WorldWideScience

Sample records for microwave radiometer sky

  1. Correlation function analysis of the COBE differential microwave radiometer sky maps

    Energy Technology Data Exchange (ETDEWEB)

    Lineweaver, Charles Howe [Univ. of California, Berkeley, CA (United States). Space Sciences Lab.

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  2. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  3. Dual Microwave Radiometer Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-09-01

    Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left to users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky

  4. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  5. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    The microwave radiometer system measures, within its bandwidth, the naturally emitted radiation – the brightness temperature – of substances within its antenna’s field of view. Thus a radiometer is really a sensitive and calibrated microwave receiver. The radiometer can be a basic total power....../antenna size, and the problem: scanning antenna/space- craft stability. In many cases good compromises have been reached, as evident recalling the many successful missions throughout the recent 30 years. But in some cases the situation calls for special solutions, like the push-broom system or the synthetic...

  6. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  7. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    Science.gov (United States)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  8. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  9. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  10. Improvement of shipborne sky radiometer and its demonstration aboard the Antarctic research vessel Shirase

    Directory of Open Access Journals (Sweden)

    Noriaki Tanaka

    2014-11-01

    Full Text Available The sun-tracking performance of a shipborne sky radiometer was improved to attain accurate aerosol optical thickness (AOT from direct solar measurements on a pitching and rolling vessel. Improvements were made in the accuracy of sun-pointing measurements, field-of-view expansion, sun-tracking speed, and measurement method. Radiometric measurements of direct solar and sky brightness distribution were performed using the shipborne sky radiometer onboard the Antarctic research vessel (R/V Shirase during JARE-51 (2009-2010 and JARE-52 (2010-2011. The temporal variation of signal intensity measured by the radiometer under cloudless conditions was smooth, demonstrating that the radiometer could measure direct sunlight onboard the R/V. AOT at 500 nm ranged from 0.01 to 0.34, and values over Southeast Asia and over the western Pacific Ocean in spring were higher than those over other regions. The Angstrom exponent ranged from -0.06 to 2.00, and values over Southeast Asia and off the coast near Sydney were the highest. The improved shipborne sky radiometer will contribute to a good understanding of the nature of aerosols over the ocean.

  11. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  12. Source analysis of spaceborne microwave radiometer interference over land

    Science.gov (United States)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  13. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  14. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers

    International Nuclear Information System (INIS)

    Wang, J.R.

    1985-01-01

    The microwave radiometric measurements made by the Skylab 1.4 GHz radiometer and by the 6.6 GHz and 10.7 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer were analyzed to study the large-area soil moisture variations of land surfaces. Two regions in Texas, one with sparse and the other with dense vegetation covers, were selected for the study. The results gave a confirmation of the vegetation effect observed by ground-level microwave radiometers. Based on the statistics of the satellite data, it was possible to estimate surface soil moisture in about five different levels from dry to wet conditions with a 1.4 GHz radiometer, provided that the biomass of the vegetation cover could be independently measured. At frequencies greater than about 6.6 GHz, the radiometric measurements showed little sensitivity to moisture variation for vegetation-covered soils. The effects of polarization in microwave emission were studied also. (author)

  15. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    International Nuclear Information System (INIS)

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-01-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval

  16. The Python Sky Model: software for simulating the Galactic microwave sky

    Science.gov (United States)

    Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.

    2017-08-01

    We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.

  17. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  18. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident...

  19. Challenges in application of Active Cold Loads for microwave radiometer calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2012-01-01

    Two Active Cold Loads (ACLs) for microwave radiometer calibration, operating at X-band, are evaluated with respect to important stability parameters. Using a stable radiometer system as test bed, absolute levels of 77 K and 55 K are found. This paper identifies and summarizes potential challenges...

  20. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  1. CORRECTION OF THE TEMPERATURE EFFECT IN 1020 NM BAND OF SUN-SKY RADIOMETER

    Directory of Open Access Journals (Sweden)

    K. Li

    2018-04-01

    Full Text Available Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  2. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    Science.gov (United States)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  3. Design and Development of the SMAP Microwave Radiometer Electronics

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  4. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    Science.gov (United States)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  5. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Science.gov (United States)

    Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.

    2018-01-01

    We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.

  6. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  7. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  8. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    Science.gov (United States)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  9. Intersatellite Calibration of Microwave Radiometers for GPM

    Science.gov (United States)

    Wilheit, T. T.

    2010-12-01

    The aim of the GPM mission is to measure precipitation globally with high temporal resolution by using a constellation of satellites logically united by the GPM Core Satellite which will be in a non-sunsynchronous, medium inclination orbit. The usefulness of the combined product depends on the consistency of precipitation retrievals from the various microwave radiometers. The calibration requirements for this consistency are quite daunting requiring a multi-layered approach. The radiometers can vary considerably in their frequencies, view angles, polarizations and spatial resolutions depending on their primary application and other constraints. The planned parametric algorithms will correct for the varying viewing parameters, but they are still vulnerable to calibration errors, both relative and absolute. The GPM Intersatellite Calibration Working Group (aka X-CAL) will adjust the calibration of all the radiometers to a common consensus standard for the GPM Level 1C product to be used in precipitation retrievals. Finally, each Precipitation Algorithm Working Group must have its own strategy for removing the residual errors. If the final adjustments are small, the credibility of the precipitation retrievals will be enhanced. Before intercomparing, the radiometers must be self consistent on a scan-wise and orbit-wise basis. Pre-screening for this consistency constitutes the first step in the intercomparison. The radiometers are then compared pair-wise with the microwave radiometer (GMI) on the GPM Core Satellite. Two distinct approaches are used for sake of cross-checking the results. On the one hand, nearly simultaneous observations are collected at the cross-over points of the orbits and the observations of one are converted to virtual observations of the other using a radiative transfer model to permit comparisons. The complementary approach collects histograms of brightness temperature from each instrument. In each case a model is needed to translate the

  10. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  11. Anisotropy in the Microwave Sky at 90 GHz: Results From Python III

    OpenAIRE

    Platt, S. R.; Kovac, J.; Dragovan, M.; Peterson, J. B.; Ruhl, J. E.

    1996-01-01

    The third year of observations with the Python microwave background experiment densely sample a $5.5^o\\times 22^o$ region of sky that includes the fields measured during the first two years of observations with this instrument. The sky is sampled in two multipole bands centered at $l \\approx 92$ and $l \\approx 177$. These two data sets are analyzed to place limits on fluctuations in the microwave sky at 90 GHz. Interpreting the observed fluctuations as anisotropy in the cosmic microwave backg...

  12. Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment

    Directory of Open Access Journals (Sweden)

    D. Huang

    2010-07-01

    Full Text Available Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR and Microwave Imaging Radiometer (MIR aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments.

  13. GPM GROUND VALIDATION ADVANCED MICROWAVE RADIOMETER RAIN IDENTIFICATION (ADMIRARI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Radiometer Rain Identification (ADMIRARI) GCPEx dataset measures brightness temperature at three frequencies (10.7, 21.0...

  14. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  15. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Directory of Open Access Journals (Sweden)

    S.-P. Ho

    2018-01-01

    Full Text Available We compare atmospheric total precipitable water (TPW derived from the SSM/I (Special Sensor Microwave Imager and SSMIS (Special Sensor Microwave Imager/Sounder radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate radio occultation (RO under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW radiometer – COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade−1, with a 95 % confidence interval of (0.96, 2.63, which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade−1 with a 95 % confidence interval of 0.94, 2.62. The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40–60° N and 40–65° S, and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade−1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor–temperature feedback on a warming planet in regions where precipitation from extratropical

  16. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin

    2012-03-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  17. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin; Kostov, K. G.; Jonard, Franç ois; Jadoon, Khan; Schwank, Mike; Weihermü ller, Lutz; Hermes, Normen; Vanderborght, Jan P.; Vereecken, Harry

    2012-01-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  18. Validation of multi-channel scanning microwave radiometer on-board Oceansat-1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    Sea surface temperature (SST), sea surface wind speed (WS) and columnar water vapour (WV) derived from Multi-frequency Scanning Microwave Radiometer (MSMR) sensor on-board IRS-P4 (Oceansat-1) were validated against the in situ measurements from ship...

  19. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    Science.gov (United States)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  20. Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR - High-frequency Airborne Microwave and Millimeter-wave Radiometer)

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR -...

  1. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  2. Atmospheric water distribution in cyclones as seen with Scanning Multichannel Microwave Radiometers (SMMR)

    Science.gov (United States)

    Katsaros, K. B.; Mcmurdie, L. A.

    1983-01-01

    Passive microwave measurements are used to study the distribution of atmospheric water in midlatitude cyclones. The integrated water vapor, integrated liquid water, and rainfall rate are deduced from the brightness temperatures at microwave frequencies measured by the Scanning Multichannel Microwave Radiometer (SMRR) flown on both the Seasat and Nimbus 7 satellites. The practical application of locating fronts by the cyclone moisture pattern over oceans is shown, and the relationship between the quantity of coastal rainfall and atmospheric water content is explored.

  3. Optimum Image Formation for Spaceborne Microwave Radiometer Products.

    Science.gov (United States)

    Long, David G; Brodzik, Mary J

    2016-05-01

    This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

  4. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    Science.gov (United States)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  5. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave ...

    Indian Academy of Sciences (India)

    used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. ... All-sky radiance simulation; Megha tropiques; microwave SAPHIR sensor; radiative transfer; data ... versions of these non-linear processes (Ohring and.

  6. Pushbroom microwave radiometer results from HAPEX-MOBILHY

    International Nuclear Information System (INIS)

    Nichols, W.E.; Cuenca, R.H.; Schmugge, T.J.; Wang, J.R.

    1993-01-01

    The NASA C-130 remote sensing aircraft was in Toulouse, France from 25 May through 4 July 1986, for participation in the HAPEX-MOBILHY program. Spectral and radiometric data were collected by C-130 borne sensors in the visible, infrared, and microwave wavelengths. These data provided information on the spatial and temporal variations of surface parameters such as vegetation indices, surface temperature, and surface soil moisture. The Pushbroom Microwave Radiometer (PBMR) was used to collect passive microwave brightness temperature data. This four-beam sensor operates at the 21-cm wavelength, providing cross-track coverage approximately 1.2 times the aircraft altitude. Observed brightness temperatures for the period were high, ranging from above 240 K about 290 K. Brightness temperature images appeared to correspond well to spatial and temporal soil moisture variation. Previous research has demonstrated that an approximately linear relationship exists between the surface emissivity and surface soil moisture. For these data, however, regression analysis did not indicate a strong linear relationship (r 2 = 0.32 and r 2 = 0.42 respectively) because of the limited range of soil moisture conditions encountered and the small number of ground measurements. When results from wetter soil conditions encountered in another experiment were included, the regression improved dramatically. Based on similar research with the PBMR and an understanding of the ground data collection program, this result was examined to produce recommendations for improvements to future passive microwave research and data collection programs. Examples of surface soil moisture maps generated with PBMR data are presented which appear to be representative of the actual soil moisture conditions

  7. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study

    Directory of Open Access Journals (Sweden)

    Federico Alimenti

    2016-06-01

    Full Text Available This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows.

  8. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    International Nuclear Information System (INIS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-01-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations. - Highlights: • The CE318-DP polarized measurements are not yet widely used except DoLP. • Compared with DoLP and I, difficulty in calculating Stokes Q and U is discussed. • A new polarized almucantar observation geometry based on CE318-DP is executed. • We derive Stokes Q, U, and AoP both in principal and almucantar plane geometries. • The results are comparable with previous DoLP and I, as well as model simulations

  9. Derotation of the cosmic microwave background polarization: Full-sky formalism

    International Nuclear Information System (INIS)

    Gluscevic, Vera; Kamionkowski, Marc; Cooray, Asantha

    2009-01-01

    Mechanisms have been proposed that might rotate the linear polarization of the cosmic microwave background (CMB) as it propagates from the surface of last scatter. In the simplest scenario, the rotation will be uniform across the sky, but the rotation angle may also vary across the sky. We develop in detail the complete set of full-sky quadratic estimators for the rotation of the CMB polarization that can be constructed from the CMB temperature and polarization. We derive the variance with which these estimators can be measured and show that these variances reduce to the simpler flat-sky expressions in the appropriate limit. We evaluate the variances numerically. While the flat-sky formalism may be suitable if the rotation angle arises as a realization of a random field, the full-sky formalism will be required to search for rotations that vary slowly across the sky as well as for models in which the angular power spectrum for the rotation angle peaks at large angles.

  10. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  11. Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    Science.gov (United States)

    Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron

    2018-01-01

    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit

  12. Four-channel temperature and humidity microwave scanning radiometer

    Science.gov (United States)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  13. Application of microwave radiometers for wetlands and estuaries monitoring

    International Nuclear Information System (INIS)

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-01-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface

  14. Evaluation of the new ESR network software for the retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers

    Directory of Open Access Journals (Sweden)

    V. Estellés

    2012-12-01

    Full Text Available The European Skynet Radiometers network (EuroSkyRad or ESR has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1 the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor from the sun extinction measurements; and (2 the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain, and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.

  15. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    Science.gov (United States)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  16. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    Science.gov (United States)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  17. The cut-sky cosmic microwave background is not anomalous

    International Nuclear Information System (INIS)

    Pontzen, Andrew; Peiris, Hiranya V.

    2010-01-01

    The observed angular correlation function of the cosmic microwave background has previously been reported to be anomalous, particularly when measured in regions of the sky uncontaminated by Galactic emission. Recent work by Efstathiou et al. presents a Bayesian comparison of isotropic theories, casting doubt on the significance of the purported anomaly. We extend this analysis to all anisotropic Gaussian theories with vanishing mean ( =0), using the much wider class of models to confirm that the anomaly is not likely to point to new physics. On the other hand if there is any new physics to be gleaned, it results from low-l alignments which will be better quantified by a full-sky statistic. We also consider quadratic maximum likelihood power spectrum estimators that are constructed assuming isotropy. The underlying assumptions are therefore false if the ensemble is anisotropic. Nonetheless we demonstrate that, for theories compatible with the observed sky, these estimators (while no longer optimal) remain statistically superior to pseudo-C l power spectrum estimators.

  18. Anisotropy in the Microwave Sky at 90 GHz: Results from Python III

    Science.gov (United States)

    Platt, S. R.; Kovac, J.; Dragovan, M.; Peterson, J. B.; Ruhl, J. E.

    1997-01-01

    The third year of observations with the Python microwave background experiment densely samples a 5.5d × 22° region of sky that includes the fields measured during the first 2 years of observations with this instrument. The sky is sampled in two multipole bands centered at l ~ 87 and l ~ 170. These two data sets are analyzed to place limits on fluctuations in the microwave sky at 90 GHz. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we find flat-band power estimates of δTl ≡ [l(l + 1)Cl/(2π)]1/2 = 60+15-13 μK at l = 87+18-38 and δTl = 66+17-16 μK at l = 170+69-50. Combining the entire 3 year set of Python observations, we find that the angular power spectrum of fluctuations has a spectral index m = 0.16+.20-.18 and an amplitude δTle = 63+15-14 μK at le = 139+99-34 for the functional form δTl = δTle(l/le)m. The stated uncertainties in the amplitudes and spectral index represent 1 σ confidence intervals in the likelihood added in quadrature with a 20% calibration uncertainty and an estimate of the effects of a +/-0.05d uncertainty in the measured beamwidths. The limits of l are determined from the half-maximum points of the window functions.

  19. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    Science.gov (United States)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one

  20. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  1. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    Science.gov (United States)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  2. A SEARCH FOR CONCENTRIC CIRCLES IN THE 7 YEAR WILKINSON MICROWAVE ANISOTROPY PROBE TEMPERATURE SKY MAPS

    International Nuclear Information System (INIS)

    Wehus, I. K.; Eriksen, H. K.

    2011-01-01

    In this Letter, we search for concentric circles with low variance in cosmic microwave background sky maps. The detection of such circles would hint at new physics beyond the current cosmological concordance model, which states that the universe is isotropic and homogeneous, and filled with Gaussian fluctuations. We first describe a set of methods designed to detect such circles, based on matched filters and χ 2 statistics, and then apply these methods to the best current publicly available data, the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) temperature sky maps. We compare the observations with an ensemble of 1000 Gaussian ΛCDM simulations. Based on these tests, we conclude that the WMAP sky maps are fully compatible with the Gaussian and isotropic hypothesis as measured by low-variance ring statistics.

  3. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  4. Spectral measurements of the cosmic microwave background

    International Nuclear Information System (INIS)

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperature of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs

  5. Spectral measurements of the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperature of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.

  6. Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather

    International Nuclear Information System (INIS)

    Chan, P W; Wong, K H

    2008-01-01

    Estimates of the wind gusts associated with intense convective weather could be obtained using empirical relationships such as GUSTEX based on radiosonde measurements. However, such data are only available a couple of times a day and may not reflect the rapidly changing atmospheric condition in spring and summer times. The feasibility of combining the thermodynamic profiles from a ground-based microwave radiometer and wind profiles given by radar wind profilers in the continuous estimation of wind gusts is studied in this paper. Based on the results of a 4-month trial of a microwave radiometer in Hong Kong in 2004, the estimated and the actual gusts are reasonably well correlated. It is also found that the wind gusts so estimated provide better indications of the strength of squalls compared with those based on radiosonde measurements and with a lead time of about one hour

  7. Simulated and measured performance of a real-time processor for RFI detection and mitigation on-board spaceborne microwave radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2017-01-01

    An RFI processor breadboard has been designed and developed for future spaceborne microwave radiometer systems. RFI detection is based on the anomalous amplitude, kurtosis, and cross-frequency algorithms. These are implemented in VHDL code in an FPGA. Thus algorithm performance can be assessed...... by proper code simulation. The breadboard has been integrated with a Ku band radiometer subjected to RFI-like signals from a laboratory generator. Simulations show that the algorithms as implemented work according to theory when subjected to pulsed sinusoidal and QPSK signals. The laboratory measurements...

  8. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  9. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    Science.gov (United States)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  10. In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    Science.gov (United States)

    Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..

    2014-01-01

    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).

  11. Quantifying the clear-sky bias of satellite-derived infrared LST

    Science.gov (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.

    2017-12-01

    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  12. An optimal estimation algorithm to derive Ice and Ocean parameters from AMSR Microwave radiometer observations

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Tonboe, Rasmus T.; Høyer, Jacob

    channels as well as the combination of data from multiple sources such as microwave radiometry, scatterometry and numerical weather prediction. Optimal estimation is data assimilation without a numerical model for retrieving physical parameters from remote sensing using a multitude of available information......Global multispectral microwave radiometer measurements have been available for several decades. However, most current sea ice concentration algorithms still only takes advantage of a very limited subset of the available channels. Here we present a method that allows utilization of all available....... The methodology is observation driven and model innovation is limited to the translation between observation space and physical parameter space Over open water we use a semi-empirical radiative transfer model developed by Meissner & Wentz that estimates the multispectral AMSR brightness temperatures, i...

  13. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  14. LAMMR: A new generation satellite microwave radiometer - Its concepts and capabilities. [Large Antenna Multichannel Microwave Radiometer

    Science.gov (United States)

    Walton, W. T.; Wilheit, T. T.

    1981-01-01

    Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.

  15. Sentinel-3 MWR Microwave Radiometer – Our contribution to the success of the Copernicus programme

    Directory of Open Access Journals (Sweden)

    M.A. Palacios

    2014-06-01

    Full Text Available The MWR builds, together with the SRAL altimeter, the S3 topography mission. The MWR, developed by EADS CASA Espacio as prime contractor, provides information for tropospheric path correction of SRAL measurements. MWR data can also be used for determining surface emissivity and soil moisture over land, surface energy budget investigations and ice characterization. The MWR instrument is a Noise Injection Radiometer (NIR, working at two frequencies (23.8/36.5 GHz, embarking a dual frequency horn antenna pointing to the cold sky for embedded autonomous calibration.

  16. Millimeter radiometer system technology

    Science.gov (United States)

    Wilson, W. J.; Swanson, P. N.

    1989-07-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  17. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  18. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    Science.gov (United States)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  19. ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3-90 GHz

    International Nuclear Information System (INIS)

    Fixsen, D. J.; Kogut, A.; Wollack, E.; Levin, S.; Seiffert, M.; Limon, M.; Lubin, P.; Mirel, P.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-01-01

    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 ± 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 ± 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 ± 2.1 (K) (ν/ν 0 ) -2.599±0.036 from 22 MHz to 10 GHz (ν 0 = 310 MHz) in addition to a CMB temperature of 2.725 ± 0.001 K.

  20. The construction and application of the AMSR-E global microwave emissivity database

    International Nuclear Information System (INIS)

    Lijuan, Shi; Wenbo, Wu; Yubao, Qiu; Jingjing, Niu

    2014-01-01

    Land surface microwave emissivity is an important parameter to describe the characteristics of terrestrial microwave radiation, and is the necessary input amount for inversion various geophysical parameters. We use brightness temperature of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and synchronous land surface temperature and atmospheric temperature-humidity profile data obtained from the MODIS which aboard on satellite AQUA the same as AMSR-E, to retrieved microwave emissivity under clear sky conditions. After quality control, evaluation and design, the global microwave emissivity database of AMSR-E under clear sky conditions is established. This database include 2002–2011 years, different regions, different surface coverage, dual-polarized, 6.9,10.65, 18.7, 23.8, 36.5 and 89GHz, ascending and descending orbit, spatial resolution 25km, global 0.05 degrees, instantaneous and half-month averaged emissivity data. The database can provide the underlying surface information for precipitation algorithm, water-vapor algorithm, and long-resolution mode model (General Circulation Model (GCM) etc.). It also provides underlying surface information for the satellite simulator, and provides basic prior knowledge of land surface radiation for future satellite sensors design. The emissivity database or the fast emissivity obtained can get ready for climate model, energy balance, data assimilation, geophysical model simulation, inversion and estimates of the physical parameters under the cloud cover conditions

  1. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie–Raman lidar and a sky radiometer

    International Nuclear Information System (INIS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-01-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October–May) and lower in the wet season (June–September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand. (letter)

  2. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    International Nuclear Information System (INIS)

    Edgeworth R. Westwater; Yong Han

    1999-01-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. While analyzing data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma, several questions arose about the calibration of the ARM microwave radiometers (MWR). A large portion of this years effort was a thorough analysis of the many factors that are important for the calibration of this instrument through the tip calibration method and the development of algorithms to correct this procedure. An open literature publication describing this analysis has been accepted

  3. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  4. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  5. HARMONIC IN-PAINTING OF COSMIC MICROWAVE BACKGROUND SKY BY CONSTRAINED GAUSSIAN REALIZATION

    International Nuclear Information System (INIS)

    Kim, Jaiseung; Naselsky, Pavel; Mandolesi, Nazzareno

    2012-01-01

    The presence of astrophysical emissions between the last scattering surface and our vantage point requires us to apply a foreground mask on cosmic microwave background (CMB) sky maps, leading to large cuts around the Galactic equator and numerous holes. Since many CMB analysis, in particular on the largest angular scales, may be performed on a whole-sky map in a more straightforward and reliable manner, it is of utmost importance to develop an efficient method to fill in the masked pixels in a way compliant with the expected statistical properties and the unmasked pixels. In this Letter, we consider the Monte Carlo simulation of a constrained Gaussian field and derive it CMB anisotropy in harmonic space, where a feasible implementation is possible with good approximation. We applied our method to simulated data, which shows that our method produces a plausible whole-sky map, given the unmasked pixels, and a theoretical expectation. Subsequently, we applied our method to the Wilkinson Microwave Anisotropy Probe foreground-reduced maps and investigated the anomalous alignment between quadrupole and octupole components. From our investigation, we find that the alignment in the foreground-reduced maps is even higher than the Internal Linear Combination map. We also find that the V-band map has higher alignment than other bands, despite the expectation that the V-band map has less foreground contamination than other bands. Therefore, we find it hard to attribute the alignment to residual foregrounds. Our method will be complementary to other efforts on in-painting or reconstructing the masked CMB data, and of great use to Planck surveyor and future missions.

  6. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    International Nuclear Information System (INIS)

    Edgeworth R. Westwater; Yong Han

    1997-01-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma

  7. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    Science.gov (United States)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  8. Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Directory of Open Access Journals (Sweden)

    F. Navas-Guzmán

    2017-11-01

    Full Text Available In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014–September 2016 from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland. In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9 in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.

  9. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the

  10. Radiometer Testbed Development for SWOT

    Science.gov (United States)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  11. Daily quality assurance software for a satellite radiometer system

    Science.gov (United States)

    Keegstra, P. B.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Jackson, P. D.; Kogut, A.; Lineweaver, C.

    1992-01-01

    Six Differential Microwave Radiometers (DMR) on COBE (Cosmic Background Explorer) measure the large-angular-scale isotropy of the cosmic microwave background (CMB) at 31.5, 53, and 90 GHz. Quality assurance software analyzes the daily telemetry from the spacecraft to ensure that the instrument is operating correctly and that the data are not corrupted. Quality assurance for DMR poses challenging requirements. The data are differential, so a single bad point can affect a large region of the sky, yet the CMB isotropy requires lengthy integration times (greater than 1 year) to limit potential CMB anisotropies. Celestial sources (with the exception of the moon) are not, in general, visible in the raw differential data. A 'quicklook' software system was developed that, in addition to basic plotting and limit-checking, implements a collection of data tests as well as long-term trending. Some of the key capabilities include the following: (1) stability analysis showing how well the data RMS averages down with increased data; (2) a Fourier analysis and autocorrelation routine to plot the power spectrum and confirm the presence of the 3 mK 'cosmic' dipole signal; (3) binning of the data against basic spacecraft quantities such as orbit angle; (4) long-term trending; and (5) dipole fits to confirm the spacecraft attitude azimuth angle.

  12. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission

    Science.gov (United States)

    Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael

    2017-01-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144

  13. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    OpenAIRE

    C., PRABHAKARA; R., IACOVAZZI; J. M., YOO; K. M., KIM; NASA Goddard Space Flight Center; Center for Research on the Changing Earth System; EWHA Womans University; Science Systems and Applications, Inc.

    2005-01-01

    Over the tropical land regions scatter plots of the rain rate (R_), deduced from the TRMM Precipitation Radar (PR) versus the observed 85GHz brightness temperature (T_) made by the TRMM Microwave Imager (TMI) radiometer, for a period of a season over a given geographic region of 3°×5°(lat×lon), indicate that there are two maxima in rain rate. One strong maximum occurs when T_ has a value of about 220K, and the other weaker one when T_ is much colder ~150K. Also these two maxima are vividly re...

  14. Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia

    Science.gov (United States)

    Kim, S.; Kim, H.; Choi, M.; Kim, K.

    2016-12-01

    Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.

  15. Sky cover from MFRSR observations

    Directory of Open Access Journals (Sweden)

    E. Kassianov

    2011-07-01

    Full Text Available The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR. The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM Climate Research Facility (ACRF Southern Great Plains (SGP site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  16. Dynamic Antenna Alignment Control in Microwave Air-Bridging for Sky-Net Mobile Communication Using Unmanned Flying Platform

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2015-01-01

    Full Text Available This paper presents a preliminary study on establishing a mobile point-to-point (P2P microwave air-bridging (MAB between Unmanned Low Altitude Flying Platform (ULAFP and backhaul telecommunication network. The proposed Sky-Net system relays telecom signal for general mobile cellphone users via ULAFP when natural disaster sweeps off Base Transceiver Stations (BTSs. Unlike the conventional fix point microwave bridging application, the ULAFP is cruising on a predefined mission flight path to cover a wider range of service. The difficulty and challenge fall on how to maintain antenna alignment accurately in order to provide the signal strength for MAB. A dual-axis rotation mechanism with embedded controller is designed and implemented on airborne and ground units for stabilizing airborne antenna and tracking the moving ULAFP. The MAB link is established in flight tests using the proposed antenna stabilizing/tracking mechanism with correlated control method. The result supports backbone technique of the Sky-Net mobile communication and verifies the feasibility of airborne e-Cell BTS.

  17. Development of a Compact High Altitude Imager and Sounding Radiometer (CHAISR)

    Science.gov (United States)

    Choi, R. K. Y.; Min, S.; Cho, Y. J.; Kim, K. H.; Ha, J. C.; Joo, S. W.

    2017-12-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, Korea, has approved a technology demonstration project for developing a lightweight HALE UAV (High-Altitude, Long Endurance). It aims to operate at lower stratosphere, i.e. altitude of 16 20 km, offering unique observational platform to atmospheric research community as pseudo-satellite. NIMS (National Institute of Meteorological Sciences, Korea) is responsible for a payload for atmospheric science, a Compact High Altitude Imager and Sounding Radiometer (CHAISR) to demonstrate scientific observations at lower stratosphere in the interest of improving numerical weather prediction model. CHAISR consists of three microwave radiometers (MWR) with 16 channel, and medium resolution cameras operating in a visible and infrared spectrum. One of the technological challenges for CHAISR is to accommodate those instruments within 50 W of power consumption. CHAISR will experience temperature up to -75°C, while pressure as low as 50 hPa at operational altitude. It requires passive thermal control of the payload to keep electronic subsystems warm enough for instrument operation with minimal power available. Safety features, such as payload power management and thermal control, are considered with minimal user input. Three radiometers measure atmospheric brightness temperature at frequency at around 20, 40, and 50 GHz. Retrieval process yields temperature and humidity profiles with cross track scan along the flight line. Estimated total weight of all radiometer hardware, from the antennas to data acquisition system, is less than 0.8 kg and a maximum power consumption is 15.2 W. With not enough power for blackbody calibration target, radiometers use zenith sky view at lower stratosphere as an excellent calibration target for a conventional tipping-curve calibration. Spatial distributions of clouds from visible and surface temperature from thermal cameras are used as additional information for

  18. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  19. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  20. Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems

    Science.gov (United States)

    Price, D. C.; Greenhill, L. J.; Fialkov, A.; Bernardi, G.; Garsden, H.; Barsdell, B. R.; Kocz, J.; Anderson, M. M.; Bourke, S. A.; Craig, J.; Dexter, M. R.; Dowell, J.; Eastwood, M. W.; Eftekhari, T.; Ellingson, S. W.; Hallinan, G.; Hartman, J. M.; Kimberk, R.; Lazio, T. Joseph W.; Leiker, S.; MacMahon, D.; Monroe, R.; Schinzel, F.; Taylor, G. B.; Tong, E.; Werthimer, D.; Woody, D. P.

    2018-05-01

    The Large-Aperture Experiment to Detect the Dark Age (LEDA) was designed to detect the predicted O(100) mK sky-averaged absorption of the Cosmic Microwave Background by Hydrogen in the neutral pre- and intergalactic medium just after the cosmological Dark Age. The spectral signature would be associated with emergence of a diffuse Lyα background from starlight during `Cosmic Dawn'. Recently, Bowman et al. (2018) have reported detection of this predicted absorption feature, with an unexpectedly large amplitude of 530 mK, centered at 78 MHz. Verification of this result by an independent experiment, such as LEDA, is pressing. In this paper, we detail design and characterization of the LEDA radiometer systems, and a first-generation pipeline that instantiates a signal path model. Sited at the Owens Valley Radio Observatory Long Wavelength Array, LEDA systems include the station correlator, five well-separated redundant dual polarization radiometers and backend electronics. The radiometers deliver a 30-85 MHz band (16 z < 34) and operate as part of the larger interferometric array, for purposes ultimately of in situ calibration. Here, we report on the LEDA system design, calibration approach, and progress in characterization as of January 2016. The LEDA systems are currently being modified to improve performance near 78 MHz in order to verify the purported absorption feature.

  1. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  2. Improved noise-adding radiometer for microwave receivers

    Science.gov (United States)

    Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.

    1973-01-01

    Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.

  3. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Directory of Open Access Journals (Sweden)

    L. Bernet

    2017-11-01

    Full Text Available Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW, all performed at the aerological station (MeteoSwiss in Payerne (Switzerland. Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  4. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    Science.gov (United States)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  5. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; hide

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  6. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua satellite for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  7. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  8. MCM Polarimetric Radiometers for Planar Arrays

    Science.gov (United States)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  9. THE LOCAL DUST FOREGROUNDS IN THE MICROWAVE SKY. I. THERMAL EMISSION SPECTRA

    International Nuclear Information System (INIS)

    Dikarev, Valeri; Preuss, Oliver; Solanki, Sami; Krueger, Harald; Krivov, Alexander

    2009-01-01

    Analyses of the cosmic microwave background (CMB) radiation maps made by the Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not predicted by the standard inflationary cosmology. In particular, the power of the quadrupole moment of the CMB fluctuations is remarkably low, and the quadrupole and octopole moments are aligned mutually and with the geometry of the solar system. It has been suggested in the literature that microwave sky pollution by an unidentified dust cloud in the vicinity of the solar system may be the cause for these anomalies. In this paper, we simulate the thermal emission by clouds of spherical homogeneous particles of several materials. Spectral constraints from the WMAP multi-wavelength data and earlier infrared observations on the hypothetical dust cloud are used to determine the dust cloud's physical characteristics. In order for its emissivity to demonstrate a flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14 mm), and to be invisible in the infrared light, its particles must be macroscopic. Silicate spheres of several millimeters in size and carbonaceous particles an order of magnitude smaller will suffice. According to our estimates of the abundance of such particles in the zodiacal cloud and trans-Neptunian belt, yielding the optical depths of the order of 10 -7 for each cloud, the solar system dust can well contribute 10 μK (within an order of magnitude) in the microwaves. This is not only intriguingly close to the magnitude of the anomalies (about 30 μK), but also alarmingly above the presently believed magnitude of systematic biases of the WMAP results (below 5 μK) and, to an even greater degree, of the future missions with higher sensitivities, e.g., Planck.

  10. A Multifrequency Radiometer System

    DEFF Research Database (Denmark)

    Skou, Niels

    1977-01-01

    A radiometer system having four channels: 5 GHz, l7 GHz, 34 GHz, all vertical polarization, and a 34 GHz sky horn, will be described. The system which is designed for collecting glaciological and oceanographic data is intended for airborne use and imaging is achieved by means of a multifrequency...... conically scanning antenna. Implementation of the noise-injection technique ensures the high absolute accuracy needed for oceanographic purposes. The collected data can be preprocessed in a microcomputer system and displayed in real time. Simultaneously, the data are recorded digitally on tape for more...

  11. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Science.gov (United States)

    Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi

    2017-06-01

    We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.

  12. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Directory of Open Access Journals (Sweden)

    Z. Takbiri

    2017-06-01

    Full Text Available We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS on board the Defense Meteorological Satellite Program (DMSP F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM Microwave Imager (GMI products.

  13. Microwave Photonic Imaging Radiometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Passive Microwave Remote Sensing is currently utilized by NASA, NOAA, and USGIS to conduct Earth Science missions, including weather forecasting, early warning...

  14. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    Science.gov (United States)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  15. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  16. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  17. Wideband Radio Frequency Interference Detection for Microwave Radiometer Subsystem

    Data.gov (United States)

    National Aeronautics and Space Administration — Anthropogenic Radio-Frequency Interference (RFI) is threatening the quality and utility of multi-frequency passive microwave radiometry. The GPM Microwave Imager...

  18. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    Science.gov (United States)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  19. L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    DEFF Research Database (Denmark)

    Skou, Niels; Hofman-Bang, Dorthe

    2005-01-01

    Microwave radiometers can measure sea surface salinity from space using L-band frequencies around 1.4 GHz. However, requirements to the accuracy of the measurements, in order to be satisfactory for the user, are so stringent that the influence of the intervening atmosphere cannot be neglected...

  20. Comparison of global cloud liquid water path derived from microwave measurements with CERES-MODIS

    Science.gov (United States)

    Yi, Y.; Minnis, P.; Huang, J.; Lin, B.; Ayers, K.; Sun-Mack, S.; Fan, A.

    Cloud liquid water path LWP is a crucial parameter for climate studies due to the link that it provides between the atmospheric hydrological and radiative budgets Satellite-based visible infrared techniques such as the Visible Infrared Solar Split-Window Technique VISST can retrieve LWP for water clouds assumes single-layer over a variety of surfaces If the water clouds are overlapped by ice clouds the LWP of the underlying clouds can not be retrieved by such techniques However microwave techniques may be used to retrieve the LWP underneath ice clouds due to the microwave s insensitivity to cloud ice particles LWP is typically retrieved from satellite-observed microwave radiances only over ocean due to variations of land surface temperature and emissivity Recently Deeter and Vivekanandan 2006 developed a new technique for retrieving LWP over land In order to overcome the sensitivity to land surface temperature and emissivity their technique is based on a parameterization of microwave polarization-difference signals In this study a similar regression-based technique for retrieving LWP over land and ocean using Advanced Microwave Scanning Radiometer - EOS AMSR-E measurements is developed Furthermore the microwave surface emissivities are also derived using clear-sky fields of view based on the Clouds and Earth s Radiant Energy System Moderate-resolution Imaging Spectroradiometer CERES-MODIS cloud mask These emissivities are used in an alternate form of the technique The results are evaluated using independent measurements such

  1. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  2. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  3. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  4. Microwave Radiometry for Oil Pollution Monitoring, Measurements, and Systems

    DEFF Research Database (Denmark)

    Skou, Niels

    1986-01-01

    Work is presently carried out in Europe to change the Status of the microwave radiometer, namely, to develop it from a research instrument to an operational instrument-especially for measuring oil pollution on the sea surface. The Technical University of Denmark (TUD), with its long experience...... in airborne microwave radiometry, is heavily involved in this process. The TUD multichannel imaging radiometer system has been flown in several large-scale oil-pollution experiments, the collected data have been analyzed, and they have revealed that care must be exercised to obtain accurate oil volume...

  5. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    Science.gov (United States)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  6. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  7. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  8. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  9. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  10. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  11. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2016-06-01

    Full Text Available A method to assimilate all-sky radiances from the Advanced Microwave Scanning Radiometer 2 (AMSR2 was developed within the Weather Research and Forecasting (WRF model's data assimilation (WRFDA system. The four essential elements are: (1 extending the community radiative transform model's (CRTM interface to include hydrometeor profiles; (2 using total water Qt as the moisture control variable; (3 using a warm-rain physics scheme for partitioning the Qt increment into individual increments of water vapour, cloud liquid water and rain; and (4 adopting a symmetric observation error model for all-sky radiance assimilation.Compared to a benchmark experiment with no AMSR2 data, the impact of assimilating clear-sky or all-sky AMSR2 radiances on the analysis and forecast of Hurricane Sandy (2012 was assessed through analysis/forecast cycling experiments using WRF and WRFDA's three-dimensional variational (3DVAR data assimilation scheme. With more cloud/precipitation-affected data being assimilated around tropical cyclone (TC core areas in the all-sky AMSR2 assimilation experiment, better analyses were obtained in terms of the TC's central sea level pressure (CSLP, warm-core structure and cloud distribution. Substantial (>20 % error reduction in track and CSLP forecasts was achieved from both clear-sky and all-sky AMSR2 assimilation experiments, and this improvement was consistent from the analysis time to 72-h forecasts. Moreover, the all-sky assimilation experiment consistently yielded better track and CSLP forecasts than the clear-sky did for all forecast lead times, due to a better analysis in the TC core areas. Positive forecast impact from assimilating AMSR2 radiances is also seen when verified against the European Center for Medium-Range Weather Forecasts (ECMWF analysis and the Stage IV precipitation analysis, with an overall larger positive impact from the all-sky assimilation experiment.

  12. Processor breadboard for on-board RFI detection and mitigation in MetOp-SG radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen S.; Kovanen, Arhippa

    2015-01-01

    Radio Frequency Interference (RFI) is an increasing threat to proper operation of space-borne Earth viewing microwave radiometer systems. There is a steady growth in active services, and tougher requirements to sensitivity and fidelity of future radiometer systems. Thus it has been decided...... that the next generation MetOp satellites must include some kind of RFI detection and mitigation system at Ku band. This paper describes a breadboard processor that detects and mitigates RFI on-board the satellite. Thus cleaned data can be generated in real time, and following suitable integration, downloaded...... to ground at the modest data rate usually associated with radiometer systems....

  13. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  14. Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment

    International Nuclear Information System (INIS)

    Katzir, A.; Bowman, H.F.; Asfour, Y.; Zur, A.; Valeri, C.R.

    1989-01-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35 degrees C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0 degrees C for an extended period (e.g., 30 min) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electromagnetic field. For this purpose, we have developed a fiberoptic radiometer system which is based on a nonmetallic, infrared fiber probe, which can operate either in contact or noncontact mode. In preliminary investigations, the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of +/- 0.5 degrees C. This fiberoptic thermometer was used to control the surface temperature of objects within +/- 2 degrees C

  15. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  16. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  17. On-board digital RFI and polarimetry processor for future spaceborne radiometer systems

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Ruokokoski, T.

    2012-01-01

    Man-made Radio Frequency Interference (RFI) is an increasingly threatening problem for passive microwave radiometry from space. The problem is presently very evident in L-band data from SMOS, but it is realized that it is already now a problem at other traditional radiometer bands at C, X, and Ku...

  18. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    Science.gov (United States)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic

  19. Extended Special Sensor Microwave Imager (SSM/I) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  20. Extended Special Sensor Microwave Imager (SSM/I) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  1. Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert

    2014-01-01

    Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.

  2. Modeling the frequency response of microwave radiometers with QUCS

    International Nuclear Information System (INIS)

    Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P; Roucaries, B; D'Arcangelo, O; Franceschet, C; Mennella, A; Bersanelli, M; Jahn, S

    2010-01-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  3. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    Science.gov (United States)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high

  4. Microwave Correlation Measurement Crossed-pair Antennas ...

    African Journals Online (AJOL)

    We propose here new processes, an add and square correlation radiometer and the non-resonant perturbation, which thoroughly investigated for different muscle phantom materials to define the optimum penetration depth of the electromagnetic field at fixed distance between the antennas. Keywords: Microwave correlation ...

  5. (an)isotropy of the X-ray sky

    International Nuclear Information System (INIS)

    Shafer, R.A.; Fabian, A.C.

    1983-01-01

    An assessment is made of the extent to which the study of the isotropy of the X-ray sky has contributed to the present understanding of the structure of the universe at moderate redshifts. It is, of course, the anisotropic character of the sky flux that is valuable in this context. Although it is not currently possible to undertake measurements with the precision and small solid angles that are typically achieved in the microwave range, the comparatively crude limits from the X-ray fluctuations place limits on the largest scale structure of the universe. After indicating the nature of measurements made, with the HEAO 1 A-2 experiment, of the X-ray sky and its anisotropies, it is shown how these place limits on the origin of the X-ray sky and on any large scale structure of the universe. 40 references

  6. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different

  7. Sensitive measurement of fluctuations in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R D; Watson, R A; Daintree, E J; Hopkins, J; Lasenby, A N; Beckman, J; Sanchez-Almeida, J; Rebolo, R

    1987-04-02

    Extensive high sensitivity observations of the cosmic microwave background have been made on an angular scale of 8/sup 0/ covering a substantial fraction of the northern sky. An observed anisotropy in the sky emission at a level of ..delta..T/T = 3.7 x 10/sup -5/ has been detected (T is temperature). This level should strictly be interpreted as an upper limit to the cosmic microwave background fluctuations. It is possibly the direct imprint of density perturbations in the early Universe.

  8. Sensitive measurement of fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Davies, R.D.; Watson, R.A.; Daintree, E.J.; Hopkins, J.; Lasenby, A.N.

    1987-01-01

    Extensive high sensitivity observations of the cosmic microwave background have been made on an angular scale of 8 0 covering a substantial fraction of the northern sky. An observed anisotropy in the sky emission at a level of ΔT/T = 3.7 x 10 -5 has been detected (T is temperature). This level should strictly be interpreted as an upper limit to the cosmic microwave background fluctuations. It is possibly the direct imprint of density perturbations in the early Universe. (author)

  9. Investigation of ground-based microwave radiometer calibration techniques at 530 hPa

    Directory of Open Access Journals (Sweden)

    G. Maschwitz

    2013-10-01

    Full Text Available Ground-based microwave radiometers (MWR are becoming more and more common for remotely sensing the atmospheric temperature and humidity profile as well as path-integrated cloud liquid water content. The calibration accuracy of the state-of-the-art MWR HATPRO-G2 (Humidity And Temperature Profiler – Generation 2 was investigated during the second phase of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II in northern Chile (5320 m above mean sea level, 530 hPa conducted by the Atmospheric Radiation Measurement (ARM program conducted between August and October 2009. This study assesses the quality of the two frequently used liquid nitrogen and tipping curve calibrations by performing a detailed error propagation study, which exploits the unique atmospheric conditions of RHUBC-II. Both methods are known to have open issues concerning systematic offsets and calibration repeatability. For the tipping curve calibration an uncertainty of ±0.1 to ±0.2 K (K-band and ±0.6 to ±0.7 K (V-band is found. The uncertainty in the tipping curve calibration is mainly due to atmospheric inhomogeneities and the assumed air mass correction for the Earth curvature. For the liquid nitrogen calibration the estimated uncertainty of ±0.3 to ±1.6 K is dominated by the uncertainty of the reflectivity of the liquid nitrogen target. A direct comparison between the two calibration techniques shows that for six of the nine channels that can be calibrated with both methods, they agree within the assessed uncertainties. For the other three channels the unexplained discrepancy is below 0.5 K. Systematic offsets, which may cause the disagreement of both methods within their estimated uncertainties, are discussed.

  10. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  11. The Cosmic Background Explorer

    Science.gov (United States)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  12. Detection of gravitational lensing in the cosmic microwave background

    International Nuclear Information System (INIS)

    Smith, Kendrick M.; Zahn, Oliver; Dore, Olivier

    2007-01-01

    Gravitational lensing of the cosmic microwave background (CMB), a long-standing prediction of the standard cosmological model, is ultimately expected to be an important source of cosmological information, but first detection has not been achieved to date. We report a 3.4σ detection, by applying quadratic estimator techniques to all sky maps from the Wilkinson microwave anisotropy probe (WMAP) satellite, and correlating the result with radio galaxy counts from the NRAO VLA sky survey (NVSS). We present our methodology including a detailed discussion of potential contaminants. Our error estimates include systematic uncertainties from density gradients in NVSS, beam effects in WMAP, galactic microwave foregrounds, resolved and unresolved CMB point sources, and the thermal Sunyaev-Zel'dovich effect

  13. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  14. The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    CERN Document Server

    Delabrouille, J.; Melin, J.-B.; Miville-Deschenes, M.-A.; Gonzalez-Nuevo, J.; Jeune, M.Le; Castex, G.; de Zotti, G.; Basak, S.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Bernard, J.-P.; Bouchet, F.R.; Clements, D.L.; da Silva, A.; Dickinson, C.; Dodu, F.; Dolag, K.; Elsner, F.; Fauvet, L.; Fay, G.; Giardino, G.; Leach, S.; Lesgourgues, J.; Liguori, M.; Macias-Perez, J.F.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Montier, L.; Mottet, S.; Paladini, R.; Partridge, B.; Piffaretti, R.; Prezeau, G.; Prunet, S.; Ricciardi, S.; Roman, M.; Schaefer, B.; Toffolatti, L.

    2012-01-01

    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared back...

  15. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  16. Diagnostics of the SMOS radiometer antenna system at the DTU-ESA spherical near-field antenna test facility

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A.; Pivnenko, Sergey

    2007-01-01

    The recently developed Spherical Wave Expansion-to-Plane Wave Expansion (SWE-to-PWE) antenna diagnostics technique is employed in an investigation of the antenna system in the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission...

  17. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook With subsections for derivative instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR)

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Gary B. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Michalsky, Joseph J. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.

    2016-03-01

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere’s aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  18. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Directory of Open Access Journals (Sweden)

    F. De Angelis

    2017-10-01

    Full Text Available Ground-based microwave radiometers (MWRs offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes require an accurate representation of the differences between model (background and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O–B. Monitoring of O–B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O–B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O–B monitoring can effectively detect instrument malfunctions. O–B statistics (bias, standard deviation, and root mean square for water vapour channels (22.24–30.0 GHz are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ∼  2–2.5 K towards the high-frequency wing ( ∼  0.8–1.3 K. Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O

  19. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  20. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  1. Rain detection over land surfaces using passive microwave satellite data

    NARCIS (Netherlands)

    Bauer, P.; Burose, D.; Schulz, J.

    2002-01-01

    An algorithm is presented for the detection of surface rainfall using passive microwave measurements by satellite radiometers. The technique consists of a two-stage approach to distinguish precipitation signatures from other effects: (1) Contributions from slowly varying parameters (surface type and

  2. eGSM: A extended Sky Model of Diffuse Radio Emission

    Science.gov (United States)

    Kim, Doyeon; Liu, Adrian; Switzer, Eric

    2018-01-01

    Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.

  3. Microwave detection of air showers with MIDAS

    International Nuclear Information System (INIS)

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d’Orfeuil, B.

    2012-01-01

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20 ° ×10 ° region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  4. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  5. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita'92

    International Nuclear Information System (INIS)

    Jackson, T.J.; Le Vine, D.M.; Swift, C.T.; Schmugge, T.J.; Schiebe, F.R.

    1995-01-01

    Washita'92 was a large-scale study of remote sensing and hydrology conducted on the Little Washita watershed in southwest Oklahoma. Data collection during the experiment included passive microwave observations using an L-band electronically scanned thinned array radiometer (ESTAR) and surface soil moisture observations at sites distributed over the area. Data were collected on 8 days over a 9-day period in June 1992. The watershed was saturated with a great deal of standing water at the outset of the study. During the experiment there was no rainfall and surface soil moisture observations exhibited a drydown pattern over the period. Significant variations in the level and rate of change in surface soil moisture were noted over areas dominated by different soil textures. ESTAR data were processed to produce brightness temperature maps of a 740 sq. km. area on each of the 8 days. These data exhibited significant spatial and temporal patterns. Spatial patterns were clearly associated with soil textures and temporal patterns with drainage and evaporative processes. Relationships between the ground sampled soil moisture and the brightness temperatures were consistent with previous results. Spatial averaging of both variables was analyzed to study scaling of soil moisture over a mixed landscape. Results of these studies showed that a strong correlation is retained at these scales, suggesting that mapping surface moisture for large footprints may provide important information for regional studies. (author)

  6. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  7. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    Science.gov (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  8. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    Science.gov (United States)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument

  9. A General Analysis of the Impact of Digitization in Microwave Correlation Radiometers

    Directory of Open Access Journals (Sweden)

    Hyuk Park

    2011-06-01

    Full Text Available This study provides a general framework to analyze the effects on correlation radiometers of a generic quantization scheme and sampling process. It reviews, unifies and expands several previous works that focused on these effects separately. In addition, it provides a general theoretical background that allows analyzing any digitization scheme including any number of quantization levels, irregular quantization steps, gain compression, clipping, jitter and skew effects of the sampling period.

  10. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-07-01

    Full Text Available The Passive Advanced Unit (PAU for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD and a GPS reflectometer (PAU-GNSS/R. These instruments in conjunction with an infra-red radiometer (PAU-IR will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4x4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR. PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR’s radiometer calibration algorithms and their performance.

  11. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  12. Microwave detection of air showers with MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others

    2012-01-11

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  13. ATSR - The Along Track Scanning Radiometer For ERS-1

    Science.gov (United States)

    Llewellyn-Jones, David T.; Mutlow, C. T.

    1990-04-01

    The ATSR instrument is an advanced imaging radiometer designed to measure global sea surface temperature to an accuracy of the order of 0.3C from the ESA's ERS-1 satellite, due to be launched in late 1990. The instrument is designed to achieve a very precise correction for atmospheric effects through the use of carefully selected spectral bands, and a new "along-track" scanning technique. This involves viewing the same geophysical scene at two different angles, hence using two different atmospheric paths, so that the difference in radiative signal from the two scenes is due only to atmospheric effects, which can then be quantitatively estimated. ATSR is also a high performance radiometer, and embodies two important technological features; the first of these is the use of closed-cycle coolers, especially developed for space applications, and which were used to cool the sensitive infrared detectors. The radiometer also incorporates two purpose-designed on-board blackbody calibration targets which will also be described in detail. These two features enable the instrument to meet the stringent requirements of sensitivity and absolute radiometric accuracy demanded by this application. ATSR also incorporates a passive nadir-viewing two-channel microwave sounder. Measurements from this instrument will enable total atmospheric water vapour to be inferred, which will not only lead to improved SST retrievals, but will also considerably improve the atmospheric range correction required by the ERS-1 radar altimeter. ATSR is provided by a consortium of research institutes including the University of Oxford, Department of Atmospheric Oceanic and Planetary Physics, who are primarily responsible for scientific calibration of the instrument; University College London's Mullard Space Science Laboratory, who are responsible for the development of the blackbodies; the UK Meteorological Office, whose contributions include the focal plane assembly; the French laboratory CRPE, who are

  14. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...

  15. Bayesian Analysis of the Cosmic Microwave Background

    Science.gov (United States)

    Jewell, Jeffrey

    2007-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.

  16. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    Science.gov (United States)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  17. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  18. Improved dark energy detection through the polarization-assisted cross correlation of the cosmic microwave background with radio sources

    International Nuclear Information System (INIS)

    Liu, Guo-Chin; Ng, Kin-Wang; Pen, Ue-Li

    2011-01-01

    Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating the cosmic microwave background (CMB) sky with tracers of the local matter distribution. At late cosmic time, the dark energy-induced decay of gravitation potential generates a cross correlation signal on large angular scales. The dominant noise is the intrinsic CMB anisotropies from the inflationary epoch. In this paper we use CMB polarization to reduce this intrinsic noise. We cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey (NVSS) to study the efficiency of the noise suppression. We find that the error bars are reduced by about 4 to 14% and the statistical power in the signal is improved.

  19. Localised Microwave Bursts During ELMs on MAST

    Directory of Open Access Journals (Sweden)

    Freethy Simon

    2015-01-01

    Full Text Available Bursts of microwave emission are observed during ELM events on the Mega Ampère Spherical Tokamak. In agreement with observations on other machines, these bursts are up to 3 orders of magnitude more intense than the thermal background, but are electron cyclotron in nature. The peak in microwave emission is ~20μ before the peak in midplane Dα emission. Using the Synthetic Aperture Microwave Imaging radiometer, we are able to demonstrate that these bursts are often highly spatially localised and preferentially occur at the tokamak midplane. It is hypothesised that the localisation is a result of Doppler resonance broadening for electron Bernstein waves and the high perpendicular electron energies could be the result of pitch angle scattering in high collisionality regions of the plasma.

  20. Field measurements of the global UV-B radiation: a comparison between a broad-band radiometer and a Brewer spectrophotometer

    International Nuclear Information System (INIS)

    Anav, A.; Moriconi, M.L.; Di Menno, M.; Giannoccolo, S.

    1996-01-01

    The spectral responsivity shape plays an important role in the prospect of a wide use of broad-band meters in the UV-B monitoring. As most UV-B broad-band meters have a responsivity approximating an erythemal action spectrum, a measurement campaign was planned to verify if such an instrument could be successfully used to measure the unfiltered global irradiance. A Yankee radiometer mod. UV-B 1 and a Brewer spectrophotometer, considered as a reference meter, were compared for this purpose. A short theoretical treatment of the Yankee radiometer response and some results of the comparison are shown. Only clear-sky days data are selected so that the UV-B radiation reaching the ground could be modelled as the sum of the direct and isotropic diffuse components. The comparison results show a good agreement between the two instruments and confirm the capability of a broad-band UV-B radiometer of correctly measuring the global irradiance

  1. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  2. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  3. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  4. Microwave Atmospheric Sounder on CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which

  5. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  6. Soil moisture inversion from aircraft passive microwave observations during SMEX04 using a single-frequency algorithm

    International Nuclear Information System (INIS)

    Zeng, J Y; Li, Z; Chen, Q; Bi, H Y

    2014-01-01

    Soil moisture plays a key role in global water cycles. In the study, soil moisture retrievals from airborne microwave radiometer observations using a single-frequency algorithm were presented. The algorithm is based on a simplified radiative transfer (tau-omega) model and the influence of both the roughness and vegetation is combined into a single parameter in the algorithm. The microwave polarization difference index (MPDI) is used to eliminate the effects of temperature. Then soil moisture is obtained through a nonlinear iterative procedure by making the absolute value of the differences between the simulated and observed MPDI minimum. The algorithm was validated with aircraft passive microwave data from the Polarimetric Scanning Radiometer (PSR) at the Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the soil moisture retrieved by the algorithm is in good agreement with ground measurements with a small bias and an overall accuracy of 0.037m 3 m −3

  7. A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies

    Science.gov (United States)

    Wilkinson, David T.; Page, Lyman

    1995-01-01

    The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.

  8. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  9. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  10. An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path

    Science.gov (United States)

    Greenwald, Thomas J.; Bennartz, Ralf; Lebsock, Matthew; Teixeira, João.

    2018-04-01

    The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9-year record of the Advanced Microwave Scanning Radiometer-EOS (AMSR-E): clear-sky bias, cloud-rain partition (CRP) bias, cloud-fraction-dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR-E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud-Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud-fraction-dependent bias was found to be a combination of the CRP bias, an in-cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in-cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias-corrected AMSR-E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible-infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations.

  11. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    Science.gov (United States)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable

  12. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  13. PHOCUS radiometer

    Directory of Open Access Journals (Sweden)

    O. Nyström

    2012-06-01

    Full Text Available PHOCUS – Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50–110 km. This paper describes the SondRad instrument in the PHOCUS payload, a radiometer comprising two frequency channels (183 GHz and 557 GHz aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend, whereas GARD was responsible for the radiometer optics and calibration systems.

    The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer, while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and Fast Fourier Transform Spectrometers (FFTS backends with 67 kHz resolution.

    The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a continuous wave CW pilot signal calibrating the entire receiving chain, while the intermediate frequency chain (the IF-chain of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler.

    The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable

  14. Robust constraint on cosmic textures from the cosmic microwave background.

    Science.gov (United States)

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  15. The cosmic microwave background: past, present and future

    International Nuclear Information System (INIS)

    Silk, Joseph

    2007-01-01

    The cosmic microwave background has provided an unprecedented cosmological window on the very early universe for probing the initial conditions from which structure evolved. Infinitesimal variations in temperature on the sky, first predicted in 1967 but only discovered in the 1990s, provide the fossil fluctuations that seeded the formation of the galaxies. The cosmic microwave background radiation has now been mapped with ground-based, balloon-borne and satellite telescopes. I describe its current status and future challenges

  16. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  17. Prelaunch Performance of the 118 GHz Polarcube 3U Cubesat Temperature Sounding Radiometer

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Gallaher, D. W.; Sanders, B. T.; Belter, R.; Kraft, D.; Castillo, J.; Gordon, J. A.; Hurowitz, M.

    2017-12-01

    The low cost PolarCube 3U CubeSat supports a 118.75 GHz imaging spectrometer for temperature profiling of the troposphere and surface temperature. It is a demonstrator for a constellation of LEO passive microwave sensors at V-band and other frequencies using 3U/6U CubeSats. Such a satellite constellation for weather forecasting will provide data at high spatial and temporal resolution to observe rapidly evolving mesoscale weather. The satellite's payload is an eight channel, double sideband passive microwave temperature sounder with cross-track scanning and will provide 18 km surface resolution from a 400 km orbit. The radiometer implements a two-point calibration using an internal PIN switch and view of cold space. Although the instrument is based on a well established classical design, the challenges lie in developing a sensitive spectrometer that fits in a 1.5U volume, is low cost, consumes 4 W power and satisfies the CubeSat weight and envelope constraints. PolarCube is scheduled for launch on a Virgin Galactic flight in summer, 2018. The estimated radiometer sensitivity, ΔTrms varies from 0.3 to 2 K across the eight channels. The 50 MHz to 7 GHz 8-channel filter bank (designed with surface mount capacitors and inductors) fits on a 9x5 cm2 RO4350B PCB and includes 2-stage amplification and detector circuitry. The scanning reflector with an 8 cm2 main aperture uses a 3D printed corrugated feed that includes a WR8 to WC8 waveguide transition with a 17° bend. Initial performance results from the instrument using the 3D printed feed and IF/VA board obtained from airborne measurements over Antarctica on the NASA DC8 in early November 2016 indicate a well-functioning radiometer. The end-to-end characterization of the payload with the satellite bus, performance results from vibration and thermal-vacuum tests and roof-top measurements will be presented.

  18. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  19. Microwave implementation of two-source energy balance approach for estimating evapotranspiration

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2018-02-01

    Full Text Available A newly developed microwave (MW land surface temperature (LST product is used to substitute thermal infrared (TIR-based LST in the Atmosphere–Land Exchange Inverse (ALEXI modeling framework for estimating evapotranspiration (ET from space. ALEXI implements a two-source energy balance (TSEB land surface scheme in a time-differential approach, designed to minimize sensitivity to absolute biases in input records of LST through the analysis of the rate of temperature change in the morning. Thermal infrared retrievals of the diurnal LST curve, traditionally from geostationary platforms, are hindered by cloud cover, reducing model coverage on any given day. This study tests the utility of diurnal temperature information retrieved from a constellation of satellites with microwave radiometers that together provide six to eight observations of Ka-band brightness temperature per location per day. This represents the first ever attempt at a global implementation of ALEXI with MW-based LST and is intended as the first step towards providing all-weather capability to the ALEXI framework. The analysis is based on 9-year-long, global records of ALEXI ET generated using both MW- and TIR-based diurnal LST information as input. In this study, the MW-LST (MW-based LST sampling is restricted to the same clear-sky days as in the IR-based implementation to be able to analyze the impact of changing the LST dataset separately from the impact of sampling all-sky conditions. The results show that long-term bulk ET estimates from both LST sources agree well, with a spatial correlation of 92 % for total ET in the Europe–Africa domain and agreement in seasonal (3-month totals of 83–97 % depending on the time of year. Most importantly, the ALEXI-MW (MW-based ALEXI also matches ALEXI-IR (IR-based ALEXI very closely in terms of 3-month inter-annual anomalies, demonstrating its ability to capture the development and extent of drought conditions. Weekly ET output

  20. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  1. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  2. Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    Science.gov (United States)

    Swift, C. T.; Dehority, D. C.; Black, P. G.; Chien, J. Z.

    1984-01-01

    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980.

  3. B-mode contamination by synchrotron emission from 3-yr Wilkinson Microwave Anisotropy Probe data

    NARCIS (Netherlands)

    Carretti, E.; Bernardi, G.; Cortiglioni, S.

    2006-01-01

    We study the contamination of the B-mode of the cosmic microwave background polarization (CMBP) by Galactic synchrotron in the lowest emission regions of the sky. The 22.8-GHz polarization map of the 3-yr Wilkinson Microwave Anisotropy Probe (WMAP) data release is used to identify and analyse such

  4. Low-cost microwave radiometry for remote sensing of soil moisture

    Science.gov (United States)

    Chikando, Eric Ndjoukwe

    2007-12-01

    Remote sensing is now widely regarded as a dominant means of studying the Earth and its surrounding atmosphere. This science is based on blackbody theory, which states that all objects emit broadband electromagnetic radiation proportional to their temperature. This thermal emission is detectable by radiometers---highly sensitive receivers capable of measuring extremely low power radiation across a continuum of frequencies. In the particular case of a soil surface, one important parameter affecting the emitted radiation is the amount of water content or, soil moisture. A high degree of precision is required when estimating soil moisture in order to yield accurate forecasting of precipitations and short-term climate variability such as storms and hurricanes. Rapid progress within the remote sensing community in tackling current limitations necessitates an awareness of the general public towards the benefits of the science. Information about remote sensing instrumentation and techniques remain inaccessible to many higher-education institutions due to the high cost of instrumentation and the current general inaccessibility of the science. In an effort to draw more talent within the field, more affordable and reliable scientific instrumentation are needed. This dissertation introduces the first low-cost handheld microwave instrumentation fully capable of surface soil moisture studies. The framework of this research is two-fold. First, the development of a low-cost handheld microwave radiometer using the well-known Dicke configuration is examined. The instrument features a super-heterodyne architecture and is designed following a microwave integrated circuit (MIC) system approach. Validation of the instrument is performed by applying it to various soil targets and comparing measurement results to gravimetric technique measured data; a proven scientific method for determining volumetric soil moisture content. Second, the development of a fully functional receiver RF front

  5. Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band

    Science.gov (United States)

    Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve

    2018-01-01

    The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.

  6. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    Science.gov (United States)

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  7. A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance: The PARABOLA field instrument

    Science.gov (United States)

    Deering, D. W.; Leone, P.

    1984-11-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  8. The BlueSky Smoke Modeling Framework: Recent Developments

    Science.gov (United States)

    Sullivan, D. C.; Larkin, N.; Raffuse, S. M.; Strand, T.; ONeill, S. M.; Leung, F. T.; Qu, J. J.; Hao, X.

    2012-12-01

    BlueSky systems—a set of decision support tools including SmartFire and the BlueSky Framework—aid public policy decision makers and scientific researchers in evaluating the air quality impacts of fires. Smoke and fire managers use BlueSky systems in decisions about prescribed burns and wildland firefighting. Air quality agencies use BlueSky systems to support decisions related to air quality regulations. We will discuss a range of recent improvements to the BlueSky systems, as well as examples of applications and future plans. BlueSky systems have the flexibility to accept basic fire information from virtually any source and can reconcile multiple information sources so that duplication of fire records is eliminated. BlueSky systems currently apply information from (1) the National Oceanic and Atmospheric Administration's (NOAA) Hazard Mapping System (HMS), which represents remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Operational Environmental Satellites (GOES); (2) the Monitoring Trends in Burn Severity (MTBS) interagency project, which derives fire perimeters from Landsat 30-meter burn scars; (3) the Geospatial Multi-Agency Coordination Group (GeoMAC), which produces helicopter-flown burn perimeters; and (4) ground-based fire reports, such as the ICS-209 reports managed by the National Wildfire Coordinating Group. Efforts are currently underway to streamline the use of additional ground-based systems, such as states' prescribed burn databases. BlueSky systems were recently modified to address known uncertainties in smoke modeling associated with (1) estimates of biomass consumption derived from sparse fuel moisture data, and (2) models of plume injection heights. Additional sources of remotely sensed data are being applied to address these issues as follows: - The National Aeronautics and Space Administration's (NASA) Tropical Rainfall Measuring Mission

  9. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  10. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  11. ACTPol: On-Sky Performance and Characterization

    Science.gov (United States)

    Grace, E.; Beall, J.; Bond, J. R.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dunner, R.; Fox, A. E.; Gallardo, P.; Hasselfield, M.; hide

    2014-01-01

    ACTPol is the polarization-sensitive receiver on the Atacama Cosmology Telescope. ACTPol enables sensitive millimeter wavelength measurements of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB) at arcminute angular scales. These measurements are designed to explore the process of cosmic structure formation, constrain or determine the sum of the neutrino masses, probe dark energy, and provide a foundation for a host of other cosmological tests. We present an overview of the first season of ACTPol observations focusing on the optimization and calibration of the first detector array as well as detailing the on-sky performance.

  12. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the Plateau de Bure

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    2004-06-01

    Full Text Available A ground-based microwave radiometer dedicated to chlorine monoxide (ClO measurements around 278GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45° N, 5.9° E, 2500m altitude. It belongs to the international Network for the Detection of Stratospheric Change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O3, ClO and NO2, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1 the weak sensitivity of the instrument that obliges to make time averages over several hours; 2 the site location where measurements of good opacities are possible for only a few days per year; 3 the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4 the slow drift of some components affecting frequencies by 3-4MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995 from 35-50km are consistent with model results and satellite data, particularly at the peak altitude around 40km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O3 information from 30-60km whilst the instrument is not optimized at all for this molecule. Retrievals of O3 are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO2 are detected at 40km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude

  13. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  14. Monitored background radiometer

    International Nuclear Information System (INIS)

    Ruel, C.

    1988-01-01

    A monitored background radiometer is described comprising: a thermally conductive housing; low conductivity support means mounted on the housing; a sensing plate mounted on the low conductivity support means and spaced from the housing so as to be thermally insulated from the housing and having an outwardly facing first surface; the sensing plate being disposed relative to the housing to receive direct electromagnetic radiation from sources exterior to the radiometer upon the first surface only; means for controllably heating the sensing plate; first temperature sensitive means to measure the temperature of the housing; and second temperature sensitive means to measure the temperature of the sensing plate, so that the heat flux at the sensing plate may be determined from the temperatures of the housing and sensing plate after calibration of the radiometer by measuring the temperatures of the housing and sensing plate while controllably heating the sensing plate

  15. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  16. Mapping the CMB with the Wilkinson Microwave Anisotropy Probe

    Science.gov (United States)

    Hinshaw, Gary F.

    2007-01-01

    The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  17. Synergistic use of active and passive microwave in soil moisture estimation

    Science.gov (United States)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  18. Cosmic microwave background constraints on the tensor-to-scalar ratio

    International Nuclear Information System (INIS)

    Lau King; Tang Jia-Yu; Chu Ming-Chung

    2014-01-01

    One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history X e (z), this analysis is usually done by assuming an instantaneous reionization X e (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction f sky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpolation analysis to the reionization history, the bias induced by the assumption of instantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1

  19. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  20. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  1. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    Science.gov (United States)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  2. CMB spectra and bispectra calculations: making the flat-sky approximation rigorous

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Pitrou, Cyril; Uzan, Jean-Philippe

    2011-01-01

    This article constructs flat-sky approximations in a controlled way in the context of the cosmic microwave background observations for the computation of both spectra and bispectra. For angular spectra, it is explicitly shown that there exists a whole family of flat-sky approximations of similar accuracy for which the expression and amplitude of next to leading order terms can be explicitly computed. It is noted that in this context two limiting cases can be encountered for which the expressions can be further simplified. They correspond to cases where either the sources are localized in a narrow region (thin-shell approximation) or are slowly varying over a large distance (which leads to the so-called Limber approximation). Applying this to the calculation of the spectra it is shown that, as long as the late integrated Sachs-Wolfe contribution is neglected, the flat-sky approximation at leading order is accurate at 1% level for any multipole. Generalization of this construction scheme to the bispectra led to the introduction of an alternative description of the bispectra for which the flat-sky approximation is well controlled. This is not the case for the usual description of the bispectrum in terms of reduced bispectrum for which a flat-sky approximation is proposed but the next-to-leading order terms of which remain obscure

  3. A Degree-Scale Measurement of the Anisotropy in the Cosmic Microwave Background

    Science.gov (United States)

    Wollack, Ed; Jarosik, Norm; Netterfield, Barth; Page, Lyman; Wilkinson, David

    1995-01-01

    We report the detection of anisotropy in the microwave sky at 3O GHz and at l deg angular scales. The most economical interpretation of the data is that the fluctuations are intrinsic to the cosmic microwave background. However, galactic free-free emission is ruled out with only 90% confidence. The most likely root-mean-squared amplitude of the fluctuations, assuming they are described by a Gaussian auto-correlation function with a coherence angle of 1.2 deg, is 41(+16/-13) (mu)K. We also present limits on the anisotropy of the polarization of the cosmic microwave background.

  4. Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.

  5. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  6. Using a field radiometer to estimate instantaneous sky clearness Radiômetro de campo para cálculo da clareza instantânea do céu

    Directory of Open Access Journals (Sweden)

    Eduardo G. Souza

    2006-06-01

    Full Text Available Reflectance measurements of crop plants and canopies show promise for guiding within-season, variable-rate nitrogen (N application. Most research results have been obtained around solar noon with clear skies. However, for practical application, the system must work under cloudy skies or away from solar noon. The objective of this work was to assess the effect of cloud conditions on reflectance measurements of a corn canopy. The approach was to estimate an instantaneous sky clearness index (ICI which could be used to correct field radiometer data for variations in cloud cover, such that the same reflectance reading would be obtained (and the same N recommendation made for the same plants regardless of cloud conditions. Readings were taken from morning until night over 11 days with a range of sky conditions (sunny, overcast, partly cloudy. Data from clear days were used to estimate the theoretical expected spectral global radiation incident on a horizontal surface. The ICI was calculated as the ratio between the actual spectral global radiation and the corresponding theoretical global radiation. Analysis of the ICI for each band showed that the influence of cloudiness was different for each band. Thus, the cloud effect could not be compensated by the use of a band ratio or vegetation index.Medidas da reflectância das folhas das plantas mostram-se promissoras para a aplicação de nitrogênio a taxa variável; entretanto, a maioria dos resultados de pesquisa foi obtida ao redor do meio-dia solar e com céu aberto, porém para aplicações práticas um sistema tem que trabalhar debaixo de céu nublado e fora do meio-dia solar. O objetivo deste trabalho foi avaliar o efeito de condições de nuvem em medidas de reflectância de milho. A abordagem foi calcular um índice instantâneo de clareza do céu (ICI que pode ser usado para corrigir dados de radiômetros de campo para variações em cobertura de nuvem, tal que essas reflectâncias seriam

  7. Global, exact cosmic microwave background data analysis using Gibbs sampling

    International Nuclear Information System (INIS)

    Wandelt, Benjamin D.; Larson, David L.; Lakshminarayanan, Arun

    2004-01-01

    We describe an efficient and exact method that enables global Bayesian analysis of cosmic microwave background (CMB) data. The method reveals the joint posterior density (or likelihood for flat priors) of the power spectrum C l and the CMB signal. Foregrounds and instrumental parameters can be simultaneously inferred from the data. The method allows the specification of a wide range of foreground priors. We explicitly show how to propagate the non-Gaussian dependency structure of the C l posterior through to the posterior density of the parameters. If desired, the analysis can be coupled to theoretical (cosmological) priors and can yield the posterior density of cosmological parameter estimates directly from the time-ordered data. The method does not hinge on special assumptions about the survey geometry or noise properties, etc., It is based on a Monte Carlo approach and hence parallelizes trivially. No trace or determinant evaluations are necessary. The feasibility of this approach rests on the ability to solve the systems of linear equations which arise. These are of the same size and computational complexity as the map-making equations. We describe a preconditioned conjugate gradient technique that solves this problem and demonstrate in a numerical example that the computational time required for each Monte Carlo sample scales as n p 3/2 with the number of pixels n p . We use our method to analyze the data from the Differential Microwave Radiometer on the Cosmic Background Explorer and explore the non-Gaussian joint posterior density of the C l from the Differential Microwave Radiometer on the Cosmic Background Explorer in several projections

  8. Double-polarizating scanning radiometer

    International Nuclear Information System (INIS)

    Mishev, D.N.; Nazyrski, T.G.

    1986-01-01

    The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls

  9. Measuring the global distribution of intense convection over land with passive microwave radiometry

    Science.gov (United States)

    Spencer, R. W.; Santek, D. A.

    1985-01-01

    The global distribution of intense convective activity over land is shown to be measurable with satellite passive-microwave methods through a comparison of an empirical rain rate algorithm with a climatology of thunderstorm days for the months of June-August. With the 18 and 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the strong volume scattering effects of precipitation can be measured. Even though a single frequency (37 GHz) is responsive to the scattering signature, two frequencies are needed to remove most of the effect that variations in thermometric temperatures and soil moisture have on the brightness temperatures. Because snow cover is also a volume scatterer of microwave energy at these microwavelengths, a discrimination procedure involving four of the SMMR channels is employed to separate the rain and snow classes, based upon their differences in average thermometric temperature.

  10. Report from the Passive Microwave Data Set Management Workshop

    Science.gov (United States)

    Armstrong, Ed; Conover, Helen; Goodman, Michael; Krupp, Brian; Liu, Zhong; Moses, John; Ramapriyan, H. K.; Scott, Donna; Smith, Deborah; Weaver, Ronald

    2011-01-01

    Passive microwave data sets are some of the most important data sets in the Earth Observing System Data and Information System (EOSDIS), providing data as far back as the early 1970s. The widespread use of passive microwave (PM) radiometer data has led to their collection and distribution over the years at several different Earth science data centers. The user community is often confused by this proliferation and the uneven spread of information about the data sets. In response to this situation, a Passive Microwave Data Set Management Workshop was held 17 ]19 May 2011 at the Global Hydrology Resource Center, sponsored by the NASA Earth Science Data and Information System (ESDIS) Project. The workshop attendees reviewed all primary (Level 1 ]3) PM data sets from NASA and non ]NASA sensors held by NASA Distributed Active Archive Centers (DAACs), as well as high ]value data sets from other NASA ]funded organizations. This report provides the key findings and recommendations from the workshop as well as detailed tabluations of the datasets considered.

  11. Significance of agricultural row structure on the microwave emissivity of soils

    Science.gov (United States)

    Promes, P. M.; Jackson, T. J.; O'Neill, P. E.

    1987-01-01

    A series of field experiments was carried out to extend the data base available for verifying agricultural row effect models of emissivity. The row effects model was used to simulate a data base from which an algorithm could be developed to account for row effects when the scene dielectric constant and small-scale roughness are unknown. One objective of the study was to quantify the significance of row structure and to develop a practical procedure for removing the effects of periodic row structure on the microwave emissivity of a soil in order to use the emissivity values to estimate the soil moisture. A second objective was to expand the data set available for model verification through field observations using a truck-mounted 1.4-GHz microwave radiometer.

  12. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  13. Cosmic microwave background bispectrum from recombination.

    Science.gov (United States)

    Huang, Zhiqi; Vernizzi, Filippo

    2013-03-08

    We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.

  14. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  15. Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background

    Science.gov (United States)

    Jewell, J.; Levin, S.; Anderson, C. H.

    2004-01-01

    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).

  16. Clear-Sky Narrowband Albedo Variations Derived from VIRS and MODIS Data

    Science.gov (United States)

    Sun-Mack, Sunny; Chen, Yan; Arduini, Robert F.; Minnis, Patrick

    2004-01-01

    A critical parameter for detecting clouds and aerosols and for retrieving their microphysical properties is the clear-sky radiance. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the visible (VIS; 0.63 m) and near-infrared (NIR; 1.6 or 2.13 m) channels available on same satellites as the CERES scanners. Another channel often used for cloud and aerosol, and vegetation cover retrievals is the vegetation (VEG; 0.86- m) channel that has been available on the Advanced Very High Resolution Radiometer (AVHRR) for many years. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. Snow albedo is typically estimated without considering the underlying surface type. The albedo for a surface blanketed by snow, however, should vary with surface type because the vegetation often emerges from the snow to varying degrees depending on the vertical dimensions of the vegetation. For example, a snowcovered prairie will probably be brighter than a snowcovered forest because the snow typically falls off the trees exposing the darker surfaces while the snow on a grassland at the same temperatures will likely be continuous and, therefore, more reflective. Accounting for the vegetation-induced differences should improve the capabilities for distinguishing snow and clouds over different surface types and facilitate improvements in the accuracy of radiative transfer calculations between the snow-covered surface and the atmosphere, eventually leading to improvements in models of the energy budgets over land. This paper presents a more complete analysis of the CERES spectral clear-sky reflectances to determine the variations in clear-sky top-of-atmosphere (TOA) albedos for both snow-free and snow-covered surfaces for four spectral channels using data from Terra and Aqua.. The results should be valuable for improved cloud retrievals and for modeling radiation fields.

  17. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    Science.gov (United States)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  18. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  19. Novel Cyclotron-Based Radiometal Production

    International Nuclear Information System (INIS)

    DeGrado, Timothy R.

    2013-01-01

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started

  20. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  1. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  2. Estimate of the cosmological bispectrum from the MAXIMA-1 cosmic microwave background map.

    Science.gov (United States)

    Santos, M G; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Magueijo, J; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D; Wu, J H P

    2002-06-17

    We use the measurement of the cosmic microwave background taken during the MAXIMA-1 flight to estimate the bispectrum of cosmological perturbations. We propose an estimator for the bispectrum that is appropriate in the flat sky approximation, apply it to the MAXIMA-1 data, and evaluate errors using bootstrap methods. We compare the estimated value with what would be expected if the sky signal were Gaussian and find that it is indeed consistent, with a chi(2) per degree of freedom of approximately unity. This measurement places constraints on models of inflation.

  3. Foreground removal from Planck Sky Model temperature maps using a MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Hebert, K.

    2009-08-01

    Unfortunately, the Cosmic Microwave Background (CMB) radiation is contaminated by emission originating in the Milky Way (synchrotron, free-free and dust emission). Since the cosmological information is statistically in nature, it is essential to remove this foreground emission and leave the CMB with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80 % of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors.

  4. Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius

    Science.gov (United States)

    Epeloa, Javier; Meza, Amalia

    2018-02-01

    The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type. A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer's brightness temperature which works at 23.8 GHz and 36.5 GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types. The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about -0.6 mm, a root mean square (rms) of about 6 mm and a correlation of 0.89.

  5. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    H-atom. The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence of dust evolution within the diffuse ISM. The mean dust opacity is measured to be (7.1 ± 0.6) × 10-27 cm2 H-1 × (v/353 GHz) 1.53 ± 0.03for 100 ≤ v ≤ 353 GHz......The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared...... and microwave backgrounds. We cross-correlate sky maps from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the diffuse infrared background experiment (DIRBE), at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of neutral atomic hydrogen, over a contiguous area...

  6. The effects of vegetation and soil hydraulic properties on passive microwave sensing of soil moisture: Data report for the 1982 fiels experiments

    Science.gov (United States)

    Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III

    1983-01-01

    Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.

  7. Microwave sounding units and global warming

    Science.gov (United States)

    Gary, Bruce L.; Keihm, Stephen J.

    1991-01-01

    A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.

  8. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    Science.gov (United States)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  9. Parameterization of L-, C- and X-band Radiometer-based Soil Moisture Retrieval Algorithm Using In-situ Validation Sites

    Science.gov (United States)

    Gao, Y.; Colliander, A.; Burgin, M. S.; Walker, J. P.; Chae, C. S.; Dinnat, E.; Cosh, M. H.; Caldwell, T. G.

    2017-12-01

    Passive microwave remote sensing has become an important technique for global soil moisture estimation over the past three decades. A number of missions carrying sensors at different frequencies that are capable for soil moisture retrieval have been launched. Among them, there are Japan Aerospace Exploration Agency's (JAXA's) Advanced Microwave Scanning Radiometer-EOS (AMSR-E) launched in May 2002 on the National Aeronautics and Space Administration (NASA) Aqua satellite (ceased operation in October 2011), European Space Agency's (ESA's) Soil Moisture and Ocean Salinity (SMOS) mission launched in November 2009, JAXA's Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W satellite launched in May 2012, and NASA's Soil Moisture Active Passive (SMAP) mission launched in January 2015. Therefore, there is an opportunity to develop a consistent inter-calibrated long-term soil moisture data record based on the availability of these four missions. This study focuses on the parametrization of the tau-omega model at L-, C- and X-band using the brightness temperature (TB) observations from the four missions and the in-situ soil moisture and soil temperature data from core validation sites across various landcover types. The same ancillary data sets as the SMAP baseline algorithm are applied for retrieval at different frequencies. Preliminary comparison of SMAP and AMSR2 TB observations against forward-simulated TB at the Yanco site in Australia showed a generally good agreement with each other and higher correlation for the vertical polarization (R=0.96 for L-band and 0.93 for C- and X-band). Simultaneous calibrations of the vegetation parameter b and roughness parameter h at both horizontal and vertical polarizations are also performed. Finally, a set of model parameters for successfully retrieving soil moisture at different validation sites at L-, C- and X-band respectively are presented. The research described in this paper is supported by the Jet Propulsion

  10. Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements

    Directory of Open Access Journals (Sweden)

    S. Kremser

    2011-06-01

    Full Text Available Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E. During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl, profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the

  11. Etched track radiometers in radon measurements: a review

    CERN Document Server

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  12. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    Science.gov (United States)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  13. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  14. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  15. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    Science.gov (United States)

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  16. COSMO-SkyMed and GIS applications

    Science.gov (United States)

    Milillo, Pietro; Sole, Aurelia; Serio, Carmine

    2013-04-01

    Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.

  17. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  18. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  19. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    Science.gov (United States)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  20. Continuity of Climate Data Records derived from Microwave Observations

    Science.gov (United States)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate

  1. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.

    1989-01-01

    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  2. Making maps of the cosmic microwave background: The MAXIMA example

    Science.gov (United States)

    Stompor, Radek; Balbi, Amedeo; Borrill, Julian D.; Ferreira, Pedro G.; Hanany, Shaul; Jaffe, Andrew H.; Lee, Adrian T.; Oh, Sang; Rabii, Bahman; Richards, Paul L.; Smoot, George F.; Winant, Celeste D.; Wu, Jiun-Huei Proty

    2002-01-01

    This work describes cosmic microwave background (CMB) data analysis algorithms and their implementations, developed to produce a pixelized map of the sky and a corresponding pixel-pixel noise correlation matrix from time ordered data for a CMB mapping experiment. We discuss in turn algorithms for estimating noise properties from the time ordered data, techniques for manipulating the time ordered data, and a number of variants of the maximum likelihood map-making procedure. We pay particular attention to issues pertinent to real CMB data, and present ways of incorporating them within the framework of maximum likelihood map making. Making a map of the sky is shown to be not only an intermediate step rendering an image of the sky, but also an important diagnostic stage, when tests for and/or removal of systematic effects can efficiently be performed. The case under study is the MAXIMA-I data set. However, the methods discussed are expected to be applicable to the analysis of other current and forthcoming CMB experiments.

  3. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  4. Observational aspects of the microwave cosmic background spectrum

    International Nuclear Information System (INIS)

    Martin, D.H.

    1982-01-01

    The discovery of the isotropic microwave background, in 1964, was followed by a decade of careful measurements of the background flux throughout the centimetric and millimetric ranges of wavelength. The results of these measurements are not inconsistent with a Planckian spectrum but the absolute precision of the measurements is not as high as is frequently assumed. More recently attention has turned to searches for variations in the flux density with direction in the sky, while preparations are made in laboratories around the world for a second wave of measurements of the spectrum which are to have a much higher absolute precision. The author points out the limitations in present knowledge of the microwave background, identifies the observational difficulties in improving that knowledge and reports on some of the plans for future measurements. (Auth.)

  5. Digital all-sky polarization imaging of partly cloudy skies.

    Science.gov (United States)

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  6. Searching for concentric low variance circles in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    DeAbreu, Adam [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada (Canada); Contreras, Dagoberto; Scott, Douglas, E-mail: adeabreu@sfu.ca, E-mail: dagocont@phas.ubc.ca, E-mail: dscott@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada (Canada)

    2015-12-01

    In a recent paper, Gurzadyan and Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies, i.e., they are entirely consistent with the predictions of the standard cosmological model.

  7. A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements

    Science.gov (United States)

    Bonds, Q.; Herzig, P.; Weller, T.

    2016-01-01

    The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.

  8. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Guenther, Bruce W.

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability. (For individual items see A93-23576 to A93-23603)

  9. Polarization of the microwave background in open universes

    International Nuclear Information System (INIS)

    Tolman, B.W.

    1985-01-01

    The polarization and anisotropy of the microwave background radiation in open universes with an expansion anisotropy, arising from either cosmological anisotropy or density inhomogeneities on large scales, are computed by a direct, or Monte Carlo, simulation of the problem. The simulation includes accurate numerical data for the ionization of matter during both the decoupling and the reheated eras. Besides the well-known result that the radiation anisotropy is distorted and focused by the spatial curvature into a single very small, intense spot, it is found that the scattering of this spot during the reheated epoch generates features in the polarization of the radiation which cover fully one-half of the sky. The radiation is polarized in a wide band encircling the spot, with the direction of polarization opposite that of the rest of the sky and at a level only slightly below present observed upper limits, given an expansion anisotropy also near its upper limit. This region of strong polarization is surrounded by an unpolarized band near the equator (where the spot is at a pole), while the rest of the sky is also polarized at a level near the upper limits. The amount of polarization is very sensitive to the amount of scattering, and thus to the reheating epoch; further, features in the polarization remain visible even for very long reheated epochs, whereas the intensity anisotropy is quickly damped out. The widths of the unusually polarized region and the spot are sensitive to the cosmological matter density. The extension of these results to the case of a spectrum of large-scale inhomogeneities is briefly discussed. The polarization of the microwaves thus provides an important and observationally accessible test of these cosmological models

  10. A CASE AGAINST SPINNING PAHS AS THE SOURCE OF THE ANOMALOUS MICROWAVE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Brandon S.; Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Meisner, Aaron M., E-mail: brandon.s.hensley@jpl.nasa.gov [Berkeley Center for Cosmological Physics, Berkeley, CA 94720 (United States)

    2016-08-10

    We employ an all-sky map of the anomalous microwave emission (AME) produced by component separation of the microwave sky to study correlations between the AME and Galactic dust properties. We find that while the AME is highly correlated with all tracers of dust emission, the best predictor of the AME strength is the dust radiance. Fluctuations in the AME intensity per dust radiance are uncorrelated with fluctuations in the emission from polycyclic aromatic hydrocarbons (PAHs), casting doubt on the association between AME and PAHs. The PAH abundance is strongly correlated with the dust optical depth and dust radiance, consistent with PAH destruction in low density regions. We find that the AME intensity increases with increasing radiation field strength, at variance with predictions from the spinning dust hypothesis. Finally, the temperature dependence of the AME per dust radiance disfavors the interpretation of the AME as thermal emission. A reconsideration of other AME carriers, such as ultrasmall silicates, and other emission mechanisms, such as magnetic dipole emission, is warranted.

  11. Patterns of the cosmic microwave background from evolving string networks

    International Nuclear Information System (INIS)

    Bouchet, F.R.; Bennett, D.P.; Stebbins, A.

    1988-01-01

    A network of cosmic strings generated in the early Universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them. (author)

  12. Sky camera imagery processing based on a sky classification using radiometric data

    International Nuclear Information System (INIS)

    Alonso, J.; Batlles, F.J.; López, G.; Ternero, A.

    2014-01-01

    As part of the development and expansion of CSP (concentrated solar power) technology, one of the most important operational requirements is to have complete control of all factors which may affect the quantity and quality of the solar power produced. New developments and tools in this field are focused on weather forecasting improving both operational security and electricity production. Such is the case with sky cameras, devices which are currently in use in some CSP plants and whose use is expanding in the new technology sector. Their application is mainly focused on cloud detection, estimating their movement as well as their influence on solar radiation attenuation indeed, the presence of clouds is the greatest factor involved in solar radiation attenuation. The aim of this work is the detection and analysis of clouds from images taken by a TSI-880 model sky. In order to obtain accurate image processing, three different models were created, based on a previous sky classification using radiometric data and representative sky conditions parameters. As a consequence, the sky can be classified as cloudless, partially-cloudy or overcast, delivering an average success rate of 92% in sky classification and cloud detection. - Highlights: • We developed a methodology for detection of clouds in total sky imagery (TSI-880). • A classification of sky is presented according to radiometric data and sky parameters. • The sky can be classified as cloudless, partially cloudy and overcast. • The images processing is based on the sky classification for the detection of clouds. • The average success of the developed model is around 92%

  13. Novel multi-beam radiometers for accurate ocean surveillance

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2014-01-01

    Novel antenna architectures for real aperture multi-beam radiometers providing high resolution and high sensitivity for accurate sea surface temperature (SST) and ocean vector wind (OVW) measurements are investigated. On the basis of the radiometer requirements set for future SST/OVW missions...

  14. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  15. Dark Sky Protection and Education - Izera Dark Sky Park

    Science.gov (United States)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  16. The JET ECE heterodyne radiometer and investigations of fast phenomena

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Porte, L.

    1993-01-01

    In this paper, the design and performance characteristics of the JET heterodyne radiometer are reviewed, and some novel aspects of the instrument are described. Areas where the radiometer could benefit from further improvement are highlighted, and those improvements currently in progress are discussed. Some measurements which demonstrate the radiometer's power as a diagnostic of fast phenomena are presented. (orig.)

  17. Microfluidic radiolabeling of biomolecules with PET radiometals

    International Nuclear Information System (INIS)

    Zeng Dexing; Desai, Amit V.; Ranganathan, David; Wheeler, Tobias D.; Kenis, Paul J.A.; Reichert, David E.

    2013-01-01

    Introduction: A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. Methods: The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64 Cu and 68 Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Results: Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64 Cu/ 68 Ga using the microreactor, which demonstrates the ability to label both small and large molecules. Conclusions: A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.

  18. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  19. Cosmic Microwave Background Anisotropy Measurement From Python V

    OpenAIRE

    Coble, K.; Dodelson, S.; Dragovan, M.; Ganga, K.; Knox, L.; Kovac, J.; Ratra, B.; Souradeep, T.

    2001-01-01

    We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (ℓ ~ 40) to small (ℓ ~ 260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to ...

  20. Limits on arcsecond-scale fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Knoke, J.E.; Partridge, R.B.; Ratner, M.I.; Shapiro, I.I.

    1984-01-01

    We used the NRAO Very Large Array in its C configuration at a wavelength of 6 cm to set upper limits on the rms fluctuation of sky brightness on angular scales of 6''--18'' from sources too weak to be detected individually. At the highest resolution, we establish a limit of 8 μJy per beam area on the rms sky fluctuation. If this fluctuation level is the result of a Poisson distribution of unresolved sources, each of flux density S 0 Jy, then the number density of such sources per steradian must be less than 0.08 S 0 -2 sr -1 . For alternative models in which all sources are resolved, we derive less stringent limits. Our limits on the rms sky fluctuation also establish limits on the rms temperature fluctuation ΔT for simple models of fluctuations in the cosmic microwave background: (ΔT/2.7 K) -3 and (ΔT/2.7 K) -3 for Gaussian temperature fluctuations of angular scale 6'' and 18'', respectively

  1. Night sky luminance under clear sky conditions: Theory vs. experiment

    International Nuclear Information System (INIS)

    Kocifaj, Miroslav

    2014-01-01

    Sky glow is caused by both natural phenomena and factors of anthropogenic origin, and of the latter ground-based light sources are the most important contributors for they emit the spatially linked spectral radiant intensity distribution of artificial light sources, which are further modulated by local atmospheric optics and perceived as the diffuse light of a night sky. In other words, sky glow is closely related to a city's shape and pattern of luminaire distribution, in practical effect an almost arbitrary deployment of random orientation of heterogeneous electrical light sources. Thus the luminance gradation function measured in a suburban zone or near the edges of a city is linked to the City Pattern or vice versa. It is shown that clear sky luminance/radiance data recorded in an urban area can be used to retrieve the bulk luminous/radiant intensity distribution if some a-priori information on atmospheric aerosols is available. For instance, the single scattering albedo of aerosol particles is required under low turbidity conditions, as demonstrated on a targeted experiment in the city of Frýdek-Mistek. One of the main advantages of the retrieval method presented in this paper is that the single scattering approximation is satisfactorily accurate in characterizing the light field near the ground because the dominant contribution to the sky glow has originated from beams propagated along short optical paths. - Highlights: • Urban sky glow is interpreted in terms of city emission function. • Luminance function in a suburban zone is linked to the City Pattern. • Single scattering approximation is applicable in modeling urban sky glow. • Information on aerosols represents valuable inputs to the retrieval procedure. • Sky glow patterns vary with light source distribution and spectral emission

  2. Ramifications of a potential gap in passive microwave data for the long-term sea ice climate record

    Science.gov (United States)

    Meier, W.; Stewart, J. S.

    2017-12-01

    The time series of sea ice concentration and extent from passive microwave sensors is one of the longest satellite-derived climate records and the significant decline in Arctic sea ice extent is one of the most iconic indicators of climate change. However, this continuous and consistent record is under threat due to the looming gap in passive microwave sensor coverage. The record started in late 1978 with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and has continued with a series of Special Sensor Microwave Imager (SSMI) and Special Sensor Microwave Imager and Sounder (SSMIS) instruments on U.S. Defense Meteorological Satellite Program (DMSP) satellites. The data from the different sensors are intercalibrated at the algorithm level by adjusting algorithm coefficients so that the output sea ice data is as consistent as possible between the older and the newer sensor. A key aspect in constructing the time series is to have at least two sensors operating simultaneously so that data from the older and newer sensor can be obtained from the same locations. However, with recent losses of the DMSP F19 and F20, the remaining SSMIS sensors are all well beyond their planned mission lifetime. This means that risk of failure is not small and is increasing with each day of operation. The newest passive microwave sensor, the JAXA Advanced Microwave Scanning Radiometer-2 (AMSR2), is a potential contributor to the time series (though it too is now beyond it's planned 5-year mission lifetime). However, AMSR2's larger antenna and higher spatial resolution presents a challenge in integrating its data with the rest of the sea ice record because the ice edge is quite sensitive to the sensor resolution, which substantially affects the total sea ice extent and area estimates. This will need to be adjusted for if AMSR2 is used to continue the time series. Here we will discuss efforts at NSIDC to integrate AMSR2 estimates into the sea ice climate record if needed. We

  3. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  4. Statistics of cosmic microwave background polarization

    International Nuclear Information System (INIS)

    Kamionkowski, M.; Kosowsky, A.; Stebbins, A.

    1997-01-01

    We present a formalism for analyzing a full-sky temperature and polarization map of the cosmic microwave background. Temperature maps are analyzed by expanding over the set of spherical harmonics to give multipole moments of the two-point correlation function. Polarization, which is described by a second-rank tensor, can be treated analogously by expanding in the appropriate tensor spherical harmonics. We provide expressions for the complete set of temperature and polarization multipole moments for scalar and tensor metric perturbations. Four sets of multipole moments completely describe isotropic temperature and polarization correlations; for scalar metric perturbations one set is identically zero, giving the possibility of a clean determination of the vector and tensor contributions. The variance with which the multipole moments can be measured in idealized experiments is evaluated, including the effects of detector noise, sky coverage, and beam width. Finally, we construct coordinate-independent polarization two-point correlation functions, express them in terms of the multipole moments, and derive small-angle limits. copyright 1997 The American Physical Society

  5. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed ...

  6. Dark Sky Education | CTIO

    Science.gov (United States)

    Calendar Activities NOAO-S EPO Programs CADIAS Astro Chile Hugo E. Schwarz Telescope Dark Sky Education ‹› You are here CTIO Home » Outreach » NOAO-S EPO Programs » Dark Sky Education Dark Sky Education Dark Sky Education (in progress) Is an EPO Program. It runs Globe at Night, an annual program to

  7. Wideband filter radiometers for blackbody temperature measurements

    Science.gov (United States)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  8. Microfluidic radiolabeling of biomolecules with PET radiometals.

    Science.gov (United States)

    Zeng, Dexing; Desai, Amit V; Ranganathan, David; Wheeler, Tobias D; Kenis, Paul J A; Reichert, David E

    2013-01-01

    A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background

    Science.gov (United States)

    Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.

    2005-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.

  10. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  11. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs, follo...

  12. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  13. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    Science.gov (United States)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    . radiosondes (processed using GRUAN processing algorithm); 4. a microwave radiometer (data processed using a retrieval based on a neural network). F. Amato, M. Rosoldi, and F. Madonna Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric

  14. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    Science.gov (United States)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  15. The imprint of proper motion of nonlinear structures on the cosmic microwave background

    Science.gov (United States)

    Tuluie, Robin; Laguna, Pablo

    1995-01-01

    We investigate the imprint of nonlinear matter condensations on the cosmic microwave background (CMB) in an Omega = 1, cold dark matter (CDM) model universe. Temperature anisotropies are obtained by numerically evolving matter inhomogeneities and CMB photons from the beginning of decoupling until the present epoch. The underlying density field produced by the inhomogeneities is followed from the linear, through the weakly clustered, into the fully nonlinear regime. We concentrate on CMB temperature distortions arising from variations in the gravitational potentials of nonlinear structures. We find two sources of temperature fluctuations produced by time-varying potentials: (1) anisotropies due to intrinsic changes in the gravitational potentials of the inhomogeneities and (2) anisotropies generated by the peculiar, bulk motion of the structures across the microwave sky. Both effects generate CMB anisotropies in the range of 10(exp -7) approximately less than or equal to (Delta T/T) approximately less than or equal to 10(exp -6) on scales of approximately 1 deg. For isolated structures, anisotropies due to proper motion exhibit a dipole-like signature in the CMB sky that in principle could yield information on the transverse velocity of the structures.

  16. A cosmic microwave background feature consistent with a cosmic texture.

    Science.gov (United States)

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  17. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a

  18. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    Science.gov (United States)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  19. Optimization of procedure for calibration with radiometer/photometer

    International Nuclear Information System (INIS)

    Detilly, Isabelle

    2009-01-01

    A test procedure for the radiometer/photometer calibrations mark International Light at the Laboratorio de Fotometria y Tecnologia Laser (LAFTA) de la Escuela de Ingenieria Electrica de la Universidad de Costa Rica is established. Two photometric banks are used as experimental set and two calibrations were performed of the International Light. A basic procedure established in the laboratory, is used for calibration from measurements of illuminance and luminous intensity. Some dependent variations of photometric banks used in the calibration process, the programming of the radiometer/photometer and the applied methodology showed the results. The procedure for calibration with radiometer/photometer can be improved by optimizing the programming process of the measurement instrument and possible errors can be minimized by using the recommended procedure. (author) [es

  20. A New Way to Demonstrate the Radiometer as a Heat Engine

    Science.gov (United States)

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  1. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  2. Sky Detection in Hazy Image.

    Science.gov (United States)

    Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng

    2018-04-01

    Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions.

  3. Application of Fourier transforms for microwave radiometric inversions

    Science.gov (United States)

    Holmes, J. J.; Balanis, C. A.; Truman, W. M.

    1975-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.

  4. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  5. The development of the advanced cryogenic radiometer facility at NRC

    Science.gov (United States)

    Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.

    2018-02-01

    The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.

  6. Probing the primeval fireball

    International Nuclear Information System (INIS)

    Silk, J.

    1990-01-01

    The existence of cosmic background radiation is one of the strongest pieces of evidence that the universe experienced a fiery dense beginning called the Big Bang. This paper discusses the information on the cosmic background radiation brought by the NASA's Cosmic Background Explorer (COBE) satellite, which was launched on November 18, 1989 and is presently scanning the skies from a near-polar orbit. The three instruments of the COBE satellite (the Differential Microwave Radiometer, the Diffuse Infrared Background Experiment, and the Far Infrared Absolute Spectrophotometer) are designed to analyze the redshifted radiation from the Big Bang and the first generation of stars and young galaxies

  7. Field measurement of clear-sky solar irradiance in Badain Jaran Desert of Northwestern China

    International Nuclear Information System (INIS)

    Bi, Jianrong; Huang, Jianping; Fu, Qiang; Ge, Jinming; Shi, Jinsen; Zhou, Tian; Zhang, Wu

    2013-01-01

    The Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) sponsored and conducted an intensive field campaign on dust aerosols in Badain Jaran Desert of Northwestern China from April 20 to June 20, 2010. A set of state-of-the-art broadband radiometers and sun/sky photometers were deployed along with launched radiosonde. In this paper, we compared the simulated solar irradiances by using the SBDART radiative transfer model with those from the ground-based measurements for 69 selected cases of 7 days. It was shown that the averaged aerosol optical depth at 500 nm (AOD 500 ) is 0.18±0.09 with AOD 500 less than 0.5 for all cases. The single-scattering albedo and asymmetry factor at 675 nm are 0.928±0.035, 0.712±0.023, respectively. The AODs retrieved from the CIMEL sun photometer at various wavelengths agree well with those from the PREDE sky radiometer, and the columnar water vapor contents from CIMEL also agree well with radiosonde observations. In the radiative closure experiment, we used a collocated thermopile pyrgeometer with a shadow and ventilator to correct the thermal dome offset of diffuse irradiance measurement. The mean differences between model and measurements are −9.1 Wm −2 (−2.6%) for the direct irradiance, +3.1 Wm −2 (+2.8%) for diffuse irradiance, and −6.0 Wm −2 (−1.3%) for global irradiance, which indicates an excellent radiative closure. Aerosol shortwave direct radiative forcing (ARF) and radiative heating rate are also investigated. The daily mean ARF ranges from −4.8 to +0.4 Wm −2 at the top of the atmosphere, −5.2 to −15.6 Wm −2 at the surface, and 5.2 to 10.8 Wm −2 in the atmosphere. The corresponding radiative heating rates for the whole atmosphere due to dust aerosols are 0.07, 0.11, 0.14, 0.11, 0.10, 0.08, and 0.07 K/day for the 7 selected cloudless days. These solar radiative forcing can be considered as the representative impact of background dust aerosol in Northwestern China

  8. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  9. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  10. Cosmic microwave background science at commercial airline altitudes

    Science.gov (United States)

    Feeney, Stephen M.; Gudmundsson, Jon E.; Peiris, Hiranya V.; Verde, Licia; Errard, Josquin

    2017-07-01

    Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate view of the polarized microwave sky.

  11. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  12. The new images of the microwave sky: a concordance cosmology?

    CERN Document Server

    Bernardis, P D; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Coble, K; Contaldi, C R; Crill, B P; De Gasperis, G; De Troia, G; Farese, P; Ganga, K; Giacometti, M; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A H; Jones, W C; Lange, A E; Martinis, L; Mason, P; Mauskopf, P D; Melchiorri, A; Montroy, T; Natoli, P; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Pongetti, F; Prunet, S; Romeo, G; Ruhl, J E; Scaramuzzi, F; Vittorio, N

    2002-01-01

    The existence and anisotropy of the cosmic microwave background (CMB), the large scale distribution of Galaxies, the expansion of the Universe and the abundance of light elements can be all be explained with a single cosmological model. In this paper we focus on the CMB anisotropy maps produced by the BOOMERanG experiment and on their impact on cosmology. The images are consistent with the result of acoustic oscillations of the photons-matter plasma in the pre-recombination Universe (z > or approx. 1000). We show how the instrument and the observations have been optimized and how the basic parameters of the model are derived from the data. These observations of the CMB are gaussian and point to a low curvature Universe (omega approx 1), as expected in the inflation scenario. In order to fit these observations and other cosmological evidence, the composition of the Universe must have significant contributions from dark matter (omega sub m approx 0.3) and dark energy (omega subLAMBDA approx 0.7).

  13. Dual color radiometer imagery and test results

    International Nuclear Information System (INIS)

    Silver, A.; Carlen, F.; Link, D.; Zegel, F.

    1989-01-01

    This paper presents a review of the technical characteristics of the Dual Color Radiometer and recent data and test results. The Dual Color Radiometer is a state-of-the-art device that provides simultaneous pixel to pixel registered thermal imagery in both the 3 to 5 and 8 to 12 micron regions. The device is unique in terms of its spatial and temperature resolution of less than 0.10 degrees C temperature and 0.10 milliradian spatial resolution. In addition, the device is tailored for use by the Automatic Target Recognizer (ATR) community

  14. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  15. How to derotate the cosmic microwave background polarization.

    Science.gov (United States)

    Kamionkowski, Marc

    2009-03-20

    If the linear polarization of the cosmic microwave background is rotated in a frequency-independent manner as it propagates from the surface of last scatter, it may introduce a B-mode polarization. Here I show that measurement of higher-order TE, EE, EB, and TB correlations induced by this rotation can be used to reconstruct the rotation angle as a function of position on the sky. This technique can be used to distinguish primordial B modes from those induced by rotation. The effects of rotation can be distinguished geometrically from similar effects due to cosmic shear.

  16. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background.

    Science.gov (United States)

    Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-10-09

    The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.

  17. Radiometric observations of atmospheric attenuation at 20.6 and 31.65 GHz: The Wave Propagation Laboratory data base

    Science.gov (United States)

    Jacobson, Mark D.; Snider, J. B.; Westwater, E. R.

    1993-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL) presently operates five dual-channel microwave radiometers, one triple-channel microwave radiometer, and one six-channel microwave radiometer. The dual-channel radiometers operate at frequencies of 20.6 or 23.87 GHz and 31.4 or 31.65 GHz. The triple-channel radiometer operates at 20.6, 31.65, and 90.0 GHz. The six-channel radiometer operates at frequencies of 20.6, 31.65, 52.85, 53.85, 55.45, and 58.8 GHz. Recent brightness temperature measurements and attenuation values from some of the above radiometers are presented. These radiometric measurements, taken in different locations throughout the world, have given WPL a diverse set of measurements under a variety of atmospheric conditions. We propose to do a more complete attenuation analysis on these measurements in the future. In addition, a new spinning reflector was installed recently for the dual-channel radiometer at the Platteville, Colorado site. This reflector will extend our measurement capabilities during precipating conditions. Locating the three-channel and portable dual-channel radiometers at or near Greeley, Colorado to support the Advanced Communications Technology Satellite (ACTS) program is discussed.

  18. Past, Current and Future of the Advanced Microwave Scanning Radiometer (AMSR) Series

    Science.gov (United States)

    Kachi, M.; Maeda, T.; Ono, N.; Tomii, N.; Kasahara, M.; Mokuno, M.; Sobue, S.

    2017-12-01

    Due to its penetrating capability, passive microwave remote sensing provides all-weather observation of the Earth's surface through clouds, and has bulk sensitivity to atmospheric column and some land surface layers such as snow. The first AMSR series instrument on orbit was the AMSR for EOS (AMSR-E) provided to NASA's Aqua satellite launched in May 2002. AMSR-E had 1.6-m diameter antenna and 14 channels with V and H polarizations including surface-sensitive C-band (6.9-GHz) channels those were not available in previous passive microwave imagers. Instant Field Of View (IFOV) of AMSR-E is largely improved due to antenna size. This IFOV improvement mainly contribute to C-band channel since its IFOV is larger (75x43-km) even though bigger antenna size. The latest AMSR series instrument on orbit, AMSR-2, was launched in May 2012 on board the Global Change Observation Mission - Water (GCOM-W) satellite. The GCOM-W satellite was injected to the A-train orbit to keep observation continuities to AMSR-E and seek synergies with the other A-train constellation satellites. Antenna size of AMSR-2 is 2.0-m diameter with 16 channels. Channel set is almost identical to that of AMSR-E, but new 7.3-GHz channels are added along with previous 6.9-GHz channels to mitigate influence of Radio Frequency Interferences (RFIs) in brightness temperature. IFOV of AMSR-2 is also improved from AMSR-E due to larger antenna size. AMSR-2 has completed its 5-year designed mission life in May 2017, and continues scientific observations without any serious problem. Besides the 10-month gaps between AMSR-E and AMSR2, the AMSR series provide long-term high-resolution and highly-frequent global observation of water-related parameters over 15-year. Upon the success of AMSR series, we have started discussion of possible follow-on mission with various user communities as well as expansion of application of AMSR-2 and follow-on data in new fields. Highest priority from users is gap-less, in terms of both

  19. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    Science.gov (United States)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  20. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    Science.gov (United States)

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  1. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  2. Application of microwave cell system in calibration of electromagnetic field meters

    International Nuclear Information System (INIS)

    Abu-Kassem, I.

    2012-11-01

    The aim of this work is to improve radiation measurements of electromagnetic field (EMF) through realizing tests and calibrations of measurement devices by intercomparison within the microwaves (MW) range according to EMF wave cell properties. Actually, the calibration facility in electromagnetic field is not available in Syria; therefore, realizing an experimental system for electromagnetic field radiometer calibration is very important at national level. This study showed the possibility of using EMF wave cell in intercomparison of electromagnetic field radiometers in order to achieve a direct calibration via standard radiometer. The EMF wave cell properties were studied and the homogeneity of its EMF was tested using the EF Cube probe. Results showed that the field homogeneity inside the cell is good and the variation of electric field strength, within the comparison position, is less than 10% of measured values. It was recognized that the probe form and dimensions influence the comparison results; and measurement results showed that it's possible to achieve comparison in the working domain of EMF wave cell (10 - 3000 MHz) with a relative deviation of result values between 10% and 30% according to the measurement device and frequency range. Development of comparison process in order to obtain accurate results needs to improve mechanical supports of tested probes and to introduce a correction factor related to studied probe form and dimensions. From another side, it is better to carry out measurements at frequencies around the central frequency, and not close to frequency range borders, of the EMF wave cell working frequency domain. (author)

  3. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Science.gov (United States)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  4. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  5. Dark Skies are a Universal Resource. So are Quiet Skies!

    Science.gov (United States)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. A LAST LOOK AT THE MICROWAVE HAZE/BUBBLES WITH WMAP

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Gregory, E-mail: dobler@kitp.ucsb.edu [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States)

    2012-05-01

    The microwave 'haze' was first discovered with the initial release of the full sky data from the Wilkinson Microwave Anisotropy Probe (WMAP). It is diffuse emission toward the center of our Galaxy with spectral behavior that makes it difficult to categorize as any of the previously known emission mechanisms at those wavelengths. With now seven years of WMAP data publicly available, we have learned much about the nature of the haze, and with the release of data from the Fermi Gamma-Ray Space Telescope and the discovery of the gamma-ray haze/bubbles, we have had a spectacular confirmation of its existence at other wavelengths. As the WMAP mission winds down and the Planck mission prepares to release data, I take a last look at what WMAP has to tell us about the origin of this unique Galactic feature. Much like the gamma rays, the microwave haze/bubbles is/are elongated in latitude with respect to longitude by a factor of roughly two, and at high latitudes, the microwave emission cuts off sharply above {approx}35 Degree-Sign (compared to {approx}50 Degree-Sign in the gammas). The hard spectrum of electrons required to generate the microwave synchrotron is consistent with that required to generate gamma-ray emission via inverse Compton scattering, though it is likely that these signals result from distinct regions of the spectrum ({approx}10 GeV for the microwaves and {approx}1 TeV for the gammas). While there is no evidence for significant haze polarization in the seven-year WMAP data, I demonstrate explicitly that it is unlikely such a signal would be detectable above the noise.

  7. Cosmic Microwave Background Anisotropy Measurement from Python V

    Science.gov (United States)

    Coble, K.; Dodelson, S.; Dragovan, M.; Ganga, K.; Knox, L.; Kovac, J.; Ratra, B.; Souradeep, T.

    2003-02-01

    We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (l~40) to small (l~260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to smaller (l~200) scales, consistent with that expected from acoustic oscillations in the early universe. We compare this Python V map to a map made from data taken in the third year of Python. Python III observations were made at a frequency of 90 GHz and covered a subset of the region of the sky covered by Python V observations, which were made at 40 GHz. Good agreement is obtained both visually (with a filtered version of the map) and via a likelihood ratio test.

  8. Validation of a Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.

  9. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  10. Special aerosol sources for certification and test of aerosol radiometers

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E.

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author)

  11. Special aerosol sources for certification and test of aerosol radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. (Union Research Institute of Instrumentation, Moscow (USSR))

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author).

  12. Radiometric characterization of six soils in the microwave X-range through complex permittivity measurements

    International Nuclear Information System (INIS)

    Palme, U.W.

    1987-10-01

    Estimating and monitoring up-to-date soil moisture conditions over extensive areas through passive (or active) microwave remote sensing techniques requires the knowledge of the complex relative permittivity (ε r * ) in function of soil moisture. X-band measurements of ε r * for different moisture conditions were made in laboratory for soil samples of six important Soils (PV 2 , LV 3 , LR d , LE 1 , SAP and Sc). Using a theoretical model and computational programmes developed, these measurements allowed estimates of the emissive characteristics of the soils that would be expected with the X-Band Microwave Radiometer built at INPE. The results, new, for soils from tropical regions, showed that only the physical characteristics and properties of the soils are not sufficient to explain the behaviour of ε r * in function of soil moisture, indicating that the chemical and/or mineralogical properties of the soils do have an important contribution. The results also showed thast ε r * in function of soil moisture depends on soil class. (author) [pt

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  14. A Preliminary Study toward Consistent Soil Moisture from AMSR2

    NARCIS (Netherlands)

    Parinussa, R.M.; Holmes, T.R.H.; Wanders, N.; Dorigo, W.A.; de Jeu, R.A.M.

    2015-01-01

    A preliminary study toward consistent soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2) is presented. Its predecessor, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), has providedEarth scientists with a consistent and continuous global

  15. Treasures of the Southern Sky

    CERN Document Server

    Gendler, Robert; Malin, David

    2011-01-01

    In these pages, the reader can follow the engaging saga of astronomical exploration in the southern hemisphere, in a modern merger of aesthetics, science, and a story of human endeavor. This book is truly a celebration of southern skies.  Jerry Bonnell, Editor - Astronomy Picture of the Day The southern sky became accessible to scientific scrutiny only a few centuries ago, after the first European explorers ventured south of the equator. Modern observing and imaging techniques have since revealed what seems like a new Universe, previously hidden below the horizon, a fresh astronomical bounty of beauty and knowledge uniquely different from the northern sky. The authors have crafted a book that brings this hidden Universe to all, regardless of location or latitude. Treasures of the Southern Sky celebrates the remarkable beauty and richness of the southern sky in words and with world-class imagery. In part, a photographic anthology of deep sky wonders south of the celestial equator, this book also celebrates th...

  16. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  17. Deconvolution map-making for cosmic microwave background observations

    International Nuclear Information System (INIS)

    Armitage, Charmaine; Wandelt, Benjamin D.

    2004-01-01

    We describe a new map-making code for cosmic microwave background observations. It implements fast algorithms for convolution and transpose convolution of two functions on the sphere [B. Wandelt and K. Gorski, Phys. Rev. D 63, 123002 (2001)]. Our code can account for arbitrary beam asymmetries and can be applied to any scanning strategy. We demonstrate the method using simulated time-ordered data for three beam models and two scanning patterns, including a coarsened version of the WMAP strategy. We quantitatively compare our results with a standard map-making method and demonstrate that the true sky is recovered with high accuracy using deconvolution map-making

  18. Circles-in-the-sky searches and observable cosmic topology in a flat universe

    International Nuclear Information System (INIS)

    Mota, B.; Reboucas, M. J.; Tavakol, R.

    2010-01-01

    In a universe with a detectable nontrivial spatial topology, the last scattering surface contains pairs of matching circles with the same distribution of temperature fluctuations--the so-called circles-in-the-sky. Searches for nearly antipodal circles-in-the-sky in maps of cosmic microwave background radiation have so far been unsuccessful. This negative outcome, along with recent theoretical results concerning the detectability of nearly flat compact topologies, is sufficient to exclude a detectable nontrivial topology for most observers in very nearly flat positively and negatively curved universes, whose total matter-energy density satisfies 0 tot -1| -5 . Here, we investigate the consequences of these searches for observable nontrivial topologies if the Universe turns out to be exactly flat (Ω tot =1). We demonstrate that in this case, the conclusions deduced from such searches can be radically different. We show that, although there is no characteristic topological scale in the flat manifolds, for all multiply-connected orientable flat manifolds, it is possible to directly study the action of the holonomies in order to obtain a general upper bound on the angle that characterizes the deviation from antipodicity of pairs of matching circles associated with the shortest closed geodesic. This bound is valid for all observers and all possible values of the compactification length parameters. We also show that in a flat universe, there are observers for whom the circles-in-the-sky searches already undertaken are insufficient to exclude the possibility of a detectable nontrivial spatial topology. It is remarkable how such small variations in the spatial curvature of the Universe, which are effectively indistinguishable geometrically, can have such a drastic effect on the detectability of cosmic topology. Another important outcome of our results is that they offer a framework with which to make statistical inferences from future circles-in-the-sky searches on whether

  19. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  20. A simple method to minimize orientation effects in a profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; SrinivasaKumar, T.; Lotlikar, A.

    -fall radiometer is found to be a better option for measuring underwater light parameters as it avoids the effects of ship shadow and is easy to operate, the measurements demand profiling the radiometer vertical in water with minimum tilt. Here we present...

  1. K-Band Radio frequency Interference Survey of Southeastern Michigan

    DEFF Research Database (Denmark)

    Curry, Shannon; Ahlers, Michael Faursby; Elliot, Harvey

    2010-01-01

    The Radio frequency Interference Survey of Earth (RISE) is a new type of instrument used to survey and characterize the presence of Radio Frequency Interference (RFI) that can affect microwave radiometers. It consists of a combined microwave radiometer and kurtosis spectrometer with broad frequen...

  2. Passive Microwave Observation of Soil Water Infiltration

    Science.gov (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  3. The night sky companion a yearly guide to sky-watching 2008-2009

    CERN Document Server

    Plotner, Tammy

    2007-01-01

    The Night Sky Companion is a comprehensive guide to what can be explored in the heavens on a nightly basis. Designed to appeal to readers at all skill levels, it provides a digest for sky watchers interested in all types of astronomical information.

  4. The Planck Satellite LFI and the Microwave Background: Importance of the 4 K Reference Targets

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2010-07-01

    Full Text Available Armed with 4 K reference targets, the Planck satellite low frequency instrument (LFI is intended to map the microwave anisotropies of the sky from the second Lagrange point, L2. Recently, the complete design and pre-flight testing of these 4 K targets has been published (Valenziano L. et al., JINST 4, 2009, T12006. The receiver chain of the LFI is based on a pseudo-correlation architecture. Consequently, the presence of a 3 K microwave background signal at L2 can be established, if the 4 K reference targets function as intended. Conversely, demonstration that the targets are unable to provide the desired emission implies that the 3 K signal cannot exist, at this location. Careful study reveals that only the second scenario can be valid. This analysis thereby provides firm evidence that the monopole of the microwave background, as initially detected by Penzias and Wilson, is being produced by the Earth itself.

  5. The Planck Satellite LFI and the Microwave Background: Importance of the 4K Reference Targets

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2010-04-01

    Full Text Available Armed with ~4K reference targets, the Planck satellite low frequency instrument (LFI is intended to map the microwave anisotropies of the sky from the second Lagrange point, L2. Recently, the complete design and pre-flight testing of these ~4K targets has been published (Valenziano L. et al., JINST 4, 2009, T12006. The receiver chain of the LFI is based on a pseudo-correlation architecture. Consequently, the presence of a ~3K microwave background signal at L2 can be established, if the ~4K reference targets function as intended. Conversely, demonstration that the targets are unable to provide the desired emission implies that the ~3K signal cannot exist, at this location. Careful study reveals that only the second scenario can be valid. This analysis thereby provides firm evidence that the monopole of the microwave background, as initially detected by Penzias and Wilson, is being produced by the Earth itself.

  6. Calibration of IR test chambers with the missile defense transfer radiometer

    Science.gov (United States)

    Kaplan, Simon G.; Woods, Solomon I.; Carter, Adriaan C.; Jung, Timothy M.

    2013-05-01

    The Missile Defense Transfer Radiometer (MDXR) is designed to calibrate infrared collimated and flood sources over the fW/cm2 to W/cm2 power range from 3 μm to 28μ m in wavelength. The MDXR operates in three different modes: as a filter radiometer, a Fourier-transform spectrometer (FTS)-based spectroradiometer, and as an absolute cryogenic radiometer (ACR). Since 2010, the MDXR has made measurements of the collimated infrared irradiance at the output port of seven different infrared test chambers at several facilities. We present a selection of results from these calibration efforts compared to signal predictions from the respective chamber models for the three different MDXR calibration modes. We also compare the results to previous measurements made of the same chambers with a legacy transfer radiometer, the NIST BXR. In general, the results are found to agree within their combined uncertainties, with the MDXR having 30 % lower uncertainty and greater spectral coverage.

  7. Sky Subtraction with Fiber-Fed Spectrograph

    Science.gov (United States)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  8. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    Science.gov (United States)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when

  9. Adnyamathanha Night Skies

    Science.gov (United States)

    Curnow, Paul

    2009-06-01

    Aboriginal Australians have been viewing the night skies of Australia for some 45,000 years and possibly much longer. During this time they have been able to develop a complex knowledge of the night sky, the terrestrial environment in addition to seasonal changes. However, few of us in contemporary society have an in-depth knowledge of the nightly waltz of stars above.

  10. Monitored background radiometer

    International Nuclear Information System (INIS)

    Ruel, C.

    1988-01-01

    This radiometer accurately measures IR and solar spectrum radiation in a vacuum, and accounts for radiation loss from its sensing plate by measuring the housing temperature. Calibration is performed by measuring the temperature of the sensing plate and housing while power to a heater attached to the sensing plate is varied. The square of the difference between the measured power dissipation of the heater and the heat absorbed by the sensing plate as determined from the heat balance equation of the sensing plate is minimized to obtain calibration factors for the heat balance equation

  11. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    Science.gov (United States)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  12. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  13. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  14. Causality and skies: is non-refocussing necessary?

    International Nuclear Information System (INIS)

    Bautista, A; Ibort, A; Lafuente, J

    2015-01-01

    The causal structure of a strongly causal, null pseudo-convex, space-time M is completely characterized in terms of a partial order on its space of skies defined by means of a class of non-negative Legendrian isotopies called sky isotopies. It is also shown that such partial order is determined by the class of future causal celestial curves, that is, curves in the space of light rays which are tangent to skies and such that they determine non-negative sky isotopies. It will also be proved that the space of skies Σ equipped with Low’s (or reconstructive) topology is homeomorphic and diffeomorphic to M under the only additional assumption that M separates skies, that is, that different events determine different skies. The sky-separating property of M is sharp and the previous result provides an answer to the question about the class of space-times whose causal structure, topological and differentiable structure can be reconstructed from their spaces of light rays and skies. These results can be understood as a Malament–Hawking-like theorem stated in terms of the partial order defined on the space of skies. (paper)

  15. The new Passive microwave Neural network Precipitation Retrieval (PNPR algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

    Directory of Open Access Journals (Sweden)

    P. Sanò

    2016-11-01

    Full Text Available The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2, an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1, developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF, with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR. In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013–2014 dataset of coincident observations over a regular grid at 0.5°  ×  0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast, and the root mean squared error (RMSE was equal to 1.30 mm h−1 over ocean and 1.11 mm h−1 over

  16. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSR-E Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, S.; Peterson, C. A.

    2006-12-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: `Is The Number of Antarctic Icebergs Really Increasing?' [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, AGU Transactions 83(42):469&474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E's 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I's comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with near-global coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC (Rapid Prototyping Capability

  17. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  18. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Baeza

    2011-01-01

    Full Text Available The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera. Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  19. Dark-Skies Awareness

    Science.gov (United States)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  20. A cost effective total power radiometer package for atmospheric research

    International Nuclear Information System (INIS)

    Lyons, B.N.; Kelly, W.M.; Vizard, D.R.; Lidholm, U.S.

    1993-01-01

    Millimeter wave radiometers are being increasingly used for plasma diagnostics and remote sensing applications. To date however the widespread use of such systems, particularly for applications requiring frequency coverage above 100 GHz, have been inhibited by the lack of availability of an appropriately specified commercial package. This paper outlines the design and construction of such a radiometer package and gives details of results obtained to date

  1. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  2. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Science.gov (United States)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  3. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  4. A new real time infrared background discrimination radiometer (BDR)

    International Nuclear Information System (INIS)

    Kopolovich, Z.; Cabib, D.; Buckwald, R.A.

    1989-01-01

    This paper reports on a new radiometer (BDR) that has been developed, which discriminates small differences between an object and its surrounding background, and is able to measure an object's changing contrast when the contrast of a moving object is to be measured against a changing background. The difference in radiant emittance of a small object against its background or of two objects with respect to each other and this difference is small compared to the emittance itself. Practical examples of such measurements are contrast measurements of airplanes and missiles in flight, contrast measurements of small, weak objects on a warm background and uniformity measurements of radiant emittance from an object's surface. Previous instruments were unable to make such measurements since the process of contrast measurement with a fixed field of view radiometer is too slow for implementation on flying objects; detection of a small difference between two large DC signals is impossible in a traditional fixed field of view radiometer when the instrument itself is saturated

  5. 2014 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2013-01-01

    Compact, easy to use and reliable, this popular guide contains everything you need to know about the southern night sky with monthly astronomy maps, viewing tips and highlights, and details of all the year's exciting celestial events. Wherever you are in Australia or New Zealand, easy calculations allow you to estimate local rise and set times for the Sun, Moon and planets. The 2014 Australasian Sky Guide also provides information on the solar system, updated with the latest findings from space probes. Published annually since 1991, the Sky Guide continues to be a favourite with photographers,

  6. Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness

    Science.gov (United States)

    Walker, C. E.; Isbell, D.; Pompea, S. M.

    2007-12-01

    The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline

  7. Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Loh, Yeong-Shang; Strauss, Michael A.

    2004-01-01

    We cross-correlate the cosmic microwave background temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modeling the theoretical expectation for this signal, we extract the signatures of dark energy [integrated Sachs-Wolfe effect (ISW)], hot gas [thermal Sunyaev-Zeldovich (SZ) effect], and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7σ level, which is consistent with the theoretical prediction based on observations of x-ray clusters. We also see the ISW signal at the 2.5σ level, which is consistent with the expected value for the concordance ΛCDM cosmology, and is an independent signature of the presence of dark energy in the Universe. Finally, we see the signature of microwave point sources at the 2.7σ level

  8. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  9. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    Science.gov (United States)

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.

  10. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    Science.gov (United States)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both

  11. Education for Life in the Sky.

    Science.gov (United States)

    Roth, Charles E.

    1981-01-01

    The need to educate people about the sky as both a psychological and physical environment is discussed, including a formal curriculum schema (sky as habitat, sky as transport, influence on culture) and informal curriculum, with such topics as recreation, pollution, mythology, and clouds. (DC)

  12. The Complexities of Interstellar Dust and the Implications for the Small-scale Structure in the Cosmic Microwave Background

    Science.gov (United States)

    Verschuur, G. L.; Schmelz, J. T.

    2018-02-01

    A detailed comparison of the full range of PLANCK and Wilkinson Microwave Anisotropy Probe data for small (2° × 2°) areas of sky and the Cosmic Microwave Background Internal Linear Combination (ILC) maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance data also show that there is no single answer for the question: “to what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the Cosmic Microwave Background small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the Cosmic Microwave Background, or both.

  13. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  14. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    Science.gov (United States)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will

  15. NASA Science Engagement Through "Sky Art"

    Science.gov (United States)

    Bethea, K. L.; Damadeo, K.

    2013-12-01

    Sky Art is a NASA-funded online community where the public can share in the beauty of nature and the science behind it. At the center of Sky Art is a gallery of amateur sky photos submitted by users that are related to NASA Earth science mission research areas. Through their submissions, amateur photographers from around the world are engaged in the process of making observations, or taking pictures, of the sky just like many NASA science instruments. By submitting their pictures and engaging in the online community discussions and interactions with NASA scientists, users make the connection between the beauty of nature and atmospheric science. Sky Art is a gateway for interaction and information aimed at drawing excitement and interest in atmospheric phenomena including sunrises, sunsets, moonrises, moonsets, and aerosols, each of which correlates to a NASA science mission. Educating the public on atmospheric science topics in an informal way is a central goal of Sky Art. NASA science is included in the community through interaction from scientists, NASA images, and blog posts on science concepts derived from the images. Additionally, the website connects educators through the formal education pathway where science concepts are taught through activities and lessons that align with national learning standards. Sky Art was conceived as part of the Education and Public Outreach program of the SAGE III on ISS mission. There are currently three other NASA mission involved with Sky Art: CALIPSO, GPM, and CLARREO. This paper will discuss the process of developing the Sky Art online website, the challenges of growing a community of users, as well as the use of social media and mobile applications in science outreach and education.

  16. Use of active and passive microwave remote sensing for soil moisture estimation through corn

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Chauhan, N.S.; Jackson, T.J.

    1996-01-01

    Over the past several years NASA, USDA, and Princeton University have collaborated to conduct hydrology field experiments in instrumented research watersheds in Pennsylvania and Oklahoma with a goal of characterizing the spatial and temporal variability of soil moisture using microwave sensors. As part of these experiments, L-band radar data from both truck and aircraft sensors were used to validate the performance of a vegetation scattering model in which discrete scatter random media techniques were employed to calculate vegetation transmissivity and scattering. These parameters were then used in a soil moisture prediction algorithm based on a radiative transfer approach utilizing aircraft passive microwave data from the L-band PBMR and ESTAR radiometers. Soil moisture was predicted in both experiments for several large corn fields which represented the densest vegetation canopies of all the test fields. Over the 20 per cent change in soil moisture encountered in the experiments, the match of predicted to measured soil moisture was excellent, with an average absolute error of about 0 · 02 cm 3 cm −3 . (author)

  17. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  18. Aerosol comparisons between sunphotometry / sky radiometry and the GEOS-Chem model

    Science.gov (United States)

    Chaubey, J. P.; Hesaraki, S.; O'Neill, N. T.; Saha, A.; Martin, R.; Lesins, G. B.; Abboud, I.

    2014-12-01

    Comparisons of aerosol optical depth (AOD), spectral AOD parameters and microphysical parameters derived from AEROCAN / AERONET sunphotometer / sky radiometer data acquired over Canada were compared with GEOS-Chem (Geos5,v9-01-03) estimations. The Canadian sites were selected so as to encompass a representative variety of different aerosol types ranging from fine mode (submicron) pollution and smoke aerosols, coarse mode (supermicron) dust, fine and coarse mode marine aerosols, volcanic (fine mode) sulfates and volcanic (coarse mode) ash, etc). A particular focus was placed on comparisons at remote Canadian sites with a further focus on Arctic sites. The analysis included meteorological-scale event comparisons as well as seasonal and yearly comparisons on a climatological scale. The investigations were given a further aerosol type context by comparing optical retrievals of fine and coarse mode AOD with the AODs of the different aerosol types predicted by GEOS-Chem. The effects of temporal and spectral cloud screening of the sunphotometer data on the quality and robustness of these comparisons was the object of an important supporting investigation. The results of this study will be presented for a 3 year period from 2009 to 2011.

  19. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    Science.gov (United States)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  20. Accelerating the cosmic microwave background map-making procedure through preconditioning

    Science.gov (United States)

    Szydlarski, M.; Grigori, L.; Stompor, R.

    2014-12-01

    Estimation of the sky signal from sequences of time ordered data is one of the key steps in cosmic microwave background (CMB) data analysis, commonly referred to as the map-making problem. Some of the most popular and general methods proposed for this problem involve solving generalised least-squares (GLS) equations with non-diagonal noise weights given by a block-diagonal matrix with Toeplitz blocks. In this work, we study new map-making solvers potentially suitable for applications to the largest anticipated data sets. They are based on iterative conjugate gradient (CG) approaches enhanced with novel, parallel, two-level preconditioners. We apply the proposed solvers to examples of simulated non-polarised and polarised CMB observations and a set of idealised scanning strategies with sky coverage ranging from a nearly full sky down to small sky patches. We discuss their implementation for massively parallel computational platforms and their performance for a broad range of parameters that characterise the simulated data sets in detail. We find that our best new solver can outperform carefully optimised standard solvers used today by a factor of as much as five in terms of the convergence rate and a factor of up to four in terms of the time to solution, without significantly increasing the memory consumption and the volume of inter-processor communication. The performance of the new algorithms is also found to be more stable and robust and less dependent on specific characteristics of the analysed data set. We therefore conclude that the proposed approaches are well suited to address successfully challenges posed by new and forthcoming CMB data sets.

  1. A measurement of the cosmic microwave background temperature at 7.5 GHz

    Science.gov (United States)

    Levin, S.; Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Limon, M.; Smoot, G.

    1992-01-01

    The temperature of the cosmic microwave background (CMB) radiation at a frequency of 7.5 GHz (4 cm wavelength) is measured, obtaining a brightness temperature of T(CMB) = 2.70 +/- 0.08 K (68 percent confidence level). The measurement was made from a site near the geographical South Pole during the austral spring of 1989 and was part of an international collaboration to measure the CMB spectrum at low frequencies with a variety of radiometers from several different sites. This recent result is in agreement with the 1988 measurement at the same frequency, which was made from a different site with significantly different systematic errors. The combined result of the 1988 and 1989 measurements is 2.64 +/- 0.06 K.

  2. Fireballs in the Sky

    Science.gov (United States)

    Day, B. H.; Bland, P.

    2016-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly app. To date, more than 23,000 people have downloaded the app world-wide and participated in planetary science. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  3. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  4. Measurement of radiosity coefficient by means of an infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni

    1991-02-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author).

  5. Measurement of radiosity coefficient by means of an infrared radiometer

    International Nuclear Information System (INIS)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni.

    1991-01-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author)

  6. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  7. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  8. Energy transmission using microwaves and its possibility. Maikuroha ni yoru energy yuso to sono kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Shinohara, N. (Kyoto University, Kyoto (Japan))

    1993-09-01

    Transmitting of electric energy in the form of electromagnetic waves is a century-old idea, which has reached its final step of realization at last. This paper describes a review and future prospects on electric power transmitting technologies using microwaves (a wavelength of 12 cm is thought as the most promising candidate). Electric power was transmitted successfully to a flying helicopter in the U.S.A. in 1964. Transmission of 30-kW power was performed in 1975 to a power receiving rectenna (an antenna with microwave receiving rectification circuit) placed 1.6 tm away using a parabola as a transmitting antenna. These studies were carried over to the investigative studies on space power stations (SPS). This is a conception to install a static satellite equipped with a huge solar cell array in the sky of about 36,000 km high to generate power, convert the power to microwaves, and transmit the power of ten million kilowatt class to the ground. A number of results of advanced experiments have been obtained in Japan using rockets or aircraft. 26 refs., 5 figs.

  9. Narrow Field of View Zenith Radiometer (NFOV) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

    2008-11-01

    The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

  10. TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

    International Nuclear Information System (INIS)

    Bilicki, Maciej; Jarrett, Thomas H.; Cluver, Michelle E.; Steward, Louise; Peacock, John A.

    2014-01-01

    Key cosmological applications require the three-dimensional (3D) galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow, and testing the Copernican principle. However, the largest all-sky redshift surveys—the 2MASS Redshift Survey and IRAS Point Source Catalog Redshift Survey—have median redshifts of only z = 0.03 and sample the very local universe. All-sky galaxy catalogs exist that reach much deeper—SuperCOSMOS in the optical, the Two Micron All Sky Survey (2MASS) in the near-IR, and WISE in the mid-IR—but these lack complete redshift information. At present, the only rapid way toward larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing one million galaxies, constructed by cross-matching Two Micron All Sky Survey Extended Source Catalog (2MASS XSC), WISE, and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as the Sloan Digital Sky Survey, 6dFGS, and 2dFGRS. The derived photometric redshifts have errors nearly independent of distance, with an all-sky accuracy of σ z = 0.015 and a very small percentage of outliers. In this way, we obtain redshift estimates with a typical precision of 12% for all the 2MASS XSC galaxies that lack spectroscopy. In addition, we have made an early effort toward probing the entire 3D sky beyond 2MASS, by pairing up WISE with SuperCOSMOS and training the ANNz on GAMA redshift data currently reaching to z med ∼ 0.2. This has yielded photo-z accuracies comparable to those in the 2MPZ. These all-sky photo-z catalogs, with a median z ∼ 0.1 for the 2MPZ, and significantly deeper for future WISE-based samples, will be the largest and most complete of their kind for the foreseeable future

  11. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    Science.gov (United States)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  12. PERBANDINGAN PENGUKURAN RADIOMETER DAN RADIOSONDE PADA MUSIM HUJAN DI DRAMAGA BOGOR

    OpenAIRE

    Athoillah, Ibnu; Dewi, Saraswati; Renggono, Findy

    2016-01-01

    IntisariBalai Besar Teknologi Modifikasi Cuaca (BB-TMC) BPPT bekerjasama dengan Badan Meteorologi Klimatologi dan Geofisika (BMKG) melakukan kegiatan Intensive Observation Period (IOP) selama puncak musim hujan pada tanggal 18 Januari - 16 Februari 2016 di wilayah Jabodetabek. Salah satu peralatan yang digunakan untuk observasi adalah Radiometer dan Radiosonde. Pada penelitian ini akan difokuskan bagaimana perbandingan hasil dari pengukuran Radiometer dan Radiosonde selama kegiatan IOP teruta...

  13. Night sky a falcon field guide

    CERN Document Server

    Nigro, Nicholas

    2012-01-01

    Night Sky: A Falcon Field Guide covers both summer and winter constellations, planets, and stars found in the northern hemisphere. Conveniently sized to fit in a pocket and featuring detailed photographs, this informative guide makes it easy to identify objects in the night sky even from one's own backyard. From information on optimal weather conditions, preferred viewing locations, and how to use key tools of the trade, this handbook will help you adeptly navigate to and fro the vast and dynamic nighttime skies, and you'll fast recognize that the night sky's the limit.

  14. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  15. The relationship between brightness temperature and soil moisture. Selection of frequency range for microwave remote sensing

    International Nuclear Information System (INIS)

    Rao, K.S.; Chandra, G.; Rao, P.V.N.

    1987-01-01

    The analysis of brightness temperature data acquired from field and aircraft experiments demonstrates a linear relationship between soil moisture and brightness temperature. However, the analysis of brightness temperature data acquired by the Skylab radiometer demonstrates a non-linear relationship between soil moisture and brightness temperature. In view of the above and also because of recent theoretical developments for the calculation of the dielectric constant and brightness temperature under varying soil moisture profile conditions, an attempt is made to study the theoretical relationship between brightness temperature and soil moisture as a function of frequency. Through the above analysis, the appropriate microwave frequency range for soil moisture studies is recommended

  16. Sources of errors in the measurements of underwater profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Silveira, N.; Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Lotlikar, A.

    to meet the stringent quality requirements of marine optical data for satellite ocean color sensor validation, development of algorithms and other related applications, it is very essential to take great care while measuring these parameters. There are two... of the pelican hook. The radiometer dives vertically and the cable is paid out with less tension, keeping in tandem with the descent of the radiometer while taking care to release only the required amount of cable. The operation of the release mechanism lever...

  17. Manual of program operation for data analysis from radiometer system

    International Nuclear Information System (INIS)

    Silva Mello, L.A.R. da; Migliora, C.G.S.

    1987-12-01

    This manual describes how to use the software to retrieve and analyse data from radiometer systems and raingauges used in the 12 GHz PROPAGATION MEASUREMENTS/CANADA - TELEBRAS COOPERATION PROGRAM. The data retrieval and analisys is being carried out by CETUC, as part of the activities of the project Simulacao de Enlaces Satelite (SES). The software for these tasks has been supplied by the Canadian Research Centre (CRC), together with the measurement equipment. The two following sections describe the use of the data retrieval routines and the data analysis routines of program ATTEN. Also, a quick reference guide for commands that can be used when a microcomputer is local or remotely connected to a radiometer indoor unit is included as a last section. A more detailed description of these commands, their objectives and cautions that should de taken when using them can be found in the manual ''12 GHz Propagation Measurements System - Volume 1 - Dual Slope Radiometer and Data Aquisition System'', supplied by Diversitel Communications Inc. (author) [pt

  18. Promoting Dark Sky Protection in Chile: the Gabriel Mistral IDA Dark Sky Sanctuary and Other AURA Initiatives

    Science.gov (United States)

    Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team

    2018-01-01

    For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.

  19. A Chinese sky trust?

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Mark [Political Economy Research Institute, University of Massachusetts, Amherst (United States)]. E-mail: brenner@econs.umass.edu; Riddle, Matthew [Department of Economics, University of Massachusetts, Amherst (United States)]. E-mail: mriddle@econs.umass.edu; Boyce, James K. [Political Economy Research Institute and Department of Economics, University of Massachusetts, Amherst (United States)]. E-mail: boyce@econs.umass.edu

    2007-03-15

    The introduction of carbon charges on the use of fossil fuels in China would have a progressive impact on income distribution. This outcome, which contrasts to the regressive distributional impact found in most studies of carbon charges in industrialized countries, is driven primarily by differences between urban and rural expenditure patterns. If carbon revenues were recycled on an equal per capita basis via a 'sky trust,' the progressive impact would be further enhanced: low-income (mainly rural) households would receive more in sky-trust dividends than they pay in carbon charges, and high-income (mainly urban) households would pay more than they receive in dividends. Thus a Chinese sky trust would contribute to both lower fossil fuel consumption and greater income equality.

  20. A Chinese sky trust?

    International Nuclear Information System (INIS)

    Brenner, Mark; Riddle, Matthew; Boyce, James K.

    2007-01-01

    The introduction of carbon charges on the use of fossil fuels in China would have a progressive impact on income distribution. This outcome, which contrasts to the regressive distributional impact found in most studies of carbon charges in industrialized countries, is driven primarily by differences between urban and rural expenditure patterns. If carbon revenues were recycled on an equal per capita basis via a 'sky trust,' the progressive impact would be further enhanced: low-income (mainly rural) households would receive more in sky-trust dividends than they pay in carbon charges, and high-income (mainly urban) households would pay more than they receive in dividends. Thus a Chinese sky trust would contribute to both lower fossil fuel consumption and greater income equality

  1. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers

    Directory of Open Access Journals (Sweden)

    N. Kämpfer

    2012-08-01

    Full Text Available In this study, we present middle atmospheric water vapor (H2O and ozone (O3 measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N, Onsala (57° N and Sodankylä (67° N during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground

  2. Explorers of the Southern Sky: A History of Australian Astronomy

    Science.gov (United States)

    Haynes, Raymond; Haynes, Roslynn D.; Malin, David; McGee, Richard

    1996-06-01

    This well-illustrated volume is the most comprehensive account of Australian astronomy to date. It is both an indispensable reference book on the history of astronomy in Australia, and a highly readable study of a scientific discipline in the context of emerging nationhood. It covers not only the science, but the individuals involved and the social and economic climate in which they worked. Starting from the ancient Aboriginal beliefs about the Sky World - the earliest known astronomy, anywhere in the world - we are led through to the most exciting high-tech current and projected research being carried out at Australia's world-class national astronomy facilities, and by groups in Australian universities. All branches of astronomy are covered - optical, infrared, X-ray, gamma-ray, microwave, gravitational wave and theoretical - including the contribution of amateur astronomers. The non-technical language, many illustrations, and explanatory figures, ensure that this guide will appeal to a wide range of readers - including professional astronomers, historians of science, students, amateur astronomers and general readers.

  3. Passive microwave remote sensing of soil moisture - The effect of tilled row structure

    Science.gov (United States)

    Wang, J. R.; Newton, R. W.; Rouse, J. W., Jr.

    1980-01-01

    The tilled row structure in agricultural fields is one of the important factors affecting observations of microwave emission from such fields. Measurements of this effect were performed with L-band and X-band radiometers mounted on a mobile truck on a bare 40 m x 45 m row tilled field; the soil moisture content during measurements ranged from 10 to 30% by dry weight. Results showed that the variations of the antenna temperatures with incident angle changed with the azimuth angle measured from the row direction. It is found that the observed difference between horizontally and vertically polarized antenna temperatures is due to the change in the local angle of field emission within the antenna field of view caused by the large-scale row structure.

  4. First TSI observations of the new Compact Lightweight Absolute Radiometer (CLARA)

    Science.gov (United States)

    Walter, B.; Finsterle, W.; Koller, S.; Levesque, P. L.; Pfiffner, D.; Schmutz, W. K.

    2017-12-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar radiative emission variations on the Earth's energy budget. The existence of a potentially long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA is one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. NORSAT-1 was launched July 14th 2017 and the nominal operation of CLARA will start after the instrument commissioning beginning August 21st2017. We present the design, calibration and first TSI observations of CLARA, a new generation of active cavity Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-cavity design for degradation tracking and redundancy, ii) a digital control loop with feed forward system allowing for measurement cadences of 30s, iii) an aperture arrangement to reduce internal scattered light and iv) a new cavity and heatsink design to minimize non-equivalence, size and weight of the instrument. CLARA was end-to-end calibrated against the SI traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) in Boulder (Colorado). The absolute measurement uncertainties for the three SI-traceable TSI detectors of CLARA are 567, 576 and 912 ppm (k = 1).

  5. The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?

    Science.gov (United States)

    Wilson, W. S.; Gallaher, D. W.

    2017-12-01

    The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.

  6. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    Science.gov (United States)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence

  7. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  8. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  9. The effect of Limber and flat-sky approximations on galaxy weak lensing

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Pablo; Challinor, Anthony; Efstathiou, George, E-mail: pl411@cam.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk, E-mail: gpe@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom)

    2017-05-01

    We review the effect of the commonly-used Limber and flat-sky approximations on the calculation of shear power spectra and correlation functions for galaxy weak lensing. These approximations are accurate at small scales, but it has been claimed recently that their impact on low multipoles could lead to an increase in the amplitude of the mass fluctuations inferred from surveys such as CFHTLenS, reducing the tension between galaxy weak lensing and the amplitude determined by Planck from observations of the cosmic microwave background. Here, we explore the impact of these approximations on cosmological parameters derived from weak lensing surveys, using the CFHTLenS data as a test case. We conclude that the use of small-angle approximations for cosmological parameter estimation is negligible for current data, and does not contribute to the tension between current weak lensing surveys and Planck.

  10. Balloon-borne radiometer profiler: Field observations

    International Nuclear Information System (INIS)

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given

  11. Model for the angular distribution of sky radiance

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Brunger, A P

    1979-08-01

    A flexible mathematical model is introduced which describes the radiance of the dome of the sky under various conditions. This three-component continuous distribution (TCCD) model is compounded by the superposition of three separate terms, the isotropic, circumsolar and horizon brightening terms, each representing the contribution of a particular sky characteristic. In use a particular sky condition is characterized by the values of the coefficients of each of these three terms, defining the distribution of the total diffuse component. The TCCD model has been demonstrated to fit both the normalized clear sky data and the normalized overcast sky data with an RMS error of about ten percent of the man overall sky radiance. By extension the model could describe variable or partly clouded sky conditions. The model can aid in improving the prediction of solar collector performance.

  12. Compact Front-end Prototype for Next Generation RFI-rejecting Polarimetric L-band Radiometer

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Søbjærg, Sten Schmidl; Skou, Niels

    2009-01-01

    Realizing the need for lower noise figure and smaller physical size in todays higly sensitive radiometers, this paper presents a new compact analog front-end (AFE) for use with the existing L-band (1400-1427 MHz) radiometer designed and operated by the Technical University of Denmark. Using subha...

  13. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    Science.gov (United States)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; ), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  14. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  15. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.; Portillo, C.

    2015-01-01

    Highlights: • The solar resource has been predicted for three hours at 1-min intervals. • Digital image levels and cloud motion vectors are joint for irradiance forecasting. • The three radiation components have been predicted under different sky conditions. • Diffuse and global radiation has an nRMSE value around 10% in all sky conditions. • Beam irradiance is predicted with an nRMSE value of about 15% in overcast skies. - Abstract: In the search for new techniques to predict atmospheric features that might be useful to solar power plant operators, we have carried out solar irradiance forecasting using emerging sky camera technology. Digital image levels are converted into irradiances and then the maximum cross-correlation method is applied to obtain future predictions. This methodology is a step forward in the study of the solar resource, essential to solar plant operators in adapting a plant’s operating procedures to atmospheric conditions and to improve electricity generation. The results are set out using different statistical parameters, in which beam, diffuse and global irradiances give a constant normalized root-mean-square error value over the time interval for all sky conditions. The average measure is 25.44% for beam irradiance; 11.60% for diffuse irradiance and 11.17% for global irradiance.

  16. Daytime Water Detection Based on Sky Reflections

    Science.gov (United States)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  17. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  18. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  19. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    Science.gov (United States)

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  20. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  1. Educating for the Preservation of Dark Skies

    Science.gov (United States)

    Preston, Sandra Lee; Cianciolo, Frank; Wetzel, Marc; Finkelstein, Keely; Wren, William; Nance, Craig

    2015-08-01

    The stars at night really are big and bright deep in the heart of Texas at the McDonald Observatory near Fort Davis, Texas. Each year 80,000 visitors from all over the world make the pilgrimage to the Observatory to attend one of the three-times-a-week star parties. Many experience, for the first time, the humbling, splendor of a truly dark night sky. Over the last several years, the Observatory has experienced dramatic increases in visitation demonstrating the public’s appetite for science education, in general, and interest in the night sky, in particular. This increasing interest in astronomy is, ironically, occurring at a time when most of humanity’s skies are becoming increasingly light-polluted frustrating this natural interest. Dark skies and knowledgeable education and outreach staff are an important resource in maintaining the public’s interest in astronomy, support for astronomical research, and local tourism.This year Observatory educators were inspired by the observance of the International Year of Light to promote healthy outdoor lighting through its popular Astronomy Day distance learning program. This program reaches tens of thousands of K-12 students in Texas and other states with a message of how they can take action to preserve dark skies. As well, more than a thousand Boy Scouts visiting during the summer months receive a special program, which includes activities focusing on good lighting practices, thereby earning them credits toward an astronomy badge.The Observatory also offers a half-a-dozen K-12 teacher professional development workshops onsite each year, which provide about 90 teachers with dark skies information, best-practice lighting demonstrations, and red flashlights. Multi-year workshops for National Park and State of Texas Parks personnel are offered on dark sky preservation and sky interpretation at McDonald and a Dark Skies fund for retrofitting lights in the surrounding area has been established. The Observatory also uses

  2. Evidence of Cross-correlation between the CMB Lensing and the γ-Ray Sky

    Science.gov (United States)

    Fornengo, Nicolao; Perotto, Laurence; Regis, Marco; Camera, Stefano

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  3. EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Università di Torino, I-10125 Torino (Italy); Perotto, Laurence [LPSC, Université Grenoble-Alpes, CNRS/IN2P3, 53, rue des Martyrs, F-38026 Grenoble Cedex (France); Camera, Stefano, E-mail: regis@to.infn.it [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  4. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    Science.gov (United States)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm

  5. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    Science.gov (United States)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; hide

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the

  6. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    Science.gov (United States)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  7. Characterizing Sky Spectra Using SDSS BOSS Data

    Science.gov (United States)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  8. The EUMETSAT Polar System - Second Generation (EPS-SG) micro-wave imaging (MWI) mission

    Science.gov (United States)

    Bojkov, B. R.; Accadia, C.; Klaes, D.; Canestri, A.; Cohen, M.

    2017-12-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system called EPS-SG. This new family of missions will contribute to the Joint Polar System being jointly set up with NOAA in the timeframe 2020-2040. These satellites will fly, like Metop (EPS), in a sun synchronous, low earth orbit at 830 km altitude and 09:30 local time descending node, providing observations over the full globe with revisit times of 12 hours. EPS-SG consists of two different satellites configurations, the EPS-SGa series dedicated to IR and MW sounding, and the EPS-SGb series dedicated to microwave imaging and scatterometry. The EPS-SG family will consist of three successive launches of each satellite-type. The Microwave Imager (MWI) will be hosted on Metop-SGb series of satellites, with the primary objective of supporting Numerical Weather Prediction (NWP) at regional and global scales. Other applications will be observation of surface parameters such as sea ice concentration and hydrology applications. The 18 MWI instrument frequencies range from 18.7 GHz to 183 GHz. All MWI channels up to 89 GHz will measure V- and H polarizations. The MWI was also designed to provide continuity of measurements for select heritage microwave imager channels (e.g. SSM/I, AMSR-E). The additional sounding channels such as the 50-55 and 118 GHz bands will provide additional cloud and precipitation information over sea and land. This combination of channels was successfully tested on the NPOESS Aircraft Sounder Testbed - Microwave Sounder (NAST-M) airborne radiometer, and it is the first time that will be implemented in a conical scanning configuration in a single instrument. An overview of the EPS-SG programme and the MWI instrument will be presented.

  9. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  10. A horizontal vane radiometer: Experiment, theory, and simulation

    International Nuclear Information System (INIS)

    Wolfe, David; Larraza, Andres; Garcia, Alejandro

    2016-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  11. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  12. SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations

    Science.gov (United States)

    Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy

    2008-07-01

    Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools

  13. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  14. A radiometer for stochastic gravitational waves

    International Nuclear Information System (INIS)

    Ballmer, Stefan W

    2006-01-01

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs

  15. Dark Skies: Local Success, Global Challenge

    Science.gov (United States)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  16. Analyzing Non Stationary Processes in Radiometers

    Science.gov (United States)

    Racette, Paul

    2010-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory for many scientific and engineering applications. Non linear effects of the observation methodology is one of the most perplexing aspects to modeling non stationary processes. This perplexing problem was encountered when modeling the effect of non stationary receiver fluctuations on the performance of radiometer calibration architectures. Existing modeling approaches were found not applicable; particularly problematic is modeling processes across scales over which they begin to exhibit non stationary behavior within the time interval of the calibration algorithm. Alternatively, the radiometer output is modeled as samples from a sequence random variables; the random variables are treated using a conditional probability distribution function conditioned on the use of the variable in the calibration algorithm. This approach of treating a process as a sequence of random variables with non stationary stochastic moments produce sensible predictions of temporal effects of calibration algorithms. To test these model predictions, an experiment using the Millimeter wave Imaging Radiometer (MIR) was conducted. The MIR with its two black body calibration references was configured in a laboratory setting to observe a third ultra-stable reference (CryoTarget). The MIR was programmed to sequentially sample each of the three references in approximately a 1 second cycle. Data were collected over a six-hour interval. The sequence of reference measurements form an ensemble sample set comprised of a series of three reference measurements. Two references are required to estimate the receiver response. A third reference is used to estimate the uncertainty in the estimate. Typically, calibration algorithms are designed to suppress the non stationary effects of receiver fluctuations. By treating the data sequence as an ensemble

  17. Spectral and Spatial UV Sky Radiance Measurements at a Seaside Resort Under Clear Sky and Slightly Overcast Conditions.

    Science.gov (United States)

    Sandmann, Henner; Stick, Carsten

    2014-01-01

    Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes. © 2013 The American Society of Photobiology.

  18. The design of an in-water optical radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A; De

    insights into the role playEd. by absorption and scattering processes in the optical properties of water masses. In this paper, we shall describe our design approach to current development effort on a profiling optical radiometer that will measure upwelling...

  19. Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.

    Science.gov (United States)

    Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A

    2010-12-21

    Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.

  20. Report on the Second ARM Mobile Facility (AMF2) Stabilization Platform: Control Strategy and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard J. [Argonne National Lab. (ANL), Argonne, IL (United States); Martin, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    One of the primary objectives of the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) is to obtain reliable measurements from ocean-going vessels. A pillar of the AMF2 strategy in this effort is the use of a stable platform for those instruments that 1) need to look directly at, or be shaded from, direct sunlight or 2) require a truly vertical orientation. Some ARM instruments that fall into these categories include the Multi-Filter Rotating Shadow Band Radiometer (MFRSR) and the Total Sky Imager (TSI), both of which have a shadow band mechanism, upward-looking radiometry that should be exposed only to the sky, a Microwave Radiometer (MWR) that looks vertically and at specified tilt angles, and vertically pointing radars, for which the vertical component of motion is critically important. During the design and construction phase of AMF2, an inexpensive stable platform was purchased to perform the stabilization tasks for some of these instruments. Computer programs were developed to communicate with the platform controller and with an inertial measurements platform that measures true ship motion components (roll, pitch, yaw, surge, sway, and heave). The platform was then tested on a 3-day cruise aboard the RV Connecticut during June 16-18, 2010, off the east coast of the United States. This initial test period was followed by continued development of the platform control strategy and implementation as time permitted. This is a report of the results of these efforts and the critical points in moving forward.

  1. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  2. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  3. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  4. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program

    International Nuclear Information System (INIS)

    Platt, C.M.R.

    1992-05-01

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale

  5. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  6. Satellite passive microwave rain rate measurement over croplands during spring, summer and fall

    International Nuclear Information System (INIS)

    Spencer, R.W.

    1984-01-01

    Rain rate algorithms for spring, summer and fall that have been developed from comparisons between the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and rain rates derived from operational WSR-57 radars over land are described. Data were utilized from a total of 25 SMMR passes and 234 radars, resulting in ∼12 000 observations of ∼1600 km 2 areas. Multiple correlation coefficients of 0.63, 0.80 and 0.75 are achieved for the spring, summer and fall algorithms, respectively. Most of this information is in the form of multifrequency contrast in brightness temperature, which is interpreted as a measurement of the degree to which the land-emitted radiation is attenuated by the rain systems. The SMMR 37 GHz channel has more information on rain rate than any other channel. By combining the lower frequency channels with the 37 GHz observations, variations in land and precipitation thermometric temperatures can be removed, leaving rain attenuation as the major effect on brightness temperature. Polarization screening at 37 GHz is found to be sufficient to screen out cases of wet ground, which is only important when the ground is relatively vegetation free. Heavy rain cases are found to be a significant part of the algorithms' success, because of the strong microwave signatures (low brightness temperatures) that result from the presence of precipitation-sized ice in the upper portions of heavily precipitating storms. If IR data are combined with the summer microwave data, an improved (0.85) correlation with radar rain rates is achieved

  7. Microwave radiometric measurements of soil moisture in Italy

    Directory of Open Access Journals (Sweden)

    G. Macelloni

    2003-01-01

    Full Text Available Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz. The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz, is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths. Keywords: microwave radiometry, soil moisture

  8. A Measurement of the Angular Power Spectrum of the Microwave Background Made from the High Chilean Andes

    Science.gov (United States)

    Torbet, E.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L.; Puchalla, J.; Tran, H. T.

    1999-08-01

    We report on a measurement of the angular spectrum of the anisotropy of the microwave sky at 30 and 40 GHz between l=50 and l=200. The data, covering roughly 600 deg2, support a rise in the angular spectrum to a maximum with δTl~85 μK at l=200. We also give a 2 σ upper limit of δTlToco, Chile. To assist in assessing the site, we present plots of the fluctuations in atmospheric emission at 30 and 144 GHz.

  9. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  10. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    Science.gov (United States)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  11. Measurements of the cosmic microwave background temperature at 1.47 GHz

    Science.gov (United States)

    Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.

    1993-01-01

    We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.

  12. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    Science.gov (United States)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  13. Modeling the Observed Microwave Emission from Shallow Multi-Layer Tundra Snow Using DMRT-ML

    Directory of Open Access Journals (Sweden)

    Nastaran Saberi

    2017-12-01

    Full Text Available The observed brightness temperatures (Tb at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE due to volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been postulated that the inflection point in the seasonal time series of observed Tb V 37 GHz of tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory for Multi Layered (DMRT-ML snowpack is used to predict the passive microwave response from airborne observations over shallow, dense, slab-layered tundra snow. Airborne radiometer observations coordinated with ground-based in situ snow measurements were acquired in the Canadian high Arctic near Eureka, NT, in April 2011. The DMRT-ML was parameterized with the in situ snow measurements using a two-layer snowpack and run in two configurations: a depth hoar and a wind slab dominated pack. With these two configurations, the calibrated DMRT-ML successfully predicted the Tb V 37 GHz response (R correlation of 0.83 when compared with the observed airborne Tb footprints containing snow pits measurements. Using this calibrated model, the DMRT-ML was applied to the whole study region. At the satellite observation scale, observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E over the study area reflected seasonal differences between Tb V 37 GHz and Tb V 19 GHz that supports the hypothesis of the development of an early season volume scattering depth hoar layer, followed by the growth of the late season emission-dominated wind slab layer. This research highlights the necessity to consider the two

  14. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  15. Construction and calibration of solar radiometers: pyranometer and pyrheliometer

    International Nuclear Information System (INIS)

    Escobedo, J.F.; Passos, E.F.; Souza, M.F. de

    1988-01-01

    This paper reports the construction and development of solar radiometers and discusses some characteristic parameters such as linearity, sensitivity and time constant, using an Eppley black-and-white pyranometer as reference. (author) [pt

  16. Boreal Inundation Mapping with SMAP Radiometer Data for Methane Studies

    Science.gov (United States)

    Kim, Seungbum; Brisco, Brian; Poncos, Valentin

    2017-04-01

    Inundation and consequent anoxic condition induce methane release, which is one of the most potent greenhouse gases. Boreal regions contain large amounts of organic carbon, which is a potentially major methane emission source under climatic warming conditions. Boreal wetlands in particular are one of the largest sources of uncertainties in global methane budget. Wetland spatial extent together with the gas release rate remains highly unknown. Characterization of the existing inundation database is poor, because of the inundation under clouds and dense vegetation. In this work, the inundation extent is derived using brightness temperature data acquired by the L-band Soil Moisture Active Passive (SMAP) satellite, which offers the L-band capabilities to penetrate clouds and vegetation at 3-day revisit. The fidelity of the SMAP watermask is assessed as a first step in this investigation by comparing with the following data sets: 3-m resolution maps derived using Radarsat synthetic aperture radar (SAR) data in northern Canada and multi-sensor climatology over Siberia. Because Radarsat coverages are limited despite its high spatial resolution, at the time and location where Radarsats are not available, we also compare with 3-km resolution SMAP SAR data that are concurrent with the SMAP radiometer data globally until July 2015. Inundation extents were derived with Radarsat, SMAP SAR, and SMAP radiometer over the 60 km x 60km area at Peace Athabasca Delta (PAD), Canada on 6 days in spring and summer 2015. The SMAP SAR results match the locations of Radarsat waterbodies. However, the SMAP SAR underestimates the water extent, mainly over mixed pixels that have subpixel land presence. The threshold value (-3 dB) applied to the SMAP SAR was determined previously over the global domain. The threshold is dependent on the type of local landcover within a mixed pixel. Further analysis is needed to locally optimize the threshold. The SMAP radiometer water fraction over Peace

  17. Gaia , an all sky astrometric and photometric survey

    International Nuclear Information System (INIS)

    Carrasco, J.M.

    2017-01-01

    Gaia space mission includes a low resolution spectroscopic instrument to classify and parametrize the observed sources. Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full mission. The data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for future on-ground and space projects (LSST, PLATO, EUCLID, ...). This work addresses the exploitation of the Gaia spectrophotometry as standard photometry reference through the discussion of the sky coverage, the spectrophotometric precision and the expected uncertainties of the synthetic photometry derived from the low resolution Gaia spectra and photometry.

  18. GALAXY COUNTS ON THE COSMIC MICROWAVE BACKGROUND COLD SPOT

    International Nuclear Information System (INIS)

    Granett, Benjamin R.; Szapudi, Istvan; Neyrinck, Mark C.

    2010-01-01

    The cold spot on the cosmic microwave background (CMB) could arise due to a supervoid at low redshift through the integrated Sachs-Wolfe effect. We imaged the region with MegaCam on the Canada-France-Hawaii Telescope and present galaxy counts in photometric redshift bins. We rule out the existence of a 100 Mpc radius spherical supervoid with underdensity δ = -0.3 at 0.5 < z < 0.9 at high significance. The data are consistent with an underdensity at low redshift, but the fluctuations are within the range of cosmic variance and the low-density areas are not contiguous on the sky. Thus, we find no strong evidence for a supervoid. We cannot resolve voids smaller than a 50 Mpc radius; however, these can only make a minor contribution to the CMB temperature decrement.

  19. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)

    2011-01-01

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  20. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  1. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  2. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  3. Application of RUB-01P beta radiometer to control contamination of milk and dairy produce

    International Nuclear Information System (INIS)

    Bachurin, A.V.; Donskaya, G.A.; Koroleva, M.S.; Titov, S.K.

    1990-01-01

    RUB-01P beta-radiometer to control radioactive contamination of milk and dairy produce characterized by a number of advantages as compared to RKB-4-1eM manufactured earlier is described. Device is designed using a new element base, simgle-action, characterized by increased reliability, can operate on-line with ELEKTRONIKA MK-64 programmed microcalculater. Radiometer output is printed out to a void operator errors and to record measurement results. Radiometer main error is maximum 50 %. Data on device sensitivity at measurements using BDZhB-05P, BDZhB-06P1, BDZhB-06P detection units are given

  4. AMPR BRIGHTNESS TEMPERATURE (TB) KWAJEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microwave Precipitation Radiometer (AMPR) was deployed during the First Kwajelein Experiment (KWAJEX). AMPR data were collected at four microwave...

  5. Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.

    Science.gov (United States)

    Miller, Shawn William

    The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.

  6. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  7. Assessing the relationship between microwave vegetation optical depth and gross primary production

    Science.gov (United States)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.

    2018-03-01

    At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time

  8. Microwave-derived soil moisture over Mediterranean land uses: from ground-based radiometry to SMOS first observations

    Science.gov (United States)

    Saleh, Kauzar; Antolín, Carmen; Juglea, Silvia; Kerr, Yann; Millán-Scheiding, Cristina; Novello, Nathalie; Pardé, Mickael; Wigneron, Jean-Pierre; Zribi, Mehrez; López-Baeza, Ernesto

    2010-05-01

    This communication will present the main results of a series of airborne and ground-based experiments conducted at the Valencia Anchor Station (VAS) site for the implementation of the SMOS emission model L-MEB (L-band Microwave Emission model of the Biosphere, Wigneron et al., 2007), and will evaluate the performance of L-MEB against SMOS measurements. The L-MEB model has been implemented in the context of the SMOS mission and through numerous radiometry experiments over different land uses. Within L-MEB, each land use is characterised by model parameterisations that are used to describe the radiative transfer at L-band. They describe, for instance, the attenuation properties of different canopies, or the effect of soil roughness on the surface emission. In recent years, the Valencia Anchor Station site (VAS) has hosted various radiometry experiments. These were performed at different scales, from the plot scale to the regional scale (up to 50 km), using ground-based and airborne-based radiometry. The main results are discussed in this communication, and some preliminary comparisons with SMOS measurements are presented. 1) Ground-based experiments. MELBEX-I was a ground-radiometry experiment run in 2005 using the L-band radiometer EMIRAD over a plot of shrub land. We will present results from this experiment (Cano et al., 2009), that highlighted a constant (and small) contribution of Mediterranean shrub land to the overall emission, and investigated the role of exposed rocks in the surface emission. MELBEX-II was a ground-radiometry experiment run in 2007 using the EMIRAD L-band radiometer over a plot of vineyards throughout the whole vegetation cycle. Vineyards are the main land use at the VAS site, therefore parameterisations for vineyards are key for the validation of SMOS data at VAS. This communication will discuss, in particular, estimates of microwave surface roughness throughout the crop year, and changes in the canopy microwave properties throughout the

  9. Search for extraterrestrial intelligence/high resolution microwave survey team member

    Science.gov (United States)

    Steffes, Paul G.

    1993-01-01

    This semiannual status report describes activities conducted by the Principal Investigator during the first half of this third year of the NASA High Resolution Microwave Survey (HRMS) Investigator Working Group (IWG). As a (HRMS) Team Member with primary interest in the Sky Survey activity, this investigator attended IWG meetings at NASA/Ames and U.C.-Santa Cruz in Apr. and Aug. 1992, and has traveled independently to NRAO/Kitt Peak, Arizona (April 1993) and Woodbury, Georgia (July 1993). During the July 1993 visit to the Georgia Tech Research Corporation/Woodbury Research Facility, an experiment was conducted to study the effects of interference from C-band (3.7 - 4.2 GHz) geostationary spacecraft on the Sky Survey operation in that band. At the first IWG meeting in April of this year, results of a SETI observation conducted at the 203 GHz positronium hyperfine resonance using the NRAO facility at Kitt Peak, AZ, were presented, as well as updates on the development of the spaceborne RFI data bases developed for the project. At the second meeting, results of the study of interference from C-band geostationary spacecraft were presented. Likewise, a presentation was made at the accompanying 1993 Bioastronomy Symposium describing the SETI observation at the positronium hyperfine resonance.

  10. Global Land Surface Temperature From the Along-Track Scanning Radiometers

    Science.gov (United States)

    Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.

    2017-11-01

    The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).

  11. Infrared Sky Surveys

    Science.gov (United States)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  12. The Sky at Night

    CERN Document Server

    Moore, Patrick

    2010-01-01

    For more than 50 years now Sir Patrick Moore has presented the BBC Television series Sky at Night; not a month has been missed – a record for any television series, and a record which may never be broken. Every three years or so a book is published covering the main events in both astronomy and space research. This is the 13th volume, not only a record of the programmes but also of the great advances and discoveries during the period covered - eclipses, comets, and the strange chemical lakes of Titan, for instance, but also anniversaries such as the fifteenth “birthday” of the Hubble Space Telescope, and not forgetting the programme celebrating the Sky at Night’s 50th year, attended by astronaut Piers Sellars and many others who appeared on the programme over the years. All the chapters are self-contained, and fully illustrated. In this new Sky at Night book you will find much to entertain you. It will appeal to amateurs and professionals alike.

  13. Physical, biological, and chemical data from radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution as part of the SeaWiFS/SIMBIOS project from 13 September 1981 to 16 December 1999 (NODC Accession 0000632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, biological, and chemical data were collected using radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution from 13...

  14. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  15. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  16. Effect of a spacer moiety on radiometal labelled Neurotensin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, A.; Valverde, I.E.; Mindt, T.L. [Univ. of Basel Hospital (Switzerland). Div. of Radiopharmaceutical Chemistry

    2013-07-01

    The binding sequence of the regulatory peptide Neurotensin, NT(8-13), represents a promising tumour-specific vector for the development of radiopeptides useful in nuclear oncology for the diagnosis (imaging) and therapy of cancer. A number of radiometal-labelled NT(8-13) derivatives have been reported, however, the effect of the spacer which connects the vector with the radiometal complex has yet not been investigated systematically. Because a spacer moiety can influence potentially important biological characteristics of radiopeptides, we synthesized three [DOTA({sup 177}Lu)]-X-NT(8-13) derivatives and evaluated the effect of a spacer (X) on the physico-chemical properties of the conjugate including lipophilicity, stability, and in vitro receptor affinity and cell internalization. (orig.)

  17. The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments

    Science.gov (United States)

    Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.

    1992-08-01

    The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.

  18. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain

    International Nuclear Information System (INIS)

    Sippel, S.J.; Hamilton, S.K.; Melack, J.M.; Novo, E.M.M.

    1998-01-01

    Inundation patterns in Amazon River floodplains are revealed by analysis of the 37GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer on the Nimbus-7 satellite. Flooded area is estimated at monthly intervals for January 1979 through August 1987 using mixing models that account for the major landscape units with distinctive microwave emission characteristics. Results are presented separately for 12 longitudinal reaches along the Amazon River main stem in Brazil as well as for three major tributaries (the Jurua, Purus and Madeira rivers). The total area along the Amazon River main stem that was flooded (including both floodplain and open water) varied between 19 000 and 91 000 km 2 . The correlation between flooded area and river stage is used to develop a predictive relationship and reconstruct regional inundation patterns in the floodplain of the Amazon River main stem over the past 94 years of stage records (1903± 1996). The mean flooded area along the Amazon River during this 94-year period was 46 800 km 2 , of which the openwater surfaces of river channels and floodplain lakes comprised about 20 700 km 2 . (author)

  19. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  20. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    Science.gov (United States)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  1. Experience in Solar System and Sky Motions

    Science.gov (United States)

    Coles, K. S.

    2017-12-01

    To help students predict where they will see objects in the sky, they must comprehend sky motion and the relative motions of individual objects. Activities to promote this comprehension among college and secondary students include: Tracking star motion in the planetarium: Students predict star motion by marking the expected path on plastic hemisphere models of the celestial dome. They check their prediction by observing and marking the actual motion. For comprehension, comparing motion in different parts of the sky surpasses two-dimensional views of the sky in books or on computers. Mastery is assessed by the same exercise with the sky set at other latitudes, including those on the other side of the equator. Making sundials: Students first make a horizontal sundial for the latitude of their choice following written directions (e.g., Waugh, 1973). One problem to solve is how to convert sundial time to standard time. A prompt is a picture of the analemma (the position of the Sun in the sky at a fixed clock time over the course of a year). Tests of mastery include the questions, "What accounts for the shape of the analemma?" and "What information is needed to predict the shape of the analemma one would see on other planets?" Reference: Waugh, A. E., 1973, Sundials: their theory and construction: Dover, 228 p.

  2. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  3. Daylight and energy implications for CIE standard skies

    International Nuclear Information System (INIS)

    Li, Danny H.W.

    2007-01-01

    Recently, the International Commission on Illumination (CIE) has adopted a range of 15 standard skies, which include the existing CIE overcast, very clear and cloudless polluted skies, covering the whole probable spectrum of usual skies found in the world. The traditional daylight factor (DF) approach with the calculations being based on an isotropic overcast sky, however, cannot cater to the dynamic variations in daylight luminance and illuminance as the sun's position changes under non-overcast skies. Currently, we propose a numerical procedure that considers the changes in the luminance of sky elements to predict the interior daylight illuminance under the 15 CIE standard skies. This paper evaluates the method by using a typical room with a large vertical glazing window facing north. The available daylight for the room at mean hourly sun positions in each month in terms of DF and illuminance levels were determined and compared with those based on a computer program, namely, RADIANCE. A modification to the ground reflected component was made when a well defined shadow was cast in front of the window facade. It is shown that the results estimated by the proposed approach are in reasonably good agreement with those produced from RADIANCE. The interior daylight and lighting energy consumption were also determined using the proposed and the traditional DF approaches. The findings reveal that daylighting designs using existing CIE overcast sky only would considerably underestimate the indoor daylight availability and electric lighting energy savings, especially under high design indoor illuminance settings

  4. Next-Generation Thermal Infrared Multi-Body Radiometer Experiment (TIMBRE)

    Science.gov (United States)

    Kenyon, M.; Mariani, G.; Johnson, B.; Brageot, E.; Hayne, P.

    2016-10-01

    We have developed an instrument concept called TIMBRE which belongs to the important class of instruments called thermal imaging radiometers (TIRs). TIMBRE is the next-generation TIR with unparalleled performance compared to the state-of-the-art.

  5. 2015 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2014-01-01

    Compact, easy to use and reliable, this popular guide has been providing star gazers with everything they need to know about the southern night sky for the past 25 years. The 2015 guide will celebrate this landmark with highlights from the past as well as monthly astronomy maps, viewing tips and highlights, and details of the year's exciting celestial events.Wherever you are in Australia or New Zealand, easy calculations allow you to estimate local rise and set times for the Sun, Moon and planets. The 2015 Australasian Sky Guide also provides information on the solar system, updated with the l

  6. 2013 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2012-01-01

    Compact, easy to use and reliable, this popular guide contains everything you need to know about the southern night sky with monthly star maps, diagrams and details of all the year's exciting celestial events. Wherever you are in Australia or New Zealand, easy calculations allow you to determine when the Sun, Moon and planets will rise and set throughout the year. Also included is information on the latest astronomical findings from space probes and telescopes around the world. The Sky guide has been published annually by the Powerhouse Museum, Sydney, since 1991. It is recommended for photogr

  7. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  8. The New Progress of the Starry Sky Project of China

    Science.gov (United States)

    Wang, Xiaohua

    2015-08-01

    Since the 28th General Assembly of IAU, the SSPC team made new progress:1. Enhanced the function of the SSPC team-- Established the contact with IAU C50, IUCN Dark Skies Advisory Group, AWB and IDA,and undertakes the work of the IDA Beijing Chapter.-- Got supports from China’s National Astronomical Observatories, Beijing Planetarium, and Shanghai Science and Technology Museum.-- Signed cooperation agreements with Lighting Research Center, English Education Group and law Firm; formed the team force.2. Put forward a proposal to national top institutionThe SSPC submitted the first proposal about dark sky protection to the Chinese People’s Political Consultative Conference.3. Introduced the Criteria and Guideline of dark sky protectionThe SSPC team translated 8 documents of IDA, and provided a reference basis for Chinese dark sky protection.4. Actively establish dark sky places-- Plan a Dark Sky Reserve around Ali astronomical observatory (5,100m elevation) in Tibet. China’s Xinhua News Agency released the news.-- Combining with Hangcuo Lake, a National Natural Reserve and Scenic in Tibet, to plan and establish the Dark Sky Park.-- Cooperated with Shandong Longgang Tourism Group to construct the Dream Sky Theme Park in the suburbs of Jinan city.In the IYL 2015, the SSPC is getting further development:First, make dark sky protection enter National Ecological Strategy of “Beautiful China”. We call on: “Beautiful China” needs “Beautiful Night Sky” China should care the shared starry sky, and left this resource and heritage for children.Second, hold “Cosmic Light” exhibition in Shanghai Science and Technology Museum on August.Third, continue to establish Dark Sky Reserve, Park and Theme Park. We want to make these places become the bases of dark sky protection, astronomical education and ecological tourism, and develop into new cultural industry.Fourth, actively join international cooperation.Now, “Blue Sky, White Cloud and Starry Sky “have become

  9. Tropospheric haze and colors of the clear daytime sky.

    Science.gov (United States)

    Lee, Raymond L

    2015-02-01

    To casual observers, haze's visible effects on clear daytime skies may seem mundane: significant scattering by tropospheric aerosols visibly (1) reduces the luminance contrast of distant objects and (2) desaturates sky blueness. However, few published measurements of hazy-sky spectra and chromaticities exist to compare with these naked-eye observations. Hyperspectral imaging along sky meridians of clear and hazy skies at one inland and two coastal sites shows that they have characteristic colorimetric signatures of scattering and absorption by haze aerosols. In addition, a simple spectral transfer function and a second-order scattering model of skylight reveal the net spectral and colorimetric effects of haze.

  10. An optical scanning subsystem for a UAS-enabled hyperspectral radiometer

    Data.gov (United States)

    National Aeronautics and Space Administration — Hyperspectral radiometers will be integrated with an optical scanning subsystem to measure remote sensing reflectance spectra over the ocean.  The entire scanning...

  11. Polarization patterns of the twilight sky

    Science.gov (United States)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  12. Go-To Telescopes Under Suburban Skies

    CERN Document Server

    Monks, Neale

    2010-01-01

    For the last four centuries stargazers have turned their telescopes to the night skies to look at its wonders, but only in this age of computers has it become possible to let the telescope find for you the object you are looking for! So-called “go-to” telescopes are programmed with the locations of thousands of objects, including dazzling distant Suns, stunning neighboring galaxies, globular and open star clusters, the remnants of past supernovae, and many other breathtaking sights. This book does not tell you how to use your Go-to telescope. Your manual will help you do that. It tells you what to look for in the deep sky and why, and what equipment to best see it with. Organized broadly by what is best for viewing in the northern hemisphere in different seasons, Monks further divides the sights of each season into groupings such as “Showpiece Objects,” “Interesting Deep Sky Objects,” and “Obscure and Challenging Deep Sky Objects.” He also tells what objects are visible even in light-polluted ...

  13. NRT AMSR2 UNIFIED L2B HALF-ORBIT 25 KM EASE-GRID SURFACE SOIL MOISTURE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument on the Global Change Observation Mission - Water 1 (GCOM-W1) provides global passive microwave...

  14. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions

    Science.gov (United States)

    Page, L.; Barnes, C.; Hinshaw, G.; Spergel, D. N.; Weiland, J. L.; Wollack, E.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.

    2003-09-01

    Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main-beam intensities have been mapped to the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the prelaunch expectations. The full width at half-maximum is a function of frequency and ranges from 0.82d at 23 GHz to 0.21d at 94 GHz; however, the beams are not Gaussian. We present (a) the beam patterns for all 10 differential radiometers, showing that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAP's compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point-source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter's temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1%-3% accuracy relative to the CMB dipole. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  15. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K; Jokela, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1997-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  16. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K.; Jokela, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1996-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  17. Characterisation of optical filters for broadband UVA radiometer

    Science.gov (United States)

    Alves, Luciana C.; Coelho, Carla T.; Corrêa, Jaqueline S. P. M.; Menegotto, Thiago; Ferreira da Silva, Thiago; Aparecida de Souza, Muriel; Melo da Silva, Elisama; Simões de Lima, Maurício; Dornelles de Alvarenga, Ana Paula

    2016-07-01

    Optical filters were characterized in order to know its suitability for use in broadband UVA radiometer head for spectral irradiance measurements. The spectral transmittance, the angular dependence and the spatial uniformity of the spectral transmittance of the UVA optical filters were investigated. The temperature dependence of the transmittance was also studied.

  18. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  19. An Innovative Collaboration on Dark Skies Education

    Science.gov (United States)

    Walker, Constance E.; Mayer, M.; EPO Students, NOAO

    2011-01-01

    Dark night skies are being lost all over the globe, and hundreds of millions of dollars of energy are being wasted in the process.. Improper lighting is the main cause of light pollution. Light pollution is a concern on many fronts, affecting safety, energy conservation, cost, human health, and wildlife. It also robs us of the beauty of viewing the night sky. In the U.S. alone, over half of the population cannot see the Milky Way from where they live. To help address this, the National Optical Astronomy Observatory Education and Public Outreach (NOAO EPO) staff created two programs: Dark Skies Rangers and GLOBE at Night. Through the two programs, students learn about the importance of dark skies and experience activities that illustrate proper lighting, light pollution's effects on wildlife and how to measure the darkness of their skies. To disseminate the programs locally in an appropriate yet innovative venue, NOAO partnered with the Cooper Center for Environmental Learning in Tucson, Arizona. Operated by the largest school district in Tucson and the University of Arizona College of Education, the Cooper Center educates thousands of students and educators each year about ecology, science, and the beauty and wonders of the Sonoran Desert. During the first academic year (2009-2010), we achieved our goal of reaching nearly 20 teachers in 40 classrooms of 1000 students. We gave two 3-hour teacher-training sessions and provided nineteen 2.5-hour on-site evening sessions on dark skies activities for the students of the teachers trained. One outcome of the program was the contribution of 1000 "GLOBE at Night 2010” night-sky brightness measurements by Tucson students. Training sessions at similar levels are continuing this year. The partnership, planning, lesson learned, and outcomes of NOAO's collaboration with the environmental center will be presented.

  20. The Accuracy of RADIANCE Software in Modelling Overcast Sky Condition

    OpenAIRE

    Baharuddin

    2013-01-01

    A validation study of the sky models of RADIANCE simulation software against the overcast sky condition has been carried out in order to test the accuracy of sky model of RADIANCE for modeling the overcast sky condition in Hong Kong. Two sets of data have been analysed. Firstly, data collected from a set of experiments using a physical scale model. In this experiment, the illuminance of four points inside the model was measured under real sky conditions. Secondly, the RADIANCE simulation has ...