk

    2015-09-01

    Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 °C for 15 min was 93 μA cm{sup −2} at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 μA cm{sup −2} at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 °C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a ~ 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. - Highlights: • Conversion of Zn to ZnO by microwave and radiant annealing was conducted. • Microwave conversion was 5 times faster compared to radiant annealing. • Photoelectrochemical performance of microwave annealed ZnO was 40% higher. • Microwave annealing results in a 75% energy saving.

  19. Evaluation of microwave thermotherapy with histopathology, magnetic resonance imaging and temperature mapping

    NARCIS (Netherlands)

    Huidobro, Christian; Bolmsjö, Magnus; Larson, Thayne; de la Rosette, Jean; Wagrell, Lennart; Schelin, Sonny; Gorecki, Tomasz; Mattiasson, Anders

    2004-01-01

    Purpose: Interstitial temperature mapping was used to determine the heat field within the prostate by the Coretherm. (ProstaLund, Lund, Sweden) transurethral microwave thermotherapy device. Gadolinium. enhanced magnetic resonance imaging (MRI) and histopathology were used to determine the extent and

  20. THE ATACAMA COSMOLOGY TELESCOPE: BEAM MEASUREMENTS AND THE MICROWAVE BRIGHTNESS TEMPERATURES OF URANUS AND SATURN

    Energy Technology Data Exchange (ETDEWEB)

    Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Durban 4041 (South Africa); Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Marsden, Danica; Schmitt, Benjamin L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Dünner, Rolando; Gallardo, Patricio [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W.; Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, Megan B.; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, Haverford, PA 19041 (United States); and others

    2013-11-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T{sub U}{sup 149}= 106.7 ± 2.2 K and T{sub U}{sup 219}= 100.1 ± 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T{sub S}{sup 149}= 137.3 ± 3.2 K and T{sub S}{sup 219}= 137.3 ± 4.7 K.

  1. MICROWAVE MEASUREMENT OF REFRACTORY MATERIALS AT HIGH-TEMPERATURE

    International Nuclear Information System (INIS)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-01-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  2. Microwave Measurement of Refractory Materials at High-Temperature

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  3. Digital readouts for large microwave low-temperature detector arrays

    International Nuclear Information System (INIS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-01-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100MS/s 16-bit D/A to generate an arbitrary number of tones in 50MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (∼10GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors

  4. Spectroscopic investigation of wave driven microwave plasmas

    International Nuclear Information System (INIS)

    Wijtvliet, R.; Felizardo, E.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Nijdam, S.; Veldhuizen, E. V.; Kroesen, G.

    2009-01-01

    Large H atom line broadening was found throughout the volume of surface wave generated He-H 2 and H 2 microwave plasmas at low pressures. The measured Doppler temperatures corresponding to the H β , H γ , H δ , H ε , and H ζ line profiles were found to be higher than the rotational temperature of the hydrogen molecular Fulcher-α band and the Doppler temperature of the 667.1 nm singlet He line. No excessive broadening has been found. The Lorentzian and Gaussian widths as determined by fitting the spectral lines with a Voigt profile increase with the principal quantum number of the upper level. In contrast, no such dependence for the Gaussian width has been observed in an Ar-H 2 discharge. No population inversion has been observed from measurements of the relative intensities of transitions within the Balmer series.

  5. MICROWAVE INTERACTIONS WITH INHOMOGENEOUS PARTIALLY IONIZED PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A. H.

    1962-11-15

    Microwave interactions with inhomogeneous plasmas are often studied by employing a simplified electromagnetic approach, i.e., by representing the effects of the plasma by an effective dielectric coefficient. The problems and approximations associated with this procedure are discussed. The equation describing the microwave field in an inhomogeneous partially ionized plasma is derived, and the method that is applied to obtain the reflected, transmitted, and absorbed intensities in inhomogeneous plasmas is presented. The interactions of microwaves with plasmas having Gaussian electron density profiles are considered. The variation of collision frequency with position is usually neglected. In general, the assumption of constant collision frequency is not justified; e.g., for a highly ionized plasma, the electron density profile determines, in part, the profile of the electron-ion collision frequency. The effect of the variation of the collision frequency profile on the interaction of microwaves with inhomogeneous plasmas is studied in order to obtain an estimate of the degree of error that may result when constant collision frequency is assumed instead of a more realistic collision frequency profile. It is shown that the degree of error is of particular importance when microwave analysis is used as a plasma diagnostic. (auth)

  6. Temperature profiles in the Harwell boreholes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1983-03-01

    Heat flow at Harwell is estimated at 45 mWm -2 (milli Watt per metre squared is the unit of heat flow). Thermal conductivity values for the formations penetrated range from 1.0 to 4.6 Wm -1 K -1 . The temperature profiles recorded in the boreholes enable the vertical groundwater flow patterns within two poorly permeable mudrock units to be evaluated. The two mudrock units act as leaky barriers each separating a pair of aquifer units which induce a vertical hydraulic gradient across the mudrocks. The flow velocity results for the upper mudrock units derived from the temperature profile are compatible with values for groundwater potential derived from hydraulic data (10 -9 ms -1 from the temperature profile and 10 -12 ms -1 from the hydraulic observations). The results from the lower mudrock sequence are incompatible and this may be due to some other overiding influence upon the temperature profile. (author)

  7. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  8. Effect of Temperature Profile on Reaction Violence in Heated, Self-Ignited, PBX-9501

    Science.gov (United States)

    Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry

    2001-06-01

    Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We have conducted instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which have shown that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities and reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.

  9. Microwave Accelerated Polymerization of 2-Phenyl-2-Oxazoline: Microwave or Temperature Effects?

    NARCIS (Netherlands)

    Hoogenboom, R.; Leenen, M.A.M.; Wiesbrock, F.D.; Schubert, U.S.

    2005-01-01

    Summary: Investigations regarding the cationic ring-opening polymerization of 2-phenyl-2-oxazoline under microwave irradiation and conventional heating are reported. This study was inspired by contradictory reports of the (non-)existence of non-thermal microwave effects that might accelerate the

  10. A temperature profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.; Desa, E.

    An instrument developed for measuring temperature profiles at sea in depth or time scales is described. PC-based programming offers flexibility in setting up the instrument for the mode of operation prior to each cast. A real time clock built...

  11. Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather

    International Nuclear Information System (INIS)

    Chan, P W; Wong, K H

    2008-01-01

    Estimates of the wind gusts associated with intense convective weather could be obtained using empirical relationships such as GUSTEX based on radiosonde measurements. However, such data are only available a couple of times a day and may not reflect the rapidly changing atmospheric condition in spring and summer times. The feasibility of combining the thermodynamic profiles from a ground-based microwave radiometer and wind profiles given by radar wind profilers in the continuous estimation of wind gusts is studied in this paper. Based on the results of a 4-month trial of a microwave radiometer in Hong Kong in 2004, the estimated and the actual gusts are reasonably well correlated. It is also found that the wind gusts so estimated provide better indications of the strength of squalls compared with those based on radiosonde measurements and with a lead time of about one hour

  12. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    International Nuclear Information System (INIS)

    Simmons, D.F.; Fortgang, C.M.; Holtkamp, D.B.

    2001-01-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm 2 at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes

  14. Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis

    Directory of Open Access Journals (Sweden)

    Joaquín Muñoz-Sabater

    2015-05-01

    Full Text Available For more than a decade, the European Centre for Medium-Range Weather Forecasts (ECMWF has used in-situ observations of 2 m temperature and 2 m relative humidity to operationally constrain the temporal evolution of model soil moisture. These observations are not available everywhere and they are indirectly linked to the state of the surface, so under various circumstances, such as weak radiative forcing or strong advection, they cannot be used as a proxy for soil moisture reinitialization in numerical weather prediction. Recently, the ECMWF soil moisture analysis has been updated to be able to account for the information provided by microwave brightness temperatures from the Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA. This is the first time that ECMWF uses direct information of the soil emission from passive microwave data to globally adjust the estimation of soil moisture by a land-surface model. This paper presents a novel version of the ECMWF Extended Kalman Filter soil moisture analysis to account for remotely sensed passive microwave data. It also discusses the advantages of assimilating direct satellite radiances compared to current soil moisture products, with a view to an operational implementation. A simple assimilation case study at global scale highlights the potential benefits and obstacles of using this new type of information in a global coupled land-atmospheric model.

  15. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.

    Science.gov (United States)

    Thurber, Kent R; Yau, Wai-Ming; Tycko, Robert

    2010-06-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 T (400 MHz resonant frequency for (1)H, 264 GHz for electron spins in organic radicals) in the 7-80K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to (1)H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of (1)H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the (1)H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80K. (c) 2010 Elsevier Inc. All rights reserved.

  16. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch

    International Nuclear Information System (INIS)

    Uhm, Han S.; Kwak, Hyoung S.; Hong, Yong C.

    2016-01-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO_2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. - Highlights: • Carbon dioxide gas produces a plasma-torch by making use of 2.45 GHz microwaves. • The temperature measurement of torch flame by optical spectroscopy. • Disintegration of carbon dioxide into carbon monoxide and oxygen atom. • Emission profiles of carbon monoxide confirm disintegration theory. • Conversion of carbon dioxide into carbon monoxide in the plasma torch. - This article presents carbon-dioxide plasma torch operated by microwaves and its applications to regeneration of new resources, eliminating carbon dioxide molecules.

  17. Assimilation of microwave brightness temperatures for soil moisture estimation using particle filter

    International Nuclear Information System (INIS)

    Bi, H Y; Ma, J W; Qin, S X; Zeng, J Y

    2014-01-01

    Soil moisture plays a significant role in global water cycles. Both model simulations and remote sensing observations have their limitations when estimating soil moisture on a large spatial scale. Data assimilation (DA) is a promising tool which can combine model dynamics and remote sensing observations to obtain more precise ground soil moisture distribution. Among various DA methods, the particle filter (PF) can be applied to non-linear and non-Gaussian systems, thus holding great potential for DA. In this study, a data assimilation scheme based on the residual resampling particle filter (RR-PF) was developed to assimilate microwave brightness temperatures into the macro-scale semi-distributed Variance Infiltration Capacity (VIC) Model to estimate surface soil moisture. A radiative transfer model (RTM) was used to link brightness temperatures with surface soil moisture. Finally, the data assimilation scheme was validated by experimental data obtained at Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the estimation accuracy of soil moisture can be improved significantly by RR-PF through assimilating microwave brightness temperatures into VIC model. Both the overall trends and specific values of the assimilation results are more consistent with ground observations compared with model simulation results

  18. Plasma density profiles and finite bandwidth effects on electron heating

    International Nuclear Information System (INIS)

    Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.

    1980-01-01

    Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant

  19. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  20. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  1. The construction and application of the AMSR-E global microwave emissivity database

    International Nuclear Information System (INIS)

    Lijuan, Shi; Wenbo, Wu; Yubao, Qiu; Jingjing, Niu

    2014-01-01

    Land surface microwave emissivity is an important parameter to describe the characteristics of terrestrial microwave radiation, and is the necessary input amount for inversion various geophysical parameters. We use brightness temperature of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and synchronous land surface temperature and atmospheric temperature-humidity profile data obtained from the MODIS which aboard on satellite AQUA the same as AMSR-E, to retrieved microwave emissivity under clear sky conditions. After quality control, evaluation and design, the global microwave emissivity database of AMSR-E under clear sky conditions is established. This database include 2002–2011 years, different regions, different surface coverage, dual-polarized, 6.9,10.65, 18.7, 23.8, 36.5 and 89GHz, ascending and descending orbit, spatial resolution 25km, global 0.05 degrees, instantaneous and half-month averaged emissivity data. The database can provide the underlying surface information for precipitation algorithm, water-vapor algorithm, and long-resolution mode model (General Circulation Model (GCM) etc.). It also provides underlying surface information for the satellite simulator, and provides basic prior knowledge of land surface radiation for future satellite sensors design. The emissivity database or the fast emissivity obtained can get ready for climate model, energy balance, data assimilation, geophysical model simulation, inversion and estimates of the physical parameters under the cloud cover conditions

  2. Numerical simulation of temperature distribution in cylindrical ilmenite (FeTiO3) due to microwave heating

    Science.gov (United States)

    Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal

    2018-04-01

    Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.

  3. Pyrolysis of methane by microwaves. Pt. 1

    International Nuclear Information System (INIS)

    Avni, R.; Winefordner, J.D.; Nickel, H.

    1975-04-01

    The pyrolysis of methane and mixtures of argon-methane by microwaves (2,450 MHz) was investigated. The microwave plasma diagnostic study was performed using electrical probes, namely, the double floating probe technique. Parameters such as electric field strength and current densities were measured and from their relationship the electron temperature, electric conductivity, electron and ion densities were evaluated as function of gas pressure, microwave power input and distance of the probe from the microwave cavity. Various spectroscopic techniques were used for the measurement of temperatures in the microwave plasma; the 'reversal temperature' by measuring the intensities of the electronic vibrational bands of CN and OH molecules and 'rotational temperature' from the measured intensities of rotational OH lines. The 'rotational' as well as the 'reversal temperature' were found to be identical and this temperature was assumed to be the temperature of the gas in the microwave plasma. Energy balance calculation, based upon the electrical energy input and thermal losses, were performed in order to determine if steady state conditions existed in the microwave plasma. Emission and absorption spectroscopy were used for determining the active species formed in the pyrolysis of methane and also of mixtures of CH 4 -Ar, by the microwave plasma. (orig.) [de

  4. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    OpenAIRE

    Boskovic, BO; Stolojan, V; Zeze, DA; Forrest, RD; Silva, SRP; Haq, S

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperatur...

  5. Temperature profiles from Salt Valley, Utah

    Science.gov (United States)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  6. Modelling microwave heating of discrete samples of oil palm kernels

    International Nuclear Information System (INIS)

    Law, M.C.; Liew, E.L.; Chang, S.L.; Chan, Y.S.; Leo, C.P.

    2016-01-01

    Highlights: • Microwave (MW) drying of oil palm kernels is experimentally determined and modelled. • MW heating of discrete samples of oil palm kernels (OPKs) is simulated. • OPK heating is due to contact effect, MW interference and heat transfer mechanisms. • Electric field vectors circulate within OPKs sample. • Loosely-packed arrangement improves temperature uniformity of OPKs. - Abstract: Recently, microwave (MW) pre-treatment of fresh palm fruits has showed to be environmentally friendly compared to the existing oil palm milling process as it eliminates the condensate production of palm oil mill effluent (POME) in the sterilization process. Moreover, MW-treated oil palm fruits (OPF) also possess better oil quality. In this work, the MW drying kinetic of the oil palm kernels (OPK) was determined experimentally. Microwave heating/drying of oil palm kernels was modelled and validated. The simulation results show that temperature of an OPK is not the same over the entire surface due to constructive and destructive interferences of MW irradiance. The volume-averaged temperature of an OPK is higher than its surface temperature by 3–7 °C, depending on the MW input power. This implies that point measurement of temperature reading is inadequate to determine the temperature history of the OPK during the microwave heating process. The simulation results also show that arrangement of OPKs in a MW cavity affects the kernel temperature profile. The heating of OPKs were identified to be affected by factors such as local electric field intensity due to MW absorption, refraction, interference, the contact effect between kernels and also heat transfer mechanisms. The thermal gradient patterns of OPKs change as the heating continues. The cracking of OPKs is expected to occur first in the core of the kernel and then it propagates to the kernel surface. The model indicates that drying of OPKs is a much slower process compared to its MW heating. The model is useful

  7. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue,

  8. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiers, Philipp; Walter, Theodore; Magnard, Paul; Salathe, Yves; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)

    2017-12-15

    Low-loss waveguides are required for quantum communication at distances beyond the chip-scale for any low-temperature solid-state implementation of quantum information processors. We measure and analyze the attenuation constant of commercially available microwave-frequency waveguides down to millikelvin temperatures and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials by measurements of the internal quality factors and their comparison with established loss models. The results of our characterization are relevant for accurately predicting the signal levels at the input of cryogenic devices, for reducing the loss in any detection chain, and for estimating the heat load induced by signal dissipation in cryogenic systems. (orig.)

  9. Implementation of Optical Meanders in the Temperature Measurement of the Extermination of Basidiomycete Serpula Lacrymans Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Andrej Liner

    2013-01-01

    Full Text Available The dry rot basidiomycete Serpula lacrymans is the most common and destructive wood decay fungus, which attacks and damages houses and other wooden construction worldwide [1], [2]. Effective chemicals have been developed for remediation and treatment of dry rot outbreaks and for wood preservation against dry rot, but in most cases, control is most economically achieved by environmental management to avoid creating favourable growth conditions for the fungus [3]. Thermal treatment using microwaves represents one of possible approaches in fungal growth control and refurbishment of damaged wooden constructions. One of the possibilities, how to monitor this whole process seems to be the use of Optical fiber DTS (Distribution Temperature Systems. The Optical fiber DTS are unique distributed temperature systems using optical fiber as a sensor. Due to the electromagnetic resistance is this system suitable for the monitoring of these processes. This article deals with application of optical meanders in the temperature measurement during the extermination of basidiomycete Serpula lacrymans using microwave heating. Because of the adverse effect of microwave radiation on all other types of temperature sensors.

  10. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions

    Science.gov (United States)

    Page, L.; Barnes, C.; Hinshaw, G.; Spergel, D. N.; Weiland, J. L.; Wollack, E.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.

    2003-09-01

    Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main-beam intensities have been mapped to the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the prelaunch expectations. The full width at half-maximum is a function of frequency and ranges from 0.82d at 23 GHz to 0.21d at 94 GHz; however, the beams are not Gaussian. We present (a) the beam patterns for all 10 differential radiometers, showing that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAP's compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point-source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter's temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1%-3% accuracy relative to the CMB dipole. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  11. MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, Jr., C. C.; McBee, W. D.

    1963-10-15

    Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)

  12. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  13. Analysis of a dryline-like feature in northern Germany detected by ground-based microwave profiling

    Energy Technology Data Exchange (ETDEWEB)

    Spaenkuch, Dietrich [Leibniz-Soziaetet der Wissenschaften zu Berlin e.V. (Germany); Gueldner, Juergen [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium Lindenberg - Richard-Assmann-Observatorium; Bender, Michael [Helmholtz-Zentrum Potsdam, Potsdam (DE). Deutsches GeoForschungsZentrum (GFZ); Steinhagen, Hans

    2011-08-15

    Two dryline-like humidity drops without considerable temperature change were detected by the ground-based microwave radiometer profiler (MWRP) at the Richard-Assmann-Observatory Lindenberg (52.21 N, 14.12 E) on April 28, 2007. The detailed analysis of these two events includes cloud radar and radar wind profiler measurements at the site as well as data from the surface synoptic network and from integrated water vapour (IWV) maps derived from GPS. The first more pronounced humidity drop is part of a roughly 200 km long line that meets the criterion of a classical dryline or dewpoint front, namely of a moisture gradient larger 3.5 g m{sup -3} per 100 km. This dewpoint front is ahead of an approaching cold front and is caused by strong downdraft induced by low tropospheric wind shear due to weakening of a midtropospheric high over Germany. It consisted in particular in two kernels of variable size depending on their stage. The fate of the kernels - migration, speed, unification and divorce - is described in detail. Their lifetime was a bit more than 9 hours. The second humidity drop at the site was observed after the passage of the cold front and was caused by dry advection behind the front. Both events are predicted by the numerical weather prediction model COSMO-EU of the German Weather Service to some extent.

  14. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  15. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Roberto Rosa

    2014-05-01

    Full Text Available The use of microwaves to perform inorganic synthesis allows the direct transfer of electromagnetic energy inside the reaction mixture, independently of the temperature manifested therein. The conversion of microwave (MW radiation into heat is useful in overcoming the activation energy barriers associated with chemical transformations, but the use of microwaves can be further extended to higher temperatures, thus creating unusual high-energy environments. In devising synthetic methodologies to engineered nanomaterials, hydrothermal synthesis and solution combustion synthesis can be used as reference systems to illustrate effects related to microwave irradiation. In the first case, energy is transferred to the entire reaction volume, causing a homogeneous temperature rise within a closed vessel in a few minutes, hence assuring uniform crystal growth at the nanometer scale. In the second case, strong exothermic combustion syntheses can benefit from the application of microwaves to convey energy to the reaction not only during the ignition step, but also while it is occurring and even after its completion. In both approaches, however, the direct interaction of microwaves with the reaction mixture can lead to practically gradient-less heating profiles, on the basis of which the main observed characteristics and properties of the aforementioned reactions and products can be explained.

  16. The effect of plasma density profile on the backscatter of microwaves from a plasma-covered plane conductor

    International Nuclear Information System (INIS)

    Destler, W.W.; Singh, A.; Rodgers, J.

    1993-01-01

    In order to gain further insight into the mechanism of anomalous absorption of microwaves in a pulsed plasma column, the latter was studied using single and double Langmuir probes. Graphs of plasma potential recorded by floating Langmuir probes as a function of time were obtained for a range of pressure of the background gas and at different distances from the plasma-covered plane-conducting plate. From this data, two main components of the plasma have been identified. The first appears earlier, exhibits greater fluctuations and is shorter in duration than the second component. The presence of these two plasma components is consistent with earlier observations obtained from transverse transmission measurements of microwaves through the plasma. Variations in the envelopes of these two components as experimental conditions are changed will be presented. Microwave backscatter measurements under varying conditions of plasma-density profile and ambient gas pressure will also be presented

  17. Thermoactivation of viruses by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mahnel, H.; von Brodorotti, H.S.

    1981-01-01

    Eight different viruses, suspended in drinking water, were examined for their ability to be inactivated by microwaves from a microwave oven. Up to a virus content of 10/sup 5/ TCID/sub 50//ml inactivation was successful within a few minutes of microwave treatment and occurred in parallel to the heat stability of the viruses. Evidence for direct effects of microwaves on viruses could not be detected. 7 of the viruses studied were inactivated rapidly when temperatures of 50 to 65/sup 0/C under microwave treatment were reached in the flowing water, while a bovine parvovirus was only inactivated by temperatures above 90/sup 0/C. The advantages of a thermal virus-decontamination of fluids and material by microwaves are discussed.

  18. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  19. Computerized portable microwave hyperthermia quality assurance kit

    International Nuclear Information System (INIS)

    Cheung, A.Y.; Neyzari, A.

    1985-01-01

    A computerized quality assurance kit to provide precise measurement and calibration of microwave power and temperature, as well as capabilities to map SAR (Specific absorption rate) distribution in phantoms; and survey of hazardous microwave leakage has been designed. The kit is also capable of performing corelation studies on the relationship between SAR and net microwave power delivered at various anatomical sites. The kit consists of a portable microcomputer, a time-multiplexed A/D converter, a 4-channel dual directional microwave power monitor, a 4-channel thin-wire thermocouple thermometry system, an electronic thermal calibrator, a microwave leakage hazard survey meter, and a dynamic phantom tank for dosimetric analysis. Comparative performance studies were made against NBS-traceable power and temperature standards, non-perturbing optical temperature sensors, and established power and temperature measurement devices. The test results indicate that this instrument is providing its user with measurement accuracy of 0.1 0 C in temperature, 10% accuracy in power. The thin-wire thermocouple, with computer assisted error compensation, performs equally well in a strong microwave field in comparison with non-perturbing optical temperature sensors

  20. Polymer coated fiber Bragg grating thermometry for microwave hyperthermia.

    Science.gov (United States)

    Saxena, Indu Fiesler; Hui, Kaleo; Astrahan, Melvin

    2010-09-01

    system drift over 10 h is measured separately to evaluate system stability for clinical applications. The temperature profiles measured by the two probes simultaneously under microwave HT are in good agreement showing mean differences of 0.25 degrees C. The stability of the detection system is better than 0.3 degrees C with response times of the PFBG sensor system of 2 s for each scan over ten points. The single fixed multipoint fiber thermometry capability compares favorably with the scanning Bowman probe data. This offers an enabling alternative to either scanning or bundled single point temperature probes for distributed thermometry in clinical applications.

  1. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  2. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  3. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    Science.gov (United States)

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  4. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... influence of profile width and super-Gaussian exponent of the profile on temperature distribution are investigated. Consequently, the profile width turns out to have a greater influence on the temperature compared to the type of the profile. Keywords. Side-pumped laser rod; pump cavity; absorbed pump ...

  5. Removal of NO {sub x} by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z.S. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)]. E-mail: weizaishan98@163.com; Du, Z.Y. [School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Z.H. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, H.M. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Qiu, R.L. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2007-08-15

    Microwave reactor with the mixture of ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and Ga-A zeolites was set up to study the removal of nitrogen oxides (NO {sub x} ) from waste gas with excess oxygen concentration (14-19%) at low temperature (80-120 deg. C). The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and Ga-A zeolites could reduce NO {sub x} to nitrogen with the best purifying efficiency of 95.45% and the best denitrification amount of 89.28 mg h{sup -1}. The optimal microwave power and residence time (RT) on denitrification was 259-280 W and 0.259 s, respectively. Microwave denitrification effect of the experiment using ammonium bicarbonate and Ga-A zeolites was much higher than that using ammonium bicarbonate or Ga-A zeolites only. The mechanism for microwave-induced NO {sub x} reduction can be explained as the microwave-induced catalytic reaction between NO {sub x} and ammonium bicarbonate with Ga-A zeolites being the catalyst and microwave absorbent.

  6. Channel Temperature Model for Microwave AlGaN/GaN HEMTs on SiC and Sapphire MMICs in High Power, High Efficiency SSPAs

    Science.gov (United States)

    Freeman, Jon C.

    2004-01-01

    A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).

  7. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    Science.gov (United States)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  8. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.

    Science.gov (United States)

    Kappe, C Oliver

    2013-07-16

    In the past few years, the use of microwave energy to heat chemical reactions has become an increasingly popular theme in the scientific community. This nonclassical heating technique has slowly progressed from a laboratory curiosity to an established method commonly used both in academia and in industry. Because of its efficiency, microwave heating dramatically reduces reaction times (from days and hours to minutes and seconds) and improves product purities or material properties among other advantages. Since the early days of microwave chemistry, researchers have observed rate-accelerations and, in some cases, altered product distributions as compared with reactions carried out using classical oil-bath heating. As a result, researchers have speculated that so-called specific or nonthermal microwave effects could be responsible for these differences. Much of the debate has centered on the question of whether the electromagnetic field can exert a direct influence on a chemical transformation outside of the simple macroscopic change in bulk reaction temperature. In 2009, our group developed a relatively simple "trick" that allows us to rapidly evaluate whether an observed effect seen in a microwave-assisted reaction results from a purely thermal phenomenon, or involves specific or nonthermal microwave effects. We use a microwave reaction vessel made from silicon carbide (SiC) ceramic. Because of its high microwave absorptivity, the vessel shields its contents from the electromagnetic field. As a result, we can easily mimic a conventionally heated autoclave experiment inside a microwave reactor under carefully controlled reaction conditions. The switch from an almost microwave transparent glass (Pyrex) to a strongly microwave absorbing SiC reaction vial under otherwise identical reaction conditions (temperature profiles, pressure, stirring speed) then allows us to carefully evaluate the influence of the electromagnetic field on the particular chemical transformation

  9. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  10. Effect of Temperature Profile on Reaction Violence in Heated and Self-Ignited PBX 9501

    Science.gov (United States)

    Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry

    2002-07-01

    Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We are conducting instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which are beginning to show that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities which can be considered a measure of reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.

  11. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.; Stolojan, Vlad; Zeze, Dagou A.; Forrest, Roy D.; Silva, S. Ravi P.; Haq, Sajad

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperature. This method would allow room-temperature direct synthesized nanofiber networks over relatively large areas, for a range of temperature sensitive substrates, such as organic materials, plastics, and other polymers of interest for nanoelectronic two-dimensional networks, nanoelectromechanical devices, nanoactuators, and composite materials

  12. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  13. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    Science.gov (United States)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  14. IMPROVED SIMULATION OF NON-GAUSSIAN TEMPERATURE AND POLARIZATION COSMIC MICROWAVE BACKGROUND MAPS

    International Nuclear Information System (INIS)

    Elsner, Franz; Wandelt, Benjamin D.

    2009-01-01

    We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background (CMB) radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.

  15. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  16. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  17. A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity.

    Science.gov (United States)

    Reverte-Ors, Juan D; Pedreño-Molina, Juan L; Fernández, Pablo S; Lozano-Guerrero, Antonio J; Periago, Paula M; Díaz-Morcillo, Alejandro

    2017-06-07

    In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs) for different food samples (laboratory medium, soup, or fish-based animal by-products). The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.

  18. A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity

    Directory of Open Access Journals (Sweden)

    Juan D. Reverte-Ors

    2017-06-01

    Full Text Available In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs for different food samples (laboratory medium, soup, or fish-based animal by-products. The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.

  19. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  20. Characterization of a microwave generated plasma

    International Nuclear Information System (INIS)

    Root, D.J.; Mahoney, L.; Asmussen, J.

    1986-01-01

    Recent experiments have demonstrated a microwave ion beam source without and with static magnetic fields in inert gases and in oxygen gases. This plasma generation configuration also has uses in the areas of plasma processing such as plasma etching, plasma assisted thin flim deposition and plasma assisted oxide growth. These ion beam and plasma processing applications have provided motivation to investigate microwave discharge properties, such as electron density, electron temperature, gas temperature, degree of ionization, etc., of the microwave generated plasma over a wide range of experimental operating conditions. This paper presents the results of experimental measurements which attempt to characterize the experimental microwave discharge in the absence of a static magnetic field. Measurements from a double probe, which is located in the plasma in a zero microwave field region, are presented in argon, xenon and oxygen gases. Variations of plasma density and electron temperature versus absorbed microwave power, gas pressure (0.2 m Torr to 200 m Torr) and discharge diffusion length are presented and compared to dc positive column discharge theory

  1. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  2. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  3. NOAA Climate Data Record (CDR) of Advanced Microwave Sounding Unit (AMSU)-A Brightness Temperature, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Climate Data Record (CDR) for Advanced Microwave Sounding Unit-A (AMSU-A) brightness temperature in "window channels". The data cover a time period from...

  4. Microwave-assisted synthesis of CuInSe{sub 2} nanoparticles in low-absorbing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, Richard P.; Flynn, Brendan T.; Herman, Gregory S. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR (United States); Schut, David M. [Voxtel Inc., Eugene, OR (United States)

    2014-01-15

    Copper indium diselenide (CIS) nanoparticles were synthesized using a microwave-assisted one-pot solvothermal approach. For these studies high microwave-absorbing precursors were used in combination with low microwave absorbing solvents tri-n-octylphosphine (TOP) and oleic acid (OA) to investigate the effect of selective heating of the precursors on nanoparticle synthesis. High-resolution transmission electron microscopy (TEM) results indicated that the nanoparticles were spherical, crystalline and 4-5 nm in diameter. X-ray diffraction (XRD) results indicated that the nanoparticles had a body-centered tetragonal structure with planar defects that decreased in concentration with increasing reaction temperature and reaction time. The nanoparticle compositions varied depending on the reaction conditions and the compositions were found to approach stoichiometry for increased reaction times. Fourier transform infrared (FTIR) spectroscopy indicated both solvents adsorbed to the nanoparticle surface and energy dispersive spectroscopy indicated that these ligands became chlorinated during the reaction. The uniform temperature profile offered by the microwave heating allowed for highly reproducible batch-to-batch reactions, allowing for tight control over composition and defect concentration. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  6. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  7. Characterization of the microwave properties of superconducting films with high transition temperature

    International Nuclear Information System (INIS)

    Richter, W.; Klinger, M.; Daginnus, M.

    1989-01-01

    In the meantime high quality Y-Ba-Cu-O thin films were produced. The latest results show, that its surface resistances are clearly lower than the values of copper, measured at a temperature of 77 K and up to frequencies of 86 GHz. This examination had the aim to produce high-T c films with a simple and low cost method, to use them as transmission lines at frequencies up to 30 GHz and above. A screen printing process was investigated, and high-T c thick films were fabricated on several substrates. Superconducting transition temperatures up to 80 K (dc zero resistance) were obtained. The films showed no complete magnetic shielding, and its microwave surface resistances were clearly higher than that ones for copper. The a. c. Josephson effect was proved with granular structures of bulk Y-Ba-Cu-O material and with screen printed thick films. Because of its high surface resistances, these thick films are unsuitable for the use as transmission lines at high frequencies. However, the a.c. Josephson effect can be used to manufacture microwave sensors in bulk Y-Ba-Cu-O and screen printed films of Y-Ba-Cu-O, which have a favourable geometric structure. (orig.) With 16 refs., 2 tabs., 24 figs [de

  8. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  9. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  10. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    International Nuclear Information System (INIS)

    Palomares, J.M.; Iordanova, E.; Veldhuizen, E.M. van; Baede, L.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2010-01-01

    The axial profiles of the electron density n e and electron temperature T e of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10 18 e 19 m -3 and 1.1 e e and T e down to 8% and 3%, respectively. It is found that n e decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T e does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  11. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    Science.gov (United States)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  12. Four-channel temperature and humidity microwave scanning radiometer

    Science.gov (United States)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  13. Low-temperature graphene synthesis using microwave plasma CVD

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-01-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 10 5 Ω/sq.

  14. Low-temperature graphene synthesis using microwave plasma CVD

    Science.gov (United States)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  15. Experimental and numerical modeling research of rubber material during microwave heating process

    Science.gov (United States)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  16. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    Science.gov (United States)

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable

  17. Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO

    Directory of Open Access Journals (Sweden)

    Drobakhin O. O.

    2008-02-01

    Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.

  18. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-01-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 deg. C down to 450 deg. C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  19. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  20. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.K.M. Mahmudul [Department of Ocean System Engineering, Gyeongsang National University, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of); Oh, Geum Seok; Kim, Taeoh [Department of Energy and Mechanical Engineering, Gyeongsang National University, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of); Kim, Junhyo [Department of Marine Engineering, Mokpo National Maritime University Haeyangdaehang-Ro 91, Mokpo-si, Jeollanam-do (Korea, Republic of); Noh, Jungpil; Huh, Sunchul; Chung, Hanshik [Department of Energy and Mechanical Engineering, Gyeongsang National University, Institute of Marine Industry, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of); Jeong, Hyomin, E-mail: hmjeong@gnu.ac.kr [Department of Energy and Mechanical Engineering, Gyeongsang National University, Institute of Marine Industry, Cheondaegukchi-Gil 38, Tongyeong, Gyeongnam 650-160 (Korea, Republic of)

    2016-01-15

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs and microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.

  1. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh; Kim, Junhyo; Noh, Jungpil; Huh, Sunchul; Chung, Hanshik; Jeong, Hyomin

    2016-01-01

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs and microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.

  2. Ion temperature profiles in JET

    International Nuclear Information System (INIS)

    Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

    1989-01-01

    The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

  3. A study on microwave oxidation of landfill leachate—Contributions of microwave-specific effects

    International Nuclear Information System (INIS)

    Chou, Yu-Chieh; Lo, Shang-Lien; Kuo, Jeff; Yeh, Chih-Jung

    2013-01-01

    Highlights: ► pH has an insignificant effect on TOC removals and 550 W has a well performance. ► MOP has well removals of color, UV 254 , and TOC at 550 W/85 °C. ► TOC removals were higher at higher microwave setting (550 W vs. 128 W). ► The microwave-specific effects on TOC removal were usually synergistic in MOP. ► COD analyses showed persulfate decayed rapidly in either MOP or CHO treatment. -- Abstract: Microwave oxidation process (MOP) was evaluated for treatment of landfill leachate. The experimental parameters include pH, temperature, oxidant doses, microwave power setting, and irradiation time. The study explored the microwave-specific effects of the MOP. The contributions of pure thermal, persulfate oxidation and microwave irradiation on TOC removal were quantified. It was then found the combinations of them were usually synergistic in MOP except two of them were antagonistic (128 W/85 °C/1 M Na 2 S 2 O 8 and 128 W/85 °C/2 M Na 2 S 2 O 8 ). At the highest temperature tested (85 °C) in this study, microwave irradiation may cause generation and termination of oxidizing radicals at adverse rates. The study also found that persulfate decayed rapidly in either MOP or conventional heating oxidation (CHO) treatment of landfill leachate

  4. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes (“Temperature Control” and “Power Control”) on Procedural Outcome

    International Nuclear Information System (INIS)

    Sommer, C. M.; Arnegger, F.; Koch, V.; Pap, B.; Holzschuh, M.; Bellemann, N.; Gehrig, T.; Senft, J.; Nickel, F.; Mogler, C.; Zelzer, S.; Meinzer, H. P.; Stampfl, U.; Kauczor, H. U.; Radeleff, B. A.

    2012-01-01

    Purpose: This study was designed to analyze the effect of two different ablation modes (“temperature control” and “power control”) of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96°C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96°C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 ± 0 s in group I and 102 ± 21 s in group II. Long axis diameter was 20.3 ± 4.6 mm in group I and 19.8 ± 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 ± 2 mm in group I and 10.5 ± 2.4 mm in group II (NS). Circularity was 0.5 ± 0.1 in group I and 0.5 ± 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.

  5. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    Science.gov (United States)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  6. Microwave Enhanced Cotunneling in SET Transistors

    DEFF Research Database (Denmark)

    Manscher, Martin; Savolainen, M.; Mygind, Jesper

    2003-01-01

    Cotunneling in single electron tunneling (SET) devices is an error process which may severely limit their electronic and metrologic applications. Here is presented an experimental investigation of the theory for adiabatic enhancement of cotunneling by coherent microwaves. Cotunneling in SET...... transistors has been measured as function of temperature, gate voltage, frequency, and applied microwave power. At low temperatures and applied power levels, including also sequential tunneling, the results can be made consistent with theory using the unknown damping in the microwave line as the only free...

  7. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    International Nuclear Information System (INIS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-01-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 µm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P_1_1, P_1_2, P_2_2, P_3_3, P_4_3 and P_4_4). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path. - Highlights: • Single-scattering properties of ice crystals are computed from 1 to 874 GHz. • Ice refractive index temperature dependence is considered at 160, 200, 230 and 270 K. • Potential applications of the database to microwave remote sensing are illustrated. • Ignoring temperature dependence of ice refractive index can lead to 5 K difference in IWP retrieval

  8. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    Science.gov (United States)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  9. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder

    Directory of Open Access Journals (Sweden)

    Lovisa eEliasson

    2015-09-01

    Full Text Available There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices’ sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. Infrared respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the infrared treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and infrared heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms.

  10. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    Science.gov (United States)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  11. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  12. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  13. A measurement of the cosmic microwave background temperature at 7.5 GHz

    Science.gov (United States)

    Levin, S.; Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Limon, M.; Smoot, G.

    1992-01-01

    The temperature of the cosmic microwave background (CMB) radiation at a frequency of 7.5 GHz (4 cm wavelength) is measured, obtaining a brightness temperature of T(CMB) = 2.70 +/- 0.08 K (68 percent confidence level). The measurement was made from a site near the geographical South Pole during the austral spring of 1989 and was part of an international collaboration to measure the CMB spectrum at low frequencies with a variety of radiometers from several different sites. This recent result is in agreement with the 1988 measurement at the same frequency, which was made from a different site with significantly different systematic errors. The combined result of the 1988 and 1989 measurements is 2.64 +/- 0.06 K.

  14. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  15. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    Science.gov (United States)

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-11-30

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

  16. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    Science.gov (United States)

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  17. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background.

    Science.gov (United States)

    Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-10-09

    The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.

  18. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Science.gov (United States)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  19. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob

    2000-01-01

    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  20. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    International Nuclear Information System (INIS)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo; Monge, Antonio

    2011-01-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  1. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  2. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach

    Directory of Open Access Journals (Sweden)

    Sid-Ahmed Boukabara

    2018-04-01

    Full Text Available A variational inversion scheme is used to extract microwave emissivity spectra from brightness temperatures over a multitude of surface types. The scheme is called the Microwave Integrated Retrieval System and has been implemented operationally since 2007 at NOAA. This study focuses on the Advance Microwave Sounding Unit (AMSU/MHS pair onboard the NOAA-18 platform, but the algorithm is applied routinely to multiple microwave sensors, including the Advanced Technology Microwave Sounder (ATMS on Suomi-National Polar-orbiting Partnership (SNPP, Special Sensor Microwave Imager/Sounder (SSMI/S on the Defense Meteorological Satellite Program (DMSP flight units, as well as to the Global Precipitation Mission (GPM Microwave Imager (GMI, to name a few. The emissivity spectrum retrieval is entirely based on a physical approach. To optimize the use of information content from the measurements, the emissivity is extracted simultaneously with other parameters impacting the measurements, namely, the vertical profiles of temperature, moisture and cloud, as well as the skin temperature and hydrometeor parameters when rain or ice are present. The final solution is therefore a consistent set of parameters that fit the measured brightness temperatures within the instrument noise level. No ancillary data are needed to perform this dynamic emissivity inversion. By allowing the emissivity to be part of the retrieved state vector, it becomes easy to handle the pixel-to-pixel variation in the emissivity over non-oceanic surfaces. This is particularly important in highly variable surface backgrounds. The retrieved emissivity spectrum by itself is of value (as a wetness index for instance, but it is also post-processed to determine surface geophysical parameters. Among the parameters retrieved from the emissivity using this approach are snow cover, snow water equivalent and effective grain size over snow-covered surfaces, sea-ice concentration and age from ice

  3. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    Science.gov (United States)

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  4. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  5. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    Microwave radiometry has shown its capabilities of observing and monitoring large-scale geophysical observables from space. Examples are sea surface temperature and surface wind over the ocean, sea ice extent, concentration and category and snow cover extent and water content. At low microwave fr...

  6. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens

    Directory of Open Access Journals (Sweden)

    Jamil Anwar

    2015-01-01

    Full Text Available To understand the interactions of microwaves with dielectric materials and their conversion to thermal energy in aqueous systems, the effect of ionic concentration has been studied. Aqueous solutions of inorganic ions were exposed to microwaves (2.45 GHz in a modified oven under identical conditions. Difference in solution temperatures with reference to pure (deionized water was monitored in each case. A significant decrease in the temperature was observed with an increase in the quantity of ions. Experiments were repeated with several inorganic ions varying in size and charge. The information can be helpful in understanding the role of ions during dielectric heating.

  7. Measurements of the cosmic microwave background temperature at 1.47 GHz

    Science.gov (United States)

    Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.

    1993-01-01

    We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.

  8. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  9. Application of a plane-stratified emission model to predict the effects of vegetation in passive microwave radiometry

    Directory of Open Access Journals (Sweden)

    K. Lee

    2002-01-01

    Full Text Available This paper reports the application to vegetation canopies of a coherent model for the propagation of electromagnetic radiation through a stratified medium. The resulting multi-layer vegetation model is plausibly realistic in that it recognises the dielectric permittivity of the vegetation matter, the mixing of the dielectric permittivities for vegetation and air within the canopy and, in simplified terms, the overall vertical distribution of dielectric permittivity and temperature through the canopy. Any sharp changes in the dielectric profile of the canopy resulted in interference effects manifested as oscillations in the microwave brightness temperature as a function of canopy height or look angle. However, when Gaussian broadening of the top and bottom of the canopy (reflecting the natural variability between plants was included within the model, these oscillations were eliminated. The model parameters required to specify the dielectric profile within the canopy, particularly the parameters that quantify the dielectric mixing between vegetation and air in the canopy, are not usually available in typical field experiments. Thus, the feasibility of specifying these parameters using an advanced single-criterion, multiple-parameter optimisation technique was investigated by automatically minimizing the difference between the modelled and measured brightness temperatures. The results imply that the mixing parameters can be so determined but only if other parameters that specify vegetation dry matter and water content are measured independently. The new model was then applied to investigate the sensitivity of microwave emission to specific vegetation parameters. Keywords: passive microwave, soil moisture, vegetation, SMOS, retrieval

  10. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  11. Microwave radiometric detection of thermal asymmetry of varicocele

    International Nuclear Information System (INIS)

    Felderman, T.P.; Shaeffer, J.; El-Mahdi, A.M.; Carr, K.L.; Stecker, J.F. Jr.

    1985-01-01

    Varicocele, a varicose enlargement of the veins in the spermatic cord, is found in 21-39% of men being evaluated for infertility. Thermometric detection of this condition was attempted by microwave radiometry as well as by contact thermometry using thermistor probes. The inguinal and scrotal regions of 44 male subject and inguinal regions of 11 female subjects were studied. Substantially different thermal patterns were obtained by thermistors (surface temperature) and microwave radiometry (subsurface temperature). There was a correlation between left scrotal varicocele and a temperature elevation of the left spermatic cord using microwave radiometry. This thermal defect appeared to be corrected following surgery

  12. Poloidal magnetic field profile measurements on the microwave tokamak experiment using far-infrared polarimetry

    International Nuclear Information System (INIS)

    Rice, B.W.

    1992-09-01

    The measurement of plasma poloidal magnetic field (B) profiles in tokamaks with good temporal and spatial resolution has proven to be a difficult but important measurement. A large range of toroidal confinement phenomena is expected to depend sensitively on the radial variation of B including the tearing instability, sawtooth oscillations, disruptions, and transport. Experimental confirmation of theoretical models describing these phenomena has been hampered by the lack of detailed B measurements. A fifteen chord far-infrared (FIR) polarimeter has been developed to measure B in the Microwave Tokamak, Experiment (MTX). Polarimetry utilizes the well known Faraday rotation effect, which causes a rotation of the polarization of an FIR beam propagating in the poloidal plane. The rotation angle is proportional to the component of B parallel to the beam. A new technique for determining the Faraday rotation angle is introduced, based on phase measurements of a rotating polarization ellipse. This instrument has been used successfully to measure B profiles for a wide range of experiments on MTX. For ohmic discharges, measurements of the safety factor on axis give q 0 ∼ 0.75 during sawteeth and q 0 > 1 without sawteeth. Large perturbations to the polarimeter signals correlated with the sawtooth crash are observed during some discharges. Measurements in discharges with electron cyclotron heating (ECH) show a transition from a hollow to peaked J profile that is triggered by the ECH pulse. Current-ramp experiments were done to perturb the J profile from the nominal Spitzer conductivity profile. Profiles for initial current ramps and ramps starting from a stable equilibrium have been measured and are compared with a cylindrical diffusion model. Finally, the tearing mode stability equation is solved using measured J profiles. Stability predictions are in good agreement with the existence of oscillations observed on the magnetic loops

  13. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  14. Delineation of Rain Areas with TRMM Microwave Observations Based on PNN

    Directory of Open Access Journals (Sweden)

    Shiguang Xu

    2014-12-01

    Full Text Available False alarm and misdetected precipitation are prominent drawbacks of high-resolution satellite precipitation datasets, and they usually lead to serious uncertainty in hydrological and meteorological applications. In order to provide accurate rain area delineation for retrieving high-resolution precipitation datasets using satellite microwave observations, a probabilistic neural network (PNN-based rain area delineation method was developed with rain gauge observations over the Yangtze River Basin and three parameters, including polarization corrected temperature at 85 GHz, difference of brightness temperature at vertically polarized 37 and 19 GHz channels (termed as TB37V and TB19V, respectively and the sum of TB37V and TB19V derived from the observations of the Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI. The PNN method was validated with independent samples, and the performance of this method was compared with dynamic cluster K-means method, TRMM Microwave Imager (TMI Level 2 Hydrometeor Profile Product and the threshold method used in the Scatter Index (SI, a widely used microwave-based precipitation retrieval algorithm. Independent validation indicated that the PNN method can provide more reasonable rain areas than the other three methods. Furthermore, the precipitation volumes estimated by the SI algorithm were significantly improved by substituting the PNN method for the threshold method in the traditional SI algorithm. This study suggests that PNN is a promising way to obtain reasonable rain areas with satellite observations, and the development of an accurate rain area delineation method deserves more attention for improving the accuracy of satellite precipitation datasets.

  15. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  16. Comparison of RASS temperature profiles with other tropospheric soundings

    International Nuclear Information System (INIS)

    Bonino, G.; Lombardini, P.P.; Trivero, P.

    1980-01-01

    The vertical temperature profile of the lower troposphere can be measured with a radio-acoustic sounding system (RASS). A comparison of the thermal profiles measured with the RASS and with traditional methods shows a) RASS ability to produce vertical thermal profiles at an altitude range of 170 to 1000 m with temperature accuracy and height discrimination comparable with conventional soundings, b) advantages of remote sensing as offered by new sounder, c) applicability of RASS both in assessing evolution of thermodynamic conditions in PBL and in sensing conditions conducive to high concentrations of air pollutants at the ground level. (author)

  17. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  18. On-off temperature and power controller for improvement of the processes conditions assisted with microwaves

    Directory of Open Access Journals (Sweden)

    Viviana Marcela Hernández Velásquez

    2017-07-01

    Full Text Available Introduction: The use of microwaves in the process of fruits and vegetables dehydration is presented as an alternative process to the conventional ones because of the benefits in a reduction of transport costs, less processing time and final product volume, as well as a greater time of conservation and storage. Objective: Therefore, the aim of this study is to modify the microwave radiation supply, implementing an ON-OFF control of power and temperature in order to evaluate these parameters in the process and energy yield in the papaya. Methodology: For the development of the project, a factorial design of experiments was done taking into account the time on and off of the radiation and the sample geometry (slice and cube; runs were performed in duplicate and randomly in the modified microwave oven of 2.45GHz and 1kW of power. Results: The amount of moisture removed, the energy yield of the process and the initial organoleptic properties were analyzed. In the tests carried out, a maximum energy yield was 0.014kg/kJ with a reduction of 86% of the papaya sample weight processed in the radiation rate of 6x12 for a slice of 0,01m of thickness. Conclusions: It was achieved modification of the control in the microwave oven and the runs were carried out concluding that the parameters evaluated and are influential in the process and can be achieved moisture removal of 86%.

  19. Regeneration characteristics of desiccant rotor with microwave and hot-air heating

    International Nuclear Information System (INIS)

    Kubota, Mitsuhiro; Hanada, Takuya; Yabe, Satoshi; Matsuda, Hitoki

    2013-01-01

    Microwave heating, because of its advantages of direct and rapid heating of materials, has the potential to be employed as a novel regeneration method of desiccant rotors in humidity conditioners. We proposed a combined regeneration process, which combines microwave heating and conventional hot-air heating. The system is expected to achieve high heating rate during an initial regeneration period by assisting water desorption using the additional energy of the microwave. In this study, the regeneration characteristics of a desiccant rotor were experimentally investigated under conditions of microwave heating, hot-air heating, and combined heating at various microwave powers and hot-air temperatures. The effectiveness of the combined regeneration was evaluated in terms of the regeneration ratio, the initial regeneration rate, the temperature distribution in the rotor, and finally in terms of the energy consumption. It was demonstrated that combined heating was effective at leveling non-uniform temperature distribution in the rotor. Combined heating achieved higher ratios and initial rates in regeneration compared to just microwave and hot-air heating. This result was obviously attributed to the additional input of microwave energy, resulting that average rotor temperature increased by microwave absorption of rotor. Moreover, it was also effective for enhancement of regeneration to level the temperature distribution in the rotor by combination of two heating methods with different heating mechanisms. Both the initial regeneration rate and the equilibrium regeneration ratio for combined heating were found to increase as the microwave power increased. A linear relationship was observed with respect to microwave power. From the viewpoint of energy consumption, it may be possible to apply combined and microwave heating to humidity control systems that switch between adsorption and regeneration in short cycle times, if the conversion and absorption efficiencies of the

  20. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: f02palij@gmail.co [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Iordanova, E.; Veldhuizen, E.M. van; Baede, L. [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Gamero, A.; Sola, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der, E-mail: j.j.a.m.v.d.Mullen@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)

    2010-03-15

    The axial profiles of the electron density n{sub e} and electron temperature T{sub e} of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10{sup 18} < n{sub e} < 8 x 10{sup 19} m{sup -3} and 1.1 < T{sub e} < 2.0 eV. Due to several improvements of the setup we could reduce the errors of n{sub e} and T{sub e} down to 8% and 3%, respectively. It is found that n{sub e} decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T{sub e} does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  1. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  2. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  3. Measurements of the cosmic microwave background temperature at 1.47 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Bensadoun, Marc John [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 ± 0.25 K (68% C.L.) measured from White Mountain and 2.26 ± 0.21 K from the South Pole site. The combined result is 2.27 ± 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is ~2.5 σ (~l% probability) from the 2.74 ± 0.02,K global average CMB temperature.

  4. Microwave off-gas treatment apparatus and process

    Science.gov (United States)

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  5. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  6. Low-temperature microwave and THz dielectric response in novel microwave ceramics

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Noujni, Dmitri; Pashkin, Alexej; Petzelt, Jan; Pullar, R. C.; Axelsson, A.-K.; McN Alford, N.

    2006-01-01

    Roč. 26, - (2006), s. 1845-1851 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA202/04/0993; GA AV ČR(CZ) IAA1010213; GA MŠk(CZ) OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric properties * spectroscopy * perovskites * microwave ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  7. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NARCIS (Netherlands)

    Bense, Victor F.; Kurylyk, Barret L.; Daal, van Jonathan; Ploeg, van der Martine J.; Carey, Sean K.

    2017-01-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state

  8. Predicting Near Real-Time Inundation Occurrence from Complimentary Satellite Microwave Brightness Temperature Observations

    Science.gov (United States)

    Fisher, C. K.; Pan, M.; Wood, E. F.

    2017-12-01

    Throughout the world, there is an increasing need for new methods and data that can aid decision makers, emergency responders and scientists in the monitoring of flood events as they happen. In many regions, it is possible to examine the extent of historical and real-time inundation occurrence from visible and infrared imagery provided by sensors such as MODIS or the Landsat TM; however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. In addition, there is often a temporal mismatch between the sampling of a particular sensor and a given flood event, leading to limited observations in near real-time. As a result, there is a need for alternative methods that take full advantage of complimentary remotely sensed data sources, such as available microwave brightness temperature observations (e.g., SMAP, SMOS, AMSR2, AMSR-E, and GMI), to aid in the estimation of global flooding. The objective of this work was to develop a high-resolution mapping of inundated areas derived from multiple satellite microwave sensor observations with a daily temporal resolution. This system consists of first retrieving water fractions from complimentary microwave sensors (AMSR-2 and SMAP) which may spatially and temporally overlap in the region of interest. Using additional information in a Random Forest classifier, including high resolution topography and multiple datasets of inundated area (both historical and empirical), the resulting retrievals are spatially downscaled to derive estimates of the extent of inundation at a scale relevant to management and flood response activities ( 90m or better) instead of the relatively coarse resolution water fractions, which are limited by the microwave sensor footprints ( 5-50km). Here we present the training and validation of this method for the 2015 floods that occurred in Houston, Texas. Comparing the predicted inundation against historical occurrence maps derived from the Landsat TM record and MODIS

  9. Variable-temperature Microwave Impedance Microscope with Light Stimulation for Research on Photo-induced Phase Transitions

    Science.gov (United States)

    2017-07-24

    SECURITY CLASSIFICATION OF: The DURIP program "Variable-temperature Microwave Impedance Microscope with Light Stimulation for Research on Photo... Stimulation for Research on Photo- induced Phase Transitions The views, opinions and/or findings contained in this report are those of the author(s) and should...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  10. Low Temperature Graphene Synthesis from Poly(methyl methacrylate) Using Microwave Plasma Treatment

    Science.gov (United States)

    Yamada, Takatoshi; Ishihara, Masatou; Hasegawa, Masataka

    2013-11-01

    A graphene film having low sheet resistance (600 Ω/sq.) was synthesized at low temperatures of 280 °C. Utilizing microwave plasma treatment, graphene films were synthesized from a solid phase on a copper surface. The full width at half maximum of the 2D-band in the Raman spectrum indicated that a high quality graphene film was formed. Cross-sectional transmission electron microscopy observation revealed that the deposited graphene films consisted of single- or double-layer graphene flakes of nanometer order on the Cu surface, which agrees with the estimated number of layers from an average optical transmittance of 96%.

  11. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  12. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  13. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  14. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  15. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    OpenAIRE

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 G...

  16. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  17. TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA

    Institute of Scientific and Technical Information of China (English)

    SONG Falun; CAO Jinxiang; WANG Ge

    2004-01-01

    The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.

  18. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  19. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  20. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  1. Biochemical changes in full fat rice bran stabilized through microwave heating and irradiation treatment

    International Nuclear Information System (INIS)

    El-Niely, H.F.; Abaullah, M.I.

    2007-01-01

    The effect of microwave heating and irradiation treatments on proximate composition, lipoxygenase (LOX) activity, free fatty acid (FFA) and fatty acids profile of full fat rice bran were examined. Full fat raw rice bran (FRB) (82.7 g / kg moisture content) was heated in microwave oven at 850 W for up to 4 min or exposed to gamma irradiation up to 25 KGy then packed in polyethylene bags and stored at room temperature for 6 months. Water, protein, fat, ash and crude fiber contents did not change significantly in raw, microwave heated and irradiated samples before and after storage. An exception for this general observation was observed for the moisture content of FRB processed through microwave heating where heating FRB for 4 min dropped the level of moisture to 64.3 g / kg at zero time. Storage of both raw and processed samples had significant (P<0.05) effects on LOX activity. LOX activity of raw samples was significantly increased from its initial value by 43.5% after storage for six months. Microwave heat and irradiated samples showed deactivated LOX and samples exhibited significant changes in LOX activity could be due to treatment dosage. Meanwhile, significant change in LOX activity was observed in processed samples stored for six months. Minor changes were observed due to applied processing methods on FFA and fatty acids composition of full fat rice bran before and after storage. The results suggested that microwave heated or irradiated full fat rice bran packed in polyethylene bags can be stored at room temperature for six months without adverse effect on proximate, fatty acid composition quality and could prevent oxidative and hydrolytic rancidity. However, gamma irradiation treatment at 25 KGy was more effective in this respect. Therefore, it could be concluded that gamma irradiation contributed to optimal processing conditions for FRB stabilization

  2. A SEARCH FOR CONCENTRIC CIRCLES IN THE 7 YEAR WILKINSON MICROWAVE ANISOTROPY PROBE TEMPERATURE SKY MAPS

    International Nuclear Information System (INIS)

    Wehus, I. K.; Eriksen, H. K.

    2011-01-01

    In this Letter, we search for concentric circles with low variance in cosmic microwave background sky maps. The detection of such circles would hint at new physics beyond the current cosmological concordance model, which states that the universe is isotropic and homogeneous, and filled with Gaussian fluctuations. We first describe a set of methods designed to detect such circles, based on matched filters and χ 2 statistics, and then apply these methods to the best current publicly available data, the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) temperature sky maps. We compare the observations with an ensemble of 1000 Gaussian ΛCDM simulations. Based on these tests, we conclude that the WMAP sky maps are fully compatible with the Gaussian and isotropic hypothesis as measured by low-variance ring statistics.

  3. Algorithm Development for Multi-Energy SXR based Electron Temperature Profile Reconstruction

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Finkenthal, M.; Kumar, D.; Stutman, D.

    2012-10-01

    New techniques utilizing computational tools such as neural networks and genetic algorithms are being developed to infer plasma electron temperature profiles on fast time scales (> 10 kHz) from multi-energy soft-x-ray (ME-SXR) diagnostics. Traditionally, a two-foil SXR technique, using the ratio of filtered continuum emission measured by two SXR detectors, has been employed on fusion devices as an indirect method of measuring electron temperature. However, these measurements can be susceptible to large errors due to uncertainties in time-evolving impurity density profiles, leading to unreliable temperature measurements. To correct this problem, measurements using ME-SXR diagnostics, which use three or more filtered SXR arrays to distinguish line and continuum emission from various impurities, in conjunction with constraints from spectroscopic diagnostics, can be used to account for unknown or time evolving impurity profiles [K. Tritz et al, Bull. Am. Phys. Soc. Vol. 56, No. 12 (2011), PP9.00067]. On NSTX, ME-SXR diagnostics can be used for fast (10-100 kHz) temperature profile measurements, using a Thomson scattering diagnostic (60 Hz) for periodic normalization. The use of more advanced algorithms, such as neural network processing, can decouple the reconstruction of the temperature profile from spectral modeling.

  4. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  5. Searching for stringy topologies in the cosmic microwave background

    International Nuclear Information System (INIS)

    Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan

    2012-01-01

    We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering

  6. Searching for stringy topologies in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Ben-David, Assaf; Rathaus, Ben; Itzhaki, Nissan, E-mail: bd.assaf@gmail.com, E-mail: ben.rathaus@gmail.com, E-mail: nitzhaki@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-11-01

    We consider a universe with a non-classical stringy topology that has fixed points. We concentrate on the simplest example, an orbifold point, and study its observable imprints on the cosmic microwave background (CMB). We show that an orbifold preserves the Gaussian nature of the temperature fluctuations, yet modifies the angular correlation function. A direct signature of an orbifold is a single circle in the CMB that is invariant under rotation by 180°. Searching the 7-year ILC map of WMAP, we find one candidate circle with high statistical significance. However, a closer look reveals that the temperature profile does not fit an orbifold. We place a lower bound on the distance to an orbifold point at ∼ 85% of the distance to the surface of last scattering.

  7. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  8. Temperature profile data from profiling drifter in the Indian, Southern, and Pacific Ocean (NODC Accession 9700028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using the ALACE (Autonomous LAgrangian Circulation Explorer), which is a profiling drifter in the Indian, Southern, and...

  9. An optical fiber expendable seawater temperature/depth profile sensor

    Science.gov (United States)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  10. Water level sensor and temperature profile detector

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  11. Water-level sensor and temperature-profile detector

    Science.gov (United States)

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  12. Water level sensor and temperature profile detector

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows

  13. Heat transfer within a concrete slab with a finite microwave heating source

    International Nuclear Information System (INIS)

    Lagos, L.E.; Li, W.; Ebadian, M.A.; Grubb, R.G.

    1995-01-01

    In the present paper, the concrete decontamination and decommissioning process with a finite microwave heating source is investigated theoretically. For the microwave induced heating pattern, a multilayer concrete slab, which includes steel reinforcement mesh, is assumed to be exposed to a finite plane microwave source at normal incidence. Two-dimensional heat transport within the concrete is also considered to evaluate the variations of temperature with heating time at different frequencies with and without the presence of the reinforcement bars. Four commonly used industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz have been selected. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the maximum temperature shifts toward the front surface of the concrete. It was found that the presence of a steel reinforcement mesh causes part of the microwave energy to be blocked and reflected. Furthermore, it was observed that the temperature distribution is nearly uniform within the dimensions of the microwave applicator for a high microwave power intensity and a short heating time. (author)

  14. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  15. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    2001-01-01

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  16. Floating data acquisition system for microwave calorimeter measurements on MTX

    International Nuclear Information System (INIS)

    Sewall, N.R.

    1989-01-01

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 Series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs

  17. Floating data acquisition system for microwave calorimeter measurements on MTX

    International Nuclear Information System (INIS)

    Sewall, N.R.; Meassick, S.

    1989-01-01

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs

  18. Microwaves absorption in superconducting materials

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Fernandes, A.A.R.; Pereira, R.F.R.

    1989-01-01

    Microwaves absorption measures in two superconductors ceramics systems, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O are compared with similars datas obtained in the same band of temperature by a conventional method, mutual inductance. The results suggest that the microwaves absorption can be used as single and non-destructive method for investigating the properties of ceramics superconductors. (C.G.C.) [pt

  19. Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil

    Science.gov (United States)

    Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi

    2017-03-01

    The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.

  20. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  1. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    Science.gov (United States)

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    International Nuclear Information System (INIS)

    Edgeworth R. Westwater; Yong Han

    1999-01-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. While analyzing data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma, several questions arose about the calibration of the ARM microwave radiometers (MWR). A large portion of this years effort was a thorough analysis of the many factors that are important for the calibration of this instrument through the tip calibration method and the development of algorithms to correct this procedure. An open literature publication describing this analysis has been accepted

  3. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  4. Microwave Absorption Characteristics of Tire

    Science.gov (United States)

    Zhang, Yuzhe; Hwang, Jiann-Yang; Peng, Zhiwei; Andriese, Matthew; Li, Bowen; Huang, Xiaodi; Wang, Xinli

    The recycling of waste tires has been a big environmental problem. About 280 million waste tires are produced annually in the United States and more than 2 billion tires are stockpiled, which cause fire hazards and health issues. Tire rubbers are insoluble elastic high polymer materials. They are not biodegradable and may take hundreds of years to decompose in the natural environment. Microwave irradiation can be a thermal processing method for the decomposition of tire rubbers. In this study, the microwave absorption properties of waste tire at various temperatures are characterized to determine the conditions favorable for the microwave heating of waste tires.

  5. Microwave super-heated boiling of organic liquids: Origin, effect and application

    NARCIS (Netherlands)

    Chemat, F.; Esveld, E.

    2001-01-01

    This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling

  6. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  7. In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    Science.gov (United States)

    Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..

    2014-01-01

    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).

  8. XUV laser-produced plasma sheet beam and microwave agile mirror

    International Nuclear Information System (INIS)

    Shen, W.; Scharer, J.E.; Porter, B.; Lam, N.T.

    1994-01-01

    An excimer-laser (λ = 193 nm) produced plasma in an organic gas (TMAE) has been generated and studied. These studies have determined the ion-electron recombination coefficient and the photon absorption cross-section, of the neutral gas. The dependences of wave transmission, reflection and absorption on plasma density are obtained. A new optical system with an array of cylindrical XUV coated lenses has been implemented to form a plasma sheet to study its usage as agile mirror microwave reflector. The lens system expands the incident laser beam in X direction and compresses it in Y direction to form a sheet beam. The expanded beam then passes through a vacuum chamber filled with TMAE at 50--500 nTorr to produce the plasma sheet. Space-time measurements of the plasma density and temperature as measured by a Langmuir probe are presented. XUV optical measurements of the laser beam as measured by a photodiode are presented. Initial experiments have generated a plasma sheet of 5--10 mm x 11 cm with peak plasma density of 5 x 10 13 cm -3 . A microwave source will be utilized to study the agile mirror character of the plasma sheet. Modeling of the microwave reflection from the plasma profile will also be discussed

  9. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    Science.gov (United States)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  10. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  11. Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique.

    Science.gov (United States)

    Giberson, R T; Demaree, R S; Nordhausen, R W

    1997-01-01

    A protocol for routine 4-hour microwave tissue processing of clinical or other samples for electron microscopy was developed. Specimens are processed by using a temperature-restrictive probe that can be set to automatically cycle the magnetron to maintain any designated temperature restriction (temperature maximum). In addition, specimen processing during fixation is performed in 1.7-ml microcentrifuge tubes followed by subsequent processing in flow-through baskets. Quality control is made possible during each step through the addition of an RS232 port to the microwave, allowing direct connection of the microwave oven to any personal computer. The software provided with the temperature probe enables the user to monitor time and temperature on a real-time basis. Tissue specimens, goat placenta, mouse liver, mouse kidney, and deer esophagus were processed by conventional and microwave techniques in this study. In all instances, the results for the microwave-processed samples were equal to or better than those achieved by routine processing techniques.

  12. Generation and confinement of microwave gas-plasma in photonic dielectric microstructure.

    Science.gov (United States)

    Debord, B; Jamier, R; Gérôme, F; Leroy, O; Boisse-Laporte, C; Leprince, P; Alves, L L; Benabid, F

    2013-10-21

    We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 10¹⁴ cm⁻³. The fiber guided fluorescence emission presents strong Ar⁺ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.

  13. Microwave Impedance Spectroscopy and Temperature Effects on the Electrical Properties of Au/BN/C Interfaces

    Directory of Open Access Journals (Sweden)

    Hazem K. Khanfar

    2017-01-01

    Full Text Available In the current study, an Au/BN/C microwave back-to-back Schottky device is designed and characterized. The device morphology and roughness were evaluated by means of scanning electron and atomic force microscopy. As verified by the Richardson–Schottky current conduction transport mechanism which is well fitted to the experimental data, the temperature dependence of the current-voltage characteristics of the devices is dominated by the electric field assisted thermionic emission of charge carriers over a barrier height of ~0.87 eV and depletion region width of ~1.1 μm. Both the depletion width and barrier height followed an increasing trend with increasing temperature. On the other hand, the alternating current conductivity analysis which was carried out in the frequency range of 100–1400 MHz revealed the domination of the phonon assisted quantum mechanical tunneling (hopping of charge carriers through correlated barriers (CBH. In addition, the impedance and power spectral studies carried out in the gigahertz-frequency domain revealed a resonance-antiresonance feature at frequency of  ~1.6 GHz. The microwave power spectra of this device revealed an ideal band stop filter of notch frequency of  ~1.6 GHz. The ac signal analysis of this device displays promising characteristics for using this device as wave traps.

  14. Microwave Backscatter-Based Wireless Temperature Sensor Fabricated by an Alumina-Backed Au Slot Radiation Patch.

    Science.gov (United States)

    Lu, Fei; Wang, Haixing; Guo, Yanjie; Tan, Qiulin; Zhang, Wendong; Xiong, Jijun

    2018-01-16

    A wireless and passive temperature sensor operating up to 800 °C is proposed. The sensor is based on microwave backscatter RFID (radio frequency identification) technology. A thin-film planar structure and simple working principle make the sensor easy to operate under high temperature. In this paper, the proposed high temperature sensor was designed, fabricated, and characterized. Here the 99% alumina ceramic with a dimension of 40 mm × 40 mm × 1 mm was prepared in micromechanics for fabrication of the sensor substrate. The metallization of the Au slot patch was realized in magnetron sputtering with a slot width of 2 mm and a slot length of 32 mm. The measured resonant frequency of the sensor at 25 °C is 2.31 GHz. It was concluded that the resonant frequency decreases with the increase in the temperature in range of 25-800 °C. It was shown that the average sensor sensitivity is 101.94 kHz/°C.

  15. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  16. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  17. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    International Nuclear Information System (INIS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiationпј€1–7 kGyпј‰ and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC. - Highlights: • E-beam irradiation generated three novel volatile compounds. • E-beam irradiation increased the relative proportions of alcohols, aldehydes, and ketones. • E-beam irradiation coupled to microwave heating increased aldehyde levels and generated five heterocyclic compounds. • E-beam irradiation at 5 and 7 kGy decreased the levels of unsaturated fatty acids, but did not affect trans fatty acid levels.

  18. Optimization of the temperature profiles due to a nitrogen jet impinging on a TLD detector

    International Nuclear Information System (INIS)

    Cohen, I.; Bar-Kohany, T.; German, U.; Ziskind, G.

    2014-01-01

    A study was conducted to simulate the temperature profiles during readout in a typical, commercial thermo-luminescence dosimeter (TLD) chip and to optimize the readout conditions. The study makes use of a previously developed numerical model which calculates the crystal's temperature profile evolution inside a TLD crystal compound. The calculated profiles were implemented in the Randall-Wilkins equation to obtain the estimated glow curve. A number of jet temperature profiles were investigated in order to optimize the readout process. - Highlights: • The temperature profiles in a TLD chip compound were simulated. • Some non-routine heating profiles are proposed. • A better efficiency and shorter time can be obtained with these profiles. • The resulting glow curves were evaluated as well

  19. Electron-beam and microwave treatment of some microbial strains

    International Nuclear Information System (INIS)

    Martin, D.; Ferdes, O.S.; Minea, R.; Tirlea, A.; Badea, M.; Plamadeala, S.; Ferdes, M.

    1998-01-01

    The experimental results concerning the combined effects of microwaves and accelerated electron beams on various microbial strains such as E. coli, Salmonella sp. and Monascus purpureus are presented. A special designed microwave applicator with a 2.45 GHz frequency CW magnetron of 850 maximum output power and with associate electronics that allow to control the microwave power, the current intensity, and the exposure time was used. The electron-beam irradiation was performed at different irradiation doses and at a dose rate of 1.5 - 2.0 kGy/min by using a linac at a mean electron energy about 6 MeV, mean bean current of 10 μA, pulse period of 3.5 μs and repetition frequency 100 Hz. The experiments were carried out in 5 variants: microwave treatment; electron-beam irradiation; microwaves followed by electron beam; electrons followed by microwaves; and simultaneous application of microwaves and electron beam. The microbiocidal effect was found to be enhanced by additional use of microwave energy to electron beam irradiation. Enhancement of inactivation rate is only remarkable for the microwave treatment or simultaneous electron beam and microwave irradiation at a temperature above the critical value at which microorganisms begin to perish by heat. Simultaneous irradiation with electron beam and microwaves results in a reduction of temperature and time as well as in the decrease of the upper limit of required electron beam absorbed dose for an assumed microbiological quality parameter. The results obtained indicate the occurrence of a synergistic effect of the two physical fields on a non-thermal basis. Hence, combined microwave-electron beam treatment may be applied as an effective method to reduce microbial load

  20. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study.

    Science.gov (United States)

    Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira

    2016-04-20

    The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.

  1. Influence of cookies composition on temperature profiles and qualitative parameters during baking

    Directory of Open Access Journals (Sweden)

    Ž. Kožul

    2014-01-01

    Full Text Available During baking of bakery products temperature of baking, temperature profiles, moisture content, volume and colour changes are strongly coupled. The objective of this paper was to study the influence of the cookies composition on temperature profiles and quality parameters (width and thickness, colour formation and textural properties: hardness, fracturability and work of breaking force during baking process. Composition of cookies differs due to flour type and initial moisture content. Cookies were baked at 205 °C and temperature was measured in the centre of samples which were 7 mm thick with a 60 mm diameter. The results of temperature profiles of the cookies during baking have shown the same trend for all of the 18 samples. Samples with the higher initial water content have lower values of total colour difference and also significantly affect textural properties.

  2. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  3. Microwave second-harmonic response of ceramic MgB2 samples

    International Nuclear Information System (INIS)

    Agliolo Gallitto, A.; Bonsignore, G.; Li Vigni, M.

    2005-01-01

    Nonlinear microwave response of different ceramic MgB 2 samples has been investigated by the technique of second-harmonic emission. The second-harmonic signal has been investigated as a function of temperature, DC magnetic field and input microwave power. The attention has mainly been devoted to the response at low magnetic fields, where nonlinear processes arising from motion of Abrikosov fluxons are ineffective. The results show that different mechanisms are responsible for the nonlinear response in the different ranges of temperature. At low temperatures, the nonlinear response is due to processes involving weak links. At temperatures close to T c , a further contribution to the harmonic emission is present; it can be ascribed to modulation of the order parameter by the microwave field and gives rise to a peak in the temperature dependence of the harmonic signal

  4. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    Science.gov (United States)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  5. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis

    International Nuclear Information System (INIS)

    Huang, Yu-Fong; Chiueh, Pei-Te; Kuan, Wen-Hui; Lo, Shang-Lien

    2015-01-01

    Agricultural residues are abundant resources to produce renewable energy and valuable chemicals. This study focused on the effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis of agricultural residues. When agricultural residues were under microwave radiation within 10 min, the maximum temperatures of approximately 320, 420, and 530 °C were achieved at the microwave power levels of 300, 400, and 500 W, respectively. Gas yield increased with increasing microwave power level, whereas solid and liquid yields decreased. Besides, gaseous products with higher H 2 content and higher calorific values can be obtained at higher microwave power levels. In addition to microwave power level, lignocellulosic composition was also an important factor. H 2 and CO 2 yields increased with increasing hemicellulose content, whereas CH 4 and CO yields increased with increasing cellulose content. Four empirical equations were derived to present the contributions of lignocellulosic materials to the yields of gaseous components. - Highlights: • About 530 °C was reached within 10 min at a microwave power level of 500 W. • Gas yield increased with increasing microwave power level. • A high correlation between hemicellulose content and either H 2 or CO 2 yield. • A high correlation between cellulose content and either CH 4 or CO yield. • Empirical equations depict contribution of lignocellulosic content to gas yield

  6. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  7. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  8. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  9. Magnon transport through microwave pumping

    OpenAIRE

    Nakata Kouki; Simon Pascal; Loss Daniel

    2015-01-01

    We present a microscopic theory of magnon transport in ferromagnetic insulators (FIs). Using magnon injection through microwave pumping, we propose a way to generate magnon dc currents and show how to enhance their amplitudes in hybrid ferromagnetic insulating junctions. To this end focusing on a single FI, we first revisit microwave pumping at finite (room) temperature from the microscopic viewpoint of magnon injection. Next, we apply it to two kinds of hybrid ferromagnetic insulating juncti...

  10. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    International Nuclear Information System (INIS)

    Edgeworth R. Westwater; Yong Han

    1997-01-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma

  11. Comparison of temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers

    International Nuclear Information System (INIS)

    Sun Yuanyuan; Cheng Zhigang; Dong Lei; Zhang Guoming; Wang Yang; Liang Ping

    2012-01-01

    Objective: To compare temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna in ex vivo porcine livers. Materials and methods: The 915- and 2450-MHz microwave ablation and thermal monitor system were used in this study. A total of 56 ablation zones and 280 temperature data were obtained in ex vivo porcine livers. The output powers were 50, 60, 70, and 80 W and the setting time was 600 s. The temperature curve of every temperature spot, the short- and long-axis diameters of the coagulation zones were recorded and measured. Results: At all four power output settings, the peak temperatures of every temperature spot had a tendency to increase accordingly as the MW output power was increased, and except for 5 mm away from the antenna, the peak temperatures for the 915 MHz cooled-shaft antenna were significantly higher than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Meanwhile, the short- and long-axis diameters for the 915 MHz cooled-shaft antenna were significantly larger than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Conclusion: The 915 MHz cooled-shaft antenna can yield a significantly larger ablation zone and achieve higher temperature in ablation zone than a 2450 MHz cooled-shaft antenna in ex vivo porcine livers.

  12. Development of a long-slot microwave plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Kuwata, Y., E-mail: euo1304@mail4.doshisha.ac.jp; Kasuya, T.; Miyamoto, N.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10{sup 9} cm{sup −3} to 5.8 × 10{sup 9} cm{sup −3}, and from 1.1 eV to 2.1 eV, respectively.

  13. Skewness of the cosmic microwave background temperature fluctuations due to the non-linear gravitational instability

    International Nuclear Information System (INIS)

    Munshi, D.; Souradeep, T.; Starobinsky, A.A.

    1995-01-01

    The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)

  14. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    Science.gov (United States)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  15. Thermodynamic Profiles of the Destructive June 2012 Derecho

    Science.gov (United States)

    Liu, C.; Novakovskaia, E.; Bosse, J.; Ware, R.; Stillman, D.; Sloop, C.; Blanchette, L.; Demoz, B.; Nelson, M.; Cooper, L.; Czarnetzki, A.; Reehorst, A.

    2012-12-01

    The June 2012 mid-Atlantic and Midwest Derecho was one of the most destructive and deadly fast-moving severe thunderstorm events in North American history. The derecho produced wind gusts approaching 100 miles per hour as it traveled more than 600 miles across large sections of the Midwestern United States, the central Appalachians and the Mid-Atlantic States on the afternoon and evening of June 29, 2012 and into the early morning of June 30, 2012. It produced hurricane-like impacts with little warning, resulting in more than 20 deaths, widespread damage and millions of power outages across the entire affected region. We present continuous temperature and moisture profiles observed by microwave radiometers, and derived forecast indices, along the storm path at locations in Iowa, Ohio and Maryland, providing unique perspective on the evolution of this historic storm. For example, an extreme CAPE value of 5,000 J/kg was derived from radiometer observations at Germantown, Maryland ten hours before storm passage, and 80 knot Wind Index (WINDEX) was derived seven hours before passage. The Germantown radiometer is operated as part of the Earth Networks Boundary Layer Network (BLN) for continuous thermodynamic monitoring of the planetary boundary layer up to 30,000 feet. The BLN uses Radiometrics microwave profilers providing continuous temperature and humidity soundings with radiosonde-equivalent observation accuracy, and unique liquid soundings. This case study illustrates the promise for severe storm forecast improvement based on continuous monitoring of temperature and moisture in the boundary layer and above.

  16. Ion temperature profiles along a hydrogen diagnostic beam in a TORE SUPRA tokamak plasma

    International Nuclear Information System (INIS)

    Romannikov, A.; Petrov, Yu.; Platts, P.; Khess, V.; Khutter, T.; Farzhon, Zh.; Moro, F.

    2002-01-01

    By means of corpuscular diagnostics one studies temperature of ions along a diagnostic hydrogen beam. Paper presents comparison of temperature of plasma (deuterium) basic ions measures by means of the active corpuscular diagnostics with temperature of C + carbon ions along a beam. One studies behavior peculiarities of T i ion temperature profiles for TORE-SUPRA different modes, such as: formation of plane and even hollow T i profiles for ohmic modes, variation of T i profiles under operation of an ergodic diverter, difference of temperature of basic ions measured by means of the active corpuscular diagnostics from C +5 temperature. Paper offers clear explanation of these peculiarities [ru

  17. Development of a multi-channel horn mixer array for microwave imaging plasma diagnostics

    International Nuclear Information System (INIS)

    Ito, Naoki; Kuwahara, Daisuke; Nagayama, Yoshio

    2015-01-01

    Microwave to millimeter-wave diagnostics techniques, such as interferometry, reflectometry, scattering, and radiometry, have been powerful tools for diagnosing magnetically confined plasmas. The resultant measurements have clarified several physics issues, including instability, wave phenomena, and fluctuation-induced transport. Electron cyclotron emission imaging has been an important tool in the investigation of temperature fluctuations, while reflectometry has been employed to measure plasma density profiles and their fluctuations. We have developed a horn-antenna mixer array (HMA), a 50 - 110 GHz 1D antenna array, which can be easily stacked as a 2D array. This article describes an upgrade to the horn mixer array that combines well-characterized mixers, waveguide-to-microstrip line transitions, intermediate frequency amplifiers, and internal local oscillator modules using a monolithic microwave integrated circuit technology to improve system performance. We also report on the use of a multi-channel HMA system. (author)

  18. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    Science.gov (United States)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  19. Topology of microwave background fluctuations - Theory

    Science.gov (United States)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  20. Nonlinear phenomena in the interaction of microwaves with the low-temperature argon plasma flux

    International Nuclear Information System (INIS)

    Armand, N.A.; Lisitskaya, A.A.; Rogashkov, S.A.; Rogashkova, A.I.; Chmil', A.I.; Shustin, E.G.

    1982-01-01

    Theoretical and experimental investigations of nonlinear effects arising during the passing of SHF waves across an argon plasma jet flowing from an arc plasmatron have been carried on. It is shown that under conditions of the radiowave propagation through low temperature plasma moving across the direction of the wave propagation modes of both the wave self-focusing and its nonlinear asymmetrical refaction can be accomplished. The effect of the formation and propagation of the additional ionization region in a microwave flow initiated with plasma independently produced in the region of the maximum amplitude of the SHF field has been experimentally discovered [ru

  1. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  2. Electromagnetic and thermal history during microwave heating

    International Nuclear Information System (INIS)

    Santos, T.; Valente, M.A.; Monteiro, J.; Sousa, J.; Costa, L.C.

    2011-01-01

    In microwave heating, the energy is directly introduced into the material resulting in a rapid and volumetric heating process with reduced thermal gradients, when the electromagnetic field is homogeneous. From those reasons, the microwave technology has been widely used in the industry to process dielectric materials. The capacity to heat with microwave radiation is related with the dielectric properties of the materials and the electromagnetic field distribution. The knowledge of the permittivity dependence with the temperature is essential to understand the thermal distribution and to minimize the non-homogeneity of the electromagnetic field. To analyse the history of the heating process, the evolution of the electromagnetic field, the temperature and the skin depth, were simulated dynamically in a ceramic sample. The evaluation of the thermal runaway has also been made. This is the most critical phenomenon observed in the sintering of ceramic materials because it causes deformations, or even melting on certain points in the material, originating the destruction of it. In our study we show that during the heating process the hot spot's have some dynamic, and at high temperatures most of the microwave energy is absorbed at the surface of the material. We also show the existence of a time-delay of the thermal response with the electromagnetic changes. - Highlights: → Electromagnetic field, the temperature and the skin depth were simulated dynamically. → The evaluation of the thermal runaway has been made. → A time-delay of the thermal response with the electromagnetic changes exists.

  3. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  4. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  5. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  6. Great microwave bursts and hard X-rays from solar flares

    International Nuclear Information System (INIS)

    Wiehl, H.J.; Batchelor, D.A.; Crannell, C.J.; Dennis, B.R.; Price, P.N.

    1983-06-01

    The microwave and hard X-ray charateristics of 13 solar flares that produced microwave fluxes greater than 500 Solar Flux Units were analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Berne, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. Correlations were found between respective temporal characteristics and, for the first time, between microwave and hard X-ray spectral characteristics. A single-temperature and a multi-temperature model from the literature were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A model in which the emissions above and below the peak frequency originate in two different parts of a diverging magnetic loop is proposed. With this model the entire microwave spectrum of all but one of the events is explained

  7. Temperature-controlled depth profiling in polymeric materials using cluster secondary ion mass spectrometry (SIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States)]. E-mail: christine.mahoney@nist.gov; Fahey, Albert J. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Gillen, Greg [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Xu Chang [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Batteas, James D. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States)

    2006-07-30

    Secondary ion mass spectrometry (SIMS) employing an SF{sub 5} {sup +} polyatomic primary ion source was used to depth profile through poly(methylmethacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) thin films at a series of temperatures from -125 deg. C to 150 deg. C. It was found that for PMMA, reduced temperature analysis produced depth profiles with increased secondary ion stability and reduced interfacial widths as compared to analysis at ambient temperature. Atomic force microscopy (AFM) images indicated that this improvement in interfacial width may be related to a decrease in sputter-induced topography. Depth profiling at higher temperatures was typically correlated with increased sputter rates. However, the improvements in interfacial widths and overall secondary ion stability were not as prevalent as was observed at low temperature. For PLA, improvements in signal intensities were observed at low temperatures, yet there was no significant change in secondary ion stability, interface widths or sputter rates. High temperatures yielded a significant decrease in secondary ion stability of the resulting profiles. PS films showed rapid degradation of characteristic secondary ion signals under all temperatures examined.

  8. Phosphoproteome profiling for cold temperature perception.

    Science.gov (United States)

    Park, Seyeon; Jang, Mi

    2011-02-01

    Temperature sensation initiates from the activation of cellular receptors when the cell is exposed to a decrease in temperature. Here, we applied a phosphoproteome profiling approach to the human lung epithelial cell line BEAS-2B to elucidate cellular cold-responsive processes. The primary aim of this study was to determine which intracellular changes of phosphorylation are accompanied by cold sensation. Eighteen protein spots that exhibited differentially phosphorylated changes in cells were identified. Most of the proteins that were phosphorylated after 5 or 10 min were returned to control levels after 30 or 60 min. Identified proteins were mainly RNA-related (i.e., they were involved in RNA binding and splicing). Temperature (18 and 10°C) stimuli showed homologies that were detected for time course changes in phosphoproteome. The data indicated a time-shift between two temperatures. The phosphorylation of putative cold responsive markers, such as ribosomal protein large P0 and heterochromatin-associated proteins 1, were verified by Western blotting in cells transfected with TRPM8 or TRPA1. Copyright © 2010 Wiley-Liss, Inc.

  9. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  10. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  11. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials

    Directory of Open Access Journals (Sweden)

    Jinghua Ye

    2017-01-01

    Full Text Available Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials.

  12. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  13. Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean

    Science.gov (United States)

    Yin, Mengtao; Liu, Guosheng

    2017-12-01

    A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.

  14. Enhanced-Resolution Satellite Microwave Brightness Temperature Records for Mapping Boreal-Arctic Landscape Freeze-Thaw Heterogeneity

    Science.gov (United States)

    Kim, Y.; Du, J.; Kimball, J. S.

    2017-12-01

    The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb

  15. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  16. Optimization of microwave-induced chemical etching for rapid development of neutron-induced recoil tracks in CR-39 detectors

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Bandyopadhyay, T.

    2014-01-01

    A systematic investigation is carried out to optimize the recently established microwave-induced chemical etching (MICE) parameters for rapid development of neutron-induced recoil tracks in CR-39 detectors. Several combinations of all available microwave powers with different etching durations were analysed to determine the most suitable etching condition. The etching duration was found to reduce with increasing microwave power and the tracks were observed at about 18, 15, 12, and 6 min for 300, 450, 600 and 900 W of microwave powers respectively compared to a few hours in chemical etching (CE) method. However, for complete development of tracks the etching duration of 30, 40, 50 and 60 min were found to be suitable for the microwave powers of 900, 600, 450 and 300 W, respectively. Temperature profiles of the etchant for all the available microwave powers at different etching durations were generated to regulate the etching process in a controlled manner. The bulk etch rates at different microwave powers were determined by 2 methods, viz., gravimetric and removed thickness methods. A logarithmic expression was used to fit the variation of bulk etch rate with microwave power. Neutron detection efficiencies were obtained for all the cases and the results on track parameters obtained with MICE technique were compared with those obtained from another detector processed with chemical etching. - Highlights: • Microwave-induced chemical etching method is optimized for rapid development of recoil tracks due to neutrons in CR-39 detector. • Several combinations of microwave powers and etching durations are investigated to standardize the suitable etching condition. • Bulk-etch rates are determined for all microwave powers by two different methods, viz. gravimetric and removed thickness method. • The method is found to be simple, effective and much faster compared to conventional chemical etching

  17. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  18. Heat transfer within a concrete slab applying the microwave decontamination process

    International Nuclear Information System (INIS)

    Li, W.; Ebadian, M.A.; White, T.L.; Grubb, R.G.

    1993-01-01

    Decontamination of a radioactive contaminated concrete surface is a new technology for the treatment of radioactive waste. In this paper, concrete decontamination using microwave technology is investigated theoretically. A plane wave assumption of microwave propagation has been employed to estimate the microwave field and power dissipation within the concrete. A one-dimensional, unsteady heat conduction model with microwave heat dissipation resulting from microwave-material interaction has been used to evaluate frequency, steel reinforcement within the concrete, and thermal boundary conditions are also considered in the present model. Four commonly used microwave frequencies of 0.896, 2.45, 10.6, and 18.0 GHz have been utilized in the analysis. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the microwave power dissipation shifts toward the front surface of the concrete. Furthermore, it was observed that use of a higher frequency microwave could reduce power intensity requirements needed to raise the temperature difference or thermal stress to the same value in the same period of time. It was found that the presence of reinforcing steel mesh causes part of the microwave energy to be blocked and reflected. Thus, the temperature or thermal stress of the concrete increases before the reinforcement, and decreases after the reinforcement. 16 refs., 6 figs., 3 tabs

  19. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  20. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  1. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-12-01

    Full Text Available Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2 extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2. Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73% compared to SCCO2 extraction alone (1.81%. Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM. SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.

  2. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  3. Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver

    Science.gov (United States)

    Hoppe, Daniel J.; Pukala, David M.; Lambrigtsen, Bjorn H.; Soria, Mary M.; Owen, Heather R.; Tanner, Alan B.; Bruneau, Peter J.; Johnson, Alan K.; Kagaslahti, Pekka P.; Gaier, Todd C.

    2011-01-01

    For humidity and temperature sounding of Earth s atmosphere, a single-antenna/LNA (low-noise amplifier) is needed in place of two separate antennas for the two frequency bands. This results in significant mass and power savings for GeoSTAR that is comprised of hundreds of antennas per frequency channel. Furthermore, spatial anti-aliasing would reduce the number of horns. An anti-aliasing horn antenna will enable focusing the instrument field of view to the hurricane corridor by reducing spatial aliasing, and thus reduce the number of required horns by up to 50 percent. The single antenna/receiver assembly was designed and fabricated by a commercial vendor. The 118 183-GHz horn is based upon a profiled, smooth-wall design, and the OMT (orthomode transducer) on a quad-ridge design. At the input end, the OMT presents four ver y closely spaced ridges [0.0007 in. (18 m)]. The fabricated assembly contains a single horn antenna and low-noise broadband receiver front-end assembly for passive remote sensing of both temperature and humidity profiles in the Earth s atmosphere at 118 and 183 GHz. The wideband feed with dual polarization capability is the first broadband low noise MMIC receiver with the 118 to 183 GHz bandwidth. This technology will significantly reduce PATH/GeoSTAR mass and power while maintaining 90 percent of the measurement capabilities. This is required for a Mission-of-Opportunity on NOAA s GOES-R satellite now being developed, which in turn will make it possible to implement a Decadal-Survey mission for a fraction of the cost and much sooner than would otherwise be possible.

  4. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  5. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Chuck, Christopher J.; Lou-Hing, Daniel; Dean, Rebecca; Sargeant, Lisa A.; Scott, Rod J.; Jenkins, Rhodri W.

    2014-01-01

    Microbial lipids have the potential to substantially reduce the use of liquid fossil fuels, though one obstacle is the energy costs associated with the extraction and subsequent conversion into a biofuel. Here we report a one-step method to produce FAME (fatty acid methyl esters) from Rhodotorula glutinis by combining lipid extraction in a microwave reactor with acid-catalysed transesterification. The microwave did not alter the FAME profile and over 99% of the lipid was esterified when using 25 wt% H 2 SO 4 over 20 min at 120 °C. On using higher loadings of catalyst, similar yields were achieved over 30 s. Equivalent amounts of FAME were recovered in 30 s using this method as with a 4 h Soxhlet extraction, run with the same solvent system. When water was present at less than a 1:1 ratio with methanol, the main product was FAME, above this the major products were FFA (free fatty acids). Under the best conditions, the energy required for the microwave was less than 20% of the energy content of the biodiesel produced. Increasing the temperature did not change the EROI (energy return on investment) substantially; however, longer reaction times used an equivalent amount of energy to the total energy content of the biodiesel. - Highlights: • The extraction and transesterification of yeast lipid were achieved using a microwave reactor. • The lipid was extracted from Rhodotorula glutinis within 30 s under all conditions. • Addition of 25 wt% H 2 SO 4 catalyst converted 95% glycerides to FAME over 5 min. • Water could be tolerated up to 25 wt% without high FFA production. • The temperature of the microwave had less impact on EROI than the length of extraction

  6. Pushbroom microwave radiometer results from HAPEX-MOBILHY

    International Nuclear Information System (INIS)

    Nichols, W.E.; Cuenca, R.H.; Schmugge, T.J.; Wang, J.R.

    1993-01-01

    The NASA C-130 remote sensing aircraft was in Toulouse, France from 25 May through 4 July 1986, for participation in the HAPEX-MOBILHY program. Spectral and radiometric data were collected by C-130 borne sensors in the visible, infrared, and microwave wavelengths. These data provided information on the spatial and temporal variations of surface parameters such as vegetation indices, surface temperature, and surface soil moisture. The Pushbroom Microwave Radiometer (PBMR) was used to collect passive microwave brightness temperature data. This four-beam sensor operates at the 21-cm wavelength, providing cross-track coverage approximately 1.2 times the aircraft altitude. Observed brightness temperatures for the period were high, ranging from above 240 K about 290 K. Brightness temperature images appeared to correspond well to spatial and temporal soil moisture variation. Previous research has demonstrated that an approximately linear relationship exists between the surface emissivity and surface soil moisture. For these data, however, regression analysis did not indicate a strong linear relationship (r 2 = 0.32 and r 2 = 0.42 respectively) because of the limited range of soil moisture conditions encountered and the small number of ground measurements. When results from wetter soil conditions encountered in another experiment were included, the regression improved dramatically. Based on similar research with the PBMR and an understanding of the ground data collection program, this result was examined to produce recommendations for improvements to future passive microwave research and data collection programs. Examples of surface soil moisture maps generated with PBMR data are presented which appear to be representative of the actual soil moisture conditions

  7. Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

    1993-02-01

    Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation

  8. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-05-15

    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  9. Measurement of blood-brain barrier permeation in rats during exposure to 2450-MHz microwaves

    International Nuclear Information System (INIS)

    Ward, T.R.; Elder, J.A.; Long, M.D.; Svendsgaard, D.

    1982-01-01

    Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 degrees C, or were exposed at 22 degrees C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found

  10. High temperature initiator-free RAFT polymerization of methyl methacrylate in a microwave reactor

    NARCIS (Netherlands)

    Paulus, R.M.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    The reversible additionfragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) was investigated under microwave irradiation. At first, a comparison was made between microwave and thermal heating for the RAFT polymerization of MMA with azobis(isobutyronitrile) (AIBN) as

  11. Temperature profiles of time dependent tokamak plasmas from the parallel Ohm's law

    International Nuclear Information System (INIS)

    Micozzi, P.; Roccella, M.

    1993-01-01

    Profile consistency based on the parallel component of Ohm's law has been used to obtain electron temperature profiles. A resistive neoclassical term and a term that accounts for the bootstrap current contributions have been considered in Ohm's law. A numerical code has been developed to find solutions according to the MHD equilibrium equations. For stationary plasmas, the temperature profiles, obtained by a procedure in which a pseudo-parabolic shape of (J φ /R) is assumed and the peak temperature known from experiments is used, are close to the experimental data for several very different machines (JET, TFTR, ASDEX, ALCATOR-C and FT). The main feature of the model is its capability to provide an easy parametrization of Ohm's law also in non-stationary cases, without going through the complication of a detailed solution of the magnetic field diffusion equation. A rule for estimating a maximum value of the current diffusion time inside the plasma volume in such situations is given. This rule accounts for both the temperature profiles and the stabilization times in some non-stationary pulses observed in JET. (author). 28 refs, 12 figs

  12. A Review of Microwave-Assisted Reactions for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Saifuddin Nomanbhay

    2017-06-01

    Full Text Available The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  13. Large-power microwave circuit device

    International Nuclear Information System (INIS)

    Suzuki, Kunio

    1987-01-01

    A 250 KW CW circulator and 1 MW CW dammy load are developed as large-power microwave circuit devices for Tristan, and they are shown to have good characteristics. The circulator has a Y-shape and consists of waveguides divided into four parts. Partition plates are provided in the waveguide connected to each port in order to divide the power into four components. A ferrite material which is high in Curie temperature and less likely to suffer from a RF loss is selected to be used in the circulator. Thin disks of this material, which is low in temperature gradient in the direction of thickness, are bonded to the surface of the waveguides with an epoxy adhesive. A magnet is provided at the top and bottom of the main portion of the circulator and the magnetic field is adjusted so that optimum characteristics are achieved. These arrangements result in good electrical and power characteristics. The dammy load of a water loading type is selected because microwave power is easily absorbed in water. A mechanically strong pipe which does not cause a large loss in microwave is mounted in a waveguide and water is passed through it to allow the power to be consumed gradually. A test up to a RF power of 750 KW shows that the temperature rise in the waveguide is 30 deg C. (Nogami, K.)

  14. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  15. Application of microwave to drying and blanching of tomatoes

    International Nuclear Information System (INIS)

    Ando, Y.; Orikasa, T.; Shiina, T.; Sotome, I.; Isobe, S.; Muramatsu, Y.; Tagawa, A.

    2010-01-01

    The applicability of microwave to the drying and blanching of tomatoes was examined. The changes of the drying rate and surface color were first measured and compared between drying by hot air (50degC) or microwave at three radiation powers. The drying rates using a microwave were higher than that using hot air. Both a constant-rate drying period and a falling-rate drying period were observed for each microwave radiation power. Compared to hot air drying, microwave drying resulted in an increase in lightness which is a preferable quality of tomatoes. Next, the changes in temperature, nutrients and surface color were measured and compared between blanching by microwave or boiling water. Microwave blanching required less time, resulted in higher retention of nutrients (ascorbic acid and lycopene) and caused less change in color in comparison with boiling water blanching. These results suggest that a microwave could be applied to drying and blanching tomatoes

  16. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor Pilot Plant

    International Nuclear Information System (INIS)

    Garn, Troy G.; Meikrantz, Dave H.; Greenhalgh, Mitchell R.; Law, Jack D.

    2008-01-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50 C were tested. Ambient temperature testing shows that a small

  17. Integrated modeling of temperature profiles in L-mode tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Tangri, V. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Voitsekhovitch, I. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-12-15

    Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.

  18. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  19. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  20. Long-range correlation in cosmic microwave background radiation.

    Science.gov (United States)

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  1. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  2. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  3. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  4. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  5. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  6. MICROWAVE IRRADIATION AND CROSS-LINKING OF COLLAGEN

    NARCIS (Netherlands)

    VISSER, CE; VOUTE, ABE; OOSTING, J; BOON, ME; KOK, LP

    1992-01-01

    In a multifactorial experiment, dermal sheep collagen was treated in diluted glutaraldehyde solutions, 70% ethyl alcohol, Cialit 1:5000, and distilled water for 1, 3 and 5 min, respectively, in combination with microwave irradiation at different temperature settings. The shrinkage temperature

  7. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  8. Interactions of microwave with plasmas

    International Nuclear Information System (INIS)

    Zhang Haifeng; Shao Fuqiu; Wang Long

    2003-01-01

    When plasma size scale is comparable with the wavelength of electromagnetic waves, W.K.B. solution isn't applicable. In this paper a new numerical solution technique to investigate interactions of microwave with plasmas is presented by using Runge-Kutta method. The results of numerical solution coincide with that of analytical solution while the model is linear electron density profile in calculated accuracy

  9. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.

    Science.gov (United States)

    Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C

    2017-02-15

    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.

  10. Constant-dose microwave irradiation of insect pupae

    Science.gov (United States)

    Olsen, Richard G.

    Pupae of the yellow mealworm Tenebrio molitor L. were subjected to microwave irradiation for 1.5-24 hours at power density levels adjusted to produce a total dosage of approximately 1123 J/g in each insect for every experiment. Insects without visible blemishes were exposed in a standing wave irradiation system such that half of them were exposed in the plane of maximum electric field (E field) and the other half were exposed in the plane of maximum magnetic field (H field). Both E field and H field insects exhibited nearly the same specific absorption rate (SAR) for pupal orientation parallel to the magnetic field vector at 5.95 GHz. Irradiations were conducted both with and without the use of a ventilating fan to control the temperature rise in the irradiation chamber. Abnormal development as a result of the microwave exposure was seen only in the high-power, short-duration experiment without chamber ventilation. This result suggests a thermal interaction mechanism for explanation of observed microwave-induced abnormalities. A study of the time course of the average temperature rise in the irradiated insects indicates that teratological effects for this configuration have a temperature threshold of approximately 40°C.

  11. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-15

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below −5 dB can be obtained in the frequency range of 5.76–18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed. - Highlights: • Carbonyl iron particles/silicone resin composites are prepared by a spraying method. • Reflection loss values exceed −5 dB at 5.76–18 GHz for an absorber of 0.8 mm thickness. • The variation of reflection loss was studied from room temperature to 300 °C.

  12. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  13. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  14. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  15. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  16. Influence of microwave heating on biogas production from Sida hermaphrodita silage.

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Rusanowska, Paulina

    2017-12-01

    This study compared the effects on biogas production of suspended sludge versus a combination of suspended sludge and immobilized biomass, and microwave versus convection heating. Biogas production was the highest in the hybrid bioreactor heated by microwaves (385L/kg VS) and also the most stable, as shown by the FOS/TAC ratio and pH. Regardless of the type of heating, biogas production was 8% higher with immobilized biomass than without. Although the lag phase of biogas production was shorter with microwave heating than without, the log phase was longer, and biogas production in the microwave heated bioreactors took about twice as long (ca. 40days) to plateau as in the conventionally heated bioreactors. These differences in the profile of biogas production are likely due to the athermal effects of microwave irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental analysis of temperature profiles in ceramic brickwork elements subjected to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-12-01

    Full Text Available This article discusses heat transfer through a brick element in order to know the thermal behavior of onedimensional brickwork masonry samples exposed to high temperatures. The object of the tests is to build time-temperature curves according to different thermal steps in transient to experimentally determine the temperature profiles in the interior of a wall. Through this study, it is possible to demonstrate absolute moisture of a factory item from 300 °C (variation of temperatures in the interior of the element, avoid the associated phenomenon of evaporation of water during the thermal process as well as to obtain profiles of temperatures that help calculate the cross section of a factory element subjected to high temperatures.En este artículo se analiza la transferencia de calor a través de un elemento de fábrica de ladrillo con el fin de conocer el comportamiento térmico de secciones de fábrica unidimensionales expuestas a altas temperaturas. El objeto de los ensayos es construir curvas tiempo-temperatura en función de diversos escalones térmicos en régimen transitorio para determinar experimentalmente los perfiles de temperatura en el interior de un muro. A través de este estudio es posible evidenciar el contenido de humedad absoluta de un elemento de fábrica a partir de los 300 ºC (variación de las temperaturas en el interior del elemento, evitar el fenómeno asociado de la evaporación del agua durante el proceso térmico así como obtener perfiles de temperaturas que ayuden a calcular la sección eficaz de un elemento de fábrica sometido a altas temperaturas.

  18. Dehydration of sodium carbonate monohydrate with indirect microwave heating

    International Nuclear Information System (INIS)

    Seyrankaya, Abdullah; Ozalp, Baris

    2006-01-01

    In this study, dehydration of sodium carbonate monohydrate (Na 2 CO 3 .H 2 O) (SCM) in microwave (MW) field with silicon carbide (SiC) as an indirect heating medium was investigated. SCM samples containing up to 3% free moisture were placed in the microwave oven. The heating experiments showed that SCM is a poor microwave energy absorber for up to 6 min of irradiation at an 800 W of microwave power. The heat for SCM calcination is provided by SiC which absorbs microwave. The monohydrate is then converted to anhydrous sodium carbonate on the SiC plate by calcining, i.e. by removing the crystal water through heating of the monohydrate temperatures of over 120 deg. C. The calcination results in a solid phase recrystallization of the monohydrate into anhydrate. In the microwave irradiation process, dehydration of SCM in terms of indirect heating can be accelerated by increasing the microwave field power

  19. Microwave Pretreatment for Thiourea Leaching for Gold Concentrate

    Directory of Open Access Journals (Sweden)

    Nag-Choul Choi

    2017-10-01

    Full Text Available In this research, we studied the use of microwave pretreatment to enhance the efficiency of Au leaching from gold concentrate. The gold concentrate was pretreated using microwaves with different irradiation time. The sample temperature was increased up to 950 °C by the microwave irradiation. A scanning electron microscope-energy dispersive spectrometer showed the evolution of microcracks and the reduction of sulfur on the mineral surface. X-ray diffraction data also showed the mineral phase shift from pyrite to hematite or pyrrhotite. A leaching test was conducted for the microwave-treated and untreated gold concentrates using thiourea. Although the thiourea leaching recovered 80% of Au from the untreated concentrate, from the treated concentration, the Au could be recovered completely. Au leaching efficiency increased as the microwave irradiation time increased, as well as with a higher composition of thiourea.

  20. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    Science.gov (United States)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  1. Cryogenic microwave imaging of metal–insulator transition in doped silicon

    KAUST Repository

    Kundhikanjana, Worasom; Lai, Keji; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    We report the instrumentation and experimental results of a cryogenic scanning microwave impedance microscope. The microwave probe and the scanning stage are located inside the variable temperature insert of a helium cryostat. Microwave signals in the distance modulation mode are used for monitoring the tip-sample distance and adjusting the phase of the two output channels. The ability to spatially resolve the metal-insulator transition in a doped silicon sample is demonstrated. The data agree with a semiquantitative finite element simulation. Effects of the thermal energy and electric fields on local charge carriers can be seen in the images taken at different temperatures and dc biases. © 2011 American Institute of Physics.

  2. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek.

    Science.gov (United States)

    Klemetsen, Øystein; Jacobsen, Svein; Birkelund, Yngve

    2012-05-07

    A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ~ 0.93) with in situ temperatures obtained by fiberoptic probes.

  3. Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law

    Science.gov (United States)

    Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.

    2012-09-01

    Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 high-z sample with intermediate clusters at 0.1 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org

  4. Extended Special Sensor Microwave Imager (SSM/I) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  5. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  6. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  7. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    Science.gov (United States)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  8. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior.

    Science.gov (United States)

    Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao

    2018-03-01

    This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics

    Science.gov (United States)

    Zaremba, Swen

    2018-01-01

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684

  10. Calibrated, Enhanced-Resolution Brightness Temperature Earth System Data Record: A New Era for Gridded Passive Microwave Data

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.

    2017-12-01

    Since 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Up until recently, the available global gridded passive microwave data sets have not been produced consistently. Various projections (equal-area, polar stereographic), a number of different gridding techniques were used, along with various temporal sampling as well as a mix of Level 2 source data versions. In addition, not all data from all sensors have been processed completely and they have not been processed in any one consistent way. Furthermore, the original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. As part of NASA MEaSUREs, we have re-processed all data from SMMR, all SSM/I-SSMIS and AMSR-E instruments, using the most mature Level 2 data. The Calibrated, Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) gridded data are now available from the NSIDC DAAC. The data are distributed as netCDF files that comply with CF-1.6 and ACDD-1.3 conventions. The data have been produced on EASE 2.0 projections at smoothed, 25 kilometer resolution and spatially-enhanced resolutions, up to 3.125 km depending on channel frequency, using the radiometer version of the Scatterometer Image Reconstruction (rSIR) method. We expect this newly produced data set to enable scientists to better analyze trends in coastal regions, marginal ice zones and in mountainous terrain that were not possible with the previous gridded passive microwave data. The use of the EASE-Grid 2.0 definition and netCDF-CF formatting allows users to extract compliant geotiff images and

  11. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  12. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  13. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  14. Computed temperature profile in materials exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin; Choong, Yap Siew; Seon, Chan Kam

    1987-06-01

    Computed temperature profiles are presented for the materials of lead, steel, concrete and water in curved shells, when they are exposed to gamma radiation. The results are based on the usual simplified theory of thermal conduction with an exponential heat source.

  15. Global Warming and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available In the work, the importance of assigning the microwave background to the Earth is ad- dressed while emphasizing the consequences for global climate change. Climate mod- els can only produce meaningful forecasts when they consider the real magnitude of all radiative processes. The oceans and continents both contribute to terrestrial emis- sions. However, the extent of oceanic radiation, particularly in the microwave region, raises concerns. This is not only since the globe is covered with water, but because the oceans themselves are likely to be weaker emitters than currently believed. Should the microwave background truly be generated by the oceans of the Earth, our planet would be a much less efficient emitter of radiation in this region of the electromagnetic spectrum. Furthermore, the oceans would appear unable to increase their emissions in the microwave in response to temperature elevation, as predicted by Stefan’s law. The results are significant relative to the modeling of global warming.

  16. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  17. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  18. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  19. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSR-E Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, S.; Peterson, C. A.

    2006-12-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: `Is The Number of Antarctic Icebergs Really Increasing?' [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, AGU Transactions 83(42):469&474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E's 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I's comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with near-global coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC (Rapid Prototyping Capability

  20. Effect of microwave irradiation on petrophysical characterization of coals

    International Nuclear Information System (INIS)

    Hong, Yi-du; Lin, Bai-quan; Zhu, Chuan-jie; Li, He

    2016-01-01

    Highlights: • Microwave energy increase porosity, pore size and numbers of coals. • Growth rates of porosity decreased at first then increased with microwave energy. • NMR can be reliable to measure coal samples. • Microwave energy may have the potential for degassing of coal seams. - Abstract: The experimental work described in this paper aims to study the effect of microwave irradiation on petrophysical characterization of coals. Twenty coal samples were irradiated at 2.45 GHz with variable power (2, 4, 6 kW). The temperature, mass and specific heat capacity of coal samples were measured and calculated. The effect of microwave irradiation on the porosity of coal samples was evaluated by the gravimetric method and nuclear magnetic resonance (NMR) measurements. The porosity obviously increases after microwave heating. Interestingly, growth rate of the porosity decreases at first then increases with microwave energy. The turning point is approximately 100 kJ. The influence of microwave irradiation on pore size, throat size and pore numbers of coal samples were also evaluated by NMR measurements. It suggest that the pore size, throat size and pore numbers are obviously increase with microwave energy. In a word, it appears likely that microwave energy may have the potential for the degassing coal seams.

  1. Microwave surface resistance of bulk YBa2Cu3O6+x material

    Science.gov (United States)

    Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.

    1988-10-01

    Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.

  2. Microwave evaluation of electromigration susceptibility in advanced interconnects

    Science.gov (United States)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  3. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  4. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  5. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Brian L. [Univ. of Texas, Dallas, TX (United States); Martinez, Patricia [Univ. of Texas, Dallas, TX (United States); Zakhidov, Anvar A. [Univ. of Texas, Dallas, TX (United States); Shaner, Eric A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Mark [Univ. of Texas, Dallas, TX (United States)

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  6. The removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Hills, D.L.

    1989-01-01

    Concrete blocks reinforced with steel bars have been subjected to microwave attack at a frequency of 896 MHz at power levels up to 25 kW. The surface concrete has been explosively removed to the depth of the reinforcement, 10 cm, at a rate of about 2 litres per kWh. Heating was localized around the point of attack, with temperatures up to 300 0 C at the fractured face being attained. A simple mathematical model of the propagation and absorption of micro-waves was used to estimate the temperature rise of concrete at microwave frequencies of 896 wand 2450 MHz, at different power levels with and without the presence of reinforcing bars. This demonstrated that reinforcement is expected to significantly increase the temperature rise in the concrete between the irradiated surface and the reinforcement, and that near-surface heating should be more rapid at the higher frequency. There was reasonable agreement between predicted and observed temperature at the higher power levels. Further desk and laboratory studies are proposed before proceeding to a fullscale practical demolition machine and the requirements for a prototype remotely-operated demonstration system have been identified. This consists of a static generator of high power (at least 50 kW) transmitting microwaves via a steerable waveguide to a remote applicator mounted on a simple three-axis manipulator capable of traversing realistically large concrete test panels

  7. Microwave irradiation of lignocellulosic materials, 8: Microwave irradiation of the neutral fraction (C-I-M) of pine Björkman LCC

    International Nuclear Information System (INIS)

    Azuma, J.; Katayama, T.; Koshijima, T.

    1986-01-01

    Effect of microwave irradiation on the partially acetylated galactoglucomannan bearing a small amount of lignin (C-I-M) isolated from pine Bjorkman LCC was investigated. When the native C-I-M was heated above 180°C by microwave irradiation in the presence of water, its carbohydrate portion was hydrolyzed into oligosaccharides having d.p. of 2-5 and monosaccharides. The degree of depolymerization of carbohydrates strongly depended upon the heating temperature and did not reach a maximum below 237°C, at which the reducing sugar content attained to 45.7%. The lignin molecules precipitated during microwave irradiation and a substancial amount of their (β-0-4 linkages were splitted. The lignin-carbohydrate bondings were also splitted at the heating temperature above 230°C. The hydrolysis of the carbohydrate portion of C-I-M was found to be remarkably enhanced by addition of 0.5% acetic acid during microwave irradiation. In this case, the reducing sugar production showed a maximum (74.2%) at about 210°C. Acetic acid was an excellent reagent for enhancement of the extent of depolymerization of galactoglucomannan in C-I-M. (author)

  8. Microwave and thermal curing of an epoxy resin for microelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, K. [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y. [MIcroSystems Engineering Centre (MISEC), Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Arrighi, V., E-mail: v.arrighi@hw.ac.uk [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-09-20

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T{sub g}) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T{sub g}.

  9. Microwave and thermal curing of an epoxy resin for microelectronic applications

    International Nuclear Information System (INIS)

    Johnston, K.; Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y.; Arrighi, V.

    2015-01-01

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T g ) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T g

  10. Design of a Solenoid Magnet for a Microwave Ion Source

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Dae Il

    2011-01-01

    A microwave ion source has many advantages, such as long-life time, low emittance, high brightness, and compactness. Also it is a big merit that 2.45GHz rf systems are easily available and inexpensive. Due to the reasons microwave ion sources are very attractive for industrial applications. But microwave ion sources need a solenoid magnet which is usually an electromagnet with a DC current power supply. The electromagnet solenoids of microwave ion sources can be installed in two methods. The first method is to use isolation transformer to supply electrical power to DC current power supply for the magnets. In this case the magnet is compact because it has the same potential with the extraction voltage. The second method is to put an electrical insulator, such as G10, between ion sources and magnets. In this case the solenoid magnet is bigger than one in the first method, especially for higher extraction voltage, because the space for the insulator is required. Permanent magnets can be a good candidate to make microwave ion source more compact. But it is difficult to control the magnetic field profile and the magnetic flux density for the permanent magnet solenoids. Due to the reason, in the case that the best performances in many operating conditions should be achieved by adjusting the profile and strength of the solenoid, electromagnet is better than permanent magnet. But in the case of industrial applications where operating conditions is usually fixed and the compactness is required, permanent magnet is better choice to build an ion source

  11. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  12. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  13. Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.

    Science.gov (United States)

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2017-07-28

    Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

  14. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  15. The temperature profile of an apple supply chain: A case study of the Ceres district

    Directory of Open Access Journals (Sweden)

    A.G. Du Toit Valentine

    2017-01-01

    Full Text Available Background: There is a logistical gap in the first section of the apple supply chain that affects the temperature profiles of apples further downstream in the supply chain. Objectives: This article’s main objective is to confirm whether the logistics processes, in terms of the temperature profile of apples for the first 48 hours post-harvest, have an influence on the yield and/or quality of the fruit. Method: Observations were made and informal interviews were conducted on three different farms to ascertain their perspective of the first section of the supply chain. Temperature trials were conducted to analyse the temperature profile of two apple varieties, namely Golden Delicious and Granny Smith on three different farms. These trials were conducted by placing an iButton® device on the inside and outside of an apple to measure the temperature readings every minute for the first 48 hours after picking. Results: The research identified that it is not only at what time the apples are being harvested, but also at what time the apples are placed under cooling conditions to remove the field heat to obtain the recommended temperature profile within 48 hours. In addition, it was determined that effective and efficient picking at the right time (especially between 07:00 and 09:00 and the transportation of the apples directly, or as soon as possible after the apples came out of the orchard to the centralised cold storage facility, are key in ensuring the quality of the fruit and the temperature profile necessary for export. Conclusion: This article identifies the need to improve operational procedures along the cold chain. From this research, it is clear that there are problem areas that affect the temperature profile of apples.

  16. Interstitial microwave hyperthermia treatment investigations

    International Nuclear Information System (INIS)

    Siauve, N; Lormel, C

    2012-01-01

    Microwave ablation also called interstitial hyperthermia is a medical procedure used in the treatment of many cancers, cardiac arrhythmias and other medical conditions. With this medical therapy, an electromagnetic source (antenna) is directly positioned in the target tissue and a sufficient power is injected to necrosis the tissue. The aim of this study is to propose a design procedure and develop the associated tools, for determining the optimal shape, dimensions, type and operating frequency of antenna according to the target volume. In this context, a 3D numerical predictive model of temperature elevation induced by the electric fields and two benches for thermal and electrical tissues properties characterization have been developed. To validate the procedure and the different tools, an experimental bench test which includes interstitial antenna, external microwave generator, phantom that represents the target tissue and measurement system of temperature and electric field has been elaborated.

  17. A microwave resonance dew-point hygrometer

    Science.gov (United States)

    Underwood, R. J.; Cuccaro, R.; Bell, S.; Gavioso, R. M.; Madonna Ripa, D.; Stevens, M.; de Podesta, M.

    2012-08-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5-13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures.

  18. A microwave resonance dew-point hygrometer

    International Nuclear Information System (INIS)

    Underwood, R J; Bell, S; Stevens, M; De Podesta, M; Cuccaro, R; Gavioso, R M; Ripa, D Madonna

    2012-01-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5–13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures. (paper)

  19. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  20. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    Science.gov (United States)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  1. CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data

    Directory of Open Access Journals (Sweden)

    T. Y. Lakhankar

    2013-02-01

    Full Text Available The CREST-Snow Analysis and Field Experiment (CREST-SAFE was carried out during January–March 2011 at the research site of the National Weather Service office, Caribou, ME, USA. In this experiment dual-polarized microwave (37 and 89 GHz observations were accompanied by detailed synchronous observations of meteorology and snowpack physical properties. The objective of this long-term field experiment was to improve understanding of the effect of changing snow characteristics (grain size, density, temperature under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations. In this paper we present an overview of the field experiment and comparative preliminary analysis of the continuous microwave and snowpack observations and simulations. The observations revealed a large difference between the brightness temperature of fresh and aged snowpack even when the snow depth was the same. This is indicative of a substantial impact of evolution of snowpack properties such as snow grain size, density and wetness on microwave observations. In the early spring we frequently observed a large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization corresponding to daytime snowmelt and nighttime refreeze events. SNTHERM (SNow THERmal Model and the HUT (Helsinki University of Technology snow emission model were used to simulate snowpack properties and microwave brightness temperatures, respectively. Simulated snow depth and snowpack temperature using SNTHERM were compared to in situ observations. Similarly, simulated microwave brightness temperatures using the HUT model were compared with the observed brightness temperatures under different snow conditions to identify different states of the snowpack that developed during the winter season.

  2. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30–100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas pr...... experiments indicated that pre-treated sludge (microwave irradiation: 900W, temperature: 60–70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation....

  3. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  4. Bayesian Analysis of the Cosmic Microwave Background

    Science.gov (United States)

    Jewell, Jeffrey

    2007-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.

  5. Ex situ themo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor

    Science.gov (United States)

    Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...

  6. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O{sub 2} airglow temperatures measurements

    Energy Technology Data Exchange (ETDEWEB)

    Taori, A.; Jayaraman, A.; Raghunath, K. [National Atmospheric Research Laboratory, Gadanki (India); Kamalakar, V. [S.V. Univ., Tirupati (India). Dept. of Physics

    2012-07-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O{sub 2} temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation. (orig.)

  7. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  8. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  9. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  10. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    Influence of absorbed pump profile on the temperature distribution within a diode side-pumped laser rod ... Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Institute of Optics and Laser, Malek-ashtar University of Technology, Shahin Shahr, Postal Code: 83145/115, Iran; Department of ...

  11. Temperature profiles of Agaricus bisporus in composting stages and ...

    African Journals Online (AJOL)

    Three compost formulas using different activator materials were prepared for Agaricus bisporus cultivation. A locally available casing material known as peat of Bolu district and its different combinations with perlite were used. Temperature profiles of all mixtures during composting were measured at every composting stages ...

  12. The process research of drying UF4 by microwave

    International Nuclear Information System (INIS)

    Wen Guo; Wang Yunbo; Liu Long

    2010-01-01

    This paper make use of microwave to dry UF 4 filter cake, the aim is desorbed adsorption water. The research focus on such process conditions, boat material, thickness of filter cake, drying time, setting temperature, heating power and so on. the research of desorption crystal water of UF 4 that dried by microwave in fixed bed .When UF 4 drying by microwave and claiming by fixed bed, the qualified UF 4 powder is prepared. The research is shown that microwave can desorbs adsorption water which contain in UF 4 filter cake. There is a stable water contents in UF 4 after drying, and the sum of two members is less. After drying by microwave and claiming by fixed bed, the contents of water, UO 2 and UO 2 F 2 are all according to the quality standard. (authors)

  13. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  14. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  15. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  16. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    Science.gov (United States)

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  17. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  18. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    Science.gov (United States)

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  19. Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.

    Science.gov (United States)

    Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho

    2015-01-01

    Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.

  20. Behavioral effects of microwave reinforcement schedules and variations in microwave intensity on albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, W.F.; Lambert, J.K.; Brown, S.W.; Quinn, J.M.

    1987-12-01

    The objective of this exploratory investigation was to determine the interactive effects of fixed-ratio scheduling of microwave reinforcement in tandem with changes in microwave intensity. Nine albino rats were conditioned to regulate their thermal environment with microwave radiation while living in a Skinner (operant conditioning) Box in which the ambient temperature was about 27.13 degrees F at the beginning of the session. Each rat obtained a 6-sec. exposure of microwave radiation on a fixed-ratio schedule of MW reinforcement, the values of which varied from FR-1 to FR-30. Intensities of MW radiation were 62.5 W, 125 W, 250 W, and 437.5 W. Sessions lasted for 8 to 9 hr. over an approximate 13-mo. period. The effects of the intensity of microwave reinforcement varied as a function of the ratio value of the schedule used. Continuous reinforcement (FR-1) produced the lowest over-all rates, whereas FR-15, and FR-25 produced the highest over-all rates. Relatively higher thermal-behavior rates occurred under 62.5 W than under any of the other MW intensities for FR-1, FR-15, and FR-25, whereas FR-10 and FR-30 ratios produced intermediate rates of thermal responding which were constant for all values of MW intensity. These data are explained in terms of interactive effects between the local satiation or deprivation properties of the MW intensity and the ratio requirements of the schedule of MW reinforcement.

  1. Microwave Assisted Synthesis of ZnO Nanoparticles: Effect of Precursor Reagents, Temperature, Irradiation Time, and Additives on Nano-ZnO Morphology Development

    Directory of Open Access Journals (Sweden)

    Gastón P. Barreto

    2013-01-01

    Full Text Available The effect of different variables (precursor reagents, temperature, irradiation time, microwave radiation power, and additives addition on the final morphology of nano-ZnO obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by field emission scanning electron microscopy (FE-SEM in transmission mode, infrared (FTIR, UV-Vis spectroscopy, and powder X-ray diffraction (XRD. The results showed that all the above-mentioned variables influenced to some extent the shape and/or size of the synthetized nanoparticles. In particular, the addition of an anionic surfactant (sodium di-2-ethylhexyl-sulfosuccinate (AOT to the reaction mixture allowed the synthesis of smaller hexagonal prismatic particles (100 nm, which show a significant increase in UV absorption.

  2. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Lo Monte, F. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Wyrzykowski, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Weber, B. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Sahmenko, G. [Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Vontobel, P. [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Felicetti, R. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Lura, P. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); ETH Zürich, Institute for Building Materials (IfB), Zürich (Switzerland)

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressure sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.

  3. Frequency-domain cascading microwave superconducting quantum interference device multiplexers; beyond limitations originating from room-temperature electronics

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori

    2018-07-01

    A novel approach, frequency-domain cascading microwave multiplexers (MW-Mux), has been proposed and its basic operation has been demonstrated to increase the number of pixels multiplexed in a readout line U of MW-Mux for superconducting detector arrays. This method is an alternative to the challenging development of wideband, large power, and spurious-free room-temperature (300 K) electronics. The readout system for U pixels consists of four main parts: (1) multiplexer chips connected in series those contain U superconducting resonators in total. (2) A cryogenic high-electron-mobility transistor amplifier (HEMT). (3) A 300 K microwave frequency comb generator based on N(≡U/M) parallel units of digital-to-analog converters (DAC). (4) N parallel units of 300 K analog-to-digital converters (ADC). Here, M is the number of tones each DAC produces and each ADC handles. The output signal of U detectors multiplexed at the cryogenic stage is transmitted through a cable to the room temperature and divided into N processors where each handles M pixels. Due to the reduction factor of 1/N, U is not anymore dominated by the 300 K electronics but can be increased up to the potential value determined by either the bandwidth or the spurious-free power of the HEMT. Based on experimental results on the prototype system with N = 2 and M = 3, neither excess inter-pixel crosstalk nor excess noise has been observed in comparison with conventional MW-Mux. This indicates that the frequency-domain cascading MW-Mux provides the full (100%) usage of the HEMT band by assigning N 300 K bands on the frequency axis without inter-band gaps.

  4. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  5. Microplasmas ignited and sustained by microwaves

    Science.gov (United States)

    Hopwood, Jeffrey; Hoskinson, Alan R.; Gregório, José

    2014-12-01

    The challenges and benefits of microwave-induced microdischarges are reviewed. Transmission lines, resonators and surface wave launchers may be used for coupling microwave power to very small plasmas. Fortunately, microplasmas are typically much smaller than the wavelength of microwaves, and the electromagnetic problem may be treated electrostatically within the plasma. It is possible to trap electrons within small discharge gaps if the amplitude of electron oscillation is smaller than the plasma size. Typically occurring above 0.3 GHz, this condition results in lower breakdown fields than are required by direct current or radio frequency systems. Trapping of electrons also decreases the electrode potential to only tens of volts and makes the plasma density invariant in time. The steady-state microplasma produces electron densities of up to 1015 cm-3 in argon but the electrons are not in equilibrium with the low gas temperatures (500-1000 K). Microwave discharges are compared with other forms of microplasma and guidelines for device selection are recommended. Scale-up of microplasmas using array concepts are presented followed by some exciting new applications.

  6. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  7. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  8. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  9. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  10. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  11. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; Auburn University, AL; Hansen, C.

    2017-01-01

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (> 200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

  12. Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8 ° N, 20.4 ° E), since 2008

    Science.gov (United States)

    Ryan, Niall J.; Palm, Mathias; Raffalski, Uwe; Larsson, Richard; Manney, Gloria; Millán, Luis; Notholt, Justus

    2017-02-01

    This paper presents the retrieval and validation of a self-consistent time series of carbon monoxide (CO) above Kiruna using measurements from the Kiruna Microwave Radiometer (KIMRA). The data set currently spans the years 2008-2015, and measurements are ongoing at Kiruna. The spectra are inverted using an optimal estimation method to retrieve altitude profiles of CO concentrations in the atmosphere within an average altitude range of 48-84 km. Atmospheric temperature data from the Special Sensor Microwave Imager/Sounder aboard the US Air Force meteorological satellite DMSP-F18, are used in the inversion of KIMRA spectra between January 2011 and May 2014. This KIMRA CO data set is compared with CO data from the Microwave Limb Sounder aboard the Aura satellite: there is a maximum bias for KIMRA of ˜ 0.65 ppmv at 68 km (corresponding to 14.7 % of the mean CO value at 68 km) and a maximum relative bias of 22 % (0.44 ppmv) at 60 km. Standard deviations of the differences between profiles are similar in magnitude to the estimated uncertainties in the profiles. Correlations between the instruments are within 0.87 and 0.94. These numbers indicate agreement between the instruments. To expand the CO data set outside of the lifetime of DMSP-F18, another inversion setup was used that incorporates modelled temperatures from the European Centre for Medium-Range Weather Forecasts. The effect on the retrieved CO profiles when using a different temperature data set in the inversion was assessed. A comparison of the two overlapping KIMRA CO data sets shows a positive bias of 0.98 between the lower retrievable altitude limit and 82.5 km. The extended data set shows a larger range ( ≤ 6 %) of CO concentrations that is not explained by random error estimates. Measurements are continuing and the extended KIMRA CO time series currently spans 2008-2015, with gaps corresponding to non-operation and summer periods when CO concentrations below ˜ 90 km drop to very low values. The data

  13. Tailoring order–disorder temperature and microwave dielectric properties of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics

    Directory of Open Access Journals (Sweden)

    Tu Lai Sun

    2016-03-01

    Full Text Available The order–disorder temperature (To–d of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics was determined via X-ray diffraction, Raman spectroscopy and differential thermal analysis, respectively. To–d was determined to be between 1425 and 1450 °C by a quenching method. The endothermic peak in the DTA curve shows the order–disorder transition. B2O3 was applied to tune the densification temperature (Ts and tailor the microwave dielectric properties. The ordering degree and unloaded quality factor (Qf are improved when Ts is reduced to 1400 °C at B2O3 content of 0.25 mol%. Ts is further decreased and the ordering degree and Qf are decreased when B2O3 content is increased to 0.5 mol%. The dielectric constant (εr and temperature coefficient of resonant frequency (τf decrease slightly with increasing B2O3 content. The optimum microwave dielectric properties (i.e., εr = 34.0, Qf = 50,400 GHz, τf = 5.5 × 10−6/°C are obtained for the Ba[(Co0.6Zn0.41/3Nb2/3]O3-0.25 mol% B2O3 ceramics sintered at a lower temperature.

  14. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2002-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bar e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  15. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2003-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bars e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  16. Simulation of microwave stimulation for the production of gas from methane hydrate sediment

    International Nuclear Information System (INIS)

    Zhao, Jiafei; Fan, Zhen; Wang, Bin; Dong, Hongsheng; Liu, Yu; Song, Yongchen

    2016-01-01

    Graphical abstract: Schematic diagram illustrating the process of gas production in hydrate-bearing sediment induced by microwave stimulation. Temperature gradients caused by the drop of microwave penetration depth appear in the sediment, leading to a rapid dissociation rate at the upper part of reservoir. - Highlights: • Hydrate dissociation behavior was analyzed in porous media by microwave stimulation. • Microwave stimulation provides sufficient energy conversion for hydrate dissociation. • Hydrate saturation and specific heat capacity of sediment mainly affect efficiency. • Heat conduction decreases temperature gradients promoting homogeneous dissociation. - Abstract: Natural gas hydrates dissociate via an endothermic process. One of the key requirements for any production technique is to supply the heat necessary for this dissociation. In this study, first, a microwave stimulation model for the production of gas from methane hydrate sediment is developed, which includes mass transport, energy conversion and conservation, and intrinsic kinetic reactions as the governing equations. In addition, the theoretical mixing rule of Lichtenecker and Rother is introduced for calculating the average dielectric data of the sediment containing methane hydrates, which affects the penetration of microwaves into the sediment. Next, simulations are performed for investigating gas production, as well as effects of initial water saturation, initial hydrate saturation, and sediment thermal properties induced by microwave stimulation. Moreover, the energy efficiency ratio is employed in the simulation. The simulation results show that microwave stimulation provides timely energy conversion sufficient for promoting the dissociation of hydrates, with rapid, continuous gas production. Temperature gradients caused by the decrease of the microwave penetration depth appear in the reservoir, leading to a rapid dissociation rate in the upper part of the sediment. The energy

  17. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  18. Improvements in or relating to microwave heating

    International Nuclear Information System (INIS)

    Hardwick, W.H.; Gayler, R.

    1984-01-01

    The invention is concerned with microwave heating and more particularly with microwave heating to effect melting. Material is contained in a container and microwave energy is applied to melt material while a portion of the material adjacent to the internal surfaces of the container is maintained at a temperature at which it is not molten. This may be by cooling water in vessel. The invention therefore provides for ''skull'' melting in which a layer of non-molten material protects the container from molten material. Examples of materials which may be treated in accordance with the present invention are glasses and glass-like materials and precursors therefor (e.g. glasses and glass-like materials or precursors therefor containing radioactive wastes). (author)

  19. Extraction of valuable metals by microwave discharge in crude oil

    Science.gov (United States)

    Lebedev, Yu A.; Averin, K. A.

    2018-05-01

    Microwave discharges in liquids are a new direction in the physics and chemistry of low temperature plasma. The article describes the results of experiments on the separation of metals from oil when a microwave discharge is created at atmospheric pressure in its volume. It is shown for the first time that the content of metals Al, Co, Cu, Fe, Mo, Ni, V, and Zn in a tree-like structure deposited on the microwave antenna is up to 10 times higher than their content in the initial substance.

  20. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    Science.gov (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  1. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    Science.gov (United States)

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days

  2. Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system

    International Nuclear Information System (INIS)

    Lombardi, G; Benedic, F; Mohasseb, F; Hassouni, K; Gicquel, A

    2004-01-01

    The spectroscopic characterization of Ar/H 2 /CH 4 discharges suitable for the synthesis of nanocrystalline diamond using the microwave plasma assisted chemical vapour deposition process is reported. The experiments are realized in a moderate-pressure bell jar reactor, where discharges are ignited using a microwave cavity coupling system. The concentration of CH 4 is maintained at 1% and the coupled set of hydrogen concentration/microwave power (MWP) ranges from 2%/500 W to 7%/800 W at a pressure of 200 mbar. Emission spectroscopy and broadband absorption spectroscopy studies are carried out on the C 2 (D I SIGMA + u -CHI I SIGMA + g ) Mulliken system and the C 2 (d 3 Π g -a 3 Π u ) Swan system in order to determine the gas temperature and the C 2 absolute density within the plasma. For this purpose, and since the Swan system is quite well-known, much importance is devoted to the achievement of a detailed simulation of the Mulliken system, which allows the determination of both the rotational temperature and the density of the CHI I SIGMA + g ground state, as well as the rotational temperature of the D I SIGMA + u state, from experimental data. All the experimental values are compared to those predicted by a thermochemical model developed to describe Ar/H 2 /CH 4 microwave discharges under quasi-homogeneous plasma assumption. This comparison shows a reasonable agreement between the values measured from the C 2 Mulliken system, those measured from the C 2 Swan system and that calculated from plasma modelling, especially at low hydrogen concentration/MWP. These consistent results show that the use of the Mulliken system leads to fairly good estimates of the gas temperature and of the C 2 absolute density. The relatively high gas temperatures found for the conditions investigated, typically between 3000 K and 4000 K, are attributed to the low thermal conductivity of argon that may limit thermal losses to the substrate surface and reactor wall. The measured C 2

  3. [Benefit of microwaves in case of heat-sensitive agglomerate drying].

    Science.gov (United States)

    Kelen, Akos; Hegedüs, Agota; Nagy, Tibor; Máthé, Zoltán; Hódi, Klára

    2003-01-01

    The microwave assisted vacuum drying of heat-sensitive materials is increasing in the pharmaceutical industry since the eighties. This paper deals with results of two experiment series obtained on a laboratory scale single pot dryer (Collette Ultima 251). Firstly water was heated up to the boiling point exclusively by predetermined microwave energy and then by various wall temperatures in order to determine the convection efficiency of the system. The experiments were carried out at fixed pressure level (80 mbar) and with optimum bowl load (15 kg). According to the demonstrated idea each single pot system efficiency can be specified at any type and quantity of load. With the help of the presented results the second experiments were designed to compare the microwave and convection efficiency of the single pot system during granule drying. A placebo granule was dried either by an exclusive convection or microwave method up to the determined LOD (< 0.5%). According to the tests extreme high wall temperature (85 degrees C) had to be used to achieve the same drying time--and efficiency--as with the usage of dielectric heating. Based on the results it can be stated that the shorter drying time under favourable conditions is the advantage of microwave radiation over the conventional technique.

  4. DEHYDRATION OF CHEESE BY HOT AIR, MICROWAVE AND FREEZE-DRYING

    Directory of Open Access Journals (Sweden)

    ANA RITA C. PINHO

    2017-12-01

    Full Text Available The objective of this work was to study the dehydration of skim cheese through different methods, in particular by hot air, microwave and freeze-drying, in order to assess which of these methods would be more suitable for the development of a new product (cheese snack. For the three processes of dehydration, several temperatures, powers and times were used, respectively. The drying time was optimized to allow the water activity of the final product to be between 0.3 and 0.4. The color and texture of the product obtained by the three processes were evaluated, and the nutritional analysis (protein, lipids, ash of the product dried by hot air at 52 ºC and by microwave at 750 W and 850 W was performed. The sensory analysis of the microwave dehydrated products was also carried out. The results obtained revealed that the temperature played a relevant role in the drying time and the hardness of the product. In the dehydration by microwave, the power of 850 W resulted in a lower drying time and a better color preservation, but in a high hardness of the samples. Among the three processes studied, the microwave drying was the fastest for the water removal from the cheese.

  5. Microwave Pretreatments of Switchgrass Leaf and Stem Fractions to Increase Methane Production

    Directory of Open Access Journals (Sweden)

    Chunhui Wu

    2015-05-01

    Full Text Available The objective of this study was to determine the effectiveness of microwave pretreatments on methane production from two switchgrass tissues (leaf vs. stem. The methane production from the leaf fraction was significantly affected by the microwave final temperature, while production from the stem fraction was affected by the combination of the microwave final temperature and heating rate. Thus, the highest methane yield from the leaf (134.81 mL CH4/g of volatile solids (VS was obtained at 100 °C, while the highest yield from the stem (99.35 mL CH4/g VS was obtained at 150 °C, with a heating rate of 10 °C/min. Although methane production from the leaf fraction was merely enhanced by 9.1% after microwave pretreatments, the time required to reach 80% of ultimate methane production was reduced by 12 days. For the stem fraction, methane production was improved by 5.2% after microwave pretreatment, and the time to obtain 80% of ultimate methane production increased.

  6. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  7. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  8. Microwave-induced torrefaction of rice husk and sugarcane residues

    International Nuclear Information System (INIS)

    Wang, M.J.; Huang, Y.F.; Chiueh, P.T.; Kuan, W.H.; Lo, S.L.

    2012-01-01

    This study utilized microwave irradiation to induce torrefaction (mild pyrolysis) of rice husk and sugarcane residues by varying different parameters, including microwave power level, processing time, water content, and particle size of biomass. Proper microwave power levels are suggested to be set between 250 and 300 W for the torrefaction of these two agricultural residues. With proper processing time, the caloric value can increase 26% for rice husk and 57% for sugarcane residue. Compared to dry rice husk, both maximum reaction temperature and mass reduction ratio increased with higher water content (not over 10%). Moreover, the particle size of biomass needs not to be very small. The mass reduction ratios were 65 wt.%, 69 wt.%, and 72 wt.%, when the sizes were 50/100 mesh, 100/200 mesh, and >200 mesh, respectively. Microwave-induced torrefaction reduces more oxygen/carbon ratio of biomass in comparison with traditional torrefaction. Microwave-induced torrefaction is considered as an efficient and promising technology with great potential. -- Highlights: ► Microwave-induced torrefaction is promising compared to conventional methods. ► Neither high microwave power nor small particle size is needed. ► High energy yield can be met under mild microwave power. ► Caloric value can increase up to about 60%.

  9. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different

  10. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  11. A single cell model for pretreatment of wood by microwave explosion

    Science.gov (United States)

    Xianjun Li; Yongdong Zhou; Yonglin Yan; Zhiyong Cai; Fu Feng

    2010-01-01

    A theoretical model was developed to better understand the process of microwave explosion treatment of wood cells. The cell expansion and critical conditions concerning pressure and temperature of ray parenchyma cells in Eucalyptus urophylla were simulated during microwave pretreatment. The results indicate that longitudinal and circumferential stresses were generated...

  12. Application of HTSC-thin films in microwave bandpass filters

    International Nuclear Information System (INIS)

    Jha, A.R.

    1993-01-01

    This paper reveals unique performance capabilities of High-Temperature Superconducting Thin-Film (HTSCTFs) for possible applications in microwave bandpass filters (BPFs). Microwave filters fabricated with HTSCTFs have demonstrated lowest insertion loss, highest rejection, and sharpest skirt selectivity. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO) and Thallium Calcium Barium Copper Oxide (TCBCO) will be most attractive for filters

  13. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil.

    Science.gov (United States)

    Liu, Xitao; Yu, Gang

    2006-04-01

    The application of microwave and activated carbon for the treatment of polychlorinated biphenyl (PCB) contaminated soil was explored in this study with a model compound of 2,4,5-trichlorobiphenyl (PCB29). PCB-contaminated soil was treated in a quartz reactor by microwave irradiation at 2450MHz with the addition of granular activated carbon (GAC). In this procedure, GAC acted as microwave absorbent for reaching high temperature and reductant for dechlorination. A sheltered type-K thermocouple was applied to record the temperature rising courses. It was shown that the addition of GAC could effectively promote the temperature rising courses. The determination of PCB residues in soil by gas chromatography (GC) revealed that rates of PCB removal were highly dependent on microwave power, soil moisture content, and the amount of GAC added. GC with mass spectrum (MS) detector and ion chromatography were employed for the analysis of degradation intermediates and chlorine ions, respectively. It was suggested that microwave irradiation with the assistance of activated carbon might be a potential technology for the remediation of PCB-contaminated soil.

  14. Microwave synthesis and sintering characteristics of CaCu 3 Ti 4 O 12

    Indian Academy of Sciences (India)

    CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2.45 GHz, 1.1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min.

  15. Microwave and conventional preparation of Zinc borate glass: Eu3+ ion as luminescent probe

    International Nuclear Information System (INIS)

    Mandal, Ashis K.; Balaji, S.; Sen, Ranjan

    2014-01-01

    Highlights: • IR transparent Zinc borate glass is prepared using microwave heating. • Glass transition temperature of microwave melted glass is found higher than that of glass prepared in conventional melting. • Low OH concentration in glass can be prepared in microwave heating. • We report higher reduction of Eu 3+ to Eu 2+ in microwave processing of Zinc borate glass. - Abstract: Transparent Zinc borate glass is melted using microwave energy as an alternative heating route to conventional resistive heating. A comparative study of the properties of the glasses prepared by both the methods is conducted by adopting X-ray diffraction (XRD), Differential scanning calorimetry (DSC), UV–VIS–NIR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Refractive Indices (RI). Amorphous nature of samples is confirmed by X-ray diffraction study. Glass transition temperature (T g ) of microwave melted glass is found ∼7–9 °C higher than that of glass prepared in conventional melting. OH content is found less than 250 ppm in microwave melted glass whereas it is above 330 ppm in conventional melted glasses. Photoluminescence study of Eu 2 O 3 doped glass prepared in microwave heating indicates higher reduction of Eu 3+ → Eu 2+ than the glass melted in conventional route. Thus, microwave processing can be an alternative energy efficient, time saving, environmental friendly glass preparation method

  16. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  17. Deconvoluting the mechanism of microwave annealing of block copolymer thin films.

    Science.gov (United States)

    Jin, Cong; Murphy, Jeffrey N; Harris, Kenneth D; Buriak, Jillian M

    2014-04-22

    The self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor. The mechanism of the microwave annealing process remains, however, unclear. This work endeavors to uncover the key steps that take place during microwave annealing, which enable the self-assembly process to proceed. Through the use of in situ temperature monitoring with a fiber optic temperature probe in direct contact with the sample, we have demonstrated that the silicon substrate on which the BCP film is cast is the dominant source of heating if the doping of the silicon wafer is sufficiently low. Surface temperatures as high as 240 °C are reached in under 1 min for lightly doped, high resistivity silicon wafers (n- or p-type). The influence of doping, sample size, and BCP composition was analyzed to rule out other possible mechanisms. In situ temperature monitoring of various polymer samples (PS, P2VP, PMMA, and the BCPs used here) showed that the polymers do not heat to any significant extent on their own with microwave irradiation of this frequency (2.45 GHz) and power (∼600 W). It was demonstrated that BCP annealing can be effectively carried out in 60 s on non-microwave-responsive substrates, such as highly doped silicon, indium tin oxide (ITO)-coated glass, glass, and Kapton, by placing a piece of high resistivity silicon wafer in contact with the sample-in this configuration, the silicon wafer is termed the heating element. Annealing and self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS

  18. Determination of water vapor and ozone profiles in the middle atmosphere by microwave-spectroscopy. Bestimmung von Wasserdampf- und Ozonprofilen in der mittleren Atmosphaere durch Millimeterwellenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Puliafito, S.E.

    1989-10-17

    This work was performed at the Max-Planck-Institut fuer Aeronomie (F.R.G.) and treats the following points: 1. Satellite borne microwave radiometry. Principles for a real-time evaluation of the MAS-Limb-Sounding measurements. (MAS: Millimeter Wave Atmospheric Sounder from Space Shuttle as part of the NASA ATLAS Missions, 1991-1997). (a) Deconvolution of the 60 GHz-antenna. (b) Test of different inversion proceedings. A detailed study of the boundary conditions and 'error influence' as well as a discussion of the radiometer specifications. (c) Near real time inversion of microwave spectral lines of the Earth atmosphere. i. The possibility of a (near) real time evaluation (retrieval of the profiles of the atmospheric components) was proved for the first time with a space proof microprocessor. ii. Data reduction of about a factor > 10{sup 3} in comparison with other methods. 2. Airborne and ground based microwave radiometry. (a) Study of the possibilities of ground- and aircraft based measurements for validation and cross calibration of the satellite measurements. (b) Study of the possibilities of ground based radiometric measurements of water vapour in the Artic or Antartica. Precise boundary conditions were given for the first time in order to perform ground based millimeter radiometric measurements in these areas. (orig.).

  19. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans

    International Nuclear Information System (INIS)

    Ranjbaran, M.; Zare, D.

    2013-01-01

    The performance of microwave-assisted fluidized bed drying of soybeans was simulated (using a previously validated mathematical model) and analyzed based on the first- and second law of thermodynamics. The energy and exergy analysis were carried out for several drying conditions. The effects of inlet air temperature, microwave power density, bed thickness and inlet air velocity on the efficiencies and inefficiencies of drying process have been simulated and discussed. Generally, application of microwave energy during fluidized bed drying enhanced the exergy efficiency of drying process. However, the results showed that it was more efficient not to apply microwave energy at the first stage of fluidized bed drying process. The application of higher levels of drying air temperature led in higher exergy efficiencies. The values of mean relative deviations for the predictions of efficiencies and inefficiencies of drying process were less than 14%, compared with those calculated using experimental data. - Highlights: • Introducing a mathematical model to predict the efficiency of microwave-assisted fluidized bed dryers. • Energy and exergy analysis in microwave-assisted fluidized bed drying of grains. • Providing practical recommendations for efficient use of microwave power during drying

  20. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  1. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    Directory of Open Access Journals (Sweden)

    Mojtaba Nouri

    2015-06-01

    Full Text Available The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C and microwave (90, 180, 360, 600 and 900w in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2, Chi square(X2, root mean square errors(RSME. Results also revealed that temperature and microwave power effectively reduce the drying time when increase. Drying occurs in degrading stage; moreover the comparison of results exhibited that Page and Two sentences models were fitted appropriately to estimate moisture changing and drying description. Regarding all the results, it is cleared that microwave method is an appropriate method in spinach drying as a result of reducing drying temperature and its high efficiency.

  2. Efficiency of Artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery.

    Science.gov (United States)

    Balasubramanian, Sundar; Ortego, Jeffrey; Rusch, Kelly A; Boldor, Dorin

    2008-12-15

    A continuous microwave system to treat ballast water inoculated with Artemia salina cysts as a model invasive spore was tested for its efficacy in inactivating the cysts present. The system was tested at two different flow rates (1 and 2 L x min(-1)) and two different power levels (2.5 and 4.5 kW). Temperature profiles indicate that the system could deliver heating loads in excess of 100 degrees C in a uniform and near-instantaneous manner when using a heat recovery system. Except for a power and flow rate combination of 2.5 kW and 2 L x min(-1), complete inactivation of the cysts was observed at all combinations at holding times below 100 s. The microwave treatment was better or equal to the control treatment in inactivating the cysts. Use of heat exchangers increased the power conversion efficiency and the overall efficiency of the treatment system. Cost economics analysis indicates that in the present form of development microwave treatment costs are higher than the existing ballast water treatment methods. Overall, tests results indicated that microwave treatment of ballast water is a promising method that can be used in conjunction with other methods to form an efficient treatment system that can prevent introduction of potentially invasive spore forming species in non-native waters.

  3. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  4. Photoinduced spin polarization and microwave technology

    International Nuclear Information System (INIS)

    Antipov, Sergey; Poluektov, Oleg; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang

    2013-01-01

    We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C 61 -butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on

  5. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  6. Kinetic advantages of using microwaves in the emulsion polymerization of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Santos, A.F.; Fortuny, M. [Programa de Mestrado em Engenharia de Processos, Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE (Brazil); Araujo, P.H.H. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Sayer, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil)], E-mail: csayer@enq.ufsc.br

    2009-03-01

    Microwave irradiation has been an interesting alternative for heating systems and several chemical reactions. In polymerization processes, microwaves can enhance reaction rates or improve specific characteristics of the formed polymer. In this work, the use of microwave irradiation in emulsion polymerization reactions has been studied, using a commercial microwave reactor, which is able to perform syntheses under controlled conditions of temperature and power. Methyl methacrylate emulsion polymerization reactions were faster, resulting in smaller polymer particles, in comparison to the conventional heating method (reactions in a jacketed reactor). Different effects were observed in the emulsion polymerization of butyl acrylate. To study the effect of high power microwave irradiation upon the emulsion polymerization, a pulsed irradiation strategy was developed, in which the samples were repeatedly heated within short intervals of time (about 27 s) at the maximum microwave power. A significant reduction of the total time of irradiation was observed in reactions carried out under the pulsed scheme, showing the kinetic advantages of using microwaves in emulsion polymerization processes.

  7. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  8. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  9. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, Eiichirou; Lin, Yu-Hsiang [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Mase, Atsushi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga 816-8580 (Japan); Nishida, Yasushi; Cheng, C. Z. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Plasma and Space Science Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  10. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  11. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures

    CSIR Research Space (South Africa)

    Papadaki, D

    2017-05-01

    Full Text Available The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90 °C to 220 °C, and microwave power, varied from 110...

  12. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon

    International Nuclear Information System (INIS)

    Liu Yazi; Yang Shaogui; Hong Jun; Sun Cheng

    2007-01-01

    TiO 2 thin films were deposited on granular activated carbon by a dip-coating method at low temperature (373 K), using microwave radiation to enhance the crystallization of titania nanoparticles. Uniform and continuous anatase titania films were deposited on the surface of activated carbon. BET surface area of TiO 2 -mounted activated carbon (TiO 2 /AC) decreased a little in comparison with activated carbon. TiO 2 /AC possessed strong optical absorption capacity with a band gap absorption edge around 360 nm. The photocatalytic activity did not increase when the as-synthesized TiO 2 /AC was thermally treated, but was much higher than commercial P-25 in degradation of phenol by irradiation of electrodeless discharge lamps (EDLs)

  13. The cosmic microwave background: past, present and future

    International Nuclear Information System (INIS)

    Silk, Joseph

    2007-01-01

    The cosmic microwave background has provided an unprecedented cosmological window on the very early universe for probing the initial conditions from which structure evolved. Infinitesimal variations in temperature on the sky, first predicted in 1967 but only discovered in the 1990s, provide the fossil fluctuations that seeded the formation of the galaxies. The cosmic microwave background radiation has now been mapped with ground-based, balloon-borne and satellite telescopes. I describe its current status and future challenges

  14. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  15. Removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Wace, P.F.; Harker, A.H.; Hills, D.L.

    1990-01-01

    A comprehensive literature review has been carried out, to provide information for an experimental programme and equipment design. Mathematical modelling of the microwave and power fields in a concrete block, both steel reinforced and unreinforced, subjected to a microwave attack at two frequencies, has been carried out and estimates of the likely temperature rise with time obtained. A method of launching microwaves into concrete has been established from theoretical considerations and from the findings of the literature review. Equipment for laboratory trials has been designed and assembled using an 896 MHz, 25 kW microwave generator. Reinforced concrete blocks, 0.6 m in dimension and representing the concrete in a Magnox reactor biological shield, have been attacked at different power levels and the surface removed to the depth of the reinforcing steel (100 mm). Outline proposals for the design of a remotely operated prototype microwave machine for stripping the surface of large concrete test panels have been prepared. (author)

  16. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.

    Science.gov (United States)

    Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki

    2008-02-01

    This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.

  17. Detection of uranium extraction zone by axial temperature profiles in a pulsed column for Purex process

    International Nuclear Information System (INIS)

    Tsukada, T.; Takahashi, K.

    1991-01-01

    A new method was presented for detecting uranium extraction zone in a pulsed column by means of measuring axial temperature profile originated from reaction heat during uranium extraction. Key parameters of the temperature profiles were estimated with a code developed for calculating temperature profiles in a direct-contact heat exchanger such as a pulsed column, and were verified using data from a small pulsed column simulating reaction heat with injecting hot water. Finally, the results were compared with those from an actual uranium extraction tests, indicating that the method presented was promising for detecting uranium extraction zone in a pulsed column. (author)

  18. Research on the conversion of highly enriched uranium (HEU) nitrate by using the microwave denitration

    International Nuclear Information System (INIS)

    Bao Weimin; Song Chongli

    1998-08-01

    In order to simplify the denitration process by microwave heating, the uranyl nitrate is firstly denitrated and converted into UO 3 . The produced UO 3 was then further heated in the microwave field to transfer UO 3 to U 3 O 8 and to form a single product of U 3 O 8 . When the phase transfer from UO 3 to U 3 O 8 occurs, the temperature of the product increases 200∼300 degree C in two minutes. The phase-transfer temperature can be controlled by the input power of microwave. High quality U 3 O 8 can be obtained at a denitration temperature about 500 degree C. It contains no residual NO x and has a specific surface area great than 3 m 2 /g. The denitration temperature is measured with an IR-thermometer and checked with an optic fiber thermometer. The working curve and process parameter were studied in a microwave denitration unit for high enriched uranyl nitrate solution (90 g(U)/L, 4 mol/L HNO 3 and 1.2 L per batch)

  19. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).

    Science.gov (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing

    2015-06-01

    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  1. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    The microwave radiometer system measures, within its bandwidth, the naturally emitted radiation – the brightness temperature – of substances within its antenna’s field of view. Thus a radiometer is really a sensitive and calibrated microwave receiver. The radiometer can be a basic total power....../antenna size, and the problem: scanning antenna/space- craft stability. In many cases good compromises have been reached, as evident recalling the many successful missions throughout the recent 30 years. But in some cases the situation calls for special solutions, like the push-broom system or the synthetic...

  2. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations

    DEFF Research Database (Denmark)

    Kern, Stefan; Rösel, Anja; Pedersen, Leif Toudal

    2016-01-01

    % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property...... of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes......, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso...

  3. Microplasmas ignited and sustained by microwaves

    International Nuclear Information System (INIS)

    Hopwood, Jeffrey; Hoskinson, Alan R; Gregório, José

    2014-01-01

    The challenges and benefits of microwave-induced microdischarges are reviewed. Transmission lines, resonators and surface wave launchers may be used for coupling microwave power to very small plasmas. Fortunately, microplasmas are typically much smaller than the wavelength of microwaves, and the electromagnetic problem may be treated electrostatically within the plasma. It is possible to trap electrons within small discharge gaps if the amplitude of electron oscillation is smaller than the plasma size. Typically occurring above 0.3 GHz, this condition results in lower breakdown fields than are required by direct current or radio frequency systems. Trapping of electrons also decreases the electrode potential to only tens of volts and makes the plasma density invariant in time. The steady-state microplasma produces electron densities of up to 10 15  cm −3 in argon but the electrons are not in equilibrium with the low gas temperatures (500–1000 K). Microwave discharges are compared with other forms of microplasma and guidelines for device selection are recommended. Scale-up of microplasmas using array concepts are presented followed by some exciting new applications. (paper)

  4. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: vvandreev@mail.ru; Vasileska, I., E-mail: ivonavasileska@yahoo.com; Korneeva, M. A., E-mail: korneevama@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-07-15

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10{sup –4} to 4 × 10{sup –3} Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  5. A Raman Lidar as Operational Tool for Long-Term Water Vapor, Temperature and Aerosol Profiling in the Swiss Meteorological Office

    Science.gov (United States)

    Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr

    2010-09-01

    To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.

  6. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  7. Effects of postpolymerization microwave irradiation on provisional dental acrylics: physical and mechanical properties.

    Science.gov (United States)

    Ozkomur, Ahmet; Fortes, Carmen Beatriz Borges

    2016-07-26

    This study aimed to evaluate the effects of microwave irradiation on the physical and mechanical properties of poly(methyl methacrylate) (PMMA) provisional resins. Twenty bars and 20 disc-shaped specimens were fabricated for each selected provisional restorative material (Dencor and Duralay). Test groups were subjected to microwave irradiation (3 minutes at 600 W) after polymerization. Bar specimens were subjected to a flexural strength test. Disc-shaped specimens were used to evaluate microhardness. Backscattered Raman spectroscopy was employed for each group to define the degree of conversion of the monomer/polymer. The frequency bands corresponding to C = C and C = O groups were used to determine the conversion of methyl methacrylate (MMA) monomers into polymers. Glass transition temperature was determined using a differential scanning calorimeter. Microwave irradiation of both tested autopolymerizing PMMA provisional materials resulted in a statistically significant increase in microhardness, degree of conversion and glass transition temperature values. Also, the results demonstrated a significant increase in flexural strength after postpolymerization microwave irradiation for the Dencor specimens. It is concluded that mechanical and physical properties are positively influenced by microwave irradiation.

  8. YIG based broad band microwave absorber: A perspective on synthesis methods

    Science.gov (United States)

    Sharma, Vinay; Saha, J.; Patnaik, S.; Kuanr, Bijoy K.

    2017-10-01

    The fabrication of a thin layer of microwave absorber that operates over a wide band of frequencies is still a challenging task. With recent advances in nanostructure synthesis techniques, considerable progress has been achieved in realizations of thin nanocomposite layer designed for full absorption of incident electromagnetic (EM) radiation covering S to K band frequencies. The primary objective of this investigation is to achieve best possible EM absorption with a wide bandwidth and attenuation >10 dB for a thin absorbing layer (few hundred of microns). Magnetic yttrium iron garnet (Y3Fe5O12; in short YIG) nanoparticles (NPs) were prepared by sol-gel (SG) as well as solid-state (SS) reaction methods to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles and hence their microwave absorption capabilities. It is found that YIG prepared by these two methods are different in many ways. Magnetic properties investigated using vibrating sample magnetometry (VSM) exhibit that the coercivity (Hc) of solid-state NPs is much larger (72 Oe) than the sol-gel NPs (31 Oe). Microwave absorption properties were studied by ferromagnetic resonance (FMR) technique in field sweep mode at different fixed frequencies. A thin layer (∼300 μm) of YIG film was deposited using electrophoretic deposition (EPD) technique over a coplanar waveguide (CPW) transmission line made on copper coated RT/duroid® 5880 substrates. Temperature dependent magnetic properties were also investigated using VSM and FMR techniques. Microwave absorption properties were investigated at high temperatures (up to 300 °C) both for sol-gel and solid-state synthesized NPs and are related to skin depth of YIG films. It is observed that microwave absorption almost vanishes when the temperature reached the Néel temperature of YIG.

  9. Measuring the global distribution of intense convection over land with passive microwave radiometry

    Science.gov (United States)

    Spencer, R. W.; Santek, D. A.

    1985-01-01

    The global distribution of intense convective activity over land is shown to be measurable with satellite passive-microwave methods through a comparison of an empirical rain rate algorithm with a climatology of thunderstorm days for the months of June-August. With the 18 and 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the strong volume scattering effects of precipitation can be measured. Even though a single frequency (37 GHz) is responsive to the scattering signature, two frequencies are needed to remove most of the effect that variations in thermometric temperatures and soil moisture have on the brightness temperatures. Because snow cover is also a volume scatterer of microwave energy at these microwavelengths, a discrimination procedure involving four of the SMMR channels is employed to separate the rain and snow classes, based upon their differences in average thermometric temperature.

  10. Microwave-assisted one-step synthesis of acetate-capped NaYF4

    DEFF Research Database (Denmark)

    Reddy, Kumbam Lingeshwar; Prabhakar, Neeraj; Arppe, Riikka

    2017-01-01

    Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods. The nan......Acetate-capped hydrophilic cubic phase NaYF4:Yb/Er upconversion nanophosphors were effectively synthesized in a single step employing a facile microwave-assisted synthesis route by applying relatively low temperatures in a short span of time compared to the conventional synthetic methods...

  11. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    Science.gov (United States)

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  12. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  13. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sayantan; Alford, T. L. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  14. Microwave absorption across Tc: Determination of the angular dependance Hc2(theta)

    OpenAIRE

    Shaltiel, David; Bill, Hans; Grayevsky, A.; Junod, Alain; Lovy, Dominique; Sadowski, Wojciech; Walker, Eric

    1991-01-01

    It is shown that measuring microwave absorption in high-Tc superconductors at constant and very low magnetic fields, using magnetic-field modulation, is, under some conditions, equivalent to temperature modulation when sweeping the temperature across Tc. Using an ESR spectrometer, the derivative of microwave absorption is measured close to Tc. This allows a determination of the relative angular variation of dHc2/dT at T=Tc in single crystals of Y-Ba-Cu-O. The data fit the Ginzburg-Landau theo...

  15. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    B P PANDA and N C MOHAPATRA*. Department of Physics, Chikiti Mahavidyalaya, Chikiti 761 010, India. £Department of Physics, Berhampur University, Berhampur 760 007, India. Email: ncmphy123@hotmail.com. MS received 18 January 2003; accepted 21 June 2003. Abstract. Room temperature Compton profiles of ...

  16. Determining of electron temperature profile on the cross section of a Tokamak, using ECE technique

    Directory of Open Access Journals (Sweden)

    M. Hosseinpour

    2007-06-01

    Full Text Available  In this paper we have used plasma electron cyclotron emissions at the second harmonic frequency of extraordinary mode to determine the temperature profile of the plasma produced in IR-T1 Tokamak. The emissions obtained at different frequencies by a 5-channel heterodyne receiver, have been analyzed to determine the spatial variation of the electron temperature on the plasma cross section. The results have been also used to show the three-dimensional time evolution of the temperature profile during the period of confinement.

  17. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  18. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  19. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  20. Pyrolysis of methane in flowing microwave plasma. Pt. 1, 2

    International Nuclear Information System (INIS)

    Carmi, U.; Inor, A.A.; Avni, R.; Nickel, H.

    1978-04-01

    The flowing microwave (2.45 G Hz) plasmas of methane and methane-argon mixtures were analyzed by the electrical double floating probe system (DFPS), along the flow stream. The measured electric variables of the microwave plasma were: current, current density, electric field strength, electron temperature, positive ion and electron concentrations. They indicate an irreversible process, of the polymerization of CH 4 and CH 4 +Ar mixtures, taking place in the plasma. The polymerization process reaches its maximum 'down stream'. after the position of the microwave cavity. The polymerization was correlated to the concentration of ions and electrons in the plasma. (orig.) [de

  1. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    Science.gov (United States)

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  2. ITO thin films prepared by a microwave heating

    International Nuclear Information System (INIS)

    Okuya, Masayuki; Ito, Nobuyuki; Shiozaki, Katsuyuki

    2007-01-01

    ITO thin films were prepared by irradiating 2.45 GHz of microwave with an output power of 700 W using a commercial kitchen microwave oven. A substrate temperature went up and down rapidly between 100 and 650 deg. C in a minute by a dielectric loss of SnO 2 layer pre-deposited on a glass substrate. We found that the electrical and optical properties of films were affected by the atmosphere in a microwave irradiation, while the sintering was completed within a few minutes. Although the electrical resistivity was not reduced below 5.0 x 10 -4 Ω.cm in this study, the results lead to the possibility of a practical rapid synthesis of ITO transparent conducting oxide films

  3. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  4. Stokes profile analysis and vector magnetic fields. III. Extended temperature minima of sunspot umbrae as inferred from Stokes profiles of Mg I 4571 A

    International Nuclear Information System (INIS)

    Lites, B.W.; Skumanich, A.; Rees, D.E.; Murphy, G.A.; Carlsson, M.; Sydney Univ., Australia; Oslo Universitetet, Norway)

    1987-01-01

    Observed Stokes profiles of Mg I 4571 A are analyzed as a diagnostic of the magnetic field and thermal structure at the temperature minimum of sunspot umbrae. Multilevel non-LTE transfer calculations of the Mg I-II-III excitation and ionization balance in model umbral atmospheres show: (1) Mg I to be far less ionized in sunspot umbrae than in the quiet sun, leading to greatly enhanced opacity in 4571 A, and (2) LTE excitation of 4571 A. Existing umbral models predict emission cores of the Stokes I profile due to the chromospheric temperature rise. This feature is not present in observed umbral profiles. Moreover, such an emission reversal causes similar anomalous features in the Stokes Q, U, V profiles, which are also not observed. Umbral atmospheres with extended temperature minima are suggested. Implications for chromospheric heating mechanisms and the utility of this line for solar vector magnetic field measurements are discussed. 35 references

  5. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate

    Science.gov (United States)

    Igono, M. O.; Bjotvedt, G.; Sanford-Crane, H. T.

    1992-06-01

    The environmental profile of central Arizona is quantitatively described using meteorological data between 1971 and 1986. Utilizing ambient temperature criteria of hours per day less than 21° C, between 21 and 27° C, and more than 27° C, the environmental profile of central Arizona consists of varying levels of thermoneutral and heat stress periods. Milk production data from two commercial dairy farms from March 1990 to February 1991 were used to evaluate the seasonal effects identified in the environmental profile. Overall, milk production is lower during heat stress compared to thermoneutral periods. During heat stress, the cool period of hours per day with temperature less than 21° C provides a margin of safety to reduce the effects of heat stress on decreased milk production. Using minimum, mean and maximum ambient temperatures, the upper critical temperatures for milk production are 21, 27 and 32° C, respectively. Using the temperature-humidity index as the thermal environment indicator, the critical values for minimum, mean and maximum THI are 64, 72 and 76, respectively.

  6. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  7. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  8. Standard test method for determination of "microwave safe for reheating" for ceramicware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method determines the suitability of ceramicware for use in microwave re-heating applications. Microwave ovens are mainly used for reheating and defrosting frozen foods. Severe thermal conditions can occur while reheating foods. Typical reheating of foods requires one to five min. in the microwave at the highest power settings. Longer periods than five minutes are considered cooking. Cooking test methods and standards are not addressed in this test method. Most ceramicware is minimally absorbing of the microwave energy and will not heat up significantly. Unfortunately there are some products that absorb microwave energy to a greater extent and can become very hot in the microwave and pose a serious hazard. Additionally, the nature of microwave heating introduces radiation in a non-uniform manner producing temperature differentials in the food being cooked as well as the ceramic container holding it. The differential may become great enough to thermal shock the ware and create dangerous condition...

  9. Microwave-mediated heat transport in a quantum dot attached to leads

    International Nuclear Information System (INIS)

    Chi Feng; Dubi, Yonatan

    2012-01-01

    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field cannot generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespective of the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient. (paper)

  10. Microwave pyrolysis for conversion of materials to energy : A review

    International Nuclear Information System (INIS)

    Mokhtar, M.; Omar, R.; MOhammad Salleh, M.A.; Idris, A.

    2009-01-01

    Full text: The disposal of wastes in Malaysia is becoming a serious problem in many industrialized and public sectors. This is due to the high production of waste such as municipal solid waste, sludge from waste water treatment plants, agricultural waste and other used non-biodegradable products such as plastics and tyres. These wastes although are reused as compost, fuel, recycled and so on, there are still abundant left. These leftovers pose problems such as heavy metal leaching, leachates, green house gas emissions and mosquito breeding grounds. The disposal cost of these wastes sometimes can be costly at up to RM 2,200/ ton such as petroleum sludge by Kualiti Alam. Several methods have been used to convert these residues to energy via thermal treatment such as combustion, incineration and gasification. However, pyrolysis becomes one of the popular methods as the alternative to the wastes disposal recently. Not only energy (as gas) is produced, by-products such as chemical feedstock and solid absorbent can be produced. The use of microwave for pyrolysis, although relatively new for waste treatment, has several advantages compared to conventional heating. This includes easy control of the heating process, time saving, higher heating efficiency, etc. Tyre microwave pyrolysis plant in UK is known as the earliest plant using microwave technology to breakdown polymer in used tyres. Since 1990s, there are many patents for microwave pyrolysis. The processes are based on microwave pyrolysis of waste include coffee hulls, wood, coal, sewage sludge, hospital waste, plastic wastes, corn cobs and rice straw. The most important factors influencing the yield of product during the pyrolysis is temperature in range from 500 to 1000 degree Celsius according to product preference. High temperature favors gas products; whereas lower temperature favors liquid products. Comparatively, microwave pyrolysis produced gas with higher hydrogen and carbon monoxide (syngas) content compared

  11. Methodology of satellite microwave diagnostics of latitudinal-zonal and seasonal variations of frozen soil and sea ice

    Directory of Open Access Journals (Sweden)

    V. V. Melentiev

    2013-01-01

    Full Text Available In the frame of the work we have had investigated the utility of 6.9GHz dual polarization passive microwave data from the sensor AMSR-E for quantitative assessment of spatial and temporal variations of permafrost, seasonally frozen grounds and sea ice properties along the transect 70° E in 2005–2008 years. Analysis of the factors which could be detected with using study of the spatial-temporal variations of the microwave emissivity (brightness temperatures of the system «Earth-atmosphere» was carried out with using in situ data obtained from meteorological stations situated along the investigated transect of the Western Siberia and geocryologic station Marre-Sale (Yamal Peninsula. A new method of visualization of the brightness temperatures in spatial-temporal dimensions was suggested and practical applied. Eight latitudinal zones with intrinsic peculiarities of the spatial and seasonal variability of the brightness temperatures were revealed and investigated in many details. Comparison of the location of these zones with geographic distribution of biomes in Western Siberia was provided and it shows that satellite passive microwave information can be used for classification of the territories inside biomes. In frame of this study the annual brightness temperatures course for tundra zone area has been strictly divided into four periods (seasons characterized by different types of microwave emissivity variations. For boreal needle-leaved forest zone these seasons are manifested weaker. Comprehensive analysis of the satellite microwave survey data and corresponding the in situ data has shown satisfactory correlation between the brightness temperatures of the tundra areas on the Yamal Peninsula and their thermodynamic ground-trough temperatures at the square of geocryologic station Marre-Sale during winter period of stable frozen conditions and vegetation period. In these periods one-channel satellite microwave survey could be applied for the

  12. High-kinetic inductance additive manufactured superconducting microwave cavity

    Science.gov (United States)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  13. Microwave-assisted Weak Acid Hydrolysis of Proteins

    Directory of Open Access Journals (Sweden)

    Miyeong Seo

    2012-06-01

    Full Text Available Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at 37 oC, 50 oC, and100 oC for 1 h. The most effective hydrolysis was observed at 100 oC. Hydrolysis products were investigated using matrixassistedlaser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini ofaspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60-min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at100 oC. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteinsand that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

  14. Freeze-Dehydration by Microwave Energy

    Science.gov (United States)

    1974-12-01

    ntration and ter perat ure pr ofi l es for the microwave freeze-drying proce~s. .... c Q) () c 0 (.) )( CD 1.0 0 th e ver t ex of the parabola ...is chosen because a plot of kF vs temperature resembles a parabola with axis parallel to the horizontal temperature axis, and tangent at the vertex...validity of utili z ing the dielectric data of the alcohol ques tionable. However, this system is used as an indicator of melting occurence in the

  15. Synthesized and characterization of AI and Gd substitute ferrite for microwave

    International Nuclear Information System (INIS)

    Sudjono, Hans K.; Muljadi; Soepriyanto, Syony

    2000-01-01

    Ferrite for microwave components has been synthesized from garnet ceramics (YIG)substituted by AI and Gd. Magnetic permeability and magnetic polarization changes according to the AI 3+ ion addition. XRD is performed to determined the sintering products at various temperatures. For some samples the magnetic property and performance in microwave region was tested. The testing is conducted in the form of completely assembled circulator which gives data on isolation, insertion loss when microwave circuit analyzer was employed. Due to high level of porosity insertion lost is still to large, improved process is necessary

  16. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  17. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  18. Measuring the Redshift Dependence of The Cosmic Microwave Background Monopole Temperature With Planck Data

    Science.gov (United States)

    De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.

    2012-01-01

    We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.

  19. MEASURING THE REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND MONOPOLE TEMPERATURE WITH PLANCK DATA

    Energy Technology Data Exchange (ETDEWEB)

    De Martino, I.; Atrio-Barandela, F. [Fisica Teorica, Universidad de Salamanca, E-37008 Salamanca (Spain); Da Silva, A.; Martins, C. J. A. P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); Ebeling, H. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kashlinsky, A. [SSAI and Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kocevski, D., E-mail: ivan.demartino@usal.es, E-mail: atrio@usal.es, E-mail: asilva@astro.up.pt, E-mail: Carlos.Martins@astro.up.pt, E-mail: ebeling@ifa.hawaii.edu, E-mail: alexander.kashlinsky@nasa.gov, E-mail: kocevski@physics.ucdavis.edu [Department of Physics, University of California at Davis, 1 Shields Avenue, Davis, CA 95616 (United States)

    2012-10-01

    We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude {approx}1 {mu}K or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter {alpha} in the redshift scaling T(z) = T{sub 0}(1 + z){sup 1-{alpha}}, with an accuracy of {sigma}{sub {alpha}} = 0.011 in the most optimal case and with {sigma}{sub {alpha}} = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.

  20. Quasiparticle dynamics in aluminium superconducting microwave resonators

    NARCIS (Netherlands)

    De Visser, P.J.

    2014-01-01

    This thesis describes the intrinsic limits of superconducting microresonator detectors. In a superconductor at low temperature, most of the electrons are paired into so called Cooper pairs, which cause the well-known electrical conduction without resistance. Superconducting microwave resonators have